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We construct “generalized Heegner cycles” on a variety fibered over a Shimura curve,
defined over a number field. We show that their images under the p-adic Abel-Jacobi
map coincide with the values (outside the range of interpolation) of a p-adic L-function
L,(f, x) which interpolates special values of the Rankin-Selberg convolution of a fixed
newform f and a theta-series 0, attached to an unramified Hecke character of an
imaginary quadratic field K. This generalizes previous work of Bertolini, Darmon, and
Prasanna, which demonstrated a similar result in the case of modular curves. Our main
tool is the theory of Serre-Tate coordinates, which yields p-adic expansions of modu-
lar forms at CM points, replacing the role of g-expansions in computations on modular

curves.

1 Introduction

The aim of this article is to prove a p-adic Gross—Zagier-type formula for Shimura curves
over Q, generalizing a result [3] of Bertolini, Darmon, and Prasanna.

Let N be a positive integer and f a modular form of weight k on I'5(V). An imag-
inary quadratic field K is said to satisfy the Heegner hypothesis with respect to f if
all primes dividing N are split in K. Under this assumption, and in the case k=2,

the seminal work of Gross and Zagier [19] established a precise formula relating the
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derivatives

L'(fix. 1)

to the heights of Heegner points on the modular curves Xy(IN). Here, x is a finite-order
unramified character of K and L(f, x,s) denotes the usual Rankin-Selberg L-function.
This result has been generalized in many different directions, for example to the case
of even k> 2 [37] and to the setting of Shimura curves over totally real fields [36, 38].
There are also similar formulas relating the cyclotomic derivative of a two-variable p-
adic L-function to p-adic heights of Heegner points and Heegner cycles due to Perrin-
Riou [30] (k=2) and Nekovar [28] (k> 2) as well as recent work by Disegni [18] in the
setting of Shimura curves over totally real fields. Here, (p) = pp is an odd prime splitting
in K.

The formula of [3] is of a different nature and involves studying not the heights
(or p-adic heights) of algebraic cycles but rather their p-adic logarithms, which are
defined by taking the image of a (homologically trivial) cycle under the étale Abel-Jacobi
map and then applying the inverse of the Bloch-Kato exponential. The range of charac-
ters considered is more general and includes Hecke characters of weight strictly smaller
than the weight of f. The main result of [3] is then, assuming a weaker version of
the Heegner hypothesis, that there exist certain homologically trivial cycles (general-
ized Heegner cycles) corresponding to the vanishing of the Rankin-Selberg L-function
L(f, x,s) at the center and that the logarithms of these cycles can be explicitly related
to the values (rather than the derivatives) of a p-adic L-function at a point outside its
range of interpolation.

This article drops the Heegner hypothesis from [3]. We assume that IV is square-
free and prime to the discriminant of K. Factor N = N*N~ where primes dividing N*
split in K and primes dividing N~ remain inert. Assuming that the sign of the functional
equation for L( f, x, s) is negative, a simple computation of epsilon factors shows that the
number of primes dividing N~ is even. Let B be the indefinite quaternion algebra over
Q of discriminant N~ and choose a maximal order Op in B. There is a Shimura curve
X, defined over Q, which, for N* > 3, is a fine moduli space for principally polarized
abelian surfaces A together with an embedding Op < End(A4) (“false elliptic curves”)
and a certain type of level structure that depends on N* (described in Section 2.2).

Assume that the weight k of f is even and positive, and write k=2r + 2. If k> 2,
we assume also that N* > 3. We will work over the ray class field F of K mod N+t. Writing
A for the universal abelian surface over the Shimura curve X, and A, for its r-fold fiber

product over X,r, we study generalized Heegner cycles on A, x A", where A is a fixed



Shimura Curves and Special Values of p-adic L-functions 4179

false elliptic curve over F with CM by Og. (Here, the Ok action is required to commute

with the Op-action, which implies that A is isogenous to the self-product of an elliptic
curve with CM by Og.)

Given an embedding Q<> C,, we construct a p-adic L-function, L,(f,—) in

Section 8.4, whose domain is a space of Hecke characters, which is characterized by

an interpolation law of the form

where

Lp(fiy)

—CEp(f ,(//_)ZL(](; wilao)

Q2(t—ty)

9

2001 —1)
Qp 1 2

(1) ¥ ranges over the space of Hecke characters of type (¢}, £;) with trivial cen-
tral character such that ¢} + ¢, =k and ¢, <0.

(2) Ep(f. x) is the Euler factor of L(f, x !, s) at p evaluated at 0, where p is the
prime of K distinguished by the given embedding.

(3) £2is a complex period attached to A and §2, is a p-adic period attached to A.

(4) C is an explicit nonzero constant.

There is an idempotent ein B ® K selected in Section 2.1, and we state our results

in terms of the cohomology group eHj; (A/F).

Theorem 1.1. Suppose that f has even weight 2r + 2, with r > 0, and x is an unramified

Hecke character of K with trivial central character and infinity type (¢, ¢2) with £; + ¢, =
2r+ 2 and ¢,,¢2 > 1, so that (¢1,42)=(2r+1— j, 1+ j) with 0 < j < 2r. Then there is, for

each a

€ Cl(Ok), an algebraic cycle A,(a) on

X, =A, x A"

that is homologically trivial and defined over F, such that

where

L(f )

1 .
i B0t Y XN ON@ AT A @) g Adkis DE L (1)

|
" laleCl(Ok)

(1) AJpisthe p-adic Abel-Jacobi map, viewed (see Section 6.3) as a map

CH(Z)r+1(Xr/Fp) = (Sor2(Fp) ® SszrEH&R(A/Fp))v
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with F, being the completion of F at the chosen prime above p and Sy 2 (Fp)
the space of weight k modular forms over F, of level N*.

(2) fp is the Jacquet-Langlands lift of f to X, normalized as in Section 2.7,
wy, is the associated differential form on A,, and {wa, n4} are a basis for

eHjR(A/f), with w4 holomorphic on A(C) and 54 antiholomorphic on A(C),

normalized such that the cup product (wy4, ng) =1. O

Under the hypothesis that p| N~ exactly once (in which case p is inert in K),
Masdeu [26] has proved a similar result by using a p-adic analytic uniformization of the
corresponding Shimura curve, which has bad reduction at p. Such a uniformization is
not available in the case of good reduction. Conversely, our techniques rely on the good
reduction of the Shimura curve and on p being split, and thus do not recover Masdeu's
results.

Before outlining our methods, we summarize the proof of the main theorem of [3].
For this paragraph only, r =k — 2. Write &, for the r-fold self-fiber product of the uni-
versal generalized elliptic curve over X;(IN) with itself, and fix an elliptic curve E over
F with complex multiplication. In [3], a generalized Heegner cycle 7 is built as a graph
of an isogeny, modified by an algebraic projector, due to Scholl, which projects the coho-

mology of the variety & x E” onto the subspace
Sri2(I(N)) ® Sym” Hyg (E).

The image of 7 under the p-adic Abel-Jacobi map is computed in two steps. The first
step is to relate this image to a “Coleman primitive” for the section of a line bundle on
X1 (N) attached to f. The second is to express the Coleman primitive of f in terms of
0~1=J f, for 0< j<k— 2, where 0 = qd% is the Atkin-Serre p-adic differential operator
which maps the space of p-adic modular forms of weight k to the space of p-adic modu-
lar forms of weight k + 2. The values of 6 f coincide with the values of ®,, f at CM points,

where ®,, denotes the Maass—-Shimura operator

1 d+ k
2ri\dr  t—-7/)°

The p-adic L-function is then computed using a Waldspurger-type result express-

ing values of the classical Rankin-Selberg L-function in terms of values of @gof at
CM points.
Our proof follows [3], but replaces g-expansions, which are unavailable in the

Shimura curve case, by “Serre-Tate” expansions. In Section 2, we review the arithmetic
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of Shimura curves and Shimura’s reciprocity law. In Section 3, we discuss the theory
of modular forms on Shimura curves, defining the Shimura curve analogs of the p-adic
differential operator 6 and the Maass—Shimura operator ®,, discussed above, as well as
some Hecke operators.

In Section 4, we compute the differential operators of Section 3. Serre-Tate the-
ory gives both an explicit uniformizer in the ring of rigid analytic functions on an ordi-
nary residue disk of the Shimura curve and an explicit trivialization of the bundle of
p-adic modular forms of weight k over this disk. We can thus use it to express p-adic
modular forms locally in coordinates. The main results of this section, which uses work
of Brakocevi¢ and Mori, are formulas for Hecke operators in these coordinates and a
proof that the Atkin-Serre operator is invertible on the space of “prime to p” p-adic
modular forms. (A modular form is prime to p if it is fixed by the idempotent p-adic
Hecke operator 1 — UV, as defined in Section 3.6. A classical p-adic modular form is
“prime to p” if and only if all Fourier coefficients of the form a,, vanish.)

In Sections 5 and 6, we review Coleman’s p-adic methods for computing residues
on vector bundles with flat connection, then produce the cycles A,(a) of Theorem 1.1.
When the weight of f is larger than 2, the cycles are constructed in a manner simi-
lar to [3], but using a theorem of Besser to construct an algebraic correspondence that
projects the cohomology of the Kuga—Sato variety onto a subspace generated by quater-
nionic modular forms. When the weight of fis 2, a special construction is needed, since
the usual construction involves subtracting the cusp at infinity to make the cycle homo-
logically trivial, and this is unavailable. The construction used in [38] to study p-adic
heights, which involves subtracting a multiple of the Hodge bundle, seems less natural
for studying p-adic logarithms; instead, we project the Heegner point onto its f-isotypic
component. This gives a cohomologically trivial cycle whose p-adic logarithm can be
computed easily.

In Section 7, we follow [3] closely in interpreting the p-adic Abel-Jacobi map as
a Coleman integral. We then use the formulas from Section 4 to compute the image of
our cycle under the p-adic Abel-Jacobi map. In Section 8, we use a Waldspurger-type
result to build a p-adic L-function (the construction of which is originally due to Hida),
and then establish Theorem 1.1.

There are potential applications to generalizations of [1, 2, 4] to the setting of
Shimura curves. In addition, there is forthcoming work of Skinner [34] on the converse
to the Gross—Zagier-Kolyvagin theorem for elliptic curves of rank one and of Bhargava
and Skinner [6] on average ranks of elliptic curves, which make essential use not just of

the results in [3] but also of the generalization given in this article.
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2 Shimura Curves
2.1 Initial setup

Fix an odd prime p, an isomorphism C = C,, and compatible embeddings of Q into C
and C,. Fix also a newform f;r, of level N, with p{N, of nebentypus €¢, and of even
weight k= 2r + 2 (with r > 0).

Let K be an imaginary quadratic field in which (p) = pp splits. Factor N=N"N",
where primes dividing N~ are inert in K, and primes dividing N* are split or ramified
in K. If a prime divides both N and the discriminant of K, assume also that it divides
N exactly once (in other words, K satisfies the Heegner hypothesis with respect to the
level Nt). Assume also that N~ is square-free and divisible by an even, nonzero number
of primes.

Write B for the (necessarily indefinite) quaternion algebra over Q of discriminant

N~. As in [21], fix an auxiliary prime py with the following properties:

(1) For all ¢, the Hilbert symbol (py, N), satisfies
(po, N7)¢g=—-1 ifandonlyif¢|N".
(2) All primes dividing Nt split in the real quadratic field

M=Q(po)-

Such primes exist by Dirichlet’s theorem on arithmetic progressions. This choice of p
determines a Hashimoto model for B: the algebra B is generated as a vector space by
the basis {1, s, j, sj} with s2 = —N—, j?2= py, and sj = — js. (We reserve the symbol i for a
complex square root of —1.) The Z-span of this basis is contained in a unique maximal
order Og.

By definition, a false elliptic curve over a base Z[%]—scheme Sis arelative abelian
surface A/S, together with an embedding

1:0p = Ends(A).

We typically denote the pair (A, :) as A. A false isogeny of false elliptic curves is an
isogeny commuting with the Op action.

There is an involution t on B given by the rule

b' =s"1bs,
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where b b denotes the main involution. For any false elliptic curve A over any ZI]-
scheme S, there is a unique principal polarization whose associated Rosati involution
on Ends(A) restricts to T on Op (this is a theorem of Milne over a characteristic zero
field; over an arbitrary base Z[%]—scheme, see the discussion in Section 1 of [10]).

Following [27], we consider the element e Op ® (’)M[ﬁ], given by the formula
e—1 1®1+ ! ' ®
=5 poJ |-
Then, e=e' is a nontrivial idempotent. There is an isomorphism

LMB®M—>M2(]W)

Jpb O 0 1
tM(j)=< P ) and LM(S)=< B )
0 -V —-N~ O

1 0
lM(€)= ( ) .
0 0

Under ¢, the involution t on B ® M is carried to the involution

C
abr—) a N-
c d bN- d

of My(M). The map ¢ extends along the given embedding M < R to an isomorphism

given by

which satisfies

loo : B® R — M, (R).
For each place v of M, the map ¢y gives a map
LB M, —~ My(M,),
where M, denotes the completion of M at v.
Lemma 2.1. Forv| pN', one has

Lv(OB ® OM,U) = MZ(OM,v)~ g
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Proof. By maximality, one must only check that
(O ® Onry) C M2(Onro)-

The order Op has a Z-basis given by

s 1+j i+sj aj+sj
b 2 9 2 9 n)

for some rational integer a (this is the case D = Dy of [21, Theorem 2.2]), so the lemma
is obvious for v{2. If 2 divides Nt, then pp=1 mod 8 and the claim follows from the

explicit description of ¢y;(j). |

For each prime ¢ | pN*, choose a prime v, of M with Q, = M,, (for {=p such a
choice has already been made) to get embeddings ¢, : B ® Q; — Mz (Qy). By the lemma,
these embeddings have the property that (,(Op ® Z;) = My(Z,). For ¢ | N*, these maps

give rise to a trivialization
v+ : O ® Z/NVZ — My(Z/NTZ).

Write Op y+ for the standard Eichler order of level N* in Op; write I for the group of

norm one units of Op and I y+ for that of Oy+. The group Iy y+ admits a canonical map

(-

let It v+ denote the kernel of this map.

to % with the property that

2.2 Arithmetic model and level structures

For S a Z[1/N]-scheme and A/S a false elliptic curve, a full level N* structure on A is an

isomorphism of group schemes
AINT]— Op ® (Z/N*'Z),s

commuting with the action of O3. A level structure of type V1 (N™) is an equivalence class

of full level N* structures under the (right) action of the group

{<* *)}CMZ(Z/N%,
0 1
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which is viewed as a subgroup of Op ® ﬁ via (};,. Note that V;(N*) level structure
behaves covariantly under false isogenies of false elliptic curves. Then, we have the

following fundamental theorem (see [17, Section 4]):

Theorem 2.2 (Morita). For Nt > 3, the moduli problem attaching to a Z[1/N]-scheme S
the set of isomorphism classes of false elliptic curves over S together with V;(N*) level

structure is representable by a smooth proper Z[+] scheme C. O

If Ais a false elliptic curve over an algebraically closed field k, we may view a

V1 (N™T) level structure as an My(Z/N*7Z)-equivariant map
(Z/N*Z)? - AINT1(k)

(this is the definition in [22]). Explicitly, a full level structure induces, via ¢y, an isomor-
phism

AINTI(K) > M(Z/ N 7).
The latter is isomorphic to (Z/N*Z)? x (Z/N*Z)? as a left My(Z/N*Z)-module, and the
map including (Z/N+Z)? onto the second factor only depends on the V; (N *)-level struc-
ture induced by the chosen full level structure. Note that if P is an N*-torsion point

satisfying eP = P, then there is a unique V;(N™) level structure (in the sense of [22])

mapping (}) to P.
2.3 CM points on Shimura curves
The complex points of C are naturally identified with the compact Riemann surface

H/FI,N+,

as we now explain.

Because Oj is an order in B, there is a four-dimensional real torus

A _B®R_ My (R)
T Op _too(OB)

endowed with endomorphisms by Op via left-multiplication.

For 7 € H, write J; € M,(R) for the unique real matrix with

+()=C)
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Then, the action of right-multiplication by J; on M;(R) endows Ag with a complex struc-
ture for which the endomorphisms coming from Og are holomorphic.
Write A, for the corresponding false elliptic curve. Then there is an isomorphism

of false elliptic curves
~ C2
A > —————,
to(Op) (1)

given on the universal cover M, (R) by the rule

T
M— M .
1
There is an alternating form E on M;(R) given by

1
E(x, y) = = Tr(sxy) = Tr(xsy").

Proposition 2.3. The form E gives a principal polarization on A, for which the Rosati

involution restricts to b+ b'. O

Proof. To see that E gives a polarization, one must check that E(ix, iy) = E(x, y) and
that E(ix, x) > 0 for x 0 (both claims with respect to the complex structure given by
right-multiplication by J; on M, (R)). The first condition is straightforward. For the sec-

ond, writing x = (x;;), one uses the explicit description of i, (s) and the formula

L_ 1 (R el
T Im(t)\ 1 —Re(r)

to deduce
. 1 _
E(ix, x) = mu\r (X%, + 2Re(T)xi1x12 + |T]1°x)) + (X, + 2Re(T) X120 + [|7[°%57))
1
> ————— (N (Re(t)x11 + x12)* + (Re(1)Xz2 + x11)?).
N- - Im(7)
It is clear that E(bx, y) = E(x, b'y) and that the polarization is principal. |

The false elliptic curve A, is equipped with the full level structure

1
—0
N8 ANt

Z ~
tr:F®OB_> B
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Then, A, is isomorphic to A4, as a false elliptic curve if and only if y € I'", in which case
the isomorphism

A — Ay
is given on the universal cover M>(R) of A, and A, as right-multiplication by ts(y ™)
(equivalently, is given on C? as multiplication by the scalar j(i(y), )"!). This isomor-
phism is compatible with the V;(N*) level structure determined by ¢ if and only if
yelln+.

2.4 CM Points and Heegner points

Given any embedding
t: K B,

there is a unique t € H with

Lo (LK) (T) = 7.
It follows that the additive map K — C given by

a > Jltoo(t(@)), )

is also multiplicative and hence an embedding of fields. The map ¢ is said to be normal-
ized if the induced field embedding K <« C is the identity on K. We say t € H is a CM
point if there exists an embedding ¢« with t as its fixed point. The set of CM points is
then in bijective correspondence with the set of normalized embeddings :.

Write ¢, for the normalized embedding K — B fixing t. The group I acts by

conjugation on the set of such embeddings, and this action satisfies

Vie =lyr.

Suppose that v is a CM point. Then, the false elliptic curve A, has false endo-
morphisms via right-multiplication by ¢, (Ok) (these endomorphisms commute with the
complex structure J;, and « € Ok induces the scalar j(ioo(t;(®)), 7) =« on the universal

cover of A,).

2.5 The action of C1(K) and Shimura's reciprocity law

Suppose that t is a CM point, and let a be an (integral) ideal of Ok. Then, there is a
left-ideal of Op in B given by

ap = Op(i:(0)).
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Because B is an indefinite rational quaternion algebra, it has class number one and ag
is principal, generated by some « € B.

Right-multiplication by « gives a false isogeny
Ar — Aa—lr

with kernel A.[a], the subgroup of A, killed by all endomorphisms in the ideal a. If
(a, N) =1 and tis a level-N* structure on A,, this false isogeny induces a level-N* struc-
ture t, on A;.

The image of «t under the uniformization map p:H — H/I" does not depend on
the choice of «. As a consequence, it makes sense to write A, for the corresponding
false elliptic curve. Alternatively, one may view A,,. as the false elliptic curve B ® R/ap
(with underlying complex structure coming from J; as above). In these coordinates, the
isogeny given by right-multiplication by o ! is identified with the natural projection.

Shimura's reciprocity law states that the point p(r) is defined over the Hilbert

class field H of K, and, moreover, for a € CI(K), one has
p() @ = p(ax).

(Note that if one replaces a by Aa for some A € K, then the corresponding « € B is replaced
by ai. (1) and thus, A,,. does not change.) The set of isomorphism classes of CM false
elliptic curves over H (or any field containing H) is thus a torsor for Cl(K) under the
action x.

If the embedding ¢ has the property that ((Ox) C Op y+, then one refers to a CM
point t for : as a Heegner point. Because the pair (K, N*) satisfies the Heegner hypoth-
esis, there is an ideal 9" of K whose norm is N*. By [33, Theorem 3.2], the image of t
under the uniformization map H — H /I y+ is defined over the ray class field of K mod
MN*. The false elliptic curve corresponding to a Heegner point comes with a level struc-
ture t, defined over the same field, induced by choosing P =eP a point of exact order

cN* in the kernel of the false isogeny
AT — AN+,,1—.
We choose such a point once and for all, and we call ¢t the Heegner level structure on

A.. The existence of the Heegner level structure follows from our assumptions on the

splitting behavior in K of primes dividing N (see [15, Lemma 4.17]).
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2.6 Generalized Kuga-Sato varieties

Fix a number field F containing the real quadratic field M, the ray class field of K mod
N7, and the Hecke eigenvalues of f. Write C for Cr, A for the universal false elliptic
curve over C, and A, for the r-fold fiber product of A with itself over C. Fix an embedding
t: K — B with «(Og) C Op y+. Write t for its fixed point in H and A for the corresponding
false elliptic curve over F D H. Because p splits in K, the surface A is ordinary at p
(which means that it has good reduction at the chosen prime above p and that the p-
divisible group of its reduction is isomorphic to the self-product of the p-divisible group

of an ordinary elliptic curve). Write
W.=A, x A"

This “enlarged Kuga—Sato variety” is the home of the arithmetic cycles which will be
constructed in Section 6.

Let ! the ith relative de Rham cohomology bundle on C attached to the map
A— C. Write o for the bundle eQ24,¢ and £, for Sym"eH'. Note that £,, is naturally a
sub-bundle of the relative de Rham cohomology bundle % (A,/C) of the rth Kuga-Sato

variety over C. The bundle £; admits a canonical self-duality
() LY > eH? =Oc.

We normalize the isomorphism eH? — O, using the trivialization induced from the
opposite of the nowhere vanishing section of eH? attached to the class of the univer-
sal principal polarization. This choice, which is consistent with the choice in the GL,
case, is motivated below. The pairing (, ) extends to the bundles £,;,.

There is a Hodge sequence
0O>w—>L—w ! —0.

When we write o~ ! here, we use the following fact: the standard identification of R'7,0 4
with the relative tangent bundle of the dual abelian scheme A— C, combined with the

universal principal polarization A= A, gives rise to a (cotangent-tangent) pairing
4/¢ % R'7,04 — O,

and because e is fixed by the Rosati involution, this pairing restricts to a perfect pairing
® ® eR'm,0 4 — O. Finally, there is a bundle £,,,, on C given by L, , =L, ® Sym"th}R(A).
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As it is alternating, the pairing (,) on £; induces a pairing
o ® eR'n,04— O.

As can be checked on fibers after base changing to C, under the normalization cho-
sen above, this pairing coincides with the cotangent-tangent pairing rather than its

opposite.

2.7 The transfer

The Jacquet-Langlands correspondence implies the existence of a holomorphic function

f on the upper half plane, called the transfer of f;;,, with the following properties:

(1) fis a modular form for Iy y+ C B with Nebentypus ¢ for the action of Iy y+.
(2) f has weight k.
(3) For (n, N-)=1, fis an eigenform for the operator T,, with the same eigen-

value as fgr,-

These properties determine f as a holomorphic function on the upper half plane only
up to a scalar multiple. However, one can normalize f further. The function f gives rise
canonically to a section of o in the following manner: the universal false elliptic curve

Ay, over ‘H is the quotient of H x C? by the action of O3 given by

Zy Z
Because f is modular for Il y+, the relative one-form

wp=(2mi)* f(r) d5* € em, 25

for the universal false elliptic curve descends to a section of w.. Because C and w both
admit canonical models over Or[1/N] and the Hecke eigenvalues of f lie in this ring,
we may assume that our section is defined over this ring. Thus, the choice of transfer is
ambiguous up to multiplication by a unit in this ring.

2.8 Standard cohomology classes

Consider the Hodge exact sequence for A:

0— Qa/F — Hijzx(A/F)— H' (A, 0y — 0.
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Because A has CM, this sequence canonically splits, with H!(A4, O,) identified as the

subspace of H(}R(A/F) on which Ok acts via complex conjugation. In fact:

(1) Over C, this splitting coincides with the complex-analytic splitting of the
Hodge sequence, that is, the space H!(Ac, Oa.) is identified with the sub-
space of H};(A/C) spanned by anti-holomorphic one-forms on A(C).

(2) Over any p-adic field L containing F, this splitting coincides with the “unit-
root” splitting, that is, after tensoring the Hodge sequence with L, the space
H'(AL, Oy,) is identified with the subspace of Hj;(A/L) on which the semi-

linear Frobenius map ¢ acts via a unit.

To see these facts, note that, as is explained on p. 919 of [31], we may find a
false isogeny ¢ : A— E; x E;, defined over F and with degree prime to p, where E; and
E, are elliptic curves with CM by Og. For CM elliptic curves, the coincidence of the
splittings of the Hodge exact sequence follows concretely from the observation that on
the Weierstrass model y* =4x° 4 ax + b, the differential

dx
y

lies in the subspace of Hj;(A/F) on which K acts via the identity embedding, the holo-
morphic subspace of Hj;(A/C), and the p-root subspace of H}, (A/L), whereas the mero-

morphic differential form
dx

x—
y
lies in the subspace of Hj; (A/F) on which K acts via the conjugate embedding, the anti-
holomorphic subspace of Hj; (A/C), and the unit-root subspace of Hj;(A/L).
Fix a nonvanishing differential w € eH°(A, £24). This determines a class n ¢
eH' (A, O,) dual to w, under the Serre duality pairing. We will view o and 7 as classes

in eH}; (A/F) (using the canonical splitting of the Hodge sequence for 7).

3 Modular Forms and p-adic Modular Forms on Shimura Curves
3.1 Modular forms on Shimura curves

There are several equivalent definitions of modular forms for Shimura curves. We will
never need integrality conditions away from p, so we define them over algebras R over
the localization O, of Oy at pa, where p is the prime of M above p selected by the
given embedding Q < C,,.
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If 7 : A— Sis a (relative) false elliptic curve, write w, s for er.£2,/s; in the par-
ticular case Ar — Cgr of the universal false elliptic curve over an Oy, ,,-algebra R, write

wp. The three definitions are:
Definition 3.1. A modular form of weight k over R is a global section of Q%k. O

Definition 3.2. Let R, be an R-algebra. A test triple is a triple (A/ Ry, t, w) consisting of a
false elliptic curve A over Ry, a V1 (N1) level structure ¢t on 4, and a nonvanishing global
section of Darpy- Two test-triples (A/Ry, t, ) and (A'/Ry, t', ') over Ry are isomorphic if

there is an isomorphism f: A— A with

fy=t¢

and

ffo' =w.

A modular form of level N* and weight k over R is a rule F that assigns to every isomor-
phism class of test triple (A/Ry, t, ®) over every R-algebra Ry an element of Ry, subject
to the following axioms:

(1) Compatibility with base change: If f: Ry — R is a map of R-algebras and
A/Ry is the base change of A'/Rj along f, one has

F(At, ffo)=F(A, f(t), w).

(2) The weight condition: For any Ae€R;, one has F(A/Ry, t Aw)=
L KF(A/Ry, t, w). O

Definition 3.3. A test pair is a pair (A/Ry, t) of a false elliptic curve 7 : A— SpecRy and
a V1 (N") level structure t. A modular form of weight k over R is a rule G that assigns
a translation-invariant section of Q%‘RO to every isomorphism class of test pair (A/Ry, t)
over any R-algebra Ry, subject to the following base change axiom: if f:Ry— Rj is a
map of R-algebras and Ais the base change of A’'/R; along f, one has

G(A. 1) = f"G(A, f1)). O

Given a modular form as in Definition 3.3, one gets a modular form as in

Definition 3.1 by taking the section given by the universal false elliptic curve with level
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structure (Agr/Cg, t.); this process is bijective because Agr is universal. To go between
Definitions 3.3 and 3.2, choose any translation-invariant global section w and use the

formula

G(A, t) = F(A, t, 0)o®F,

which is independent of this choice.

We now define p-adic modular forms on Shimura curves. Write L for the com-
pletion of the maximal unramified extension of Q,, W for the ring of integers of L, and k
for the residue field I_Fp. By properness, there is a reduction map red: C (L) =C(L) — C(k).
A residue disk D is a subset of C(L) of the form

{PeC(L)|red(P)=x}

for some fixed point x € C (k). A residue disk is not Zariski open, but is a (nonaffinoid)
open subset of C™8, the rigid analytic space associated with C;. Because C is smooth
over W, each residue disk is conformal to the open unit disk in K (see [12, Section I.1]).
The ring Ry of rigid functions on a residue disk D, corresponding to a point x e C (k) is
obtained from the ring Ry of functions on the formal completion of C at x by inverting
p [22, Lemma 9.7]. Write C° for the ordinary locus of C™8, the union of the residue
disks above ordinary false elliptic curves.

If V is a vector bundle on C, we will sometimes write “a rigid-analytic section of
V" to mean a section of the associated vector bundle V'8 on some open subset of C™8;
similarly, when we write “locally analytic section”, we mean a section of the associated
vector bundle V'? over some open subset of the topological space C(L).

There are three equivalent definitions for a p-adic modular form of weight k
over W for the Shimura curve C, analogous to Definitions 3.1-3.3, but working only with
ordinary false elliptic curves over p-adically complete W-algebras.

Thus, a p-adic modular form for the Shimura curve is a rigid analytic section of
the bundle w®* over C°". Equivalently, it is a rule F taking in triples (A4, t, w), where A
is an ordinary false elliptic curve over some p-adically complete W-algebra R, t is level
N-structure for A, and o € /g, and returning an element of R, subject to compatibility
with base change and the rule F(A, t, rw) = r*F(A,t). Equivalently, it is a rule F taking
in couples (A4, t) and returning a section of Q%‘R, compatible with base change. A locally
analytic modular form (over some open set in the p-adic topology) is a locally analytic

section of the bundle w®.
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3.2 Katz's differential operators arising from the Hodge sequence
The Gauss—Manin connection

ViH! > H' @ 2¢

on the relative de Rham cohomology bundle on the Shimura curve C is compatible with

the anti-action of End¢ (A) on H! via the rule
Vop=(@p®1)o V.

(See [27, Proposition 2.2].) The Gauss—Manin connection thus naturally restricts to a
connection on the bundle £; and extends to the symmetric powers £, of £; by the Leibniz

rule

Vr®um® - ®@u)=) 1@ @08 ®v,® V().

4

(When n=0, the connection is just d: O¢ — §2¢.) It also extends to the bundle £, , via the
rule V(a ® B) = (Va) ® B.
Using the universal principal polarization on 4, the Kodaira—Spencer map of

deformation theory gives rise to a map
KS: 7T*QA/C ® ﬂ*QA/C —> Qc.

By [27, Theorem 2.5], this map becomes an isomorphism upon restricting to o ® w.

For each j, we get a map V: L;— L2 by composing the maps

v id®KS™!
Ln — Lp,®2¢ — LpQ@w®? —— L,®Ly —— Lp12

where the map w®? — £, is Sym? of the inclusion in the Hodge sequence.
Suppose we have a map ¥ : H! — 7,82.4,¢ of vector bundles splitting the Hodge
sequence. Write ¥": L,, — »®" for the induced map on L,.

We then get a “differential operator” @y : ®®" — »®™? by the composition

®n v v ont2
0" > Ly —> Ly —> o . (2)
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When n=0, this is just d, followed the inverse of the Kodaira—Spencer map (for any
choice of splitting). In practice, the maps ¥ we use will not be algebraic. Rather, follow-
ing Katz, we will apply this formalism to attain differential operators on the spaces of

smooth and p-adic modular forms.

3.3 The Maass-Shimura operator @,

A real-analytic modular form (of weight k and level N*) for B is an analytic function

f(2) satisfying the usual relation

fya=jy.2"f(2)

for y € I'g y+. Such a function gives rise to a section of the real-analytic-bundle associ-

ated with ©2* via the rule
k Z®k ®k
wr< 2ri)" f(r) dz; €em.$2y .

For V a vector bundle on C¢, write V;, for the associated real-analytic vector
bundle on Cc. Hodge theory then gives a splitting ¥, : H., — o,, of real-analytic vec-
tor bundles over Cc. The differential operator coming from the splitting ¥, and the
recipe in (2) is written @, and called a Maass—Shimura operator. It sends real-analytic
modular forms to real-analytic modular forms but does not preserve holomorphy. The
following is shown in [27, Proposition 2.9], but we give a slightly different argument, as

our normalizations differ from Mori's.

Proposition 3.4. The Maass-Shimura operator is given on the space of real-analytic

modular forms (viewed as functions on H) by the rule

1 d k
O =—\5 T .
(f) 2m1 (dr * 21 Im(r)) 7 -
Proof. The real manifold
M3 (R)
A= ——
Loo(OB)

is endowed with the (smooth, real-valued) one-forms dx;; for i, j =1, 2, where the sym-

bols x;; denote the standard coordinates on the universal cover My (R).
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The identification

¢r 1 Mp(R) —> C?

of real vector spaces given by

(a Z)I—)(af-i-b,CT‘Fd)

cC

is complex linear for the complex structure on M, (R) given by right-multiplication by J;.
Under this identification, the endomorphism given on M;(R) by left-multiplication by e
corresponds to the projection onto the first factor in C?. In particular, edz; = dz, and
edz, =0.

By viewing the first projection map z; : C2 — C as a function on M,(R), one sees

that the complex one-form dz; on C? is given (under the identification ¢.) by the rule
d21 =T dX11 + Xmz, (3)

and similarly

le =T dX11 + Xmz. (4)
Consequently, one has

Vdz; =dx;; ® dr

= 2iImz (dZ1 — le) ® dr.

From this, we compute

KS(dZ1 ® le) = <dZ1, Vle)

_ —1
T 2iIm<t

(le, le) dr.
Using (3) and (4), the pairing in the above formula simplifies to
(dzy, dz;) = 2i Im(7)(dx;, dx;2).

To compute (dx;;, dx;2), we use the de-Rham-to-Betti comparison isomorphism,

viewing dxj; A dxz; as an alternating form on the Lie algebra M, (R) of A, and expressing
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this form as a multiple of the form
—1 t
x, )~ = Tr(exs(ey)'),

which is the Betti realization of the negative of the polarization class e[Pa lgeti €

H?(A,,Z) under the usual isomorphism
H?(A,.Z)={(.) € Alt’(My(R)) | (tcO5. 1ocO) C Z}.
For M, M' € M,(R), one has
dx;; Adxo (N, N') = N11N{2 — N{ZN{I.

On the other hand, using the explicit formulas for the matrices (. (€) and i, (s) one sees
that

1 (N(MHM{Z—MIZMiI) 0)
~ .

1
— Tr(eMs(eM')") = — Tr
N~ - 0 0

It follows that the image of dx;; A dx,; under the Betti-to-algebraic-de-Rham compari-
son isomorphism coincides with the Betti realization of the polarization class.

The comparison isomorphism
¢ : HBzetti(Af) g H(%R(Ar)

does not commute with cycle class maps, but rather [35, Theorem I.3], for codimension

1 cycles & one has

[£lar = 2716 (€ ]Betil) .-

We deduce that

(dxy1, dxop) = P
i

and

1
KS(d21 X le) = (ﬁ) dr. (5)
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Now we may compute the Maass—-Shimura operator ®,,. Given a modular form

f(r) of weight k, the associated section of w®¥ is
@ri)* f(v) dZ*,
and by the Leibniz rule

V(@2ri)k f(r) A% = @ri)* f(7) d5* @ dr

k—1

. : 1 _ i
+ (2711)7‘; f)dz)' ® s —(dz — dz) ® A2 @ dr.

Applying the inverse Kodaira—Spencer map and the Hodge splitting (which annihilates

dz;), the above expression simplifies to

L S\ k42 k ’ ®(k+2)
PG (zﬂmrf(er(r) dz; ™,

which completes the proof. |

3.4 The Ramanujan-Atkin-Serre operator ¢

There is a Frobenius morphism ¢ on the relative de Rham cohomology bundle
H*(A°T/c°rd) over the ordinary locus C°9, semilinear over L, inducing the usual Frobe-
nius morphism ¢ on the fibers of this bundle. Moreover, there is a splitting ¥, of the
Hodge sequence (of rigid vector bundles over the ordinary locus), where R!'7,O 4o is
identified with the sub-bundle of H|;oa on which ¢ acts with unit eigenvalue (see [27,
Proposition 2.10]).

This splitting ¥, and the recipe in (2) give rise to a differential operator ¢, taking
p-adic modular forms of weight kto p-adic modular forms of weight k + 2. If one regards
the splitting ¥, as a map of bundles for the p-adic topology on C°%(L), the same recipe
gives rise to an operator on the space of locally analytic modular forms over the ordinary

locus, also written as 0.

3.5 Coincidence of the operators at CM points

The p-adic and real-analytic differential operators can be related by the following fun-

damental theorem.
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Theorem 3.5. If gis a modular form on C and P € C(M) is a CM point for some number

field M, then for any choice w of translation-invariant differential on A, one has

(09) (P, w) = (Oxg)(P, ),

where both numbers belong to M. (We are using the chosen embeddings of Q into C and
Cp in two ways: first, to get inclusions C (M) C C(Cp) and C(M) C €(C), and second, to

make sense of the equality.) O

Proof. This is shown in many places; see, for example, [23, Theorems 2.4.5 and 2.6.7]
or [27, Proposition 2.11] for the Shimura curve case. The crux is that, for A’ a false elliptic
curve with complex multiplication, the splitting of H} (A'/C) coming from Hodge theory
and the splitting of H&R(A’/(Cp) coming from Frobenius both come from the splitting of
H},(A'/M) into the subspace where K acts via the identity and the subspace where K

acts via conjugation, as discussed in Section 2.8. |

3.6 Hecke operators and p-adic Hecke operators

Throughout this document, we follow the convention that Hecke operators act on the
right on the space of modular forms, while differential operators act on the left. This
convention is unfortunate, as the differential operators and Hecke operators do not com-
mute. The commutation relation is given by Proposition 3.6.

For a prime ¢, a false elliptic curve A over a field k of characteristic prime to ¢
has ¢ + 1 cyclic sub-O-modules annihilated by ¢. Write Cy, ..., C; for these subgroups
and ¢; : A— A/C; for the false isogenies associated to C;. If t is a V;(N*) level structure
on A, and £{N*, then t; =¢; ot is a V3 (V1) level structure on A/C;. If w is a one-form on
A, then there is a unique one-form w; on A/C; with ¢}w; = w.

The Hecke operator T; on the space of modular forms of weight k is defined by

the averaging rule

4
1
Fl (A t,0)=; ;F(A/ci, ti, ).

Note that the Hecke operators preserve the weight and level of a modular form and also
act on the larger space of p-adic modular forms.

Now suppose that A is a false elliptic curve with ordinary reduction over a p-
adic field L. Then there is a unique p-torsion cyclic sub-O-module C of A which reduces

mod p to the kernel of the Frobenius morphism, called the canonical subgroup (this is
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Theorem 11.1 of [22], although in the case of ordinary reduction one may construct it
more simply, following the discussion above the statement of that theorem). Order the
p-torsion cyclic sub-O-modules in such a fashion that Cy is the canonical subgroup. If

F is a p-adic modular form, we get another p-adic modular form F|y by the rule

1
F|V(A’ t’ (1)) =F (A/CCH ;ja:)’ p“)0>

and a p-adic modular form F|y by the rule

1 14
Flo(A t0)=— Y F(A/Ci, b, ).

i=1

Writing [p] for the operator on the space of modular forms given by

1
Flp(A t,w)=F (A, pt, 50))

one has the relations
1
Tp:U+;J[p]V (6)

and
VU =1d. (7)

In particular, the operators UV and VU — UV are idempotent.

Proposition 3.6. For any prime ¢ with (¢, N) =1, including the case £ = p, one has
O, =€6(fIz). O

Proof. In the modular curve case, this is an easy consequence of the formula for 7, on
g-expansions (see [32, paragraph 2.1]). We give a proof for Shimura curves in Serre-Tate
coordinates in Section 4.6. This proof has the advantage of working for locally analytic
modular forms which are rigid on residue disks (for which there is no g-expansion prin-

ciple, even in the classical case). [ |

4 Serre-Tate Coordinates

This section works under a notation scheme that conflicts with the one introduced in
Section 2. In this section only, we work exclusively over the ring W of Witt vectors

on k:I[_*’p, writing L for its field of fractions. In this section, roman A always refers to
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abelian varieties over k and cursive .4 always to abelian schemes over other W-algebras
(in particular, A no longer denotes the universal false elliptic curve and A no longer
denotes the fixed false elliptic curve). Also, X refers to C; and X refers to its integral
model Cy.

Fix a residue disk D € X(L), the space of points reducing to a fixed ordinary
false elliptic curve A/k with level structure ¢t. The ring of rigid analytic functions on D
is obtained from the ring of functions on the formal completion of X at the point corre-
sponding to A on the special fiber by inverting p. There is a canonical formal uniformizer
for this ring, coming from Serre-Tate theory, which we will use to give explicit formulas
for the operators of the preceding section. Before explaining this, we review the basics
of Serre-Tate theory. For a detailed exposition, see [24].

Fix a g-dimensional ordinary abelian variety A over k. Write A’ for the dual
abelian variety. If R is an Artin local ring with residue field k, then a deformation of A
to Ris an abelian scheme .4 over R together with an identification A x k— A.

Write TpA and T, A’ for the “physical” Tate modules of A and A, that is,

They are free Z,-modules of rank g (by ordinarity).

Whenever we refer to the Weil pairing on A, we mean the scheme-theoretic Weil
pairing (The scheme-theoretic Weil pairing is due to Oda. The standard reference is [25];
the pairing there is the inverse of Oda’s pairing and the pairing in [24]. The normaliza-
tion of the Weil pairing does not affect any of the formulas in this paper.), normalized
as in [24, Section 5] (the classical Weil pairing is trivial in characteristic p). It is a non-

degenerate alternating pairing of k group schemes

et Alp"l x A'[p"l = pp
restricting to a perfect pairing

Ap") x A'pMI(R) = s

compatible with the maps p: Alp"] — Alp"']. (Here, A is the formal completion of A at
the origin.)

Let A be a deformation of A to R. The formal group A represents the functor

{Artin local R — algebras with residue field k} — {Groups}
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given by
A(B) = ker(A(B) — A(k)).

Then there is a pairing
qa: TpA x TpA — Gpn(R)

given by the following rule: given P, € Alp"l(k) and Q, € A[p"l(k), pick a lift P, of P, to
A(R). Consider p"ﬁn € A(R) C A(R). If nis large enough, so that (1 + mg)?" =1, then A(R)
is killed by p" Thus, it makes sense to compute the Weil pairing e,.(p"P,, Q%), which
is an element of u,»(R), which for n large coincides with Gm(R). These elements are
compatible for large n, which gives the desired map g4.

The Serre-Tate theorem asserts that this construction gives a bijection
{Isomorphism classes of deformations of A to R} = Homz, (TpA® TpAt, Gm(R))}.

In particular, the left-hand side, which is a priori only a set, gains the structure of a
Zp-module. Furthermore, this correspondence is functorial in R. More precisely, writing

M for the functor from the category of Artin local rings to the category of sets given by
M(R) = {Isomorphism classes of deformations of A to R},

we have
M =Homgz (TpA® TpA", Gm).

Because these equivalences are compatible with inverse limits, we may replace
the category of Artin local rings with the category of complete local rings in all of the
preceding discussion (although the recipe for computing the pairing g4 only makes
sense over Artin local rings). The following proposition [24, Theorem 2.1.4] gives us a

helpful shortcut in calculating Serre-Tate coordinates.

Proposition 4.1. Given two ordinary abelian varieties A and A’ over k with fixed defor-
mations A and A’ (over a fixed Artin local ring with residue field k), a map f: A— A’ lifts
to a map from A to A’ if and only if for all P € T,A and Q° € T, A" one has

qa(P, f(Q") =qa (f(P), Q). [

Now, the functor M parameterizing all deformations of our fixed ordinary
abelian variety A is a formal scheme SpfR equipped with a universal formal abelian

scheme 7 : A — SpfR.
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By the above, there is a bilinear pairing
qi:TpA® TpA'— 1+ mp,

and by universality, given any deformation A of A over any complete W-algebra R with

residue field k, we have a map R — R making the following triangle commute:

T,A® TpAl

a4 / \ qa

l+mr —— 1+4+mpg

The ring R is the completion of the W-algebra generated by the functions q(P, Q%) — 1,
as P and Q' range over T,A and T,A’, respectively, subject to the relations generated
by the bilinearity of the pairing g. In particular, suppose that we pick bases {Py, ..., Py}
and {Q¢, ..., Qg} of TpA and T,A". Then, we have g? elements g;j = q(A, P;, 03-) e R, and,
writing

Tj=qj— 1,

we get a ring isomorphism
R = WIIT;11.

4.1 Katz's computation of V

Serre-Tate coordinates give us a canonical way to compute the Gauss—Manin connec-
tion on the formal relative de Rham cohomology bundle ﬂ:RIn*(Q;‘l /r) on residue
disks over ordinary points. In this formal setting, there are line bundles 7,82 4,,, and

R'm,0 ;= Lie(A!/R), sitting in the usual Hodge exact sequence
0— 7.2 4,5 — H — Lie(A"/R) — 0.

There is likewise a Gauss-Manin connection V:H — H ® f2sprr and an R-semilinear
Frobenius endomorphism of H. We will abuse notation and not distinguish these line

bundles from R-modules, starting in the next statement.
Lemma 4.2 (Katz). There are canonical isomorphisms

TpA' @ R = .82 4/ 4 (%)
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and

Hom(T,A, Zp) ® R — Lie(At/R) ()

such that:

(1) the R-semilinear Frobenius endomorphism & of H acts via multiplication
by p on T, A" under the identification (x);

(2) the sub-Z,-module of #H on which @ acts via the identity maps isomorphi-
cally to Hom(TpA, Z,) under the map H— Lie(At/R) and the identification
(xx). 0

Proof. We just recall the construction of the isomorphisms here. For the computation

of the Frobenius action, see [24, Lemma 4.2.1]. The Weil pairing gives an isomorphism
T,A' = Homg (A, Gny),

so given P € T, A’, one gets a differential on A by pulling back dTT.
Dually (and swapping the roles of A and A?), the Weil pairing gives rise to an

isomorphism

At =Hom(T,A4, Gp).
Applying the functor Lie to both sides gives the second result, since for any R one has,
writing Rle] for the ring of dual numbers over R:
ker(Hom(T,A, Gm(RIeD) — Hom(T,A, Gm(R))) = Hom(TpA, 1+ €R)

~Hom(TpA, R). [ |

For Q'€ T, A", write @q: for the differential form coming from the lemma. If ¢ €
Hom(TpA, Z,), write i), for the image in # of the vector field attached to ¢ by the lemma
under the Frobenius splitting of the Hodge sequence. Fix a basis Py, ..., P; of T,A, and
write P, for the dual basis of Hom(T,A4, Z). Then, the Gauss-Manin connection on 7 is

computed as follows:

Theorem 4.3 (Katz). One has

Vijpy =0
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and, for any Q' € TpA’, one has

Vérg: = Z Apy ® dlogq(P;, QY. O
i

Proof. This is “version quat.” of the Main Theorem of [24], as is stated in Section 4.1 of

that paper. |

The following observation is Lemma 3.5.1 of [24].

Lemma 4.4. Given a map f:A— B of ordinary abelian varieties in characteristic p that

deforms to a map of universal formal abelian varieties f: A— B, and Pte T,B', one has

f*(,?)pt:c?)f*(pz). [l

4.2 Serre-Tate coordinates for Shimura curves

Now assume that A is a false elliptic curve over k. In this case, we have a subfunctor
Mfalse of M =SpfR taking an Artin local ring R with residue field k to the set of “false
deformations” of Ato R, where a false deformation is a deformation A of Ato R together
with an embedding Op — Endx (A) deforming the given embedding Op — Endg(A) (defor-

mations of the extra endomorphisms, if they exist, are unique—see [24, Theorem 2.4]).

Proposition 4.5. The subfunctor M@!s¢ of M is a formal subgroup-scheme. The ring of
formal functions R%¢ on Mfs¢ is the quotient of R by the closed ideal generated by
the relations

q(bP, Q") =q(P,b' Q"

forbeB. O

Proof. Recall that, by definition of a false elliptic curve, under the embedding O —
End(A), the Rosati involution restricts to t. The relations q(bP, Q%) = q(P, b' Q%) then fol-
low as an endomorphism is adjoint, with respect to the Weil pairing, to its image under
the Rosati involution. To see that these are the only relations (which is the remaining

content of the proposition), see [27, Proposition 3.3]. |

Restricting the Hodge sequence of vector bundles on M to Mf%¢ recovers the

Hodge sequence for the universal false elliptic curve A s /M™@5¢, and for a class n
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HY(M/R), one has
(VT])|Mfalse = V(T]IMfalse)

by the functoriality of the construction of the Gauss—Manin connection.

Lemma 4.6. The Katz isomorphisms of Lemma 4.2 are ft-equivariant for the action of
End(A); that is, one has

L?)bathfalse == [bT]*(I)Ot |Mfalse

for b € End(A), and similarly, for ¢ € Hom(T,A, Z,), one has

g = (b")"Tlp. O
Proof. By definition,
. LdT
wphat =Yy T
where v, is the Weil-pairing map
(bQs, ).

Writing v for the map (Q;, ), the map ¥, decomposes as v, = ¥ o b', and the first result
follows.

The second argument is similar. The construction of the isomorphism says to
view b as a map to 1 + €R given by Weil-pairing against some & € Lie(A). But now ¢ will
be Weil-pairing against b'£. [ |

Pick a basis {P;, P,} for T, A such that eP; = P; and eP, = 0; denote by P! P} the
images of P; and P, in T,A" under the canonical principal polarization. These choices
give rise to sections of the formal bundles 7,.4/X and Lie(/Alt/X) via the Katz isomor-
phisms of Lemma 4.2, which we denote by @p: and 7jpr. To compute the Gauss-Manin
connection in the situation that we desire, we will compute it on these sections over the
formal four-fold M, restrict to Mf15¢, then apply e.

Because the Katz isomorphisms in Lemma 4.2 are equivariant for the action of
End(A), one has

é)Pf |Mfalse C:)PIt |Mfalse
. (,,(\)le |Mfalse 0
e A~ = A~
npl\/ IMfalse T]PIV |Mfalse

ﬁpz\/ |Mfalse 0
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For the remainder of this document, abbreviate e*®p, as @ and e*np, as 7. The
choice of basis of T,A gives us functions q(F;, P}) fori, j =1, 2; abbreviate the particular

function q(P;, P{) as just q.
Theorem 4.7. One has

Vo=n®dloggq,

Vi =0. O
Proof. This follows from Theorem 4.3 and the rule Voe=(1®e)o V. |

As a consequence, we see that the horizontal sections for V are spanned by 7 and

@ — log gn. As another consequence, the theorem gives

KS(&®?) =dlogq. (8)

4.3 The operator 6 in coordinates
Recall that 6 is defined by composing the maps

24 -1
Qk—> £k_V) L ® 2 —p>ék®.Q &Qk-ﬂ.

To compute the effect of this map on a section w of the bundle £ over the ordi-
nary locus C°¢, we compute separately in each residue disk. Thus, along a fixed residue
disk D, write

w=F(T)&%,

where T =q — 1 is the canonical uniformizer of R coming from Serre-Tate theory and F
is a power series in T.

Then it follows from Katz's computation of V and the Leibniz rule that

k-1
Vo=Y F(Mo* ®i® o' @dlogq+ F(T)d%.
i=0

By Lemma 4.2, the splitting ¥, sends 7 to 0, so

Ow=F'(T)o®* @ KS~1(dT).
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Now

dT =qdlogqg=(1+ T)dlogq,

SO

Of =(T + 1)F'(T)o®?

by formula (8). Thus,
_ d ~ @k+2
6f = (T +1) - F(T)o® 2

This formula is also derived in the proof of [27, Theorem 3.6].

4.4 Hecke operators in coordinates

We handle T; for ¢ # p first. Suppose ¥ : A— A/C is an isogeny of degree prime to p.
Then, the subgroup C and the map ¥ deform uniquely to a subgroup scheme C and a
map v : A— A/C for any lift A of Ato L =Frac(W). Recall the fixed generator P; of eT,A.
Because ¥ and ¥’ both induce isomorphisms of p-adic Tate modules, Q} := (¢~ !(Pf) is
a generator of eT;,(A/ C). Write &; := eé)plz for the canonical formal one-form on the disk
D C X(L) whose points correspond to characteristic 0 abelian surfaces reducing to A/C
with level structure v (t). By Lemma 4.4, it satisfies

V0, = 0.

Given this choice of Q}, there is a corresponding basis element of T,(A/C) via

the canonical principal polarization of A/C, which is Q; = degwwt(ag). Thus, there is a

Serre-Tate coordinate g = q(_, Q;, Q%) on the disk D.

Lemma 4.8. The function f;, on D given by A~ g(A/C) can be computed as
fy=q%. O

Proof. It suffices to check that the two functions agree for any deformation A of A to

an Artin local ring R with residue field k. It follows from Proposition 4.1 that

fi(A) =q(A/C, Q,, QY)

— 1 t
_q <-’4/C’ degwl/jt(Pl)’ al)
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1
= —— p,, P!
q<A’ degy " 1)
= (AT, =

Note that the final expression does not depend on any choices, as the Serre-Tate

parameter q is a principal unit and deg s is prime to p.

Corollary 4.9. For each cyclic degree ¢ isogeny A— A/C; of A, write &; for the canonical
one-form on the disk R; of points reducing to A/C;, as normalized above. Suppose fis a

modular form such that for each i, the Serre-Tate expansion on the disk D; is

f=F(T)a.
Then on the disk D, f| T, is given by
+1
Y R+ DV - Dok O

i=1

We move on to the operators U and V. Write ¢ for the mod p Frobenius. For D
an ordinary residue disk corresponding to a false elliptic curve A with level structure ¢,
write D? for the disk corresponding to Afrob with level structure %t‘l’. Note that, because
of the extra factor of 110 on the level structure, D? is not the image of D under the map
x°rd . x°rd ynder the canonical p-isogeny A — A/Co.

We are going to pick Serre-Tate coordinates on these disks in a compatible way.
One cannot ensure, as in the prime-to-p case, that the canonical formal one-form pulls
back to the canonical formal one-form. However, using ordinarity, we do at least have
that Q, := ¢ P is a basis for eT,A?. Write {Q!, Q%} for the corresponding basis for T,A?",

using the principal polarization on A. Then one has
¢'(Q)) = pP;.

Write g for the function on D? corresponding to this basis. There is a function f on

D = Dy given by (A, t) — q1(A/C 4, %t"’), where C 4 is the canonical subgroup of A.

Lemma 4.10. One has
f=q°

as functions on D. O
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Proof. Again it suffices to check that the two functions agree for any deformation A of

A to an Artin local ring R with residue field k. One has

f(A)=q(A/C.¢P, Q)
:q(A9 P19 ¢tali)
:q(A9 P17 pr)

=q(A)P. [ |

Let &g be the canonical formal relative one-form for D, attached to the Tate-
module generators {¢P;, ¢ P,}. Write @ : D — D, for the “quotient by the canonical sub-

group” map.

Lemma 4.11. One has

P*y = pi. O
Proof. This follows from Lemma 4.4. [ |

Corollary 4.12. If f=)" F(T)c?)?k is a modular form on D? expressed in Serre-Tate coor-
dinates, then the corresponding modular form f|y is given in Serre-Tate coordinates on
D by

fly =F(1 + T)? — 1)®®~ O

Finally, we compute U. Write D, for the image of D under the map X°¢ — x°rd
under any of the (not-canonical) p-isogenies A — A/C;. Then, the map D — D, — (D,)? is
the identity map (because of the factor of 1/p in the level structure). For each subgroup
C other than the canonical subgroup of the universal false elliptic curve over D, there is

a function g¢ given by (A, t) — gp,(A/C, Imaget), where C =C 4.

Lemma 4.13. One has
O

ax
Il
Q

Proof. This follows from Lemma 4.10, because (A/C)* — A is the canonical isogeny for
(A/C). |

Fix a primitive pth root of unity ¢ € C,.
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Lemma 4.14. There is an ordering on the subgroups such that on C; one has
ge, =¢'q. O

Proof. It follows from the preceding lemma that there is some root of unity making
the formula true for any given C;; the content of the lemma is that each distinct root of
unity appears exactly once. To determine which root of unity shows up after killing C;,
we may evaluate at the CM point g = 1. This calculation is done by Brakocevic¢ in the GL,
case, using Shimura'’s reciprocity law for GL; (see the proof of [8, Lemma 7.2]).

To reduce to the GL, case, note that, by the argument on p. 919 of [31], there is a

false isogeny (defined over a number field in which p is unramified)
AMA—E x &

of A with a product of elliptic curves, with degree prime to p. The result then follows

from Proposition 4.1. |

The pth roots of g in the ring of C,-valued functions on D are given by Taylor-

expanding ¢/(1 4+ T)/P. Write @; : D — D, for the map killing the ith (noncanonical) sub-
group.

Lemma 4.15. One has &*®; = o. (I
Proof. This follows from Lemma 4.11, since the degree of @; is p. [ |

Proposition 4.16. If f=) F(T)®® is a rigid-analytic modular form on D_; expressed
in Serre-Tate coordinates, then the corresponding modular form f|y is given in Serre—
Tate coordinates on D by

12
flu@M =~ Y FEA+ DY - ek, 0
=0

Proof. Just a restatement of the preceding two lemmas. Note that it makes sense to
evaluate F at (¢!(1 + T)Y/P — 1), as the constant coefficient of ¢i(1 + T)/P —1is ¢t —1,

which lives in the maximal ideal of WI¢]. [ |

The importance of the above formulas is that they give a formula for the compo-

sition UV of Hecke operators (the composition VU is the identity).
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Proposition 4.17. Suppose that f has Serre-Tate expansion
f=F(T)o®*

on the disk D. Then f|yy has Serre-Tate expansion

124
flov(D) =~ Y FE'a+T) - Dak.
=0
Moreover, if F(T) € WIIT]], then % S PO F(EH(1 4 T) — 1) € WITIL. O

Proof. Write f= F4(T)®®* in Serre-Tate coordinates on the disk D?.

We compute

(F(T)&®") gy = (Fs((1 + T)P — 1)OFH |y
12,
= Y FE 1+ A+ 1P —1DYP - 1o

i=0

=F('1+T) - 1o

The integrality claim for this expression is well known (see e.g. [11, p. 16]). To prove it,

note that
p-1 ‘
Y FEa+T)—-1)

i=0

has coefficients in the maximal ideal p of WI[¢], because it reduces to 0 mod (1 — ¢). Thus,

the coefficients lie in p N W = (p). |

4.5 Continuity properties of the operators
Write ® for the operator (1 + T)diT on the ring WI[T]], so what we have seen so far is that

O(F(T)d®%) = (O F)(T)o®*2.

In this section, we investigate elementary continuity properties of the operator ®, and

then use them to deduce similar properties for 6 on the space of p-adic modular forms.
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Proposition 4.18. The ® operator satisfies the continuity condition
®'F=0'F mod p"

for any F and any i, j > nsuch thati=j mod (p—1)p* . O

Proof. First suppose that F is a polynomial. Setting x=1 + T, on the ring W[x] = W[T]
WIIT]], we have ® = Xdix, so 6t Sax"=>)" rta,x" and the result follows (using Fermat's
little theorem for the terms with (p, n) =1 and the condition i, j > nfor the others).

To establish the result for a general power series F =) b,T", we may fix n and
prove that the congruence holds for the coefficients of T" in ©@'F and @/F. Note that the
coefficient of T" in ®F depends only on the coefficients of T" and T™"! in F. Thus, the
coefficient of T" in ®'F depends only on the numbers by, bp,1, ..., by, and similarly for
©®JF. It follows that there exists a polynomial truncation G of F such that the coeffi-
cients of T"in ®'G and ®/G are the same as those for F. Since the congruence holds for

polynomials, the result follows. |

Corollary 4.19. Suppose that fis a p-integral modular form, that is, that fis a modular

form over some subring of W. Then, for any ordinary pair (4, w), one has
0 f(A, w) =67 f(A, ») mod p"
whenever i=j mod (p—1)p™ . 0

Write f° = flyy_uv, and similarly for F € WI[T]], we write F’ = F|yy_yy, where
UV is the formal operator on power series of Theorem 4.17 and VU is the identity oper-

ator.

Proposition 4.20. One has

F’=lim @P P VF, O

i—00

Proof. The limit on the right-hand side makes sense because of Proposition 4.18. Writ-
ing ©®P-VP” for the operator lim; .., @7 PV, we see that @ P~DP* is a continuous W-
linear operator on WI[T]]. As this is also the case for the operator b, it suffices to check

the putative equality on the polynomials F,, = (1 + T)™, since the linear span of these
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polynomials is dense. One has @'F,, = m'F,,, and so

PV R _ 0. pim.

Fn’b (pvm)zl

On the other hand, using Proposition 4.17, we compute

p-1
Fo(T) = F(T) = = 3 Fn@'(1 4+ T) = 1)
i=0

p-1
1 .
=Fpu(T) — =Y ™1+ 1™
P
If pis prime to m, then the sum is zero, since ¢™ ranges over a complete set of
pth roots of unity. If p divides m, the sum is F,,(T). In either case, Fy, =©@P VP F, as
desired. |

We return to the operators 0, U, and V on the space of p-adic modular forms. If
f is a p-adic modular form, and (4/, t, ) is a triple consisting of a false elliptic curve
over L with ordinary reduction, level structure, and a translation-invariant one-form,
then the limit
lim 07 D f(A. ¢, o)
i—00

exists and equals f°(4,t), since this statement can be checked on residue disks. In

particular, if j is a negative integer, it makes sense to write
07 f(A, 1, )
to mean
lim @7 +P (- £
i—00 f
A priori, 87 f is a locally analytic modular form, rigid when restricted to a fixed residue
disk. Note that, in spite of the notation, one has 6¥6=% f= £, not f.

4.6 Proof of Proposition 3.6

We conclude by proving the formula

0NNz, =€0(flz)
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as promised. In each case, the result follows from the explicit formulas for the Hecke
operators (using the chain rule). For ¢ # p, this is a simple calculation. For T, it will

follow from related formulas for U and V, using the formula
T—U+IMV
p D .

Letting v denote the automorphism of X mapping (A4, t) to (A4, pt), it follows directly
from the modularity of f that

flin=p foy,

and thus,
O(fli) =D 2O Nlip

(because 6 boosts the weight of f by 2). The chain rule argument gives that

0(flv)=pONHlv

and

PO (flv)=Dlv,

which is the desired result.

5 Cohomology of Shimura Curves and Coleman'’s Theory
5.1 Deligne's twisted cohomology groups

Let X/C be a variety, and suppose that V is a local system on X(C), that is, a sheaf locally
(for the complex topology) isomorphic to the constant sheaf CY. Deligne [16] then showed
how to recover the cohomology groups H!(X(C), V) algebraically, generalizing the case
V =C of algebraic de Rham cohomology. Recall that the vector bundle V=V ®¢ Oy is
algebraic, as is the connection V — V ® §2 for which V is the sheaf of horizontal sections.

Then H'(X(C), V) coincides with the hypercohomology of the complex
05VRRSVRAZR2 S . (9)

Write HY; (X, V, V) for the ith hypercohomology group of this complex. Of course these
algebraic definitions all make sense over an arbitrary base field k (they are not useful

unless the characteristic of k is zero).
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Given two vector bundles V, V" with flat connections V, V’, the natural map of

the complexes (9) for V, V', and V ® V' gives rise to maps
H(X,V,V)®Q H(X,V,V)— HY(X,V,V® V).

We will apply this observation in particular to the case where (V, V) is self-dual, so that

the target is the ordinary algebraic de Rham cohomology of X.

5.2 Coleman'’s rigid analytic theory

Let X/Cp, be a curve with good reduction and V a vector bundle on X with flat connection.
Write X*¢ for the associated rigid analytic space and V"8 for the analytification of V.

For any point P € X(Cp), write Dp for the residue disk containing P, which is
isomorphic as a rigid space to the open unit disk. Fixing one such isomorphism taking
P to 0 allows us to speak of the affinoid subdomain of Dp given by “the closed disk of
radius r” for any r < 1, denoted Dp ,. Fixing a finite number of points Py, ..., P,, consider
the affinoid space

X0=X"8\ Dp \---\ Dp,

and its “basic wide open neighborhoods” (for various choices of radii r; with 0 <r; < 1)

AAAAA

For w a one-form on an annulus, Coleman has defined a notion of “residue” that
coincides with the algebraic notion of residue when w comes from an algebraic one-
form. Using this definition, it makes sense to speak of residues of vector-bundle-valued
one-forms on annuli, provided that the vector bundle comes with a flat connection that
trivializes on sufficiently small disks. Coleman'’s residue is only well-defined up to a sign
(depending on the “orientation” of the annulus), but he shows in Corollary 3.7a of [13]
that one can compatibly orient all the annuli Dp, \ Dp, ,, by choosing a uniformizer of the
deleted point as a uniformizer in the ring of rigid functions on the annulus (instead of
choosing the reciprocal of a uniformizer). Here, “compatibility” implies that the residue
of a meromorphic one-form on a Zariski open will agree with the residue of the same
form thought of as a rigid one-form on an annulus, rather than with its negative.

Coleman has shown that the algebraic de Rham cohomology of the affine curve
X\ {P, ..., Py} can be computed analytically as the “honest” de Rham cohomology of any
wide open neighborhood of X°:
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Theorem 5.1 (Coleman). For any wide open neighborhood W, the natural map

Vw @ £2yy

Hl . (X\(Py1,..., Py}, V,V) — o

is an isomorphism. O

Write Hj OV, V, V) for
Vw ® 2y
VVw

The following consequence of this theorem is immediate:
Corollary 5.2. Any inclusion of wide opens X° C WW ¢ W’ induces an isomorphism
HIzOW',V, V) = Hi W, V, V). 0
One also has the following:

Corollary 5.3. The image of the natural map

Yw ® 2w

Hz (X, V,V)— o

is the space of classes of rigid 1-forms on W with residue zero at each of the

points P;. O

This follows from the usual description of the algebraic de Rham cohomology of
the affine X\ {P, ..., Py} (with V coefficients) and the compatibility of the algebraic and
rigid residue maps.

If V is a vector bundle with flat connection, then a primitive for a V-valued
one-form w (over some open set) is a section F, of V with VF,=w. Of course, a prim-
itive is only unique up to horizontal sections of V. In the p-adic setting, Coleman has
shown a canonical way to write down a primitive for sections of V in the event that V
is equipped with some extra structure coming from the Frobenius map on the reduction
of X. For more details on the following, the reader should consult Section 10 of [14].
(In that section, Coleman uses the phrase “overconvergent F-crystal” to mean what this
document and others call an “overconvergent Frobenius isocrystal”. Moreover, Coleman
does not limit his theory to the good-reduction case, which requires him to distinguish
between the “flab”-sheaf of locally analytic sections of V and a certain “flog” sub-sheaf.)

The reduction Xg of X% is a smooth affine curve that admits the p-power absolute

Frobenius map to itself. If the set {Py, ..., P,} is Frobenius stable (which one may always
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assume by adding more points to it), then, using the good reduction hypotheses, Coleman
shows that this Frobenius map lifts to a semilinear map ¢ : ¥° — X°. Fix a choice of such

a ¢ once and for all.

Definition 5.4. A Frobenius neighborhood of X° in W is a pair W', ¢), where W' is a
basic wide open neighborhood with X° c W c W and ¢ : W' — W restricts to ¢ on X°.0

Definition 5.5. An overconvergent Frobenius isocrystal on the affinoid A° is a pair
(V, Fr) where V is a vector bundle with flat connection V on W and Fr is a V-horizontal

morphism

Fr:¢"Viw — Viw
on some Frobenius neighborhood W' of X0 in W. O

Given an overconvergent Frobenius isocrystal V, there is an endomorphism @& of

the space

Hi,OV,V, V)
given by the composition
HizOV,V,V) — Hiy W', ¢*V, V) = HigW', V, V) = Hiz W, V, V).

Definition 5.6. A polynomial P(T) € F[T] is a Coleman polynomial for a class [w] €
H'OW, V, V) if the following hold:

(1) P(®)(lw]) =0.

(2) P(®) induces an automorphism of the space of locally analytic sections of
V that are horizontal for V.

(3) P(1)#0. O

Theorem 5.7 (Coleman). Suppose that w is a V-valued one-form on W such that the
cohomology class [w] € H*(W, V, V) admits a Coleman polynomial P(T). Then there is a
unique locally analytic primitive F, for o such that P(®)F, is a rigid section of V on
some Frobenius neighborhood of X° in W. Moreover, F,, is rigid on any fixed residue
disk of A°. O

The function F, is called the Coleman primitive for w. It turns out that it depends

on none of the choices involved in stating Theorem 5.7—that is, it does not depend on
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W', the extension of ¢ to V', nor on the Coleman polynomial (provided that a polynomial
exists).

Of course, we will apply this theory in the setting of £, on the ordinary locus of
C (and its trivial enlargement Ly, ). In this case, the overconvergent Frobenius isocrys-
tal structure comes from an extension of the canonical morphism Ay,q — Aorq to a wide
open neighborhood W of the ordinary locus, as is constructed in [22, Chapter 11]. For
ease of notation, we do not symbolically denote restriction of bundles to W or the ordi-

nary locus in the following proof.

Proposition 5.8. There exists a Coleman polynomial P for ws (where wr is viewed as a

section of Ly, ® 2 via the Kodaira-Spencer isomorphism). O

Proof. The Hecke polynomial P(X)= X% — a,X + p*'es(p), when evaluated at Frobe-
nius, annihilates the class of wy, essentially by design. We can see this concretely as
follows: the operator @ on L., when restricted to ©®%, satisfies @ = %[p]V, as follows
from Lemmas 4.10 and 4.11, the action of [p] undoing the extra factor of % in the level
structure in the function f computed in Lemma 4.10. (This is an analog of the same
result on GLy, cf. [9, Lemme 4.3.2] for a proof using g-expansions, bearing in mind our
convention that Hecke operators act on the right.) We deduce that P(®) annihilates wy
from the classical compatibilities of the actions of T, and [p] on f with those on wy and

the formal factorization
X% - Tp,X + l[p]— (X— l[p]V) (X-U)
Pp p

(in the ring Tp,[X], where T, is the noncommutative algebra generated over the Hecke
algebra by formal variables U and V, subject to the relations (6) and (7)).

As remarked after 4.7, on any residue disk, the space of horizontal sections for
V on H! is spanned by (7)) and (& — log(q) ® #), on which Frobenius acts by 1 and p,
respectively. Thus, P(®) is diagonal with respect to the basis of horizontal sections of
L given by symmetric powers of these, with eigenvalues P(p'), so to check the second
and third conditions defining a Coleman polynomial, we need only check that p' cannot

be a root of P fori > 0. As fis cuspidal, this is a consequence of the Weil conjectures.ll

The following lemma will be useful in the proof of Proposition 7.1.

Lemma 5.9. Given an overconvergent Frobenius isocrystal (V, Fr) on an affinoid A°, a

pairing on V that is compatible with the connection, [w] € Hjz; (W, V, V) a cohomology
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class on a wide open neighborhood of X° admitting a Coleman primitive F,, and [3™"]

H(}R(W, V, V) a cohomology class that is fixed by Frobenius, one has
n
> resp (F,. n™") =0. 0
i=1
Proof. This is Lemma 3.20 of [3]. [ |

6 Construction of the Cycle
6.1 Projectors on Kuga-Sato varieties

Recall that C is the Shimura curve over F, f is a modular form of weight k=2r + 2 on
C, A, is the r-fold fiber product of the universal false elliptic curve over C with itself,
A is a fixed “CM false elliptic curve”, and W, = A, x A". In this section, we construct
a homologically trivial cycle on W, and then begin our discussion of the p-adic Abel-
Jacobi map, as applied to this cycle. For the first two subsections, we assume r > 0. The
caser =0 (so W, =C) is treated separately in Section 6.4.

As in [3], our cycle will be the graph of a morphism of false elliptic curves, mod-
ified by an idempotent in the ring of correspondences on a Kuga-Sato variety. All rings
of correspondences in this section are taken with rational coefficients.

Recall the bundle £, = Sym? eH!. The following is Theorem 5.8.iii of [5]:

Theorem 6.1 (Besser). There is a projector P in the ring
Corre (Ay)
of algebraic correspondences on A, fibered over C, with the property
PH*(A;/C)=PH* (A;/C) = Loy O

Lemma 6.2. For anyr >0,

H°(C, Ly, V)=0. O

Proof. This can be computed after base changing to C, and thus (thanks to GAGA for

differential operators as in [16]), it suffices to show it for the local system

Sym? eR!'7,Q
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on the Riemann surface C(C). This local system corresponds to the representation
Sym?”e(C*) of m,(Cc) = I" for which there are no fixed points. [ |

Corollary 6.3. The projector P satisfies

PHx(A) =H'(C, Ly, V). O

Proof. We first show

PHEI (A= @) HY(C, PHL,V)=H'(C, Loy, V).
p+q=2r+1

The first equality, known (without the P) as Lieberman's trick, is true for any abelian

scheme X — S. Lieberman’s observation is that the Leray spectral sequence
EDY=HP(S, HU(X/S),V) = HF 1(X)

degenerates at page 2, as the multiplication maps [m]: X — X must, on the one hand,
commute with the edge maps but, on the other, induce multiplication by m4 on E?.
This identifies HP(S, H4(X/S), V) with the md eigenspace of [m] on HL?(X). The second
equality follows from Proposition 6.1.

To see that

PHip(An) C HEH (A,

observe that P annihilates H(fR(C, H1,V) unless p=0,1 and g =2r. As r > 0, the latter

bundle has no global sections by Lemma 6.2. |

As a summand of Hir"'(A,), the cohomology group H}.(C, L, V) inherits its
Hodge filtration (which coincides with the filtration defined directly from the hyperco-
homology spectral sequence). On the other hand, Kodaira—Spencer gives a map from the
space H°(C, »®¥*?) of modular forms to H°(C, »®* ® £2¢), which includes (again from
the hypercohomology spectral sequence) into H},(C, Lz, V). It follows from our compu-

tation of the Kodaira-Spencer map over C (formula (5)) that the section wy of w2

cor-
responds to the holomorphic section (27i)>+! dzZ"dr of ®®* ® £2. In particular, working
over any characteristic zero field, we have a map H°(C, 0®?*?) — Fil* "' HL . (C, Ly, V)

(as the filtration can be computed after a base change).
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Proposition 6.4. There is a projector €4 € Corr?” (A", A7) such that

eaHjz (A") = Sym™ eHj; (A). O

Proof. Take the image of Besser’s projector P under the “evaluation at " map

Corr¢ (W) — Corrg(4"). [ |

Consider the variety W, together with the projector ¢ = Pe, in Corry (W, W}).
Recall the local system L2 on C which is Ly, ®Sym2reHjR(A); the fiber of Ly o
at a point P of C(F) corresponding to a false elliptic curve A is Sym%eH!(4) ®
Sym* eHj, (A).

Proposition 6.5. One has

€Hy (W) = Hig(C, Lr, V) ® Sym* eHjg (A) € Hii ' (A") ® Hig(A) S HigH' (Wp). O
Proof. This follows immediately from the Kiinneth formula. [ |

6.2 The generalized Heegner cycle and the p-adic Abel-Jacobi map

Recall the fixed level V;(N*)-structure t on A. For any false isogeny ¢: A— A whose
kernel intersects the image of ¢ trivially, there is a point Py on C corresponding to the
pair (4, ¢ o t), and an embedding of the graph I, into the fiber A x A" of W, above P,.
Write 7y for the rth power of I';. The cycles studied in this paper are given by

A¢ =€T¢.

Note that 7}, has codimension 2r 4+ 1 in ;. It follows that the cycle class map takes 7}
to H§§+2(m), and so Ay is cohomologically trivial by Proposition 6.5. It follows from [33,
Theorem 3.2] that each P; is defined over F.

6.3 The p-adic Abel-Jacobi map

Write F), for the completion of F at the place above p induced by the chosen embedding
Q — C,. Recall that for a variety X, CH}(X) denotes the group of homologically trivial

cycles of codimension i, modulo rational equivalence.
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There is a sequence for étale cohomology with supports: for a closed immersion

Z — X of schemes with complement U, then for any sheaf F one has
o= HL(X, F)— H(X, F) - H(U, F) - H;"" (X, F) - - -

If Z and X are smooth over an algebraically closed field and F is a locally constant
¢™torsion sheaf, then there are also (functorial) Gysin maps computing the relative
cohomology groups in terms of the ordinary cohomology groups of Z; writing c for the

codimension of Z in X, the Gysin map identifies
HI™?°(Z, F(—c) = H)(X, F).

We apply these facts in the following context: write Wp for the fiber of W, above
P (which has codimension 1) and W’ for its complement. By construction, the cycle A,
is supported on Wp. Choose i =4r + 1 and F =Zp(2r + 1). After base changing to the
algebraic closure and applying € to the Gysin sequence, we get an exact sequence of

Galois modules
0— eH¥ (W, Qp(2r + 1)) - e H¥ (W, Qp(2r + 1)) — e HY (Wp, Qu(2r)) - 0 (10)

using Proposition 6.5 for exactness at the left and right.
There is a map Q, — e H¥ (Wp, Qp(2r +1) sending 1 to the class of A,. Define

£ € EXta10is modules(Qps €H 1 (Wr, Qp(2r + 1)) = H (Fp, e HY T (W;, Qp(2r + 1)) (11)

by pushing out the sequence (10) along this map.

Write V for the Galois representation e H¥+1(W, Qp(2r +1)). It follows from
work of Nekovar [29] that the class & lies in the subgroup H}(Fp, e HY (W, Qp(2r + 1)))
defined in [7], that is, that the corresponding extension of Galois modules is crystalline.
The subgroup H} is the image of the Bloch-Kato exponential map, which is the connect-
ing map in the long exact sequence in cohomology coming from the short exact sequence
of Galois modules

0— W— B¢:1®V@FiloBdR®V—> Bir ® V—0.

cris

Because Dgs(V)?=! =0, the inverse of the exponential map induces a well-

defined “logarithm” map
Dgr (V)

Fil°

logpy : Hp(Fp, V) —
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The element logg, (§) lives in

Dar (e H¥ 1 (Wy, Qu(2r + 1)) €Hip™ (Wy/5,)
Fil° T FI#HD

By Poincare duality, the last space is identified with FilerrleH;fI':rl (W /r,)", which maps to
(Mar42(Fp) ® Symzre*H&R(A/Fp))v (this follows from the Kiinneth formula and our earlier
remarks on the Hodge filtration).

Definition 6.6. The p-adic Abel-Jacobi map

AJp: €CHY T (W /5,) — (Mar2(Fp) ® Sym™ eHyg (Ar,))”

sends a cycle Z to the image of the Bloch-Kato logarithm of the extension class &z as

in (10) under the composition of the maps

6H§1r1+1(m/Fp) 12r4+1  prarel v 2r 771 v
TR =Fil""eHy " (W )p,) " — (Mzri2(Fp) ® Sym~ eHgg (A/r,)) " O

6.4 The case of weight two

In the case that r =0, the variety W} is just C, the projectors defined above are all trivial,
and a homologically trivial cycle of codimension 2r 4+ 1 is a degree zero divisor. Write
Tq for the Hecke algebra of level N*. Then, there is a projector € € Corr(C) ® Q which
lies in the image of the map Ty — Corr(C) ® Q and satisfies

€ fH;z(C/F)=FwsC Hiz(C/F).

Let Ap be an arbitrary divisor on C. Then, €Aq is automatically homologically trivial.
The projector €5 also gives an extension class attached to f using the Gysin sequence
above, so it makes sense to apply the p-adic Abel-Jacobi map to € rAy.

In the weight two case, the p-adic Abel-Jacobi map can be identified with a
formal group logarithm as follows: writing J for the Jacobian of C, there is, for each
differential form w € 25, a unique group homomorphism log, : J(Fp) — F, with dlog, =
w. If we pick an Fp-rational point of C to get a (classical) Abel-Jacobi map C — J, we
then get a map C(Fp) — Fp, which coincides with AJ,. (This map depends on our choice

of rational point, but the induced map on Pic’(C) does not.)
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7 Computation of the p-adic Abel-Jacobi Map
7.1 The p-adic Abel-Jacobi map and Coleman integration

We will work with sums A of generalized Heegner cycles fibered above points Py, ..., Pp;
we assume this set to be Frobenius stable. Write also Qy, ..., Q, for a choice of point
on each supersingular residue disk. Write Sp ={Py, ..., P}, So ={Q;,..., Qp} and S=
Sp U Sq.

We will apply the formalism of Section 5 to the affinoid X° = C\ | J,.4 D(P, 1) and

some choice of wide open neighborhood W.

Proposition 7.1. If A is a sum of generalized Heegner cycles fibered above points in
Sp, where the point P; corresponds to the false elliptic curve A; with level structure ¢,
the generalized Heegner cycle A; above P; is given by the false isogeny ¢; : A— A;, and
o € Sym* eH], (A) is arbitrary, then

AT (Mg Aa)=Y (Fp(P;) Aa,Clp(Ay).

PiESP

(Here, Clp,(4;) denotes the image of A; under the cycle class map attached to the fiber A7

of C above P;, not the global cycle class map, which annihilates A by construction.) [

Proof. This argument mimics the proof of [3, Proposition 3.18]—in fact, it is strictly
simpler, as that paper must deal with issues related to cusps of modular curves. To

compute AJ,(A)(ws A ), we need to compute

(loggg(§a), wf A a).

Here, &, denotes the extension class (11) of Galois modules.
Applying Dgr gives the extension class D,, which sits in the exact sequence of

filtered Frobenius modules
0— H'(C, Lyr2r, V)(2r+1) > Dy — F — 0,

thought of as a class in H}(Fp, V). Explicitly, D, is the set of pairs (1, 8), where g € F

and n is a cohomology class in
H'(C\Sp. Lor2r. V)(2r + 1)

whose residue at each P; is SClp,(A).
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To write down logy,(£4), we must find a class 7ol €Fil°D, and a class 5o €
(DA)‘pdeg(Fp/Qp):l, both mapping to 1 in F, and then take their difference, which is
well-defined up to Fil* " H1(C, Loror, V). We will think of nnq and ngop as classes in
H'(C\Sp, Ly, V), both required to have residue Clp,(4;) at P;.

One has
Fil’H'(C — Sp. Lar2r, V)(2r + 1) = HO(C \ Sp. @) ® Sym* eH}; (A).

In particular, nno is represented by an £,,-valued one-form that is holomorphic away
from Sp and has a simple pole at each P; € Sp with residue A; (or is holomorphic at P; if
A; =0). Possibly enlarging Sp, we may assume the centers of the deleted disks include
all the poles of ngrp.

To compute

(10gBK(§A)9 Cl)f A a)v

we need to pick primitives for w A @ in each disk, multiply by nnho1 — nerop, and sum the
residues over the points in S. Now Lemma 5.9 tells us that if we pick the global Coleman

primitive, then the contribution to the sum from S, cancels. Hence the sum simplifies to

> resp(n. Fy Aa) = (Fp(P) A e, clp(4))
PiESP

(we are using the fact that Fr A « is the Coleman primitive for ws A «). |

The next proposition, which is proved as in [3] and only needed in the higher
weight case, shows that we can move this result of the previous proposition from the

various P; € S to the point P4 corresponding to the fixed false elliptic curve A.
Proposition 7.2 (BDP 3.21). If A, is supported over a single point P, then we have
Adp(Ag)(wp Na)=(¢"Fr(Pa), ).

where the pairing occurs on eSym?” H 1R (A). O

7.2 Computing Coleman primitives for p-adic modular forms

In this section, we will use the following conventions, which are slightly different from
those of [3]. A lowercase letter is a p-adic or locally analytic modular form, and the

corresponding capital letter is its Serre-Tate expansion, a power series in T (on some
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fixed ordinary residue disk). As in Section 4, write 6 for the operator on the space of
locally analytic modular forms and ® = (1 + T)% for the corresponding operator on

power series; that is, if g= G(T)&®* in a fixed residue disk of C, then
6g = (OG)d2.

Because the main theorem of this section may be of use in other situations,
we state it for arbitrary p-adic modular form f of weight p + 2 (for the fixed f from
Section 2, of course, p =2r is even—note that our proof of the existence of a Cole-
man polynomial does not assume even weight). Consider f as a section wy of 0’ ® 2 C
Sym’eH' ® £2 using the Kodaira-Spencer map, and write g for the Coleman primitive of
wy. In particular, g is a section of Sym”eH' satisfying Vg=wy.

In terms of the Serre-Tate basis for Sym”eH! given by &°~'#j' fori=0,..., p, we

may write

P
g=>Y_ GiTa’'#. (12)
i=0

(Here, we are using the fact that g is rigid on residue disks.)
The formal power series G;(T) are actually the T-expansions of locally analytic
modular forms of weight 2p — i. To see this, recall that the Ox-linear cup product pairing

on H! extends to a pairing on Sym”eH! by the rule

@® a0 f) = Y [l o 13)

oeS, 1

Following [BDP], we define a locally analytic modular form §; by the rule
gi(A, 1) =(9(A, 1), winp—i>w2p—i’

where w € w(D) and n € H! (D) are chosen with (w, ) = 1. (Replacing o by Aw has the effect
of replacing n by A7!, so the form does not depend on any choices.)

Combining (12) and (13) shows that the Serre-Tate expansion of g; is given by

. _ D

STy

Note that g; is a locally analytic modular form on all of X, not just on the ordinary locus

Gi(T)&* . (14)

(where its T-expansions make sense and where formula (14) holds).
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These components can be computed by inverting the differential operator 6:

Theorem 7.3. One has

g =il O
Proof. The theorem is equivalent to the statement that
91+igi —il f

(the flat operator arises upon inverting 6, which has trivial kernel on the space of forms
satisfying f= f°). It suffices to show that 6o = f and 6g; =ig;_; for i > 0.

Using the Leibniz rule and Katz's computation of V on the basis {®, 7} yields

V(Gi&" ') = G’ ' @ AT + G V(" 'RY)

=060’ " @dlogg+ (p —i)Gio" 1 @ d logg.

Summing this equality over i and reindexing gives

)
Vg=0Ged’ ®dlogg+ Y (OG;+ (p—i+1)Gi1)o" i ® d logg.

i=1

On the other hand, since g is a primitive,

= KS(F&'*?)

=F&” ® dloggq.

It follows that ®Go = F and that ©G;,=—(p —i+ 1) G;_; =0 for i < p. The result
now follows from (14). (An earlier draft of this article remarked as a consequence of this
calculation that gi”, a priori only locally analytic, must in fact be rigid on the ordinary
locus. As pointed out to the author by Yifeng Liu, this is true, but not obvious, and
needs a result from rigid analytic geometry, namely, that if the limit of a family of rigid
sections of a bundle exists (as a locally analytic section) and if moreover the convergence
is uniform, then the limit is a rigid analytic section. We omit this argument, as it is not

needed for our results, which only depend on the values of gf at CM points.) [ |
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In the weight two case (r = 0), the operator O¢ — »®? is just d, followed by the
Kodaira-Spencer isomorphism. The content of the above proposition is then that the
limit defining 6! exists.

Consider the particular f fixed in Section 2, so that p =2r, and write g; for the
jth component of the Coleman primitive as before. The following proposition, which
is proved using Proposition 7.2 as in [3], relates the components g; to the p-adic Abel-

Jacobi map:

Proposition 7.4 (BDP 3.22). Write d for the degree of the false isogeny ¢ : A— A’. Then
Adp(Ap) (@ A ) =d/g;(4, t, o). a

Lemma 7.5. Suppose that the weight of fis 2. Then for any zero-cycle A on C, one has

O f)erho) =07 £)(A0). 0

Proof. Because the operators U and V commute with all the operators T;, the p-adic
modular form f* is still an eigenform with the same Hecke eigenvalues as f away from
p. It follows from Proposition 3.6, and the definition of §~! as a limit of iterates of 0,
that

O =707 (L) =al 67 f.

Write T, Ao for the zero-cycle on C given by the Hecke orbit of Ay. For g a modular
function, one has g|,(P) = %g(TE*P). But then

O~ £IT; A0) =07 £)I1.(Ao)
=a (07" f)(Ao).

Write A ¢: T — F for the homomorphism attached to the newform f. Then A ¢(T;) = a, so

the above computation shows that for an arbitrary T € T one has

O )T A0) =2 p(T)O " ) (Ao).

By design A ¢(er) =1, so we are done. |
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8 The p-adic L-function
8.1 Spaces of Hecke characters

The p-adic L-function we study interpolates special values of the Rankin-Selberg
L-function L(f, x,s) as x varies over Hecke characters of K. We now describe a few
spaces of Hecke characters on K. A Hecke character x with infinity type (¢1, ¢2) is criti-

cal for fif one of the following conditions holds:

(1) (The type 1 case): 1 <4{;,¢,<k—1.
(2) (The first type 2 case): £; > kand ¢, <0.
(3) (The second type 2 case): ¢; <0 and ¢, > k.

As is explained in [3, Section 4.1], x is critical for f precisely when the center of the
functional equation for L(f, x!,s) is a critical value in the sense of Deligne. Because
an even number of primes divide N—, the sign in the global functional equation for
L(f. x7!,s) depends only on the archimedean epsilon factor; in the cases that we have
called “type 2", this sign is positive, and in the case we have called “type 17, it is
negative.

One says that y is central critical if in addition ¢, + ¢, = k (which is equivalent
to the center of the functional equation occurring at s = 0) and the central character of x
matches the nebentypus of f (which forces the same L-function to occur on both sides
of the functional equation). We will write > for the set of central critical characters of
type 1 and =2 for the set of central critical characters in the first type 2 case. Because
the values of critical Hecke characters are algebraic, we may view them as p-adic num-
bers via our fixed embedding. As is explained in the discussion before [3, Remark 5.8],
the set £ inherits a p-adic topology as a subspace of the space of functions from the
prime-to-p ideles of K to Oc,,.

Write £2 for the completion of > with respect to this topology. Write h
for the class number of K; for each integer t, there is a Hecke character v given by

the rule

Yi(a) = a®*/a®,

where (a) = a". Note that the infinity type of v, is (6h, —6h). It follows that x; is central
critical of type 2 for x central critical of any type (and ¢t large) and x v p»p-1) — x as

n— oo. It follows that we may view >V as a subset of 2.
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8.2 The Waldspurger-type result

Using the fixed complex structure J; on M;(R), thought of as a map
J. : My (R) — C2?,

we get a differential form wc = Jf (271 dz;) on M, (R) (holomorphic for this complex struc-
ture). Abusing notation, also write wc for the corresponding form on B ® R (which is
really & wc).

There is a bijective correspondence between (,(Op)-stable sublattices of C? and
pairs (A, o) of a false elliptic curve over C and a section of ef2,,c. To a pair (4, w) we
attach the lattice

05 ” oly eeHl(A)},
Y

and to an Op-stable lattice A we assign the false elliptic curve C%/A together with the
form 27idz.

Again using the complex structure J; on M,(R), we may view a modular form g
as a function on pairs (A, t), where A is an Op-stable sublattice of B ® R and t =et is an

element of exact order N* in @. Explicitly, this function is given by the rule

B®R
g(A, t)zg A 3 t, wc .

Scaling the lattice A by some A € C multiplies each period integral by X, so the corre-

sponding one-form wc is divided by . Hence, for g of nebentypus ¢4, we have
g, At =2 "%y g(A, B).

Write t for the Heegner level N* structure on the false elliptic curve A, as
described in Section 2.5, and for a an ideal of O prime to N, write t, for the induced

level structure on the false elliptic curve A,,..

Lemma 8.1. Let a be an ideal prime to N and let x be a central critical Hecke character

of infinity type (k+ j, —j). Then, for any ¢, the expression
X @Na IO flaz', )

only depends on the class of a in C1(Ok) (here ap is as defined in Section 2.5). O
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Proof. Scaling the pair (a, t) by A € K, we obtain
O O azt, ) = € f (WA f(a, B).

On the other hand,
x 0w =e," AT x ()

and
NGwa) 7 =273 T (Na) .

The result follows from the assumption e f=¢,. |

The following result follows from [31, Theorem 3.2], together with the local com-

putations of [3, Section 4]:

Theorem 8.2. Let x be an unramified Hecke character of K of infinity type (k+ j, —j)

whose central character is the nebentypus of f. Then one has, for some «(f, for,) € K

2

CEOLLx O =alf for,)| Y. x " @Na /- (0L NHag' )] .

aeCl(Ox)

where

Cf 0= 375G+ D et ueyidel2 T 7t

in- €+ 1

and Sy is the set of primes which ramify in K that divide N* but do not divide the
conductor of the Nebentypus of f. O

The element a(f; fz1,) is the quotient of the Petersson inner products

(for,» for,)
(LhH

Because of our normalization of f, it is an element of K by [20, Theorem 12.3].
In fact, by [31, Theorem 2.4], it is integral at p provided that p>k+1 and p{[[,y
€ —-DEOE+ D).

8.3 CM points and CM triples

This section eliminates the absolute value signs that occur in the statement of

Theorem 8.2 by comparing the complex conjugation action on the space of modular
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forms with an Atkin-Lehner involution. Fix for now a primitive N*th root of unity ¢ € Q,
that is, a trivialization of u};. (We will make a particular choice later.) Suppose that L is
some field containing K, A'/L is a false elliptic curve with normalized CM by Ok, and
P =e¢P is a torsion point of exact order N* on A'. Then there is a point of C(F) given by
the false elliptic curve A’ together with the level structure
A (6)-»
uy X py~Z/N*t®Z/N* — AN

Such a point will be denoted (A, P).

A CM triple over L is an isomorphism class of triple (4, P, w), where w € e§24/y, is
nonvanishing. Using the above formalism, one can think of a CM triple as a point on the

underlying space of the bundle w; .

There is an action » of C1(Ok) on the set of CM triples, given by the rule
ax (A/a Pv 6()) = (A//A/[a]a POa C()O),

where P pushes forward to Py and wg pulls back to w.

Assuming also that J/—N* e L, there is an Atkin-Lehner involution, denoted by
wj;, on the underlying space of the bundle w; (it is not an automorphism of line bundles,
but rather lies over an involution on C, which we also call an Atkin-Lehner involution

and also write wy). It is described by the following rule:
(A, P,w)+> (A/P,P',vV/—N+w),

where P’ =eP’ is chosen so that the Weil pairing (Image(P), P') =¢.
There is a Gal(C/R) semilinear complex conjugation action on C¢ and the under-

lying space of w¢, given on arbitrary points (not just CM triples) by
(A t, 0) = (A", 17, 0,

where o denotes base change along the nontrivial map C — C. (Note that even if A" and
A are isomorphic as abelian surfaces, they will not be isomorphic as false elliptic
curves.)

By [3, Lemma 5.2], the compatibility of the Atkin-Lehner involution with the
operation of C1(K) on the set of CM triples is given over C by the rule

axwi(A4, P, wc) =wj(ax (A, Na ' P, wc)). (15)
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Since K satisfies the Heegner hypothesis for N*, there is as before an ideal 9"
of K with norm N™. In the course of establishing the following proposition, we will fix a
particular ¢, which depends on the fixed CM elliptic curve A; from now on, any reference

to an Atkin-Lehner involution is with respect to this ¢.

Proposition 8.3. There exists an ideal b of O, and a scalar b}, € Ok, with the property
that for any CM triple, one has
+

_ b
. _ + N .
(A, P,2ridz) = b x wy (A, P, \/__N+2711 dz) . O

Proof. Because A’ has false endomorphisms by Ok, there is a false isogeny A— A
whose kernel is of the form Alf] for some ideal f of K. If necessary, multiply by a scalar
to ensure (f, M) = 1. Pick the ideal b to be prime to 1" and to satisfy

bNTF = (byy)

for some scalar bj;. Then multiplication by b};, followed by the natural projection, gives
an identification
AIN*]

ot
A[W*]_)A [DTF]

In particular, one may lift P to P’ =eP’ € AIN]. Set ¢ = (P, P’). The result is now plain

from formula (15). [ |

As in the modular curve case, there is an involution g+ g, on the space of weight

k modular forms for C/C by the rule
gp(A t, ) :=9g(A t w).

Lemma 8.4. If g is an eigenform with T,g=ag, then g, is an eigenform with

T,gp = @ gp- U

Proof. One has

1 Z o o o
9oln (A t, ®) = Zggm JCI 7, )

=9gn, (A%, 17, »%)
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=aqyg(A%,t7, w%)

= g,(A, t, w). |

A similar computation shows that if g has nebentypus ¢4, then g, has nebentypus
€g. It follows as in the proof of [3, Lemma 5.2] that there is a complex scalar W, of norm

one, depending only on g and our choice of ¢, such that
gp(wy(E, P, w)) = Wyg(E, t, ).
For x € @, set
W(f, x) = Wye ;(Nb) ™" x;(b)(—N)¥/> /B2,
Abbreviate xN~/ as x;j- Then one has:

Proposition 8.5. Under the hypotheses of Theorem 8.2, one has

CEOLEx O =alf fa)W(E )| D x ' @Na/ - (O f)ax (A P,wc))

O
aeCl(Ox)

Proof. The formula

X (@O fax (A, P.wc)) = wp(—N)¥ 2 b 72 yi(b)e p(Nb) ™ x;(db) ' O, F(@b % (A, P, i)

is established as in the proof of Theorem 5.4 of [3], except with Remark (1) in that proof
replaced by Proposition 8.3 above. The result follows from summing this formula over

a, using Theorem 8.2. [ |

The following lemma expresses the operator b on the space of locally analytic

p-adic modular forms in terms of the action of CI(K) on CM triples.
Lemma 8.6. If gis a locally analytic p-adic modular form of integer weight k satisfying
Tpg=bpg

and

(p)=¢€(pg
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for some character ¢, and (4, t, ') is a CM triple, then

b
GA t)=gA t, o) - e(pTi"g(p (At o)+ %g(pz * (At o), 0

Proof. This computation is the same as that of [3, Lemma 3.23]: since A" has com-
plex multiplication, the canonical subgroup of A" is A[pl. Thus, gly (4, t,0')=px*
(A, p't, po') and glyve = p? * (A, p't’, po). The result then follows from m

1
VU -UV=1-T,V+ E[plvz.

8.4 The p-adic L-function

Recall the fixed nonvanishing global section w of the line bundle e,/ on A, defined
over the Hilbert class field of K. Define a period §2 € C by the rule

w=8Rwc.
Define also a p-adic period §2,, € C, by the rule
w= 82,0,

where & is the formal section picked in Section 4 (which depended upon a choice of basis

for eT, A, where A denotes the reduction of A mod p).
Proposition 8.7. For x € X of infinity type (k+ j, —j), with j > 0, the quantity
Lag(fox ™. 0) i=a(f. fo,) " W) C(fix. OL(f. x. 0)/2 22D

belongs to Q, and is computed by the formula

Lag(fix 0= Y. x;'(@)-0Lfax (At )
[aleCl(O)

Proof. See [3, Theorem 5.5]. [ |

The following corollary then follows immediately from the equality of the values
of the forms 6 f and @k f on CM points.
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Corollary 8.8. For x € X2 of infinity type (k+ j, —j), with j >0,

Lag(fix 0= Y x'@-0/flax (At w)

[a]leCl(Ok)

Now set

Lp(f x)= 225201 = x ' ®)ap + x 2®er(D P ) Lag(f: x 1. 0).

The following proposition expresses the Euler factor dropped at p in terms of the opera-
tor b on the space of p-adic modular forms; the computation is in [3, Theorem 5.9]. (Note

that we have replaced the algebraic form » with the p-adic form ®.)

Proposition 8.9. For x € X2 of infinity type (k+ j, —j), with j > 0, one has

2

L= D, xj'@ 6/f(ax(41tad)

[aleCl(Ok)

8.5 Special values of L

This section investigates the properties of L, outside the range of interpolation.

Proposition 8.10. The function x — L,(f, x) extends to a continuous function on all of

See (which we will still write as L ,.) 0

Proof. If two characters x; and y, are sufficiently close in the topology on X2, then

cc’

their infinity types satisfy the congruence
Ji=Jo(mod(p—1)p"™).

(to see this, evaluate on ideles congruent to 1 mod A). It follows from Proposition 4.19
that

6 f(A, t, &) =6%f (A t,®») mod p¥

at any ordinary CM point. The result follows from the formula of Proposition 8.9, which
computes the value of L, in terms of values of f* at ordinary CM points; moreover, it

follows that the formula of Proposition 8.9 computes the values of L, for any x e 2 m
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The following theorem is the main result of this document. Write ¢, : A— A/ Alal

for the natural map and A, for the associated generalized Heegner cycle.

Theorem 8.11. Suppose x is a central critical character with infinity type (k— 1 — j,
1+ j), with 0 < j <2r. Then

L,(f o o B
—szzgz_xz)p =1 - x"'"®ap+ x 2Pes(p P>
p

Z x N (@N(a) - AT p(A)(@F A wi’l’;_z_j)

71
I tarecix

Proof. The proof of the preceding proposition establishes the formula

2

L= Y x4 ;@677 fax(Atd)

[aleCl(K)

By definition of £2,, we have (using that the weight of 6~/ f* is k — 2 — 2j) that

2

L,(f - L
Qg((z—{)z(j))= Z X1 ;@) 071 flax (At w)

laleCL(K)
Lemma 7.3 shows that the value of 6717/ acting on f* is %g?, where g; denotes the jth
component of the Coleman primitive for f, which gives

2

1 P
o > xIj@ 07 g ax (At w))
" [aleCl(K)

Lo(fx)

22r—2j)
2p

By Lemma 8.6 (and a rearrangement of the sum), one can remove the operator b on g; by
dropping an Euler factor:

L ’ - = — = .
ﬁﬁé&%u—x "®a, + x 2Pes(pp)?

1

i Y X j@ 607 giax (At w)

[aleCl(K)

Now apply Lemma 7.4 to the Heegner isogeny ¢,, of degree (Na)?, to attain the final
result.
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(In the case of weight two, we are implicitly using Lemma 7.5 to compute with
the cycle A, =Y x~!(a)N(a) P, rather than the cycle €fA,.) |

8.6 Fields of definition

We have stated our results in terms of cycles defined over the ray class field of K mod
N'. One may restate Theorem 8.11 in terms of a cycle defined over a smaller field of
definition than F, as is explained (in the GL, case) in [4, Section 4.2]. For the purposes of
applications, we give a slightly different argument to this effect in the case that k=2.

In this case, Theorem 8.11 reads:

Proposition 8.12. Suppose that f has weight 2, and xis a central critical character with
infinity type (1, 1). Then the cycle €A, € Div(C)(F) ® Q satisfies

Lp(f )= =x"'®ap+ x 2(Mes(p)p)? - log, (erAy). U

Consider the quotient C’ of C whose complex points are H/Ip y+. Writing ¢ : C —

C’ for the natural map, one has the rule for p-adic logarithms

log,.,,(P) =log, (¢ (P)).

for P € C'(Cp). Writing A’ for ¢(erA,), and a)’f for the differential form on C’ attached to

S, Shimura’s reciprocity law implies that A’ is defined over K. Thus, one has

Proposition 8.13. The cycle A’ € Div(C')(K) ® Q satisfies
Lp(fx) =1 = x"'®ap+ x*(Pes(pp)* - log, (A)). D
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