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We construct “generalized Heegner cycles” on a variety fibered over a Shimura curve,

defined over a number field. We show that their images under the p-adic Abel–Jacobi

map coincide with the values (outside the range of interpolation) of a p-adic L-function

L p( f, χ) which interpolates special values of the Rankin–Selberg convolution of a fixed

newform f and a theta-series θχ attached to an unramified Hecke character of an

imaginary quadratic field K. This generalizes previous work of Bertolini, Darmon, and

Prasanna, which demonstrated a similar result in the case of modular curves. Our main

tool is the theory of Serre–Tate coordinates, which yields p-adic expansions of modu-

lar forms at CM points, replacing the role of q-expansions in computations on modular

curves.

1 Introduction

The aim of this article is to prove a p-adic Gross–Zagier-type formula for Shimura curves

over Q, generalizing a result [3] of Bertolini, Darmon, and Prasanna.

Let N be a positive integer and f a modular form of weight k on Γ0(N). An imag-

inary quadratic field K is said to satisfy the Heegner hypothesis with respect to f if

all primes dividing N are split in K. Under this assumption, and in the case k= 2,

the seminal work of Gross and Zagier [19] established a precise formula relating the
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derivatives

L ′( f, χ,1)

to the heights of Heegner points on the modular curves X0(N). Here, χ is a finite-order

unramified character of K and L( f, χ, s) denotes the usual Rankin–Selberg L-function.

This result has been generalized in many different directions, for example to the case

of even k> 2 [37] and to the setting of Shimura curves over totally real fields [36, 38].

There are also similar formulas relating the cyclotomic derivative of a two-variable p-

adic L-function to p-adic heights of Heegner points and Heegner cycles due to Perrin-

Riou [30] (k= 2) and Nekovář [28] (k> 2) as well as recent work by Disegni [18] in the

setting of Shimura curves over totally real fields. Here, (p)= pp̄ is an odd prime splitting

in K.

The formula of [3] is of a different nature and involves studying not the heights

(or p-adic heights) of algebraic cycles but rather their p-adic logarithms, which are

defined by taking the image of a (homologically trivial) cycle under the étale Abel–Jacobi

map and then applying the inverse of the Bloch–Kato exponential. The range of charac-

ters considered is more general and includes Hecke characters of weight strictly smaller

than the weight of f . The main result of [3] is then, assuming a weaker version of

the Heegner hypothesis, that there exist certain homologically trivial cycles (general-

ized Heegner cycles) corresponding to the vanishing of the Rankin–Selberg L-function

L( f, χ, s) at the center and that the logarithms of these cycles can be explicitly related

to the values (rather than the derivatives) of a p-adic L-function at a point outside its

range of interpolation.

This article drops the Heegner hypothesis from [3]. We assume that N is square-

free and prime to the discriminant of K. Factor N = N+N− where primes dividing N+

split in K and primes dividing N− remain inert. Assuming that the sign of the functional

equation for L( f, χ, s) is negative, a simple computation of epsilon factors shows that the

number of primes dividing N− is even. Let B be the indefinite quaternion algebra over

Q of discriminant N− and choose a maximal order OB in B. There is a Shimura curve

X, defined over Q, which, for N+ > 3, is a fine moduli space for principally polarized

abelian surfaces A together with an embedding OB ↪→End(A) (“false elliptic curves”)

and a certain type of level structure that depends on N+ (described in Section 2.2).

Assume that the weight k of f is even and positive, and write k= 2r + 2. If k> 2,

we assume also that N+ > 3. We will work over the ray class field F of K mod N+. Writing

A for the universal abelian surface over the Shimura curve X/F and Ar for its r-fold fiber

product over X/F , we study generalized Heegner cycles on Ar × Ar, where A is a fixed
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false elliptic curve over F with CM by OK . (Here, the OK action is required to commute

with the OB-action, which implies that A is isogenous to the self-product of an elliptic

curve with CM by OK .)

Given an embedding Q̄ ↪→Cp, we construct a p-adic L-function, L p( f,−) in

Section 8.4, whose domain is a space of Hecke characters, which is characterized by

an interpolation law of the form

L p( f, ψ)

Ω
2(�′1−�′2)
p

= C E p( f, ψ)2
L( f, ψ−1,0)

Ω2(�′1−�′2)
,

where

(1) ψ ranges over the space of Hecke characters of type (�′1, �
′
2) with trivial cen-

tral character such that �′1 + �′2 = k and �′2 ≤ 0.

(2) E p( f, χ) is the Euler factor of L( f, χ−1, s) at p̄ evaluated at 0, where p is the

prime of K distinguished by the given embedding.

(3) Ω is a complex period attached to A and Ωp is a p-adic period attached to A.

(4) C is an explicit nonzero constant.

There is an idempotent e in B ⊗ K selected in Section 2.1, and we state our results

in terms of the cohomology group eH1
dR(A/F ).

Theorem 1.1. Suppose that f has even weight 2r + 2, with r ≥ 0, and χ is an unramified

Hecke character of K with trivial central character and infinity type (�1, �2)with �1 + �2 =
2r + 2 and �1, �2 ≥ 1, so that (�1, �2)= (2r + 1− j,1+ j) with 0≤ j ≤ 2r. Then there is, for

each a ∈Cl(OK), an algebraic cycle Δr(a) on

Xr :=Ar × Ar

that is homologically trivial and defined over F , such that

L p( f, χ)

Ω
4r−4 j
p

= E p( f, χ)2 ·
⎧⎨
⎩ 1

j!

∑
[a]∈Cl(OK )

χ−1(a)N(a) · AJp(Δr(a))(ω fB ∧ ω j
Aη

2r− j
A )

⎫⎬
⎭

2

, (1)

where

(1) AJp is the p-adic Abel–Jacobi map, viewed (see Section 6.3) as a map

CH2r+1
0 (Xr/Fp

)→ (S2r+2(Fp)⊗ Sym2reH1
dR(A/Fp))

∨
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with Fp being the completion of F at the chosen prime above p and S2r+2(Fp)

the space of weight k modular forms over Fp of level N+.

(2) fB is the Jacquet–Langlands lift of f to X, normalized as in Section 2.7,

ω fB is the associated differential form on Ar, and {ωA, ηA} are a basis for

eH1
dR(A/ f), with ωA holomorphic on A(C) and ηA antiholomorphic on A(C),

normalized such that the cup product 〈ωA, ηA〉 = 1. �

Under the hypothesis that p | N− exactly once (in which case p is inert in K),

Masdeu [26] has proved a similar result by using a p-adic analytic uniformization of the

corresponding Shimura curve, which has bad reduction at p. Such a uniformization is

not available in the case of good reduction. Conversely, our techniques rely on the good

reduction of the Shimura curve and on p being split, and thus do not recover Masdeu’s

results.

Before outlining our methods, we summarize the proof of the main theorem of [3].

For this paragraph only, r = k− 2. Write Er for the r-fold self-fiber product of the uni-

versal generalized elliptic curve over X1(N) with itself, and fix an elliptic curve E over

F with complex multiplication. In [3], a generalized Heegner cycle Υ is built as a graph

of an isogeny, modified by an algebraic projector, due to Scholl, which projects the coho-

mology of the variety Er × Er onto the subspace

Sr+2(Γ1(N))⊗ Symr H1
dR(E).

The image of Υ under the p-adic Abel–Jacobi map is computed in two steps. The first

step is to relate this image to a “Coleman primitive” for the section of a line bundle on

X1(N) attached to f . The second is to express the Coleman primitive of f in terms of

θ−1− j f , for 0≤ j ≤ k− 2, where θ = q d
dq is the Atkin–Serre p-adic differential operator

which maps the space of p-adic modular forms of weight k to the space of p-adic modu-

lar forms of weight k+ 2. The values of θ f coincide with the values of Θ∞ f at CM points,

where Θ∞ denotes the Maass–Shimura operator

1

2πi

(
d

dτ
+ k

τ − τ̄
)
.

The p-adic L-function is then computed using a Waldspurger-type result express-

ing values of the classical Rankin–Selberg L-function in terms of values of Θ j
∞ f at

CM points.

Our proof follows [3], but replaces q-expansions, which are unavailable in the

Shimura curve case, by “Serre–Tate” expansions. In Section 2, we review the arithmetic
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of Shimura curves and Shimura’s reciprocity law. In Section 3, we discuss the theory

of modular forms on Shimura curves, defining the Shimura curve analogs of the p-adic

differential operator θ and the Maass–Shimura operator Θ∞ discussed above, as well as

some Hecke operators.

In Section 4, we compute the differential operators of Section 3. Serre–Tate the-

ory gives both an explicit uniformizer in the ring of rigid analytic functions on an ordi-

nary residue disk of the Shimura curve and an explicit trivialization of the bundle of

p-adic modular forms of weight k over this disk. We can thus use it to express p-adic

modular forms locally in coordinates. The main results of this section, which uses work

of Brakočević and Mori, are formulas for Hecke operators in these coordinates and a

proof that the Atkin–Serre operator is invertible on the space of “prime to p” p-adic

modular forms. (A modular form is prime to p if it is fixed by the idempotent p-adic

Hecke operator 1−U V , as defined in Section 3.6. A classical p-adic modular form is

“prime to p” if and only if all Fourier coefficients of the form anp vanish.)

In Sections 5 and 6, we review Coleman’s p-adic methods for computing residues

on vector bundles with flat connection, then produce the cycles Δr(a) of Theorem 1.1.

When the weight of f is larger than 2, the cycles are constructed in a manner simi-

lar to [3], but using a theorem of Besser to construct an algebraic correspondence that

projects the cohomology of the Kuga–Sato variety onto a subspace generated by quater-

nionic modular forms. When the weight of f is 2, a special construction is needed, since

the usual construction involves subtracting the cusp at infinity to make the cycle homo-

logically trivial, and this is unavailable. The construction used in [38] to study p-adic

heights, which involves subtracting a multiple of the Hodge bundle, seems less natural

for studying p-adic logarithms; instead, we project the Heegner point onto its f-isotypic

component. This gives a cohomologically trivial cycle whose p-adic logarithm can be

computed easily.

In Section 7, we follow [3] closely in interpreting the p-adic Abel–Jacobi map as

a Coleman integral. We then use the formulas from Section 4 to compute the image of

our cycle under the p-adic Abel–Jacobi map. In Section 8, we use a Waldspurger-type

result to build a p-adic L-function (the construction of which is originally due to Hida),

and then establish Theorem 1.1.

There are potential applications to generalizations of [1, 2, 4] to the setting of

Shimura curves. In addition, there is forthcoming work of Skinner [34] on the converse

to the Gross–Zagier–Kolyvagin theorem for elliptic curves of rank one and of Bhargava

and Skinner [6] on average ranks of elliptic curves, which make essential use not just of

the results in [3] but also of the generalization given in this article.
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2 Shimura Curves

2.1 Initial setup

Fix an odd prime p, an isomorphism C
∼→Cp, and compatible embeddings of Q̄ into C

and Cp. Fix also a newform fGL2 of level N, with p � N, of nebentypus ε f , and of even

weight k= 2r + 2 (with r ≥ 0).

Let K be an imaginary quadratic field in which (p)= pp̄ splits. Factor N = N+N−,

where primes dividing N− are inert in K, and primes dividing N+ are split or ramified

in K. If a prime divides both N and the discriminant of K, assume also that it divides

N exactly once (in other words, K satisfies the Heegner hypothesis with respect to the

level N+). Assume also that N− is square-free and divisible by an even, nonzero number

of primes.

Write B for the (necessarily indefinite) quaternion algebra over Q of discriminant

N−. As in [21], fix an auxiliary prime p0 with the following properties:

(1) For all �, the Hilbert symbol (p0, N−)� satisfies

(p0, N−)� =−1 if and only if � | N−.

(2) All primes dividing N+ split in the real quadratic field

M=Q(
√

p0).

Such primes exist by Dirichlet’s theorem on arithmetic progressions. This choice of p0

determines a Hashimoto model for B: the algebra B is generated as a vector space by

the basis {1, s, j, sj} with s2 =−N−, j2 = p0, and sj =− js. (We reserve the symbol i for a

complex square root of −1.) The Z-span of this basis is contained in a unique maximal

order OB .

By definition, a false elliptic curve over a base Z[ 1
N ]-scheme S is a relative abelian

surface A/S, together with an embedding

ι :OB ↪→EndS(A).

We typically denote the pair (A, ι) as A. A false isogeny of false elliptic curves is an

isogeny commuting with the OB action.

There is an involution † on B given by the rule

b† = s−1b̄s,
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where b �→ b̄ denotes the main involution. For any false elliptic curve A over any Z[ 1
N ]-

scheme S, there is a unique principal polarization whose associated Rosati involution

on EndS(A) restricts to † on OB (this is a theorem of Milne over a characteristic zero

field; over an arbitrary base Z[ 1
N ]-scheme, see the discussion in Section 1 of [10]).

Following [27], we consider the element e∈OB ⊗OM[ 1
2p0

], given by the formula

e= 1

2

(
1⊗ 1+ 1

p0
j ⊗√p0

)
.

Then, e= e† is a nontrivial idempotent. There is an isomorphism

ιM : B ⊗ M→M2(M)

given by

ιM( j)=
(√

p0 0

0 −√p0

)
and ιM(s)=

(
0 1

−N− 0

)
,

which satisfies

ιM(e)=
(

1 0

0 0

)
.

Under ιM, the involution † on B ⊗ M is carried to the involution

(
a b

c d

)
�→

⎛
⎝ a

c

N−
bN− d

⎞
⎠

of M2(M). The map ιM extends along the given embedding M ↪→R to an isomorphism

ι∞ : B ⊗ R→M2(R).

For each place v of M, the map ιM gives a map

ιv : B ⊗ Mv→M2(Mv),

where Mv denotes the completion of M at v.

Lemma 2.1. For v | pN+, one has

ιv(OB ⊗OM,v)=M2(OM,v). �



4184 E. Hunter Brooks

Proof. By maximality, one must only check that

ιv(OB ⊗OM,v)⊂M2(OM,v).

The order OB has a Z-basis given by

s,
1+ j

2
,

i + sj

2
,

aj + sj

p0

for some rational integer a (this is the case D = D0 of [21, Theorem 2.2]), so the lemma

is obvious for v � 2. If 2 divides N+, then p0 ≡ 1 mod 8 and the claim follows from the

explicit description of ιM( j). �

For each prime � | pN+, choose a prime v� of M with Q� =Mv� (for �= p such a

choice has already been made) to get embeddings ι� : B ⊗Q�→M2(Q�). By the lemma,

these embeddings have the property that ι�(OB ⊗ Z�)=M2(Z�). For � | N+, these maps

give rise to a trivialization

ιN+ :OB ⊗ Z/N+Z→M2(Z/N
+Z).

Write OB,N+ for the standard Eichler order of level N+ in OB ; write Γ for the group of

norm one units of OB and Γ0,N+ for that of ON+ . The group Γ0,N+ admits a canonical map

to Z
N+Z

with the property that

ι−1
N+

((
a b

c d

))
�→d;

let Γ1,N+ denote the kernel of this map.

2.2 Arithmetic model and level structures

For S a Z[1/N]-scheme and A/S a false elliptic curve, a full level N+ structure on A is an

isomorphism of group schemes

A[N+]→OB ⊗ (Z/N+Z)/S

commuting with the action of OB . A level structure of type V1(N+) is an equivalence class

of full level N+ structures under the (right) action of the group

{(
� �

0 1

)}
⊂M2(Z/N

+Z),
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which is viewed as a subgroup of OB ⊗ Z
N+Z

via ι+N . Note that V1(N+) level structure

behaves covariantly under false isogenies of false elliptic curves. Then, we have the

following fundamental theorem (see [17, Section 4]):

Theorem 2.2 (Morita). For N+ > 3, the moduli problem attaching to a Z[1/N]-scheme S

the set of isomorphism classes of false elliptic curves over S together with V1(N+) level

structure is representable by a smooth proper Z[ 1
N ] scheme C. �

If A is a false elliptic curve over an algebraically closed field k, we may view a

V1(N+) level structure as an M2(Z/N+Z)-equivariant map

(Z/N+Z)2→ A[N+](k)

(this is the definition in [22]). Explicitly, a full level structure induces, via ιM, an isomor-

phism

A[N+](k)
∼→M2(Z/N

+Z).

The latter is isomorphic to (Z/N+Z)2 × (Z/N+Z)2 as a left M2(Z/N+Z)-module, and the

map including (Z/N+Z)2 onto the second factor only depends on the V1(N+)-level struc-

ture induced by the chosen full level structure. Note that if P is an N+-torsion point

satisfying eP = P , then there is a unique V1(N+) level structure (in the sense of [22])

mapping
(

1
0

)
to P .

2.3 CM points on Shimura curves

The complex points of C are naturally identified with the compact Riemann surface

H/Γ1,N+ ,

as we now explain.

Because OB is an order in B, there is a four-dimensional real torus

AR = B ⊗ R

OB
= M2(R)

ι∞(OB)

endowed with endomorphisms by OB via left-multiplication.

For τ ∈H, write Jτ ∈M2(R) for the unique real matrix with

Jτ

(
τ

1

)
= i

(
τ

1

)
.
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Then, the action of right-multiplication by Jτ on M2(R) endows AR with a complex struc-

ture for which the endomorphisms coming from OB are holomorphic.

Write Aτ for the corresponding false elliptic curve. Then there is an isomorphism

of false elliptic curves

Aτ
∼→ C2

ι∞(OB) (
τ
1 )
,

given on the universal cover M2(R) by the rule

M �→M

(
τ

1

)
.

There is an alternating form E on M2(R) given by

E(x, y)= 1

N−
Tr(sxȳ)=Tr(xsy†).

Proposition 2.3. The form E gives a principal polarization on Aτ for which the Rosati

involution restricts to b �→ b†. �

Proof. To see that E gives a polarization, one must check that E(ix, iy)= E(x, y) and

that E(ix, x) > 0 for x �= 0 (both claims with respect to the complex structure given by

right-multiplication by Jτ on M2(R)). The first condition is straightforward. For the sec-

ond, writing x= (xij), one uses the explicit description of ι∞(s) and the formula

Jτ = 1

Im(τ )

(
Re(τ ) −‖τ‖2

1 −Re(τ )

)

to deduce

E(ix, x)= 1

N− · Im(τ ) (N
−(x2

12 + 2Re(τ )x11x12 + ‖τ‖2x2
11)+ (x2

22 + 2Re(τ )x21x22 + ‖τ‖2x2
21))

>
1

N− · Im(τ ) (N
−(Re(τ )x11 + x12)

2 + (Re(τ )x22 + x11)
2).

It is clear that E(bx, y)= E(x,b†y) and that the polarization is principal. �

The false elliptic curve Aτ is equipped with the full level structure

tτ :
Z

N+
⊗OB

∼→
1

N+OB

OB
→ Aτ [N

+].
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Then, Aτ is isomorphic to Aγ τ as a false elliptic curve if and only if γ ∈ Γ , in which case

the isomorphism
Aτ→ Aγ τ

is given on the universal cover M2(R) of Aτ and Aγ τ as right-multiplication by ι∞(γ−1)

(equivalently, is given on C2 as multiplication by the scalar j(ι∞(γ ), τ )−1). This isomor-

phism is compatible with the V1(N+) level structure determined by tτ if and only if

γ ∈ Γ1,N+ .

2.4 CM Points and Heegner points

Given any embedding
ι : K ↪→ B,

there is a unique τ ∈H with

ι∞(ι(K×))(τ )= τ.

It follows that the additive map K→C given by

α �→ j(ι∞(ι(α)), τ )

is also multiplicative and hence an embedding of fields. The map ι is said to be normal-

ized if the induced field embedding K ↪→C is the identity on K. We say τ ∈H is a CM

point if there exists an embedding ι with τ as its fixed point. The set of CM points is

then in bijective correspondence with the set of normalized embeddings ι.

Write ιτ for the normalized embedding K ↪→ B fixing τ . The group Γ acts by

conjugation on the set of such embeddings, and this action satisfies

γ ιτ = ιγ τ .

Suppose that τ is a CM point. Then, the false elliptic curve Aτ has false endo-

morphisms via right-multiplication by ιτ (OK) (these endomorphisms commute with the

complex structure Jτ , and α ∈OK induces the scalar j(ι∞(ιτ (α)), τ )= α on the universal

cover of Aτ ).

2.5 The action of Cl(K) and Shimura’s reciprocity law

Suppose that τ is a CM point, and let a be an (integral) ideal of OK . Then, there is a

left-ideal of OB in B given by

aB =OB(ιτ (a)).
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Because B is an indefinite rational quaternion algebra, it has class number one and aB

is principal, generated by some α ∈ B.

Right-multiplication by α gives a false isogeny

Aτ→ Aα−1τ

with kernel Aτ [a], the subgroup of Aτ killed by all endomorphisms in the ideal a. If

(a, N)= 1 and t is a level-N+ structure on Aτ , this false isogeny induces a level-N+ struc-

ture tα on Aτ .

The image of ατ under the uniformization map ρ : H→H/Γ does not depend on

the choice of α. As a consequence, it makes sense to write Aa�τ for the corresponding

false elliptic curve. Alternatively, one may view Aa�τ as the false elliptic curve B ⊗ R/aB

(with underlying complex structure coming from Jτ as above). In these coordinates, the

isogeny given by right-multiplication by α−1 is identified with the natural projection.

Shimura’s reciprocity law states that the point ρ(τ) is defined over the Hilbert

class field H of K, and, moreover, for a ∈Cl(K), one has

ρ(τ)(a
−1,H/K) = ρ(a � τ).

(Note that if one replaces a by λa for some λ ∈ K, then the corresponding α ∈ B is replaced

by αιτ (λ) and thus, Aa�τ does not change.) The set of isomorphism classes of CM false

elliptic curves over H (or any field containing H ) is thus a torsor for Cl(K) under the

action �.

If the embedding ι has the property that ι(OK)⊂OB,N+ , then one refers to a CM

point τ for ι as a Heegner point. Because the pair (K, N+) satisfies the Heegner hypoth-

esis, there is an ideal N+ of K whose norm is N+. By [33, Theorem 3.2], the image of τ

under the uniformization map H→H/Γ1,N+ is defined over the ray class field of K mod

N+. The false elliptic curve corresponding to a Heegner point comes with a level struc-

ture t, defined over the same field, induced by choosing P = eP a point of exact order

cN+ in the kernel of the false isogeny

Aτ→ AN+�τ .

We choose such a point once and for all, and we call t the Heegner level structure on

Aτ . The existence of the Heegner level structure follows from our assumptions on the

splitting behavior in K of primes dividing N (see [15, Lemma 4.17]).
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2.6 Generalized Kuga-Sato varieties

Fix a number field F containing the real quadratic field M, the ray class field of K mod

N+, and the Hecke eigenvalues of f . Write C for CF , A for the universal false elliptic

curve over C , and Ar for the r-fold fiber product of A with itself over C . Fix an embedding

ι : K ↪→ B with ι(OK)⊂OB,N+ . Write τ for its fixed point in H and A for the corresponding

false elliptic curve over F ⊃ H . Because p splits in K, the surface A is ordinary at p

(which means that it has good reduction at the chosen prime above p and that the p-

divisible group of its reduction is isomorphic to the self-product of the p-divisible group

of an ordinary elliptic curve). Write

Wr =Ar × Ar.

This “enlarged Kuga–Sato variety” is the home of the arithmetic cycles which will be

constructed in Section 6.

Let Hi the ith relative de Rham cohomology bundle on C attached to the map

A→ C . Write ω for the bundle eΩA/C and Ln for SymneH1. Note that L2r is naturally a

sub-bundle of the relative de Rham cohomology bundle H2r(Ar/C ) of the rth Kuga–Sato

variety over C . The bundle L1 admits a canonical self-duality

〈 , 〉 :L⊗2
1 → eH2 =OC .

We normalize the isomorphism eH2→OC using the trivialization induced from the

opposite of the nowhere vanishing section of eH2 attached to the class of the univer-

sal principal polarization. This choice, which is consistent with the choice in the GL2

case, is motivated below. The pairing 〈 , 〉 extends to the bundles L2r.

There is a Hodge sequence

0→ω→L1→ω−1→ 0.

When we write ω−1 here, we use the following fact: the standard identification of R1π∗OA
with the relative tangent bundle of the dual abelian scheme Â→ C , combined with the

universal principal polarization Â=A, gives rise to a (cotangent–tangent) pairing

ΩA/C × R1π∗OA→OC ,

and because e is fixed by the Rosati involution, this pairing restricts to a perfect pairing

ω ⊗ eR1π∗OA→O. Finally, there is a bundle Ln,n on C given by Ln,n=Ln⊗ SymneH1
dR(A).
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As it is alternating, the pairing 〈 , 〉 on L1 induces a pairing

ω ⊗ eR1π∗OA→O.

As can be checked on fibers after base changing to C, under the normalization cho-

sen above, this pairing coincides with the cotangent–tangent pairing rather than its

opposite.

2.7 The transfer

The Jacquet–Langlands correspondence implies the existence of a holomorphic function

f on the upper half plane, called the transfer of fGL2 , with the following properties:

(1) f is a modular form for Γ1,N+ ⊂ B with Nebentypus ε f for the action of Γ0,N+ .

(2) f has weight k.

(3) For (n, N−)= 1, f is an eigenform for the operator Tn with the same eigen-

value as fGL2 .

These properties determine f as a holomorphic function on the upper half plane only

up to a scalar multiple. However, one can normalize f further. The function f gives rise

canonically to a section of ωC in the following manner: the universal false elliptic curve

AH over H is the quotient of H× C2 by the action of OB given by

b

(
τ,

(
z1

z2

))
=
(
τ, ι∞(b)

(
z1

z2

))
.

Because f is modular for Γ1,N+ , the relative one-form

ω f = (2πi)k f(τ )dz⊗k
1 ∈ eπ∗Ω⊗k

AH

for the universal false elliptic curve descends to a section of ωC. Because C and ω both

admit canonical models over OF [1/N] and the Hecke eigenvalues of f lie in this ring,

we may assume that our section is defined over this ring. Thus, the choice of transfer is

ambiguous up to multiplication by a unit in this ring.

2.8 Standard cohomology classes

Consider the Hodge exact sequence for A:

0→ΩA/F → H1
dR(A/F )→ H1(A,OA)→ 0.
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Because A has CM, this sequence canonically splits, with H1(A,OA) identified as the

subspace of H1
dR(A/F ) on which OK acts via complex conjugation. In fact:

(1) Over C, this splitting coincides with the complex-analytic splitting of the

Hodge sequence, that is, the space H1(AC,OAC
) is identified with the sub-

space of H1
dR(A/C) spanned by anti-holomorphic one-forms on A(C).

(2) Over any p-adic field L containing F , this splitting coincides with the “unit-

root” splitting, that is, after tensoring the Hodge sequence with L, the space

H1(AL ,OAL ) is identified with the subspace of H1
dR(A/L) on which the semi-

linear Frobenius map φ acts via a unit.

To see these facts, note that, as is explained on p. 919 of [31], we may find a

false isogeny φ : A→ E1 × E2, defined over F and with degree prime to p, where E1 and

E2 are elliptic curves with CM by OK . For CM elliptic curves, the coincidence of the

splittings of the Hodge exact sequence follows concretely from the observation that on

the Weierstrass model y2 = 4x3 + ax+ b, the differential

dx

y

lies in the subspace of H1
dR(A/F ) on which K acts via the identity embedding, the holo-

morphic subspace of H1
dR(A/C), and the p-root subspace of H1

dR(A/L), whereas the mero-

morphic differential form

x
dx

y

lies in the subspace of H1
dR(A/F ) on which K acts via the conjugate embedding, the anti-

holomorphic subspace of H1
dR(A/C), and the unit-root subspace of H1

dR(A/L).

Fix a nonvanishing differential ω ∈ eH0(A,ΩA). This determines a class η ∈
eH1(A,OA) dual to ωA under the Serre duality pairing. We will view ω and η as classes

in eH1
dR(A/F ) (using the canonical splitting of the Hodge sequence for η).

3 Modular Forms and p-adic Modular Forms on Shimura Curves

3.1 Modular forms on Shimura curves

There are several equivalent definitions of modular forms for Shimura curves. We will

never need integrality conditions away from p, so we define them over algebras R over

the localization OM,p of OM at pM, where p is the prime of M above p selected by the

given embedding Q̄ ↪→Cp.
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If π : A→ S is a (relative) false elliptic curve, write ωA/S for eπ∗ΩA/S; in the par-

ticular case AR→ CR of the universal false elliptic curve over an OL ,pL -algebra R, write

ωR. The three definitions are:

Definition 3.1. A modular form of weight k over R is a global section of ω⊗k
R . �

Definition 3.2. Let R0 be an R-algebra. A test triple is a triple (A/R0, t, ω) consisting of a

false elliptic curve A over R0, a V1(N+) level structure t on A, and a nonvanishing global

section of ωA/R0
. Two test-triples (A/R0, t, ω) and (A′/R0, t′, ω′) over R0 are isomorphic if

there is an isomorphism f : A→ A′ with

f(t)= t′

and

f∗ω′ =ω.

A modular form of level N+ and weight k over R is a rule F that assigns to every isomor-

phism class of test triple (A/R0, t, ω) over every R-algebra R0 an element of R0, subject

to the following axioms:

(1) Compatibility with base change: If f : R0→ R′0 is a map of R-algebras and

A/R0 is the base change of A′/R′0 along f , one has

F (A, t, f∗ω)= F (A′, f(t), ω).

(2) The weight condition: For any λ ∈ R×0 , one has F (A/R0, t, λω)=
λ−kF (A/R0, t, ω). �

Definition 3.3. A test pair is a pair (A/R0, t) of a false elliptic curve π : A→ SpecR0 and

a V1(N+) level structure t. A modular form of weight k over R is a rule G that assigns

a translation-invariant section of ω⊗k
A/R0

to every isomorphism class of test pair (A/R0, t)

over any R-algebra R0, subject to the following base change axiom: if f : R0→ R′0 is a

map of R-algebras and A is the base change of A′/R′0 along f , one has

G(A, t)= f∗G(A′, f(t)). �

Given a modular form as in Definition 3.3, one gets a modular form as in

Definition 3.1 by taking the section given by the universal false elliptic curve with level
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structure (AR/CR, tr); this process is bijective because AR is universal. To go between

Definitions 3.3 and 3.2, choose any translation-invariant global section ω and use the

formula

G(A, t)= F (A, t, ω)ω⊗k,

which is independent of this choice.

We now define p-adic modular forms on Shimura curves. Write L for the com-

pletion of the maximal unramified extension of Qp, W for the ring of integers of L, and k

for the residue field F̄p. By properness, there is a reduction map red : C (L)= C(L)→ C(k).
A residue disk D is a subset of C (L) of the form

{P ∈ C (L) | red(P )= x}

for some fixed point x∈ C (k). A residue disk is not Zariski open, but is a (nonaffinoid)

open subset of C rig, the rigid analytic space associated with C L . Because C is smooth

over W, each residue disk is conformal to the open unit disk in K (see [12, Section I.1]).

The ring Rx of rigid functions on a residue disk Dx corresponding to a point x∈ C (k) is

obtained from the ring Rx of functions on the formal completion of C at x by inverting

p [22, Lemma 9.7]. Write C ord for the ordinary locus of C rig, the union of the residue

disks above ordinary false elliptic curves.

If V is a vector bundle on C , we will sometimes write “a rigid-analytic section of

V” to mean a section of the associated vector bundle Vrig on some open subset of C rig;

similarly, when we write “locally analytic section”, we mean a section of the associated

vector bundle V la over some open subset of the topological space C (L).

There are three equivalent definitions for a p-adic modular form of weight k

over W for the Shimura curve C , analogous to Definitions 3.1–3.3, but working only with

ordinary false elliptic curves over p-adically complete W-algebras.

Thus, a p-adic modular form for the Shimura curve is a rigid analytic section of

the bundle ω⊗k over C ord. Equivalently, it is a rule F taking in triples (A, t, ω), where A

is an ordinary false elliptic curve over some p-adically complete W-algebra R, t is level

N-structure for A, and ω ∈ωA/R, and returning an element of R, subject to compatibility

with base change and the rule F (A, t, rω)= r−kF (A, t). Equivalently, it is a rule F̃ taking

in couples (A, t) and returning a section of ω⊗k
A/R, compatible with base change. A locally

analytic modular form (over some open set in the p-adic topology) is a locally analytic

section of the bundle ω⊗k.
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3.2 Katz’s differential operators arising from the Hodge sequence

The Gauss–Manin connection

∇ :H1→H1 ⊗ΩC

on the relative de Rham cohomology bundle on the Shimura curve C is compatible with

the anti-action of EndC (A) on H1 via the rule

∇ ◦ φ = (φ ⊗ 1) ◦ ∇.

(See [27, Proposition 2.2].) The Gauss–Manin connection thus naturally restricts to a

connection on the bundle L1 and extends to the symmetric powers Ln of L1 by the Leibniz

rule

∇(v1 ⊗ v2 ⊗ · · · ⊗ vn)=
∑

i

v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vn⊗∇(vi).

(When n= 0, the connection is just d :OC →ΩC .) It also extends to the bundle Ln,n via the

rule ∇(α ⊗ β)= (∇α)⊗ β.

Using the universal principal polarization on A, the Kodaira–Spencer map of

deformation theory gives rise to a map

KS : π∗ΩA/C ⊗ π∗ΩA/C →ΩC .

By [27, Theorem 2.5], this map becomes an isomorphism upon restricting to ω ⊗ ω.

For each j, we get a map ∇̃ :L j→L j+2 by composing the maps

Ln

∇
�� Ln⊗ΩC

id⊗KS−1

�� Ln⊗ ω⊗2 �� Ln⊗ L2
�� Ln+2 ,

where the map ω⊗2→L2 is Sym2 of the inclusion in the Hodge sequence.

Suppose we have a map Ψ :H1→ π∗ΩA/C of vector bundles splitting the Hodge

sequence. Write Ψ n :Ln→ω⊗n for the induced map on Ln.

We then get a “differential operator” ΘΨ :ω⊗n→ω⊗n+2 by the composition

ω⊗n→Ln
∇̃→Ln+2

Ψ n→ω⊗n+2. (2)
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When n= 0, this is just d, followed the inverse of the Kodaira–Spencer map (for any

choice of splitting). In practice, the maps Ψ we use will not be algebraic. Rather, follow-

ing Katz, we will apply this formalism to attain differential operators on the spaces of

smooth and p-adic modular forms.

3.3 The Maass–Shimura operator Θ∞

A real-analytic modular form (of weight k and level N+) for B is an analytic function

f(z) satisfying the usual relation

f(γ z)= j(γ, z)k f(z)

for γ ∈ ΓB,N+ . Such a function gives rise to a section of the real-analytic-bundle associ-

ated with ω⊗k
C via the rule

ω f ↔ (2πi)k f(τ )dz⊗k
1 ∈ eπ∗Ω⊗k

AH .

For V a vector bundle on CC, write Vra for the associated real-analytic vector

bundle on CC. Hodge theory then gives a splitting Ψ∞ : H1
ra→ωra of real-analytic vec-

tor bundles over CC. The differential operator coming from the splitting Ψ∞ and the

recipe in (2) is written Θ∞ and called a Maass–Shimura operator. It sends real-analytic

modular forms to real-analytic modular forms but does not preserve holomorphy. The

following is shown in [27, Proposition 2.9], but we give a slightly different argument, as

our normalizations differ from Mori’s.

Proposition 3.4. The Maass–Shimura operator is given on the space of real-analytic

modular forms (viewed as functions on H) by the rule

Θ∞( f)= 1

2πi

(
d

dτ
+ k

2i Im(τ )

)
f. �

Proof. The real manifold

Aτ = M2(R)

ι∞(OB)

is endowed with the (smooth, real-valued) one-forms dxij for i, j = 1,2, where the sym-

bols xij denote the standard coordinates on the universal cover M2(R).
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The identification

φτ : M2(R)
∼→C2

of real vector spaces given by

(
a b

c d

)
�→ (aτ + b, cτ + d)

is complex linear for the complex structure on M2(R) given by right-multiplication by Jτ .

Under this identification, the endomorphism given on M2(R) by left-multiplication by e

corresponds to the projection onto the first factor in C2. In particular, edz1 = dz1 and

edz2 = 0.

By viewing the first projection map z1 : C2→C as a function on M2(R), one sees

that the complex one-form dz1 on C2 is given (under the identification φτ ) by the rule

dz1 = τ dx11 + dx12, (3)

and similarly

dz̄1 = τ̄ dx11 + dx12. (4)

Consequently, one has

∇ dz1 = dx11 ⊗ dτ

= 1

2i Im τ
(dz1 − dz̄1)⊗ dτ.

From this, we compute

KS(dz1 ⊗ dz1)= 〈dz1,∇dz1〉

= −1

2i Im τ
〈dz1,dz̄1〉dτ.

Using (3) and (4), the pairing in the above formula simplifies to

〈dz1,dz̄1〉 = 2i Im(τ )〈dx11,dx12〉.

To compute 〈dx11,dx12〉, we use the de-Rham-to-Betti comparison isomorphism,

viewing dx11 ∧ dx22 as an alternating form on the Lie algebra M2(R) of Aτ and expressing
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this form as a multiple of the form

(x, y) �→ −1

N−
Tr(exs(ey)†),

which is the Betti realization of the negative of the polarization class e[PAτ ]Betti ∈
H2(Aτ ,Z) under the usual isomorphism

H2(Aτ ,Z)= {〈 , 〉 ∈Alt2
(M2(R)) | 〈ι∞OB, ι∞OB〉 ⊂Z}.

For M,M′ ∈M2(R), one has

dx11 ∧ dx12(N, N ′)= N11 N ′12 − N ′12 N ′11.

On the other hand, using the explicit formulas for the matrices ι∞(e) and ι∞(s) one sees

that

1

N−
Tr(eMs(eM′)†)= 1

N−
Tr

(
N−(M11M′12 − M12M′11) 0

0 0

)
.

It follows that the image of dx11 ∧ dx22 under the Betti-to-algebraic-de-Rham compari-

son isomorphism coincides with the Betti realization of the polarization class.

The comparison isomorphism

φ : H2
Betti(Aτ )→ H2

dR(Aτ )

does not commute with cycle class maps, but rather [35, Theorem I.3], for codimension

1 cycles ξ one has

[ξ ]dR = 2πiφ([ξ ]Betti]).

We deduce that

〈dx11,dx22〉 = −1

2πi

and

KS(dz1 ⊗ dz1)=
(

1

2πi

)
dτ. (5)
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Now we may compute the Maass–Shimura operator Θ∞. Given a modular form

f(τ ) of weight k, the associated section of ω⊗k is

(2πi)k f(τ )dz⊗k
1 ,

and by the Leibniz rule

∇((2πi)k f(τ )dz⊗k
1 )= (2πi)k f ′(τ )dz⊗k

1 ⊗ dτ

+ (2πi)k
k−1∑
i=0

f(τ )dz⊗i
1 ⊗

1

2i Im τ
(dz1 − dz̄1)⊗ dz⊗(k−i)

1 ⊗ dτ.

Applying the inverse Kodaira–Spencer map and the Hodge splitting (which annihilates

dz̄1), the above expression simplifies to

1

2πi
(2πi)k+2

(
k

2i Im τ
f(τ )+ f ′(τ )

)
dz⊗(k+2)

1 ,

which completes the proof. �

3.4 The Ramanujan–Atkin–Serre operator θ

There is a Frobenius morphism φ on the relative de Rham cohomology bundle

H∗(Aord/C ord) over the ordinary locus C ord, semilinear over L, inducing the usual Frobe-

nius morphism φ on the fibers of this bundle. Moreover, there is a splitting Ψp of the

Hodge sequence (of rigid vector bundles over the ordinary locus), where R1π∗OAord is

identified with the sub-bundle of H|C ord on which φ acts with unit eigenvalue (see [27,

Proposition 2.10]).

This splitting Ψp and the recipe in (2) give rise to a differential operator θ , taking

p-adic modular forms of weight k to p-adic modular forms of weight k+ 2. If one regards

the splitting Ψp as a map of bundles for the p-adic topology on C ord(L), the same recipe

gives rise to an operator on the space of locally analytic modular forms over the ordinary

locus, also written as θ .

3.5 Coincidence of the operators at CM points

The p-adic and real-analytic differential operators can be related by the following fun-

damental theorem.
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Theorem 3.5. If g is a modular form on C and P ∈ C (M) is a CM point for some number

field M, then for any choice ω of translation-invariant differential on A, one has

(θg)(P , ω)= (Θ∞g)(P , ω),

where both numbers belong to M. (We are using the chosen embeddings of Q̄ into C and

Cp in two ways: first, to get inclusions C (M)⊂ C (Cp) and C (M)⊂ C (C), and second, to

make sense of the equality.) �

Proof. This is shown in many places; see, for example, [23, Theorems 2.4.5 and 2.6.7]

or [27, Proposition 2.11] for the Shimura curve case. The crux is that, for A′ a false elliptic

curve with complex multiplication, the splitting of H1
dR(A

′/C) coming from Hodge theory

and the splitting of H1
dR(A

′/Cp) coming from Frobenius both come from the splitting of

H1
dR(A

′/M) into the subspace where K acts via the identity and the subspace where K

acts via conjugation, as discussed in Section 2.8. �

3.6 Hecke operators and p-adic Hecke operators

Throughout this document, we follow the convention that Hecke operators act on the

right on the space of modular forms, while differential operators act on the left. This

convention is unfortunate, as the differential operators and Hecke operators do not com-

mute. The commutation relation is given by Proposition 3.6.

For a prime �, a false elliptic curve A over a field k of characteristic prime to �

has �+ 1 cyclic sub-O-modules annihilated by �. Write C0, . . . ,C� for these subgroups

and φi : A→ A/Ci for the false isogenies associated to Ci. If t is a V1(N+) level structure

on A, and � � N+, then ti = φi ◦ t is a V1(N+) level structure on A/Ci. If ω is a one-form on

A, then there is a unique one-form ωi on A/Ci with φ∗i ωi =ω.

The Hecke operator T� on the space of modular forms of weight k is defined by

the averaging rule

F |T� (A, t, ω)=
1

�

�∑
i=0

F (A/Ci, ti, ωi).

Note that the Hecke operators preserve the weight and level of a modular form and also

act on the larger space of p-adic modular forms.

Now suppose that A is a false elliptic curve with ordinary reduction over a p-

adic field L. Then there is a unique p-torsion cyclic sub-O-module C of A which reduces

mod p to the kernel of the Frobenius morphism, called the canonical subgroup (this is
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Theorem 11.1 of [22], although in the case of ordinary reduction one may construct it

more simply, following the discussion above the statement of that theorem). Order the

p-torsion cyclic sub-O-modules in such a fashion that C0 is the canonical subgroup. If

F is a p-adic modular form, we get another p-adic modular form F |V by the rule

F |V (A, t, ω)= F
(

A/C0,
1

p
t0, pω0

)

and a p-adic modular form F |U by the rule

F |U (A, t, ω)= 1

p

p∑
i=1

F (A/Ci, ti, ωi).

Writing [p] for the operator on the space of modular forms given by

F |[p](A, t, ω)= F
(

A, pt,
1

p
ω

)

one has the relations

Tp=U + 1

p
[p]V (6)

and

VU = Id. (7)

In particular, the operators U V and VU −U V are idempotent.

Proposition 3.6. For any prime � with (�, N)= 1, including the case �= p, one has

(θ f)|T� = �θ( f |T� ). �

Proof. In the modular curve case, this is an easy consequence of the formula for T� on

q-expansions (see [32, paragraph 2.1]). We give a proof for Shimura curves in Serre–Tate

coordinates in Section 4.6. This proof has the advantage of working for locally analytic

modular forms which are rigid on residue disks (for which there is no q-expansion prin-

ciple, even in the classical case). �

4 Serre–Tate Coordinates

This section works under a notation scheme that conflicts with the one introduced in

Section 2. In this section only, we work exclusively over the ring W of Witt vectors

on k= F̄p, writing L for its field of fractions. In this section, roman A always refers to
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abelian varieties over k and cursive A always to abelian schemes over other W-algebras

(in particular, A no longer denotes the universal false elliptic curve and A no longer

denotes the fixed false elliptic curve). Also, X refers to C L and X refers to its integral

model CW.

Fix a residue disk D ⊆ X(L), the space of points reducing to a fixed ordinary

false elliptic curve A/k with level structure t. The ring of rigid analytic functions on D

is obtained from the ring of functions on the formal completion of X at the point corre-

sponding to Aon the special fiber by inverting p. There is a canonical formal uniformizer

for this ring, coming from Serre–Tate theory, which we will use to give explicit formulas

for the operators of the preceding section. Before explaining this, we review the basics

of Serre–Tate theory. For a detailed exposition, see [24].

Fix a g-dimensional ordinary abelian variety A over k. Write At for the dual

abelian variety. If R is an Artin local ring with residue field k, then a deformation of A

to R is an abelian scheme A over R together with an identification A× k
∼→ A.

Write TpA and TpAt for the “physical” Tate modules of A and At, that is,

TpA= lim←− A[pn](k).

They are free Zp-modules of rank g (by ordinarity).

Whenever we refer to the Weil pairing on A, we mean the scheme-theoretic Weil

pairing (The scheme-theoretic Weil pairing is due to Oda. The standard reference is [25];

the pairing there is the inverse of Oda’s pairing and the pairing in [24]. The normaliza-

tion of the Weil pairing does not affect any of the formulas in this paper.), normalized

as in [24, Section 5] (the classical Weil pairing is trivial in characteristic p). It is a non-

degenerate alternating pairing of k group schemes

epn : A[pn]× At[pn]→μpn

restricting to a perfect pairing

Â[pn]× At[pn](k)→μpn,

compatible with the maps p : A[pn]→ A[pn−1]. (Here, Â is the formal completion of A at

the origin.)

Let A be a deformation of A to R. The formal group Â represents the functor

{Artin local R− algebras with residue field k}→ {Groups}
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given by

Â(B)= ker(A(B)→A(k)).

Then there is a pairing

qA : TpA× TpAt→ Ĝm(R)

given by the following rule: given Pn∈ A[pn](k) and Qn∈ At[pn](k), pick a lift P̃n of Pn to

A(R). Consider pnP̃n∈ Â(R)⊆A(R). If n is large enough, so that (1+mR)
pn= 1, then Â(R)

is killed by pn. Thus, it makes sense to compute the Weil pairing epn(pnP̃n, Qt
n), which

is an element of μpn(R), which for n large coincides with Ĝm(R). These elements are

compatible for large n, which gives the desired map qA.

The Serre–Tate theorem asserts that this construction gives a bijection

{Isomorphism classes of deformations of A to R} =HomZp(TpA⊗ TpAt, Ĝm(R))}.

In particular, the left-hand side, which is a priori only a set, gains the structure of a

Zp-module. Furthermore, this correspondence is functorial in R. More precisely, writing

M for the functor from the category of Artin local rings to the category of sets given by

M(R)= {Isomorphism classes of deformations of A to R},

we have

M=HomZp(TpA⊗ TpAt, Ĝm).

Because these equivalences are compatible with inverse limits, we may replace

the category of Artin local rings with the category of complete local rings in all of the

preceding discussion (although the recipe for computing the pairing qA only makes

sense over Artin local rings). The following proposition [24, Theorem 2.1.4] gives us a

helpful shortcut in calculating Serre–Tate coordinates.

Proposition 4.1. Given two ordinary abelian varieties A and A′ over k with fixed defor-

mations A and A′ (over a fixed Artin local ring with residue field k), a map f : A→ A′ lifts

to a map from A to A′ if and only if for all P ∈ TpA and Qt ∈ TpA′t one has

qA(P , ft(Qt))= qA′( f(P ), Qt). �

Now, the functor M parameterizing all deformations of our fixed ordinary

abelian variety A is a formal scheme SpfR equipped with a universal formal abelian

scheme π : Â→ SpfR.
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By the above, there is a bilinear pairing

qÂ : TpA⊗ TpAt→ 1+mR,

and by universality, given any deformation A of A over any complete W-algebra R with

residue field k, we have a map R→ R making the following triangle commute:

TpA⊗ TpAt

qA

���
��

��
�qÂ

����
��

�

1+mR1+mR ����������

The ring R is the completion of the W-algebra generated by the functions q(P , Qt)− 1,

as P and Qt range over TpA and TpAt, respectively, subject to the relations generated

by the bilinearity of the pairing q. In particular, suppose that we pick bases {P1, . . . , Pg}
and {Qt

1, . . . , Qt
g} of TpA and TpAt. Then, we have g2 elements qij = q(Â, Pi, Qt

j) ∈R, and,

writing

Tij = qij − 1,

we get a ring isomorphism
R=W[[Tij]].

4.1 Katz’s computation of ∇

Serre–Tate coordinates give us a canonical way to compute the Gauss–Manin connec-

tion on the formal relative de Rham cohomology bundle Ĥ=R1π∗(Ω ·A/R) on residue

disks over ordinary points. In this formal setting, there are line bundles π∗ΩÂ/M and

R1π∗OÂ = Lie(Ât/R), sitting in the usual Hodge exact sequence

0→ π∗ΩÂ/M→ Ĥ→ Lie(Ât/R)→ 0.

There is likewise a Gauss–Manin connection ∇ : Ĥ→ Ĥ⊗ΩSpfR and an R-semilinear

Frobenius endomorphism of Ĥ. We will abuse notation and not distinguish these line

bundles from R-modules, starting in the next statement.

Lemma 4.2 (Katz). There are canonical isomorphisms

TpAt ⊗R ∼→ π∗ΩÂ/M (�)
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and

Hom(TpA,Zp)⊗R ∼→ Lie(Ât/R) (��)

such that:

(1) the R-semilinear Frobenius endomorphism Φ of Ĥ acts via multiplication

by p on TpAt under the identification (�);

(2) the sub-Zp-module of Ĥ on which Φ acts via the identity maps isomorphi-

cally to Hom(TpA,Zp) under the map Ĥ→ Lie(Ât/R) and the identification

(��). �

Proof. We just recall the construction of the isomorphisms here. For the computation

of the Frobenius action, see [24, Lemma 4.2.1]. The Weil pairing gives an isomorphism

TpAt=HomZp(Â, Ĝm),

so given P ∈ TpAt, one gets a differential on Â by pulling back dT
T .

Dually (and swapping the roles of A and At), the Weil pairing gives rise to an

isomorphism

Ât=Hom(TpA, Ĝm).

Applying the functor Lie to both sides gives the second result, since for any R one has,

writing R[ε] for the ring of dual numbers over R:

ker(Hom(TpA, Ĝm(R[ε])) →Hom(TpA, Ĝm(R)))=Hom(TpA,1+ εR)

≈Hom(TpA, R). �

For Qt ∈ TpAt, write ω̂Qt for the differential form coming from the lemma. If φ ∈
Hom(TpA,Zp), write η̂φ for the image in Ĥ of the vector field attached to φ by the lemma

under the Frobenius splitting of the Hodge sequence. Fix a basis P1, . . . , Pg of TpA, and

write P∨i for the dual basis of Hom(TpA,Zp). Then, the Gauss–Manin connection on Ĥ is

computed as follows:

Theorem 4.3 (Katz). One has

∇η̂P∨i = 0
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and, for any Qt ∈ TpAt, one has

∇ω̂Qt =
∑

i

η̂P∨i ⊗ d log q(Pi, Qt). �

Proof. This is “version quat.” of the Main Theorem of [24], as is stated in Section 4.1 of

that paper. �

The following observation is Lemma 3.5.1 of [24].

Lemma 4.4. Given a map f : A→ B of ordinary abelian varieties in characteristic p that

deforms to a map of universal formal abelian varieties f : Â→ B̂, and P t ∈ TpBt, one has

f∗ω̂P t = ω̂ f∗(P t). �

4.2 Serre–Tate coordinates for Shimura curves

Now assume that A is a false elliptic curve over k. In this case, we have a subfunctor

Mfalse of M= SpfR taking an Artin local ring R with residue field k to the set of “false

deformations” of A to R, where a false deformation is a deformation A of A to R together

with an embedding OB→EndR(A) deforming the given embedding OB→Endk(A) (defor-

mations of the extra endomorphisms, if they exist, are unique—see [24, Theorem 2.4]).

Proposition 4.5. The subfunctor Mfalse of M is a formal subgroup-scheme. The ring of

formal functions Rfalse on Mfalse is the quotient of R by the closed ideal generated by

the relations

q(bP , Qt)= q(P ,b† Qt)

for b∈B. �

Proof. Recall that, by definition of a false elliptic curve, under the embedding OB ↪→
End(A), the Rosati involution restricts to †. The relations q(bP , Qt)= q(P ,b† Qt) then fol-

low as an endomorphism is adjoint, with respect to the Weil pairing, to its image under

the Rosati involution. To see that these are the only relations (which is the remaining

content of the proposition), see [27, Proposition 3.3]. �

Restricting the Hodge sequence of vector bundles on M to Mfalse recovers the

Hodge sequence for the universal false elliptic curve AMfalse/Mfalse, and for a class η ∈
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H1(M/R), one has

(∇η)|Mfalse =∇(η|Mfalse)

by the functoriality of the construction of the Gauss–Manin connection.

Lemma 4.6. The Katz isomorphisms of Lemma 4.2 are †-equivariant for the action of

End(A); that is, one has

ω̂bQt |Mfalse = [b†]∗ω̂Qt |Mfalse

for b∈End(A), and similarly, for φ ∈Hom(TpA,Zp), one has

η̂b∗φ = (b†)∗η̂φ. �

Proof. By definition,

ω̂bQt =ψ∗b
dT

T
,

where ψb is the Weil-pairing map

(bQt, ).

Writing ψ for the map (Qt, ), the map ψb decomposes as ψb=ψ ◦ b†, and the first result

follows.

The second argument is similar. The construction of the isomorphism says to

view bφ as a map to 1+ εR given by Weil-pairing against some ξ ∈ Lie(Â). But now φ will

be Weil-pairing against b†ξ . �

Pick a basis {P1, P2} for TpA such that eP1 = P1 and eP2 = 0; denote by P t
1, P t

2 the

images of P1 and P2 in TpAt under the canonical principal polarization. These choices

give rise to sections of the formal bundles π̂∗A/X and Lie(Ât/X ) via the Katz isomor-

phisms of Lemma 4.2, which we denote by ω̂P t
i

and η̂P∨i . To compute the Gauss–Manin

connection in the situation that we desire, we will compute it on these sections over the

formal four-fold M, restrict to Mfalse, then apply e.

Because the Katz isomorphisms in Lemma 4.2 are equivariant for the action of

End(A), one has

e∗

⎛
⎜⎜⎜⎜⎝
ω̂P t

1
|Mfalse

ω̂P t
2
|Mfalse

η̂P∨1 |Mfalse

η̂P∨2 |Mfalse

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝
ω̂P t

1
|Mfalse

0

η̂P∨1 |Mfalse

0

⎞
⎟⎟⎟⎟⎠ .
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For the remainder of this document, abbreviate e∗ω̂P1 as ω̂ and e∗η̂P1 as η̂. The

choice of basis of TpA gives us functions q(Pi, P t
j) for i, j = 1,2; abbreviate the particular

function q(P1, P t
1) as just q.

Theorem 4.7. One has

∇ω̂= η̂ ⊗ d log q,

∇η̂= 0. �

Proof. This follows from Theorem 4.3 and the rule ∇ ◦ e= (1⊗ e) ◦ ∇. �

As a consequence, we see that the horizontal sections for ∇ are spanned by η̂ and

ω̂ − log qη̂. As another consequence, the theorem gives

KS(ω̂⊗2)=d log q. (8)

4.3 The operator θ in coordinates

Recall that θ is defined by composing the maps

ωk→Lk
∇→Lk⊗Ω

Ψ r
p−→ ω̂

k⊗Ω KS−1

−→ωk+2.

To compute the effect of this map on a section ω of the bundle Lk over the ordi-

nary locus C ord, we compute separately in each residue disk. Thus, along a fixed residue

disk D, write

ω= F (T)ω̂⊗k,

where T = q − 1 is the canonical uniformizer of R coming from Serre–Tate theory and F

is a power series in T .

Then it follows from Katz’s computation of ∇ and the Leibniz rule that

∇ω=
k−1∑
i=0

F (T)ω̂⊗i ⊗ η̂ ⊗ ω̂⊗k−1−i ⊗ d log q + F ′(T)ω̂⊗k.

By Lemma 4.2, the splitting Ψp sends η̂ to 0, so

θω= F ′(T)ω̂⊗k⊗ KS−1(dT).
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Now

dT = q dlog q= (1+ T)d log q,

so

θ f = (T + 1)F ′(T)ω̂⊗k+2

by formula (8). Thus,

θ f = (T + 1)
d

dT
F (T)ω̂⊗k+2.

This formula is also derived in the proof of [27, Theorem 3.6].

4.4 Hecke operators in coordinates

We handle T� for � �= p first. Suppose ψ : A→ A/C is an isogeny of degree prime to p.

Then, the subgroup C and the map ψ deform uniquely to a subgroup scheme C and a

map ψ :A→A/C for any lift A of A to L = Frac(W). Recall the fixed generator P1 of eTpA.

Because ψ and ψ t both induce isomorphisms of p-adic Tate modules, Qt
1 := (ψ t)−1(P t

1) is

a generator of eTt
p(A/C ). Write ω̂1 := eω̂P t

1
for the canonical formal one-form on the disk

D̃ ⊂ X(L) whose points correspond to characteristic 0 abelian surfaces reducing to A/C

with level structure ψ(t). By Lemma 4.4, it satisfies

ψ∗Oω1 =Oω.

Given this choice of Qt
1, there is a corresponding basis element of Tp(A/C ) via

the canonical principal polarization of A/C , which is Q1 = 1
degψ ψ

t(Qt
1). Thus, there is a

Serre–Tate coordinate q̃= q( , Q1, Qt
1) on the disk D̃.

Lemma 4.8. The function fψ on D given by A �→ q̃(A/C) can be computed as

fψ = q
1

degψ . �

Proof. It suffices to check that the two functions agree for any deformation A of A to

an Artin local ring R with residue field k. It follows from Proposition 4.1 that

fψ(A)= q(A/C, Q1, Qt
1)

= q
(
A/C, 1

degψ
ψt(P1), Qt

1

)
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= q
(
A, 1

degψ
P1, P t

1

)

= q(A) 1
degψ . �

Note that the final expression does not depend on any choices, as the Serre–Tate

parameter q is a principal unit and degψ is prime to p.

Corollary 4.9. For each cyclic degree � isogeny A→ A/Ci of A, write ω̂i for the canonical

one-form on the disk Ri of points reducing to A/Ci, as normalized above. Suppose f is a

modular form such that for each i, the Serre–Tate expansion on the disk Di is

f = Fi(Ti)ω̂
⊗k
i .

Then on the disk D, f | T� is given by

�+1∑
i=1

Fi((1+ T)1/� − 1)ω̂⊗k. �

We move on to the operators U and V . Write φ for the mod p Frobenius. For D

an ordinary residue disk corresponding to a false elliptic curve A with level structure t,

write Dφ for the disk corresponding to Afrob with level structure 1
ptφ . Note that, because

of the extra factor of 1
p on the level structure, Dφ is not the image of D under the map

Xord→ Xord under the canonical p-isogeny A→A/C0.

We are going to pick Serre–Tate coordinates on these disks in a compatible way.

One cannot ensure, as in the prime-to-p case, that the canonical formal one-form pulls

back to the canonical formal one-form. However, using ordinarity, we do at least have

that Q1 := φP1 is a basis for eTpAφ . Write {Qt
1, Qt

2} for the corresponding basis for TpAφ,t,

using the principal polarization on A. Then one has

φt(Qt
i)= pP t

i .

Write q for the function on Dφ corresponding to this basis. There is a function f on

D = D0 given by (A, t) �→ q1(A/CA, 1
ptφ), where CA is the canonical subgroup of A.

Lemma 4.10. One has

f = qp

as functions on D. �
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Proof. Again it suffices to check that the two functions agree for any deformation A of

A to an Artin local ring R with residue field k. One has

f(A)= q(A/C , φP1, Qt
1)

= q(A, P1, φ
tQt

1)

= q(A, P1, pP t
1)

= q(A)p. �

Let ω̂0 be the canonical formal relative one-form for D0 attached to the Tate-

module generators {φP1, φP2}. Write Φ : D→ D0 for the “quotient by the canonical sub-

group” map.

Lemma 4.11. One has

Φ∗ω̂0 = pω̂. �

Proof. This follows from Lemma 4.4. �

Corollary 4.12. If f =∑
F (T)ω̂⊗k

0 is a modular form on Dφ expressed in Serre–Tate coor-

dinates, then the corresponding modular form f |V is given in Serre–Tate coordinates on

D by

f |V = F ((1+ T)p− 1)ω̂⊗k. �

Finally, we compute U . Write D� for the image of D under the map Xord→ Xord

under any of the (not-canonical) p-isogenies A→A/Ci. Then, the map D→ D�→ (D�)φ is

the identity map (because of the factor of 1/p in the level structure). For each subgroup

C other than the canonical subgroup of the universal false elliptic curve over D, there is

a function gC given by (A, t) �→ qD� (A/C , Imaget), where C = CA.

Lemma 4.13. One has

gp
C = q. �

Proof. This follows from Lemma 4.10, because (A/C )t→At is the canonical isogeny for

(A/C )t. �

Fix a primitive pth root of unity ζ ∈Cp.
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Lemma 4.14. There is an ordering on the subgroups such that on Ci one has

gCi = ζ iq. �

Proof. It follows from the preceding lemma that there is some root of unity making

the formula true for any given Ci; the content of the lemma is that each distinct root of

unity appears exactly once. To determine which root of unity shows up after killing Ci,

we may evaluate at the CM point q= 1. This calculation is done by Brakočević in the GL2

case, using Shimura’s reciprocity law for GL2 (see the proof of [8, Lemma 7.2]).

To reduce to the GL2 case, note that, by the argument on p. 919 of [31], there is a

false isogeny (defined over a number field in which p is unramified)

λ :A→ E1 × E2

of A with a product of elliptic curves, with degree prime to p. The result then follows

from Proposition 4.1. �

The pth roots of q in the ring of Cp-valued functions on D are given by Taylor-

expanding ζ i(1+ T)1/p. Write Φi : D→ D� for the map killing the ith (noncanonical) sub-

group.

Lemma 4.15. One has Φ∗ω̂i = ω̂. �

Proof. This follows from Lemma 4.11, since the degree of Φi is p. �

Proposition 4.16. If f =∑
F (T)ω̂⊗k is a rigid-analytic modular form on D−1 expressed

in Serre–Tate coordinates, then the corresponding modular form f |U is given in Serre–

Tate coordinates on D by

f |U (T)= 1

p

p−1∑
i=0

F (ζ i(1+ T)1/p− 1)ω̂⊗k. �

Proof. Just a restatement of the preceding two lemmas. Note that it makes sense to

evaluate F at (ζ i(1+ T)1/p− 1), as the constant coefficient of ζ i(1+ T)1/p− 1 is ζ i − 1,

which lives in the maximal ideal of W[ζ ]. �

The importance of the above formulas is that they give a formula for the compo-

sition U V of Hecke operators (the composition VU is the identity).
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Proposition 4.17. Suppose that f has Serre–Tate expansion

f = F (T)ω̂⊗k

on the disk D. Then f |U V has Serre–Tate expansion

f |U V (T)= 1

p

p−1∑
i=0

F (ζ i(1+ T)− 1)ω̂⊗k.

Moreover, if F (T) ∈W[[T ]], then 1
p

∑p−1
i=0 F (ζ i(1+ T)− 1) ∈W[[T ]]. �

Proof. Write f = Fφ(T)ω̂⊗k in Serre–Tate coordinates on the disk Dφ .

We compute

(F (T)ω̂⊗k)|U V = (Fφ((1+ T)p− 1)ω̂⊗k
0 )|U

= 1

p

p−1∑
i=0

F (ζ i(1+ (1+ T)p− 1)1/p− 1)ω̂⊗k

= F (ζ i(1+ T)− 1)ω̂⊗k.

The integrality claim for this expression is well known (see e.g. [11, p. 16]). To prove it,

note that
p−1∑
i=0

F (ζ i(1+ T)− 1)

has coefficients in the maximal ideal p of W[ζ ], because it reduces to 0 mod (1− ζ ). Thus,

the coefficients lie in p ∩W= (p). �

4.5 Continuity properties of the operators

Write Θ for the operator (1+ T) d
dT on the ring W[[T ]], so what we have seen so far is that

θ(F (T)ω̂⊗k)= (ΘF )(T)ω̂⊗k+2.

In this section, we investigate elementary continuity properties of the operator Θ, and

then use them to deduce similar properties for θ on the space of p-adic modular forms.
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Proposition 4.18. The Θ operator satisfies the continuity condition

Θ i F ≡Θ j F mod pn

for any F and any i, j ≥n such that i ≡ j mod (p− 1)pn−1. �

Proof. First suppose that F is a polynomial. Setting x= 1+ T , on the ring W[x]=W[T ]⊆
W[[T ]], we have Θ = x d

dx , so θ i ∑anxn=∑
nianxn and the result follows (using Fermat’s

little theorem for the terms with (p,n)= 1 and the condition i, j ≥n for the others).

To establish the result for a general power series F =∑
bnTn, we may fix n and

prove that the congruence holds for the coefficients of Tn in Θ i F and Θ j F . Note that the

coefficient of Tn in ΘF depends only on the coefficients of Tn and Tn+1 in F . Thus, the

coefficient of Tn in Θ i F depends only on the numbers bn,bn+1, . . . ,bn+i, and similarly for

Θ j F . It follows that there exists a polynomial truncation G of F such that the coeffi-

cients of Tn in Θ iG and Θ jG are the same as those for F . Since the congruence holds for

polynomials, the result follows. �

Corollary 4.19. Suppose that f is a p-integral modular form, that is, that f is a modular

form over some subring of W. Then, for any ordinary pair (A, ω), one has

θ i f(A, ω)≡ θ j f(A, ω) mod pn

whenever i ≡ j mod (p− 1)pn−1. �

Write f � = f |VU−U V , and similarly for F ∈W[[T ]], we write F � = F |VU−UV, where

UV is the formal operator on power series of Theorem 4.17 and VU is the identity oper-

ator.

Proposition 4.20. One has

F � = lim
i→∞

Θ pi(p−1)F . �

Proof. The limit on the right-hand side makes sense because of Proposition 4.18. Writ-

ing Θ(p−1)p∞ for the operator limi→∞Θ pi(p−1), we see that Θ(p−1)p∞ is a continuous W-

linear operator on W[[T ]]. As this is also the case for the operator �, it suffices to check

the putative equality on the polynomials Fm = (1+ T)m, since the linear span of these
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polynomials is dense. One has Θ i Fm =mi Fm, and so

Θ(p−1)p∞ Fm =
⎧⎨
⎩0, p |m,

Fm, (p,m)= 1.

On the other hand, using Proposition 4.17, we compute

F �m(T)= Fm(T)− 1

p

p−1∑
i=0

Fm(ζ
i(1+ T)− 1)

= Fm(T)− 1

p

p−1∑
i=0

ζmi(1+ T)m.

If p is prime to m, then the sum is zero, since ζmi ranges over a complete set of

pth roots of unity. If p divides m, the sum is Fm(T). In either case, F �m =Θ(p−1)p∞ Fm as

desired. �

We return to the operators θ , U , and V on the space of p-adic modular forms. If

f is a p-adic modular form, and (A′, t′, ω′) is a triple consisting of a false elliptic curve

over L with ordinary reduction, level structure, and a translation-invariant one-form,

then the limit

lim
i→∞

θ pi(p−1) f(A′, t′, ω′)

exists and equals f �(A′, t′), since this statement can be checked on residue disks. In

particular, if j is a negative integer, it makes sense to write

θ j f(A′, t′, ω′)

to mean

lim
i→∞

θ j+pi(p−1) f.

A priori, θ j f is a locally analytic modular form, rigid when restricted to a fixed residue

disk. Note that, in spite of the notation, one has θkθ−k f = f �, not f .

4.6 Proof of Proposition 3.6

We conclude by proving the formula

(θ f)|T� = �θ( f |T� )
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as promised. In each case, the result follows from the explicit formulas for the Hecke

operators (using the chain rule). For � �= p, this is a simple calculation. For Tp it will

follow from related formulas for U and V , using the formula

Tp=U + 1

p
[p]V.

Letting ψ denote the automorphism of X mapping (A, t) to (A, pt), it follows directly

from the modularity of f that

f |[p] = pk f ◦ ψ,

and thus,

θ( f |[p])= p−2(θ f)|[p]

(because θ boosts the weight of f by 2). The chain rule argument gives that

θ( f |V )= p(θ f)|V

and

pθ( f |U )= (θ f)|U ,

which is the desired result.

5 Cohomology of Shimura Curves and Coleman’s Theory

5.1 Deligne’s twisted cohomology groups

Let X/C be a variety, and suppose that V is a local system on X(C), that is, a sheaf locally

(for the complex topology) isomorphic to the constant sheaf Cg. Deligne [16] then showed

how to recover the cohomology groups Hi(X(C),V) algebraically, generalizing the case

V=C of algebraic de Rham cohomology. Recall that the vector bundle V =V⊗C OX is

algebraic, as is the connection V→ V ⊗Ω for which V is the sheaf of horizontal sections.

Then Hi(X(C),V) coincides with the hypercohomology of the complex

0
∇→ V ⊗Ω ∇→ V ⊗∧2Ω

∇→ · · · . (9)

Write Hi
dR(X,V,∇) for the ith hypercohomology group of this complex. Of course these

algebraic definitions all make sense over an arbitrary base field k (they are not useful

unless the characteristic of k is zero).
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Given two vector bundles V,V ′ with flat connections ∇,∇′, the natural map of

the complexes (9) for V,V ′, and V ⊗ V ′ gives rise to maps

Hi(X,V,∇)⊗ H j(X,V ′,∇′)→ Hi+ j(X,V,∇ ⊗ ∇′).

We will apply this observation in particular to the case where (V,∇) is self-dual, so that

the target is the ordinary algebraic de Rham cohomology of X.

5.2 Coleman’s rigid analytic theory

Let X/Cp be a curve with good reduction and V a vector bundle on X with flat connection.

Write Xrig for the associated rigid analytic space and Vrig for the analytification of V.

For any point P ∈ X(Cp), write DP for the residue disk containing P , which is

isomorphic as a rigid space to the open unit disk. Fixing one such isomorphism taking

P to 0 allows us to speak of the affinoid subdomain of DP given by “the closed disk of

radius r” for any r < 1, denoted DP ,r. Fixing a finite number of points P1, . . . , Pn, consider

the affinoid space

X 0 = Xrig \ DP1 \ · · · \ DPn

and its “basic wide open neighborhoods” (for various choices of radii ri with 0< ri < 1)

Wr1,...,rn= Xrig \ DP1,r1 \ · · · \ DPn,rn.

For ω a one-form on an annulus, Coleman has defined a notion of “residue” that

coincides with the algebraic notion of residue when ω comes from an algebraic one-

form. Using this definition, it makes sense to speak of residues of vector-bundle-valued

one-forms on annuli, provided that the vector bundle comes with a flat connection that

trivializes on sufficiently small disks. Coleman’s residue is only well-defined up to a sign

(depending on the “orientation” of the annulus), but he shows in Corollary 3.7a of [13]

that one can compatibly orient all the annuli DPi \ DPi ,ri by choosing a uniformizer of the

deleted point as a uniformizer in the ring of rigid functions on the annulus (instead of

choosing the reciprocal of a uniformizer). Here, “compatibility” implies that the residue

of a meromorphic one-form on a Zariski open will agree with the residue of the same

form thought of as a rigid one-form on an annulus, rather than with its negative.

Coleman has shown that the algebraic de Rham cohomology of the affine curve

X \ {P1, . . . , Pn} can be computed analytically as the “honest” de Rham cohomology of any

wide open neighborhood of X 0:
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Theorem 5.1 (Coleman). For any wide open neighborhood W, the natural map

H1
dR(X \ {P1, . . . , Pn},V,∇)→ VW ⊗ΩW

∇VW

is an isomorphism. �

Write H1
dR(W,V,∇) for

VW ⊗ΩW
∇VW

.

The following consequence of this theorem is immediate:

Corollary 5.2. Any inclusion of wide opens X 0 ⊂W ⊂W ′ induces an isomorphism

H1
dR(W ′,V,∇) ∼→ H1

dR(W,V,∇). �

One also has the following:

Corollary 5.3. The image of the natural map

H1
dR(X,V,∇)→

VW ⊗ΩW
∇VW

is the space of classes of rigid 1-forms on W with residue zero at each of the

points Pi. �

This follows from the usual description of the algebraic de Rham cohomology of

the affine X \ {P1, . . . , Pn} (with V coefficients) and the compatibility of the algebraic and

rigid residue maps.

If V is a vector bundle with flat connection, then a primitive for a V-valued

one-form ω (over some open set) is a section Fω of V with ∇Fω =ω. Of course, a prim-

itive is only unique up to horizontal sections of V. In the p-adic setting, Coleman has

shown a canonical way to write down a primitive for sections of V in the event that V
is equipped with some extra structure coming from the Frobenius map on the reduction

of X. For more details on the following, the reader should consult Section 10 of [14].

(In that section, Coleman uses the phrase “overconvergent F -crystal” to mean what this

document and others call an “overconvergent Frobenius isocrystal”. Moreover, Coleman

does not limit his theory to the good-reduction case, which requires him to distinguish

between the “flab”-sheaf of locally analytic sections of V and a certain “flog” sub-sheaf.)

The reduction X0
p of X 0 is a smooth affine curve that admits the p-power absolute

Frobenius map to itself. If the set {P1, . . . , Pn} is Frobenius stable (which one may always
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assume by adding more points to it), then, using the good reduction hypotheses, Coleman

shows that this Frobenius map lifts to a semilinear map φ : X 0→X 0. Fix a choice of such

a φ once and for all.

Definition 5.4. A Frobenius neighborhood of X 0 in W is a pair (W ′, φ), where W ′ is a

basic wide open neighborhood with X 0 ⊂W ′ ⊂W and φ : W ′ →W restricts to φ on X 0. �

Definition 5.5. An overconvergent Frobenius isocrystal on the affinoid X 0 is a pair

(V,Fr) where V is a vector bundle with flat connection ∇ on W and Fr is a ∇-horizontal

morphism

Fr : φ∗V|W ′ → V|W ′

on some Frobenius neighborhood W ′ of X 0 in W. �

Given an overconvergent Frobenius isocrystal V, there is an endomorphism Φ of

the space

H1
dR(W,V,∇)

given by the composition

H1
dR(W,V,∇)→ H1

dR(W ′, φ∗V,∇)→ H1
dR(W ′,V,∇)= H1

dR(W,V,∇).

Definition 5.6. A polynomial P (T) ∈ F [T ] is a Coleman polynomial for a class [ω] ∈
H1(W,V,∇) if the following hold:

(1) P (Φ)([ω])= 0.

(2) P (Φ) induces an automorphism of the space of locally analytic sections of

V that are horizontal for ∇.

(3) P (1) �= 0. �

Theorem 5.7 (Coleman). Suppose that ω is a V-valued one-form on W such that the

cohomology class [ω] ∈ H1(W,V,∇) admits a Coleman polynomial P (T). Then there is a

unique locally analytic primitive Fω for ω such that P (Φ)Fω is a rigid section of V on

some Frobenius neighborhood of X 0 in W. Moreover, Fω is rigid on any fixed residue

disk of X 0. �

The function Fω is called the Coleman primitive for ω. It turns out that it depends

on none of the choices involved in stating Theorem 5.7—that is, it does not depend on
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W ′, the extension of φ to W ′, nor on the Coleman polynomial (provided that a polynomial

exists).

Of course, we will apply this theory in the setting of L2r on the ordinary locus of

C (and its trivial enlargement L2r,2r). In this case, the overconvergent Frobenius isocrys-

tal structure comes from an extension of the canonical morphism Aord→Aord to a wide

open neighborhood W of the ordinary locus, as is constructed in [22, Chapter 11]. For

ease of notation, we do not symbolically denote restriction of bundles to W or the ordi-

nary locus in the following proof.

Proposition 5.8. There exists a Coleman polynomial P for ω f (where ω f is viewed as a

section of L2r ⊗Ω via the Kodaira–Spencer isomorphism). �

Proof. The Hecke polynomial P (X)= X2 − apX + pk−1ε f (p), when evaluated at Frobe-

nius, annihilates the class of ω f , essentially by design. We can see this concretely as

follows: the operator Φ on L2r, when restricted to ω⊗2r, satisfies Φ = 1
p[p]V , as follows

from Lemmas 4.10 and 4.11, the action of [p] undoing the extra factor of 1
p in the level

structure in the function f computed in Lemma 4.10. (This is an analog of the same

result on GL2, cf. [9, Lemme 4.3.2] for a proof using q-expansions, bearing in mind our

convention that Hecke operators act on the right.) We deduce that P (Φ) annihilates ω f

from the classical compatibilities of the actions of Tp and [p] on f with those on ω f and

the formal factorization

X2 − TpX + 1

p
[p]=

(
X − 1

p
[p]V

)
(X −U )

(in the ring Tp[X], where Tp is the noncommutative algebra generated over the Hecke

algebra by formal variables U and V , subject to the relations (6) and (7)).

As remarked after 4.7, on any residue disk, the space of horizontal sections for

∇ on H1 is spanned by (η̂) and (ω̂ − log(q)⊗ η̂), on which Frobenius acts by 1 and p,

respectively. Thus, P (Φ) is diagonal with respect to the basis of horizontal sections of

L2r given by symmetric powers of these, with eigenvalues P (pi), so to check the second

and third conditions defining a Coleman polynomial, we need only check that pi cannot

be a root of P for i ≥ 0. As f is cuspidal, this is a consequence of the Weil conjectures.�

The following lemma will be useful in the proof of Proposition 7.1.

Lemma 5.9. Given an overconvergent Frobenius isocrystal (V,Fr) on an affinoid X 0, a

pairing on V that is compatible with the connection, [ω] ∈ H1
dR(W,V,∇) a cohomology
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class on a wide open neighborhood of X 0 admitting a Coleman primitive Fω, and [ηfrob] ∈
H1

dR(W,V,∇) a cohomology class that is fixed by Frobenius, one has

n∑
i=1

resPi 〈Fω, ηfrob〉 = 0. �

Proof. This is Lemma 3.20 of [3]. �

6 Construction of the Cycle

6.1 Projectors on Kuga–Sato varieties

Recall that C is the Shimura curve over F , f is a modular form of weight k= 2r + 2 on

C , Ar is the r-fold fiber product of the universal false elliptic curve over C with itself,

A is a fixed “CM false elliptic curve”, and Wr =Ar × Ar. In this section, we construct

a homologically trivial cycle on Wr, and then begin our discussion of the p-adic Abel–

Jacobi map, as applied to this cycle. For the first two subsections, we assume r > 0. The

case r = 0 (so Wr = C ) is treated separately in Section 6.4.

As in [3], our cycle will be the graph of a morphism of false elliptic curves, mod-

ified by an idempotent in the ring of correspondences on a Kuga–Sato variety. All rings

of correspondences in this section are taken with rational coefficients.

Recall the bundle L2r = Sym2reH1. The following is Theorem 5.8.iii of [5]:

Theorem 6.1 (Besser). There is a projector P in the ring

CorrC (Ar)

of algebraic correspondences on Ar fibered over C , with the property

PH∗(Ar/C )= PH2r(Ar/C )=L2r. �

Lemma 6.2. For any r > 0,

H0(C ,L2r,∇)= 0. �

Proof. This can be computed after base changing to C, and thus (thanks to GAGA for

differential operators as in [16]), it suffices to show it for the local system

Sym2reR1π∗Q
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on the Riemann surface C (C). This local system corresponds to the representation

Sym2re(C4) of π1(CC)= Γ for which there are no fixed points. �

Corollary 6.3. The projector P satisfies

P H∗dR(Ar)= H1(C ,L2r,∇). �

Proof. We first show

PH2r+1
dR (Ar)=

⊕
p+q=2r+1

H p(C , PHq,∇)= H1(C ,L2r,∇).

The first equality, known (without the P ) as Lieberman’s trick, is true for any abelian

scheme X→ S. Lieberman’s observation is that the Leray spectral sequence

E p,q
2 = H p(S,Hq(X/S),∇)⇒ H p+q

dR (X)

degenerates at page 2, as the multiplication maps [m] : X→ X must, on the one hand,

commute with the edge maps but, on the other, induce multiplication by mq on E p,q
2 .

This identifies H p(S,Hq(X/S),∇) with the mq eigenspace of [m] on H p+q
dR (X). The second

equality follows from Proposition 6.1.

To see that

P H∗dR(Ar)⊂ H2r+1
dR (Ar),

observe that P annihilates H p
dR(C ,Hq,∇) unless p= 0,1 and q= 2r. As r > 0, the latter

bundle has no global sections by Lemma 6.2. �

As a summand of H2r+1
dR (Ar), the cohomology group H1

dR(C ,L2r,∇) inherits its

Hodge filtration (which coincides with the filtration defined directly from the hyperco-

homology spectral sequence). On the other hand, Kodaira–Spencer gives a map from the

space H0(C , ω⊗2r+2) of modular forms to H0(C , ω⊗2r ⊗ΩC ), which includes (again from

the hypercohomology spectral sequence) into H1
dR(C ,L2r,∇). It follows from our compu-

tation of the Kodaira–Spencer map over C (formula (5)) that the section ω f of ω2r+2 cor-

responds to the holomorphic section (2πi)2r+1 dz2r
1 dτ of ω⊗k⊗Ω. In particular, working

over any characteristic zero field, we have a map H0(C , ω⊗2r+2)→ Fil2r+1 H1
dR(C ,L2r,∇)

(as the filtration can be computed after a base change).
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Proposition 6.4. There is a projector εA∈Corr2r(Ar, Ar) such that

εAH∗dR(A
r)= Sym2reH1

dR(A). �

Proof. Take the image of Besser’s projector P under the “evaluation at τ ” map

CorrC (Wr)→CorrF (A
r). �

Consider the variety Wr together with the projector ε = P εA in Corrr
C (Wr,Wr).

Recall the local system L2r,2r on C which is L2r ⊗ Sym2reH1
dR(A); the fiber of L2r,2r

at a point P of C (F ) corresponding to a false elliptic curve A′ is Sym2reH1(A′)⊗
Sym2reH1

dR(A).

Proposition 6.5. One has

εH∗dR(Wr)= H1
dR(C ,L2r,∇)⊗ Sym2reH1

dR(A)⊆ H2r+1
dR (Ar)⊗ H2r

dR(A
r)⊆ H4r+1

dR (Wr). �

Proof. This follows immediately from the Künneth formula. �

6.2 The generalized Heegner cycle and the p-adic Abel–Jacobi map

Recall the fixed level V1(N+)-structure t on A. For any false isogeny φ : A→ A′ whose

kernel intersects the image of t trivially, there is a point Pφ on C corresponding to the

pair (A′, φ ◦ t), and an embedding of the graph Γφ into the fiber A× A′ of W1 above Pφ .

Write Υφ for the rth power of Γφ . The cycles studied in this paper are given by

Δφ = εΥφ.

Note that Υφ has codimension 2r + 1 in Wr. It follows that the cycle class map takes Υφ

to H4r+2
dR (Wr), and so Δφ is cohomologically trivial by Proposition 6.5. It follows from [33,

Theorem 3.2] that each Pφ is defined over F .

6.3 The p-adic Abel–Jacobi map

Write Fp for the completion of F at the place above p induced by the chosen embedding

Q̄→Cp. Recall that for a variety X, CHi
0(X) denotes the group of homologically trivial

cycles of codimension i, modulo rational equivalence.
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There is a sequence for étale cohomology with supports: for a closed immersion

Z ↪→ X of schemes with complement U , then for any sheaf F one has

· · ·→ Hi
Z (X,F)→ Hi(X,F)→ Hi(U,F)→ Hi+1

Z (X,F)→· · · .

If Z and X are smooth over an algebraically closed field and F is a locally constant

�n-torsion sheaf, then there are also (functorial) Gysin maps computing the relative

cohomology groups in terms of the ordinary cohomology groups of Z ; writing c for the

codimension of Z in X, the Gysin map identifies

H j−2c(Z ,F(−c))= H j
Z (X,F).

We apply these facts in the following context: write WP for the fiber of Wr above

P (which has codimension 1) and W� for its complement. By construction, the cycle Δφ

is supported on WP . Choose i = 4r + 1 and F =Zp(2r + 1). After base changing to the

algebraic closure and applying ε to the Gysin sequence, we get an exact sequence of

Galois modules

0→ εH4r+1(W̄r,Qp(2r + 1))→ εH4r+1(W̄�,Qp(2r + 1))→ εH4r(W̄P ,Qp(2r))→ 0 (10)

using Proposition 6.5 for exactness at the left and right.

There is a map Qp→ εH4r(W̄P ,Qp(2r + 1) sending 1 to the class of Δφ . Define

ξ ∈Ext1
Galois modules(Qp, εH4r+1(W̄r,Qp(2r + 1)))= H1(Fp, εH4r+1(W̄r,Qp(2r + 1))) (11)

by pushing out the sequence (10) along this map.

Write V for the Galois representation εH4r+1(W̄r,Qp(2r + 1)). It follows from

work of Nekovář [29] that the class ξ lies in the subgroup H1
f (Fp, εH4r+1(W̄r,Qp(2r + 1)))

defined in [7], that is, that the corresponding extension of Galois modules is crystalline.

The subgroup H1
f is the image of the Bloch–Kato exponential map, which is the connect-

ing map in the long exact sequence in cohomology coming from the short exact sequence

of Galois modules

0→W→ Bφ=1
cris ⊗ V ⊕ Fil0 BdR ⊗ V→ BdR ⊗ V→ 0.

Because Dcris(V)φ=1 = 0, the inverse of the exponential map induces a well-

defined “logarithm” map

logBK : H1
f (Fp,V)→ DdR(V)

Fil0 .
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The element logBK(ξ) lives in

DdR(εH4r+1(W̄r,Q�(2r + 1)))

Fil0 = εH4r+1
dR (Wr/Fp

)

Fil(2r+1) .

By Poincare duality, the last space is identified with Fil2r+1
εH4r+1

dR (Wr/Fp
)∨, which maps to

(M2r+2(Fp)⊗ Sym2reH1
dR(A/Fp))

∨ (this follows from the Künneth formula and our earlier

remarks on the Hodge filtration).

Definition 6.6. The p-adic Abel–Jacobi map

AJp : εCH2r+1
0 (Wr/Fp

)→ (M2r+2(Fp)⊗ Sym2reH1
dR(A/Fp))

∨

sends a cycle Z to the image of the Bloch–Kato logarithm of the extension class ξZ as

in (10) under the composition of the maps

εH4r+1
dR (Wr/Fp

)

Fil(2r+1) = Fil2r+1
εH4r+1

dR (Wr/Fp
)∨ → (M2r+2(Fp)⊗ Sym2reH1

dR(A/Fp))
∨. �

6.4 The case of weight two

In the case that r = 0, the variety Wr is just C , the projectors defined above are all trivial,

and a homologically trivial cycle of codimension 2r + 1 is a degree zero divisor. Write

TQ for the Hecke algebra of level N+. Then, there is a projector ε f ∈Corr(C )⊗Q which

lies in the image of the map TQ→Corr(C )⊗Q and satisfies

ε f H∗dR(C/F )= Fω f ⊂ H1
dR(C/F ).

Let Δ0 be an arbitrary divisor on C . Then, ε fΔ0 is automatically homologically trivial.

The projector ε f also gives an extension class attached to f using the Gysin sequence

above, so it makes sense to apply the p-adic Abel–Jacobi map to ε fΔ0.

In the weight two case, the p-adic Abel–Jacobi map can be identified with a

formal group logarithm as follows: writing J for the Jacobian of C , there is, for each

differential form ω ∈ΩJ , a unique group homomorphism logω : J(Fp)→ Fp with dlogω =
ω. If we pick an Fp-rational point of C to get a (classical) Abel–Jacobi map C → J, we

then get a map C (Fp)→ Fp, which coincides with AJp. (This map depends on our choice

of rational point, but the induced map on Pic0
(C ) does not.)
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7 Computation of the p-adic Abel–Jacobi Map

7.1 The p-adic Abel–Jacobi map and Coleman integration

We will work with sumsΔ of generalized Heegner cycles fibered above points P1, . . . , Pm;

we assume this set to be Frobenius stable. Write also Q1, . . . , Qn for a choice of point

on each supersingular residue disk. Write SP = {P1, . . . , Pm}, SQ = {Q1, . . . , Qm} and S=
SP ∪ SQ.

We will apply the formalism of Section 5 to the affinoid X 0 = C\⋃P∈S D(P ,1) and

some choice of wide open neighborhood W.

Proposition 7.1. If Δ is a sum of generalized Heegner cycles fibered above points in

SP , where the point Pi corresponds to the false elliptic curve Ai with level structure ti,

the generalized Heegner cycle Δi above Pi is given by the false isogeny φi : A→ Ai, and

α ∈ Sym2reH1
dR(A) is arbitrary, then

AJp(Δ)(ω f ∧ α)=
∑

Pi∈SP

〈F f (Pi) ∧ α,ClPi (Δi)〉.

(Here, ClPi (Δi) denotes the image of Δi under the cycle class map attached to the fiber Ar
i

of C above Pi, not the global cycle class map, which annihilates Δ by construction.) �

Proof. This argument mimics the proof of [3, Proposition 3.18]—in fact, it is strictly

simpler, as that paper must deal with issues related to cusps of modular curves. To

compute AJp(Δ)(ω f ∧ α), we need to compute

〈logBK(ξΔ), ω f ∧ α〉.

Here, ξΔ denotes the extension class (11) of Galois modules.

Applying DdR gives the extension class DΔ, which sits in the exact sequence of

filtered Frobenius modules

0→ H1(C ,L2r,2r,∇)(2r + 1)→ DΔ→ F → 0,

thought of as a class in H1
f (Fp,V). Explicitly, DΔ is the set of pairs (η, β), where β ∈ F

and η is a cohomology class in

H1(C\SP ,L2r,2r,∇)(2r + 1)

whose residue at each Pi is βClPi (Δ).
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To write down logBK(ξΔ), we must find a class ηhol ∈ Fil0 DΔ and a class ηfrob ∈
(DΔ)φ

deg(Fp/Qp)=1, both mapping to 1 in F , and then take their difference, which is

well-defined up to Fil2r+1 H1(C ,L2r,2r,∇). We will think of ηhol and ηfrob as classes in

H1(C\SP ,Lr,r,∇), both required to have residue ClPi (Δi) at Pi.

One has

Fil0 H1(C − SP ,L2r,2r,∇)(2r + 1)= H0(C \ SP , ω
r)⊗ Sym2reH1

dR(A).

In particular, ηhol is represented by an Lr,r-valued one-form that is holomorphic away

from SP and has a simple pole at each Pi ∈ SP with residue Δi (or is holomorphic at Pi if

Δi = 0). Possibly enlarging SP , we may assume the centers of the deleted disks include

all the poles of ηfrob.

To compute

〈logBK(ξΔ), ω f ∧ α〉,

we need to pick primitives for ω ∧ α in each disk, multiply by ηhol − ηfrob, and sum the

residues over the points in S. Now Lemma 5.9 tells us that if we pick the global Coleman

primitive, then the contribution to the sum from SQ cancels. Hence the sum simplifies to

∑
Pi∈SP

resPi (η, F f ∧ α)= 〈F f (Pi) ∧ α, clPi (Δ)〉

(we are using the fact that F f ∧ α is the Coleman primitive for ω f ∧ α). �

The next proposition, which is proved as in [3] and only needed in the higher

weight case, shows that we can move this result of the previous proposition from the

various Pi ∈ S to the point PA corresponding to the fixed false elliptic curve A.

Proposition 7.2 (BDP 3.21). If Δφ is supported over a single point P ′A, then we have

AJp(Δφ)(ω f ∧ α)= 〈φ∗F f (PA′), α〉A.

where the pairing occurs on eSym2r H1
dR(A). �

7.2 Computing Coleman primitives for p-adic modular forms

In this section, we will use the following conventions, which are slightly different from

those of [3]. A lowercase letter is a p-adic or locally analytic modular form, and the

corresponding capital letter is its Serre–Tate expansion, a power series in T (on some
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fixed ordinary residue disk). As in Section 4, write θ for the operator on the space of

locally analytic modular forms and Θ = (1+ T) d
dT for the corresponding operator on

power series; that is, if g=G(T)ω̂k in a fixed residue disk of C , then

θg= (ΘG)ω̂k+2.

Because the main theorem of this section may be of use in other situations,

we state it for arbitrary p-adic modular form f of weight ρ + 2 (for the fixed f from

Section 2, of course, ρ = 2r is even—note that our proof of the existence of a Cole-

man polynomial does not assume even weight). Consider f as a section ω f of ωρ ⊗Ω ⊆
SymρeH1 ⊗Ω using the Kodaira-Spencer map, and write g for the Coleman primitive of

ω f . In particular, g is a section of SymρeH1 satisfying ∇g=ω f .

In terms of the Serre–Tate basis for SymρeH1 given by ω̂ρ−i η̂i for i = 0, . . . , ρ, we

may write

g=
ρ∑

i=0

Gi(T)ω̂
ρ−i η̂i. (12)

(Here, we are using the fact that g is rigid on residue disks.)

The formal power series Gi(T) are actually the T-expansions of locally analytic

modular forms of weight 2ρ − i. To see this, recall that the OX-linear cup product pairing

on H1 extends to a pairing on SymρeH1 by the rule

〈α1 ⊗ · · · ⊗ αρ, β1 ⊗ · · · ⊗ βρ〉 = 1

ρ!

∑
σ∈Sρ

∏
i

〈αi, βσ i〉. (13)

Following [BDP], we define a locally analytic modular form g̃i by the rule

g̃i(A, t)= 〈g(A, t), ωiηρ−i〉ω2ρ−i,

where ω ∈ω(D) and η ∈H1(D) are chosen with 〈ω, η〉 = 1. (Replacing ω by λω has the effect

of replacing η by λ−1η, so the form does not depend on any choices.)

Combining (12) and (13) shows that the Serre–Tate expansion of g̃i is given by

g̃i = (−1)i(
ρ
i

) Gi(T)ω̂
2ρ−i. (14)

Note that g̃i is a locally analytic modular form on all of X , not just on the ordinary locus

(where its T-expansions make sense and where formula (14) holds).
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These components can be computed by inverting the differential operator θ :

Theorem 7.3. One has

g̃�i = i!θ−1−i f �. �

Proof. The theorem is equivalent to the statement that

θ1+i g̃i = i! f

(the flat operator arises upon inverting θ , which has trivial kernel on the space of forms

satisfying f = f �). It suffices to show that θ g̃0 = f and θ g̃i = ig̃i−1 for i > 0.

Using the Leibniz rule and Katz’s computation of ∇ on the basis {ω̂, η̂} yields

∇(Giω̂
ρ−i η̂i)=G ′iω̂

ρ−i η̂i ⊗ dT + Gi∇(ω̂ρ−i η̂i)

=ΘGiω̂
ρ−i η̂i ⊗ d log q + (ρ − i)Giω̂

ρ−i−1η̂i+1 ⊗ d log q.

Summing this equality over i and reindexing gives

∇g=ΘG0ω̂
ρ ⊗ d log q +

ρ∑
i=1

(ΘGi + (ρ − i + 1)Gi−1)ω̂
ρ−i η̂i ⊗ d log q.

On the other hand, since g is a primitive,

∇g= KS( f)

= KS(F ω̂ρ+2)

= F ω̂ρ ⊗ d log q.

It follows that ΘG0 = F and that ΘGi =−(ρ − i + 1) Gi−1 = 0 for i <ρ. The result

now follows from (14). (An earlier draft of this article remarked as a consequence of this

calculation that g̃�i , a priori only locally analytic, must in fact be rigid on the ordinary

locus. As pointed out to the author by Yifeng Liu, this is true, but not obvious, and

needs a result from rigid analytic geometry, namely, that if the limit of a family of rigid

sections of a bundle exists (as a locally analytic section) and if moreover the convergence

is uniform, then the limit is a rigid analytic section. We omit this argument, as it is not

needed for our results, which only depend on the values of g̃�i at CM points.) �
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In the weight two case (r = 0), the operator OC →ω⊗2 is just d, followed by the

Kodaira–Spencer isomorphism. The content of the above proposition is then that the

limit defining θ−1 exists.

Consider the particular f fixed in Section 2, so that ρ = 2r, and write gj for the

jth component of the Coleman primitive as before. The following proposition, which

is proved using Proposition 7.2 as in [3], relates the components g̃i to the p-adic Abel–

Jacobi map:

Proposition 7.4 (BDP 3.22). Write d for the degree of the false isogeny φ : A→ A′. Then

AJp(Δφ)(ω f ∧ ω jη2r− j)=djgj(A
′, t′, ω′). �

Lemma 7.5. Suppose that the weight of f is 2. Then for any zero-cycle Δ on C , one has

(θ−1 f �)(ε fΔ0)= (θ−1 f �)(Δ0). �

Proof. Because the operators U and V commute with all the operators T�, the p-adic

modular form f � is still an eigenform with the same Hecke eigenvalues as f away from

p. It follows from Proposition 3.6, and the definition of θ−1 as a limit of iterates of θ ,

that

(θ−1 f �)|T� = �−1θ−1( f �|T� )= a��
−1θ−1 f �.

Write T∗� Δ0 for the zero-cycle on C given by the Hecke orbit of Δ0. For g a modular

function, one has g|T� (P )= 1
�
g(T∗� P ). But then

(θ−1 f �)(T∗� Δ0)= �(θ−1 f �)|T� (Δ0)

= a�(θ
−1 f �)(Δ0).

Write λ f : T→ F for the homomorphism attached to the newform f . Then λ f (T�)= a�, so

the above computation shows that for an arbitrary T ∈T one has

(θ−1 f �)(T∗Δ0)= λ f (T)(θ
−1 f �)(Δ0).

By design λ f (ε f )= 1, so we are done. �
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8 The p-adic L-function

8.1 Spaces of Hecke characters

The p-adic L-function we study interpolates special values of the Rankin–Selberg

L-function L( f, χ, s) as χ varies over Hecke characters of K. We now describe a few

spaces of Hecke characters on K. A Hecke character χ with infinity type (�1, �2) is criti-

cal for f if one of the following conditions holds:

(1) (The type 1 case): 1≤ �1, �2 ≤ k− 1.

(2) (The first type 2 case): �1 ≥ k and �2 ≤ 0.

(3) (The second type 2 case): �1 ≤ 0 and �2 ≥ k.

As is explained in [3, Section 4.1], χ is critical for f precisely when the center of the

functional equation for L( f, χ−1, s) is a critical value in the sense of Deligne. Because

an even number of primes divide N−, the sign in the global functional equation for

L( f, χ−1, s) depends only on the archimedean epsilon factor; in the cases that we have

called “type 2”, this sign is positive, and in the case we have called “type 1”, it is

negative.

One says that χ is central critical if in addition �1 + �2 = k (which is equivalent

to the center of the functional equation occurring at s= 0) and the central character of χ

matches the nebentypus of f (which forces the same L-function to occur on both sides

of the functional equation). We will write Σ(1)cc for the set of central critical characters of

type 1 and Σ(2)cc for the set of central critical characters in the first type 2 case. Because

the values of critical Hecke characters are algebraic, we may view them as p-adic num-

bers via our fixed embedding. As is explained in the discussion before [3, Remark 5.8],

the set Σ(2)cc inherits a p-adic topology as a subspace of the space of functions from the

prime-to-p ideles of K to OCp.

Write Σ̂(2)cc for the completion of Σ(2)cc with respect to this topology. Write h

for the class number of K; for each integer t, there is a Hecke character ψt given by

the rule

ψt(a)= a6t/ā6t,

where (a)= ah. Note that the infinity type of ψt is (6h,−6h). It follows that χψt is central

critical of type 2 for χ central critical of any type (and t large) and χψpn(p−1)→ χ as

n→∞. It follows that we may view Σ
(1)
cc as a subset of Σ̂(2)cc .
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8.2 The Waldspurger-type result

Using the fixed complex structure Jτ on M2(R), thought of as a map

Jτ : M2(R)→C2,

we get a differential form ωC = J∗τ (2πi dz1) on M2(R) (holomorphic for this complex struc-

ture). Abusing notation, also write ωC for the corresponding form on B ⊗ R (which is

really ι∗∞ωC).

There is a bijective correspondence between ι∞(OB)-stable sublattices of C2 and

pairs (A, ω) of a false elliptic curve over C and a section of eΩA/C. To a pair (A, ω) we

attach the lattice

OB

{∫
γ

ω | γ ∈ eH1(A)
}
,

and to an OB-stable lattice Λ we assign the false elliptic curve C2/Λ together with the

form 2πi dz1.

Again using the complex structure Jτ on M2(R), we may view a modular form g

as a function on pairs (Λ, t), where Λ is an OB-stable sublattice of B ⊗ R and t= et is an

element of exact order N+ in B⊗R
Λ

. Explicitly, this function is given by the rule

g(Λ, t)= g
(

B ⊗ R

Λ
, t, ωC

)
.

Scaling the lattice Λ by some λ ∈C multiplies each period integral by λ, so the corre-

sponding one-form ωC is divided by λ. Hence, for g of nebentypus εg, we have

g(λΛ, λt)= λ−kεg(λ)g(Λ, t).

Write t for the Heegner level N+ structure on the false elliptic curve Aτ , as

described in Section 2.5, and for a an ideal of OK prime to N, write ta for the induced

level structure on the false elliptic curve Aa�τ .

Lemma 8.1. Let a be an ideal prime to N and let χ be a central critical Hecke character

of infinity type (k+ j,− j). Then, for any t, the expression

χ−1(a)Na− jΘ j
∞ f(a−1

B , ta)

only depends on the class of a in Cl(OK) (here aB is as defined in Section 2.5). �
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Proof. Scaling the pair (a, t) by λ ∈ K, we obtain

Θ j
∞ f(λ−1a−1

B , tλa)= ε f (λ)λ
k+2 j f(a, t).

On the other hand,

χ−1(λa)= ε−1
χ λ

−k− jλ̄ jχ−1(a)

and

N(λa)− j = λ− jλ̄− j(Na)− j.

The result follows from the assumption ε f = εχ . �

The following result follows from [31, Theorem 3.2], together with the local com-

putations of [3, Section 4]:

Theorem 8.2. Let χ be an unramified Hecke character of K of infinity type (k+ j,− j)

whose central character is the nebentypus of f . Then one has, for some α( f, fGL2) ∈ K

C ( f, χ)L( f, χ−1,0)= α( f, fGL2)

∣∣∣∣∣∣
∑

a∈Cl(OK )

χ−1(a)Na− j · (Θ j
∞ f)(a−1

B , ta)

∣∣∣∣∣∣
2

,

where

C ( f, χ)= 1

4
πk+2 j−1Γ ( j + 1)Γ (k+ j)wK

√
|dK |2#Sf

∏
�|N−

�− 1

�+ 1

and Sf is the set of primes which ramify in K that divide N+ but do not divide the

conductor of the Nebentypus of f . �

The element α( f, fGL2) is the quotient of the Petersson inner products

〈 fGL2 , fGL2〉
〈 f, f〉 .

Because of our normalization of f , it is an element of K by [20, Theorem 12.3].

In fact, by [31, Theorem 2.4], it is integral at p provided that p> k+ 1 and p �
∏
�|N

(�− 1)(�)(�+ 1).

8.3 CM points and CM triples

This section eliminates the absolute value signs that occur in the statement of

Theorem 8.2 by comparing the complex conjugation action on the space of modular
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forms with an Atkin–Lehner involution. Fix for now a primitive N+th root of unity ζ ∈ Q̄,

that is, a trivialization of μ+N . (We will make a particular choice later.) Suppose that L is

some field containing K, A′/L is a false elliptic curve with normalized CM by OK , and

P = eP is a torsion point of exact order N+ on A′. Then there is a point of C (F ) given by

the false elliptic curve A′ together with the level structure

μ+N × μ+N ≈Z/N+ ⊕ Z/N+
(

1
0

)
�→P
−→ A′[N+].

Such a point will be denoted (A, P ).

A CM triple over L is an isomorphism class of triple (A, P , ω), where ω ∈ eΩA/L is

nonvanishing. Using the above formalism, one can think of a CM triple as a point on the

underlying space of the bundle ωL .

There is an action � of Cl(OK) on the set of CM triples, given by the rule

a � (A′, P , ω)= (A′/A′[a], P0, ω0),

where P pushes forward to P0 and ω0 pulls back to ω.

Assuming also that
√−N+ ∈ L, there is an Atkin–Lehner involution, denoted by

w+N , on the underlying space of the bundle ωL (it is not an automorphism of line bundles,

but rather lies over an involution on C , which we also call an Atkin–Lehner involution

and also write w+N ). It is described by the following rule:

(A′, P , ω) �→ (A′/P , P ′,
√−N+ω),

where P ′ = eP ′ is chosen so that the Weil pairing (Image(P ), P ′)= ζ .

There is a Gal(C/R) semilinear complex conjugation action on CC and the under-

lying space of ωC, given on arbitrary points (not just CM triples) by

(A′, t, ω)= (A′σ , tσ , ωσ ),

where σ denotes base change along the nontrivial map C→C. (Note that even if A′ and

A′σ are isomorphic as abelian surfaces, they will not be isomorphic as false elliptic

curves.)

By [3, Lemma 5.2], the compatibility of the Atkin–Lehner involution with the

operation of Cl(K) on the set of CM triples is given over C by the rule

a � w+N(A
′, P , ωC)=w+N(a � (A′,Na−1 P , ωC)). (15)
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Since K satisfies the Heegner hypothesis for N+, there is as before an ideal N+

of K with norm N+. In the course of establishing the following proposition, we will fix a

particular ζ , which depends on the fixed CM elliptic curve A; from now on, any reference

to an Atkin–Lehner involution is with respect to this ζ .

Proposition 8.3. There exists an ideal b of OK , and a scalar b+N ∈OK , with the property

that for any CM triple, one has

(A′, P ,2πi dz)= b � w+N

(
A, P ,

b+N√−N+
2πi dz

)
. �

Proof. Because Aσ has false endomorphisms by OK , there is a false isogeny A→ Aσ

whose kernel is of the form A[f] for some ideal f of K. If necessary, multiply by a scalar

to ensure (f,N+)= 1. Pick the ideal b to be prime to fN+ and to satisfy

bN+f−1 = (b+N)

for some scalar b+N . Then multiplication by b+N , followed by the natural projection, gives

an identification
A[N+]

A[N+]
→ Aσ [N̄+].

In particular, one may lift P̄ to P ′ = eP ′ ∈ A[N]. Set ζ = (P , P ′). The result is now plain

from formula (15). �

As in the modular curve case, there is an involution g �→ gρ on the space of weight

k modular forms for C/C by the rule

gρ(A, t, ω) := g(A, t, ω).

Lemma 8.4. If g is an eigenform with T�g= a�g, then gρ is an eigenform with

T�gρ = ā�gρ . �

Proof. One has

gρ |T� (A, t, ω)=
1

�

�∑
i=0

g(Aσ /C σi , t
σ
i , ω

σ
i )

= gT� (Aσ , tσ , ωσ )
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= ā�g(Aσ , tσ , ωσ )

= ā�gρ(A, t, ω). �

A similar computation shows that if g has nebentypus εg, then gρ has nebentypus

ε̄g. It follows as in the proof of [3, Lemma 5.2] that there is a complex scalar Wg of norm

one, depending only on g and our choice of ζ , such that

gρ(wN(E, P , ω))=Wgg(E, t, ω).

For χ ∈Σ(2), set

W( f, χ)=Wfε f (Nb)−1χ j(b)(−N)k/2+ jb−k−2 j
N .

Abbreviate χN− j as χ j. Then one has:

Proposition 8.5. Under the hypotheses of Theorem 8.2, one has

C ( f, χ)L( f, χ−1,0)= α( f, fGL2)W( f, χ)

⎛
⎝ ∑

a∈Cl(OK )

χ−1(a)Na− j · (Θ j
∞ f)(a � (A, P , ωC))

⎞
⎠

2

, �

Proof. The formula

χ−1
j (a)Θ

j
∞ f(a � (A, P , ωC))=w f (−N)k/2+ jb−k−2 j

N+ χ j(b)ε f (Nb)−1χ j(āb)−1Θ j
∞ f(āb � (A, P , ωC ))

is established as in the proof of Theorem 5.4 of [3], except with Remark (1) in that proof

replaced by Proposition 8.3 above. The result follows from summing this formula over

a, using Theorem 8.2. �

The following lemma expresses the operator � on the space of locally analytic

p-adic modular forms in terms of the action of Cl(K) on CM triples.

Lemma 8.6. If g is a locally analytic p-adic modular form of integer weight k satisfying

Tpg= bpg

and

〈p〉 = ε(p)g
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for some character ε, and (A′, t, ω′) is a CM triple, then

g�(A′, t, ω′)= g(A′, t′, ω′)− ε(p)bp

pk
g(p � (A′, t′, ω′))+ ε(p)

pk+1
g(p2 � (A′, t′, ω′)). �

Proof. This computation is the same as that of [3, Lemma 3.23]: since A′ has com-

plex multiplication, the canonical subgroup of A′ is A′[p]. Thus, g|V (A′, t′, ω′)= p �

(A′, p−1t′, pω′) and g|[p]V2 = p2 � (A′, p−1t′, pω′). The result then follows from

VU −U V = 1− TpV + 1

p
[p]V2.

�

8.4 The p-adic L-function

Recall the fixed nonvanishing global section ω of the line bundle eΩA/H on A, defined

over the Hilbert class field of K. Define a period Ω ∈C by the rule

ω=ΩωC .

Define also a p-adic period Ωp∈Cp by the rule

ω=Ωpω̂,

where ω̂ is the formal section picked in Section 4 (which depended upon a choice of basis

for eTpÃ, where Ã denotes the reduction of A mod p).

Proposition 8.7. For χ ∈Σ(2)cc of infinity type (k+ j,− j), with j ≥ 0, the quantity

Lalg( f, χ−1,0) := α( f, fGL2)
−1W( f, χ)−1C ( f, χ, c)L( f, χ,0)/Ω(2(k+2 j))

belongs to Q̄, and is computed by the formula

Lalg( f, χ−1,0)=
⎛
⎝ ∑

[a]∈Cl(O)
χ−1

j (a) ·Θ j
∞ f(a � (A, t, ω))

⎞
⎠

2

. �

Proof. See [3, Theorem 5.5]. �

The following corollary then follows immediately from the equality of the values

of the forms θ f and ΘR f on CM points.
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Corollary 8.8. For χ ∈Σ(2)cc of infinity type (k+ j,− j), with j ≥ 0,

Lalg( f, χ−1,0)=
⎛
⎝ ∑

[a]∈Cl(OK )

χ−1
j (a) · θ j f(a � (A, t, ω))

⎞
⎠

2

. �

Now set

L p( f, χ)=Ω2(k+2 j)
p (1− χ−1(p̄)ap+ χ−2(p̄)ε f (p)p

k−1)2Lalg( f, χ−1,0).

The following proposition expresses the Euler factor dropped at p̄ in terms of the opera-

tor � on the space of p-adic modular forms; the computation is in [3, Theorem 5.9]. (Note

that we have replaced the algebraic form ω with the p-adic form ω̂.)

Proposition 8.9. For χ ∈Σ(2)cc of infinity type (k+ j,− j), with j ≥ 0, one has

L p( f, χ)=
⎛
⎝ ∑

[a]∈Cl(OK )

χ−1
j (a) · θ j f �(a � (A, t, ω̂))

⎞
⎠

2

. �

8.5 Special values of L p

This section investigates the properties of L p outside the range of interpolation.

Proposition 8.10. The function χ �→ L p( f, χ) extends to a continuous function on all of

Σ̂cc (which we will still write as L p.) �

Proof. If two characters χ1 and χ2 are sufficiently close in the topology on Σ̂2
cc, then

their infinity types satisfy the congruence

j1 ≡ j2(mod(p− 1)pM−1).

(to see this, evaluate on ideles congruent to 1 mod N ). It follows from Proposition 4.19

that

θ j1 f(A, t, ω̂)≡ θ j2 f �(A, t, ω̂) mod pM

at any ordinary CM point. The result follows from the formula of Proposition 8.9, which

computes the value of L p in terms of values of f � at ordinary CM points; moreover, it

follows that the formula of Proposition 8.9 computes the values of L p for any χ ∈ Σ̂(2)cc .�



4238 E. Hunter Brooks

The following theorem is the main result of this document. Write φa : A→ A/A[a]

for the natural map and Δa for the associated generalized Heegner cycle.

Theorem 8.11. Suppose χ is a central critical character with infinity type (k− 1− j,

1+ j), with 0≤ j ≤ 2r. Then

L p( f, χ)

Ω
2(k−2−2 j)
p

= (1− χ−1(p̄)ap+ χ−2(p̄)ε f (p)p
k−1)2

·
⎛
⎝ 1

j!

∑
[a]∈Cl(K)

χ−1(a)N(a) · AJp(Δa)(ω f ∧ ω j
Aη

k−2− j
A )

⎞
⎠

2

. �

Proof. The proof of the preceding proposition establishes the formula

L p( f, χ)=
⎛
⎝ ∑

[a]∈Cl(K)

χ−1
−1− j(a) · θ−1− j f �(a � (A, t, ω̂))

⎞
⎠

2

.

By definition of Ωp, we have (using that the weight of θ−1− j f � is k− 2− 2 j) that

L p( f, χ)

Ω
2(2r−2 j)
p

=
⎛
⎝ ∑

[a]∈Cl(K)

χ−1
−1− j(a) · θ−1− j f �(a � (A, t, ω))

⎞
⎠

2

.

Lemma 7.3 shows that the value of θ−1− j acting on f � is 1
j! g̃

�

j, where g̃j denotes the jth

component of the Coleman primitive for f , which gives

L p( f, χ)

Ω
2(2r−2 j)
p

=
⎛
⎝ 1

j!

∑
[a]∈Cl(K)

χ−1
−1− j(a) · θ−1− j g̃�j(a � (A, t, ω))

⎞
⎠

2

.

By Lemma 8.6 (and a rearrangement of the sum), one can remove the operator � on g̃j by

dropping an Euler factor:

L p( f, χ)

Ω
2(2r−2 j)
p

= (1− χ−1(p̄)ap+ χ−2(p̄)ε f (p)p
k−1)2

·
⎛
⎝ 1

j!

∑
[a]∈Cl(K)

χ−1
−1− j(a) · θ−1− j g̃j(a � (A, t, ω))

⎞
⎠

2

.

Now apply Lemma 7.4 to the Heegner isogeny φa, of degree (Na)2, to attain the final

result.
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(In the case of weight two, we are implicitly using Lemma 7.5 to compute with

the cycle Δχ =
∑
χ−1(a)N(a)Pχ rather than the cycle ε fΔχ .) �

8.6 Fields of definition

We have stated our results in terms of cycles defined over the ray class field of K mod

N+. One may restate Theorem 8.11 in terms of a cycle defined over a smaller field of

definition than F , as is explained (in the GL2 case) in [4, Section 4.2]. For the purposes of

applications, we give a slightly different argument to this effect in the case that k= 2.

In this case, Theorem 8.11 reads:

Proposition 8.12. Suppose that f has weight 2, and χ is a central critical character with

infinity type (1,1). Then the cycle ε fΔχ ∈Div(C )(F )⊗ Q̄ satisfies

L p( f, χ)= (1− χ−1(p̄)ap+ χ−2(p̄)ε f (p)p)
2 · logω f

(ε fΔχ). �

Consider the quotient C ′ of C whose complex points are H/Γ0,N+ . Writing φ : C →
C ′ for the natural map, one has the rule for p-adic logarithms

logφ∗ω(P )= logω(φ(P )).

for P ∈ C ′(Cp). Writing Δ′χ for φ(ε fΔχ), and ω′f for the differential form on C ′ attached to

f , Shimura’s reciprocity law implies that Δ′χ is defined over K. Thus, one has

Proposition 8.13. The cycle Δ′χ ∈Div(C ′)(K)⊗ Q̄ satisfies

L p( f, χ)= (1− χ−1(p̄)ap+ χ−2(p̄)ε f (p)p)
2 · logω′f (Δ

′
χ ). �
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[8] Brakočević, M. “Anticyclotomic p-adic L-function of central critical Rankin–Selberg L-

value.” International Mathematics Research Notices 2011, no. 21 (2011): 4967–5018.
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