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The goal of this paper is the proof of the algebraic complete integrability of the Bloch–

Iserles Hamiltonian system [5]. This result was conjectured in [4], based on its validity

in certain special cases.

1 Introduction

For a given skew symmetric real n× n matrix N, the bracket [X, Y]N = XNY − YNX

defines a Lie algebra structure on the space Sym(n, N) of real symmetric n× n matri-

ces; this type of bracket has appeared before in [12] in the study of the integrability of

the Euler equations via the argument shift method and in the construction of the sec-

tional operators as well as in [9] where it was used to produce the second Hamiltonian

structure of the n-dimensional free rigid body equations. For any f, g ∈ C ∞(Sym(n, N)),

the corresponding Lie–Poisson bracket is hence given by

{ f, g}N(X) := −trace(X[∇ f(X),∇g(X)]N),

where ∇ f is the gradient of f on Sym(n, N) relative to the inner product 〈〈Y1, Y2〉〉 :=
trace(Y1Y2), for any symmetric matrices Y1, Y2. The inner product 〈〈·, ·〉〉 is used to identify

Sym(n, N) with its dual. The geometry, integrability, and linearizability of the flow of the
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Bloch–Iserles Hamiltonian system [5]

Ẋ = [X2, N] = [X, XN + NX] (1.1)

on Sym(n, N) were investigated in [4], under the hypothesis that N has distinct eigenval-

ues. The Hamiltonian function is h(X) = trace(X2/2) and (1.1) is equivalent to Hamilton’s

equations in Poisson bracket form ḟ = { f, h}N for any f ∈ C ∞(Sym(n, N)). An earlier study

of the integrability of (1.1) from a different point of view can be found in [8].

In this paper, we continue the study of this Hamiltonian system by estab-

lishing its algebraic complete integrability, if N has distinct eigenvalues. More pre-

cisely, we prove that the reduced Hamiltonian system (1.1) on the quotient space

(λN + SymC(n, N))/G0, where G0 is a quotient group of the subgroup G := P GLn(C; N)

of the projective group P GLn(C) formed by matrices which commute with N, is an

algebraic completely integrable system, and, the Hamiltonian system (1.1) on the

space λN + SymC(n, N) is a generalized algebraically completely integrable system;

SymC(n, N) is the complexification of Sym(n, N), that is, the space of complex symmetric

matrices.

2 Algebraic Integrability: Case gln(C)

For the convenience of the reader we shall present shortly the known case gln(C) (see

[3, 7]). We shall use the following definitions (compare with [1, 2, 6, 8]).

Definition 2.1. Let h :M→ V be a (complex) completely integrable system, where the

Poisson manifold M is a nonsingular affine variety, V is an affine space, and h=
(h1, . . . , hs) is given by regular algebraic functions. We say that the system h : M→ V is

(i) an algebraically completely integrable system (a.c.i. system) if each generic

fiber of h is a Zariski open subset of an Abelian variety, on which the

Hamiltonian vector fields generated by hi are translation invariant

(ii) a generalized algebraically completely integrable system (generalized a.c.i.

system) if each generic fiber of h is a Zariski open subset of a commutative

algebraic group, on which the Hamiltonian vector fields generated by hi are

translation invariant. �

The system (1.1) is equivalent to the following Lax pair system with parameter

(see [4])
d

dt
(X + λN) = [X + λN, NX + XN + λN2]. (2.1)
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We follow [3, 7] (see also [2, 6, 10]). From now on all Hamiltonian systems are

complexified.

Let X(λ) := λN + X, where X ∈ gln(C) is an arbitrary matrix and Q(λ, z) :=
det(zIn − X(λ)) its characteristic polynomial. Denote by MN := λN + gln(C) = {X(λ) =
λN + X | X ∈ gln(C)} the affine space of all complex matrix polynomials of degree one

whose leading coefficient is the constant real skew-symmetric matrix N. To stress the

dependence on N and Q (both fixed), we denote the associated isospectral variety by MN
Q ,

that is,

MN
Q := {X(λ) ∈ MN | det(zIn − X(λ)) = Q(λ, z)}.

The plane algebraic curve (called a spectral curve), associated to each X(λ), namely,

ΓX(λ) := {(λ, z) ∈ C × C | det(zIn − X(λ)) = 0},

is preserved by the flow of (2.1); the coefficients of the characteristic polynomial Q(λ, z)

of X(λ) are polynomials which are constants of motion for the dynamics defined by

(2.1). Similarly, for each X(λ) the isospectral variety is preserved by the flow of (2.1).

Notice that the spectral curve and the isospectral variety depend on the values of the

constants of motion only (i.e., on the vector c = (qkl), where qkl is the coefficient of λkzl

in Q(λ, z)). Sometimes, one writes Γc instead of ΓX(λ). Notice that the spectral curve Γc

is nonsingular for generic values of c. Let Γ̄c be the compactification in the projective

plane P
2
C

of Γc. For generic values of c the projective curve Γ̄c is also nonsingular. This is

the case that we will consider.

The subgroup G := P GLn(C; N) of the projective group P GLn(C) formed by matri-

ces which commute with N is a symmetry group of the system (2.1). Moreover, since

X + λN commutes with its square, (2.1) can be written as the Lax equation with

parameter

d

dt
(X + λN) = [X2/λ, X + λN]. (2.2)

This Lax equation (2.2) for an arbitrary matrix X ∈ gln(C) was studied, for example,

in [3, 7].

Let V be the affine space of polynomials

Q(λ, z) = zn + s1(λ)zn−1 + · · · + sn(λ),
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where si(λ) are polynomials in λ of degree deg si ≤ i for all i = 1, . . . , n. Consider the map

h : MN → V,

which sends a matrix of MN to its characteristic polynomial (the components of the map

h are the coefficients of the characteristic polynomial). Since G acts freely and properly

(by conjugation) on the affine space MN , it follows that the quotient MN/G is a smooth

variety. Moreover, we have the commutative diagram

MN
h

��

q ����������
V

MN/G
h̃

�����������

where q : MN → MN/G is the quotient map and h̃ : MN/G → V is the map induced by h

(the action by conjugation preserves the characteristic polynomials).

Since G acts freely and properly on the isospectral variety MN
Q , it follows that

MN
Q can be considered as the total space of a holomorphic principal fiber bundle with

base space MN
Q/G, structural group G, and natural projection map

MN
Q −→ MN

Q/G.

Note that MN
Q is a fiber of h and MN

Q/G is a fiber of h̃.

Generically, the spectral curve Γc (where c is the vector of the coefficients of the

polynomial Q) is smooth. Then, the manifold MN
Q/G is bi-holomorphic to a Zariski open

subset of the usual Jacobian Jac(Γ̄c); see [3]. By [7, Theorem 2.1], the isospectral variety

MN
Q is smooth and bi-holomorphic to a Zariski open subset of the generalized Jacobian

variety Jac(Γ ′
c), where Γ ′

c is the singular curve obtained from Γ̄c by identifying its points

at infinity {P1, . . . , Pn} with a single point ∞ (for details, see [11]).

The generalized Jacobian Jac(Γ ′
c) is a noncompact commutative algebraic group

given by a nontrivial extension of the usual Jacobian Jac(Γ̄c) by the algebraic group

G = P GLn(C; N) ∼= (C∗)n−1, namely

0 −→ G −→ Jac(Γ ′
c)

Φ−→ Jac(Γ̄c) −→ 0. (2.3)

The generalized Jacobian Jac(Γ ′
c) can also be considered as total space of a holomorphic

principal fiber bundle with base space Jac(Γ̄c) and structure group G and has dimension

g + n− 1, where g is the genus of Γ̄c.
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Beauville [3] and Gavrilov [7] proved that the Hamiltonian vector fields generated

by the components of h̃, respectively of h, are translation invariant. We thus have the

following results.

Theorem 2.1 ([3]). For N having distinct eigenvalues, the system h̃ : MN/G → V is an

algebraically completely integrable system. �

Theorem 2.2 ([7]). For N having distinct eigenvalues, the system h : MN → V is a gener-

alized algebraically completely integrable system. �

3 Algebraic Integrability: Case SymC(n, N)

Let us now consider the case of the Lie subalgebra

(SymC(n, N), [ , ]N) ⊂ (gln(C), [ , ]N),

where gln(C) is endowed with the bracket [ , ]N (see [4]).

Let MN,Sym := λN + SymC(n, N) = {X(λ) := λN + X | X ∈ SymC(n, N)} be the affine

space of all complex matrix polynomials of degree one whose leading coefficient is the

constant real skew-symmetric matrix N. We denote the associated isospectral variety

by MN,Sym
Q , that is,

MN,Sym
Q := {X(λ) ∈ MN,Sym | det(zIn − X(λ)) = Q(λ, z)},

where Q(λ, z) is the characteristic polynomial of X(λ). We consider the generic case

when the completion of the plane curve given by Q = 0 is nonsingular.

We note that the affine subspace MN,Sym = λN + SymC(n, N) is invariant by the

automorphism (involution)

τ : λN + gln(C) → λN + gln(C),

given by τ(X(λ)) = XT(−λ). Indeed, we have

τ(X(λ)) = −λNT + XT = λN + X = X(λ),

since NT = −N and XT = X.
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Let N be a given real skew-symmetric matrix. For N invertible with distinct

eigenvalues (n:= 2p), choose an orthonormal basis of R
2p in which N is written as

[
0 V

−V 0

]
, (3.1)

where V is a real diagonal matrix whose entries are v1, . . . , vp.

For N having distinct eigenvalues and nullity one, that is, n:= 2p+ 1 and rank

N = 2p, choose an orthonormal basis of R
2p+1 in which N is written as

⎡
⎢⎢⎣

0 V 0

−V 0 0

0 0 0

⎤
⎥⎥⎦ , (3.2)

where V is a real diagonal matrix whose entries are v1, . . . , vp.

Now, we compute explicitly the subgroup G := P GLn(C; N) of the projective

group P GLn(C) formed by matrices which commute with N. In Lemma 3.1, we use the

form of N given in (3.1).

Lemma 3.1. Let n= 2p and N invertible. Then, the group GLn(C; N) of matrices which

commute with N is commutative and given by complex matrices P of the form

P =
[

A B

−B A

]
,

where A= diag(a1, . . . , ap) and B = diag(b1, . . . , bp) are diagonal matrices and det(P ) �= 0.

Finally, G := P GLn(C; N) = GLn(C; N)/C
×, also a commutative group. �

Proof. Write P in the form [
A B

C D

]
,

and impose the condition N P = P N. Recalling that N has the form (3.1), one gets the

equalities:

VC = −BV, V D = AV, V A= DV, V B = −C V.

A direct computation, using that V is diagonal and invertible, yields the result. �

Similarly, using the form of N given in (3.2), we get the following result.
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Lemma 3.2. Let n= 2p+ 1, rank N = 2p, and N has nullity one. Then, the group

GLn(C; N) of the matrices which commute with N is commutative and given by complex

matrices P1 of the form

P1 =

⎡
⎢⎢⎣

A B 0

−B A 0

0 0 α

⎤
⎥⎥⎦ ,

where A= diag(a1, . . . , ap) and B = diag(b1, . . . , bp) are diagonal matrices and det(P1) �= 0.

Finally, G := P GLn(C; N) = GLn(C; N)/C
×, also a commutative group. �

The affine subspace MN,Sym is not invariant by the action (by conjugation) of the

commutative group G. We shall construct a quotient of the group G, which will act by

conjugation on this affine subspace.

Firstly, remark that if n= 2p and T ∈ GLn(C; N) then

TTT = diag(d1, . . . , dp, d1, . . . , dp),

where dk = a2
k + b2

k, k= 1, . . . , p.

If n= 2p+ 1, then

TTT = diag(d1, . . . , dp, d1, . . . , dp, α
2).

Let G1 be the subgroup of the group G generated by the matrices of the

form diag(d1, . . . , dp, d1, . . . , dp), where dk ∈ C
×, k= 1, . . . , p, if n= 2p and of the form

diag(d1, . . . , dp, d1, . . . , dp, α), where dk ∈ C
×, k= 1, . . . , p, and α ∈ C

×, if n= 2p+ 1. Denote

the quotient G/G1 by G0 and observe that this quotient group G0 is isomorphic to the

subgroup of orthogonal matrices (TTT = In) of the group GLn(C; N).

Since G0 acts freely and properly on the isospectral variety MN,Sym
Q , it follows

that MN,Sym
Q is the total space of a holomorphic principal bundle with base space

MN,Sym
Q /G0, structural group G0, and natural projection map

φ : MN,Sym
Q −→ MN,Sym

Q /G0.

Recall that the bi-holomorphic map l : MN
Q/G → U , where U is a Zariski open

subset of the usual Jacobian Jac(Γ̄c) (see [3, 7]) is given by the eigenvector map. More

precisely, let f(λ, z) be a normalized eigenvector of the matrix X(λ), where (λ, z) is a

point on the spectral curve Γ̄c, with eigenvalue z. Then, it defines a line subbundle of

the trivial vector bundle Γ̄c × C
n, by taking at each point (λ, z) of the spectral curve, the
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line along the normalized eigenvector f(λ, z). Denote its dual by L; then l(X(λ)) = L (see

[7, p. 495]).

By [7, Theorem 2.1], the isospectral variety MN
Q is smooth and bi-holomorphic

to a Zariski open subset of the generalized Jacobian variety Jac(Γ ′
c), where Γ ′

c is the

singular curve obtained from Γ̄c by identifying its points at infinity {P1, . . . , Pn} with a

single point ∞. The bi-holomorphic map l ′ : MN
Q → U ′, where U ′ is a Zariski open subset

of the generalized Jacobian variety, is given by a similar eigenvector map (see [7]).

Since (X + λN)T = X − λN, we have Q(−λ, z) = Q(λ, z), hence there is an

involution
τ : Γ̄c → Γ̄c

of the spectral curve defined by τ(λ, z) = (−λ, z). The quotient smooth curve C1 := Γ̄c/τ

has a double covering Γ̄c → C1 and associated to this double covering is the Prym variety

Prym(Γ̄c/C1), with the property that Jac(Γ̄c) is isogenous to (see [4])

Jac(C1) × Prym(Γ̄c/C1).

We have the following key result.

Lemma 3.3. The natural map j : MN,Sym
Q /G0 → MN

Q/G induced by the inclusion MN,Sym
Q ↪→

MN
Q on the quotients is injective. The map l ◦ j : MN,Sym

Q /G0 → Prym(Γ̄c/C1) is injective

and maps bi-holomorphically MN,Sym
Q /G0 onto an open set of Prym(Γ̄c/C1). �

Proof. The cases n= 2p and n= 2p+ 1 are similar. The proof consists of several steps.

In the third step, the two cases need to be considered separately.

Step 1 : The map j is injective. It is easily verified that the inclusion MN,Sym
Q ↪→

MN
Q drops to a map on the quotients j : MN,Sym

Q /G0 → MN
Q/G.

Take two symmetric matrices X1, X2 such that the classes of the matrices λN +
X1, λN + X2 in MN,Sym

Q /G0 have the same image in MN
Q/G by the map j, that is, there

exists a matrix T ∈ G with T X2 = X1T . Then T has the form

[
A B

−B A

]
,

where A= diag(a1, . . . , ap) and B = diag(b1, . . . , bp) are diagonal matrices, and X1, X2 have

the form [
Ui Wi

−WT
i Qi

]
,

i = 1, 2, with UT
i = Ui and QT

i = Qi.
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A direct computation shows that the matrix

F := (A2 + B2)U2

is symmetric. Denoting dk := a2
k + b2

k, k= 1, . . . , p, this relation implies

d1 = d2 = · · · = dp =: s2.

Thus, the matrix T ′ := (1/s)T ∈ G0 and has the property

T ′X2 = X1T ′,

which shows that the map j is injective.

Step 2 : If X is a symmetric matrix, then l maps the class of λN + X in MN
Q/G to

an element of Prym(Γ̄c/C1), where C1 := Γ̄c/τ . For this purpose, we shall use [10, Sections

8 and 9].

As in [10, Section 8], we write for the equivalent Lax equations with parameter

(2.3) and (2.4):

M+ := NX + XN + λN2, M− := −X2/λ,

and we get

M := M+ − M− = (X + λN)2/λ.

Since [X + λN, M] = 0, it follows that the eigenvectors of X + λN are the also eigenvectors

of M (see [10, Theorem 8.3, p. 177]). Now, since the involution τ acts on M by

τ(M) = −M,

it follows for any eigenvalue μ of M, we have μ(τ(P )) = −μ(P ) for any point P on the

spectral curve Γc (see [10, p. 181]). By [10, Proposition 9.3], it follows that the line bundle,

which is the image of X + λN by the map l, belongs to the anti-invariant part of the

Jacobian Jac(Γ̄c), that is, it belongs to the Prym variety Prym(Γ̄c/C1).

Step 3 : dim(MN,Sym
Q /G0) = dim((Prym(Γ̄c/C1)). If n= 2p we have the following

computation of the dimensions of our manifolds. The dimension of the Jacobian Jac(Γ̄c)

is the genus g of the spectral curve, which is

g = (n− 1)(n− 2)/2 = 2p2 − 3p+ 1.
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By the Riemann–Hurwitz formula, the curve C1 has genus g1 = (p− 1)2 (see [4, p. 431]). It

follows that

dim(Prym(Γ̄c/C1)) = g − g1 = p2 − p.

Now, since a symmetric matrix has 2p2 + p entries and the number of nonzero

coefficients of the characteristic polynomials of a symmetric matrix is p2 + p, it follows

that

dim(MN,Sym
Q ) = (2p2 + p) − (p2 + p) = p2,

and

dim(MN,Sym
Q /G0) = p2 − p= dim(Prym(Γ̄c/C1)).

Similarly, if n= 2p+ 1 we get, g = 2p2 − p, g1 = p2 − p, and

dim(Prym(Γ̄c/C1)) = g − g1 = p2.

Thus

dim(MN,Sym
Q ) = p2 + p

and hence

dim(MN,Sym
Q /G0) = p2 = dim(Prym(Γ̄c/C1)).

Step 4 : j ◦ l : MN,Sym
Q → Prym(Γ̄c/C1) maps bi-holomorphically MN,Sym

Q /G0 onto an

open set of Prym(Γ̄c/C1). By the first two steps, ( j ◦ l)(MN,Sym
Q ) ⊂ Prym(Γ̄c/C1) and j ◦ l is

injective. By Step 3, dim(MN,Sym
Q /G0) = dim(Prym(Γ̄c/C1)). Thus [3, Theorem 1.4] yields

the result. �

Remark. The fact that the Hamiltonian vector fields are translation invariant follows by

the results of Beauville [3] and Gavrilov [7] (see also [10]). �

The previous lemma immediately implies the following result.

Theorem 3.1. For N having distinct eigenvalues, the system h̃0 : MN,Sym/G0 → VSym is an

algebraically completely integrable system. �

Here, VSym consists of polynomials in V which have only even degrees in λ.
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The exact sequence (2.3) gives the following exact sequence of commutative

groups:

0 −→ G
i−→ Φ−1(Prym(Γ̄c/C1)) −→ Prym(Γ̄c/C1) −→ 0. (3.3)

Let β : G → G0 be the quotient map and

η : Ext1(Prym(Γ̄c/C1), G) −→ Ext1(Prym(Γ̄c/C1), G0)

the natural map of extensions induced by β.

Now we know that the extension (3.3) gives us the extension

η(Φ−1(Prym(Γ̄c/C1)))

of commutative groups

0 −→ G0 −→ E −→ Prym(Γ̄c/C1) −→ 0, (3.4)

where

E := G0 ⊕ Φ−1(Prym(Γ̄c/C1))/K,

and

K := {(−β(g), i(g)) | g ∈ G}.

Applying the result of Gavrilov [7] and a similar computation of dimensions, we

get the following result.

Theorem 3.2. For N having distinct eigenvalues, the system h : MN,Sym → VSym is a gen-

eralized algebraically completely integrable system. �

Here, the generic fiber MN,Sym
Q is bi-holomorphic to a Zariski open set of the com-

mutative algebraic group E .
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