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Abstract

We present a Petrov-Galerkin reduced basis (RB) approximation for the parametrized Stokes equation. Our
method, which relies on a fixed solution space and a parameter-dependent test space, is shown to be stable
(in the sense of Babuška) and algebraically stable (a bound on the condition number of the online system can
be established). Compared to other stable RB methods that can also be shown to be algebraically stable, our
approach has a significantly smaller online time cost and general applicability to linear non-coercive problems
without assuming a saddle-point structure.

Résumé

Une méthode d’éléments finis de type Petrov-Galerkin pour l’approximation en base réduite du
problème de Stokes. Nous présentons une méthode d’éléments finis de type Petrov-Galerkin pour l’approxima-
tion en “bases réduites” du problème de Stokes. La stability de notre méthode est établie à l’aide de la théorie
inf-sup de Babuška et nous prouvons une borne sur la condition numérique de la matrice du système linéaire “en
ligne”. Comparée aux méthodes de types bases réduites existantes qui sont à la fois stable et dont la condition
numérique du système linéaire en ligne peut être controlée, notre méthode a un coût en ligne considerablement
plus faible et est applicable à des formulations générales non-coercives ne nécessitant pas de structure de type
point-selle.

Version française abrégée

Les équations aux dérivées partielles qui dépendent de paramètres sont utilisées dans beaucoup d’ap-
plications. Dans cette Note, nous nous intéressons à l’équation de Stokes posée dans un domaine dont
la géométrie dépend d’un ou de plusieurs paramètres. L’idée est alors de sélectionner (par exemple par
un algorithme glouton) des paramètres représentatifs de la géométrie et de résoudre l’équation de Stokes
de façon précise pour ce jeux de paramètres. Ces calculs sont effectués dans une étape “hors ligne”. La
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résolution de l’équation pour de nouveaux paramètres lors d’une application particulière (phase “en ligne”)
sera alors obtenue de façon beaucoup moins couteuse en “interpolant” la base de solutions préalablement
calculées (pour plus de détails voir par exemple [2, 5]).

Pour que de telles méthodes soient efficace il est important que le système linéaire en ligne soit de
dimension aussi petite que possible tout en étant bien conditionné (algébriquement stable). Or pour les
méthodes les plus efficaces rapportées dans la littérature (voir [5, Paragraphe 4]), la stabilité ne peut pas
être établie.

Dans cette Note, nous proposons une méthode de base réduite pour le problème de Stokes dont la
stabilité (au sens d’une condition inf-sup) et la stabilité algébrique peuvent être établies et dont la taille
du système linéaire en ligne est comparable aux méthodes les plus efficaces [5]. De plus, notre méthode est
applicable à des formulations générales non-coercives ne nécessitant pas de structure de type point-selle.

1. Introduction

Consider a weak formulation of a differential equation and an output of interest (function of the solution)
that depend on a parameter. For any allowed parameter value, one can numerically approximate the
solution (e.g., using finite elements) and then compute an approximation of the output. A repeated
evaluation of the output of interest for different parameters (needed for example in optimization) can
become prohibitively time-consuming. Reduced basis (RB) methods can be applied to speed up this
evaluation by projecting the problem to a low-dimensional RB space (see [6] for a general review). This
RB space is spanned by solutions (or other related functions) computed for a sample set of parameter
points. Efficiency is achieved via splitting of the computation into two parts. In the offline part, performed
only once, the RB space is constructed. In the online part, which can be performed repeatedly and for
any parameter value, precomputed values from the offline part are used for a fast evaluation of the output
of interest and a posteriori error estimates.

In this paper we are interested in the parametrized Stokes problems solved by the RB method. Effi-
ciency and reliability of the RB approximation depend on two stability properties of the reduction: the
approximation stability (inf-sup condition in the reduced problem) and the algebraic stability (bounded
condition number of the reduced linear system). For a recent review of the RB method for the Stokes
equation we refer to [2, 5], where it is shown how a saddle-point structure can be exploited to derive RB
methods for the Stokes equation. The common principle of these methods is to build the RB space with
separate velocity and pressure samples and then enrich the velocity space to achieve the inf-sup stability
of the reduction in the sense of Brezzi. These methods are mentioned in greater detail at the end of
Section 2.

In this paper we treat the Stokes equation as a non-coercive problem with no structural assumptions
(as a saddle-point structure). Such an approach is indeed useful, e.g., when we have a nested saddle-
point structure, where additional Lagrange multipliers are used to enforce boundary conditions [1]. One
can then completely abandon the Brezzi stability theory and concentrate solely on the inf-sup condition
in the sense of Babuška. We present an a priori stable RB method for the Stokes equation that uses
a Petrov-Galerkin projection with a fixed solution space and a parameter-dependent test space. This
approach has several advantages:

– a priori (approximation and algebraic) stability,
– size of the online linear system equal to the number of selected parameter samples,
– simple description (allowing black-box usage) that doesn’t assume any structure (e.g., saddle-point).

We note that RB methods for parametrized linear non-coercive problems have been proposed in [4] but
have not yet been derived for the Stokes equation.
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The article is structured as follows. In Section 2 we describe the transformation of the Stokes equation
from a parametrized domain to a reference domain. Section 3 presents the mentioned RB method for the
Stokes equation and we conclude by a numerical experiment in Section 4.

2. Parametrized Stokes equation

Let d ∈ {2, 3} and Ω ⊂ Rd be an open connected domain with Lipschitz boundary ∂Ω divided into a
Dirichlet part ΓD and a Neumann part ΓN. Assume that both ΓD and ΓN are non-empty and define a
velocity space V = {v ∈ H1(Ω)d : v|ΓD

≡ 0} and a pressure space Q = L2(Ω). For the sake of simplicity
assume that a constant forcing term f ∈ Rd is given and consider a weak formulation of the well-posed
homogeneous Stokes equation in Ω. Find u ∈ V and p ∈ Q such that∫

Ω

∇u : ∇v dx−
∫

Ω

p(div v) dx =

∫
Ω

f · v ∀v ∈ V,

−
∫

Ω

q(div u) dx = 0 ∀q ∈ Q,
(1)

where ∇u : ∇v =
∑n
i=1∇ui · ∇vi.

Let us call Ω the reference domain and consider a class of Stokes problems in domains Ωµ ⊂ Rd (with
∂Ωµ = ΓµD ∪ ΓµN) parametrized by µ ∈ D, where D ⊂ RP is a parametric space and P ∈ N. Instead of
studying (1) in a different domain Ωµ for every µ ∈ D, we map the Stokes equation from Ωµ to Ω via
change of variables. Assume that a mapping ϕ : Ω × D → Rd is known such that for every µ ∈ D the
map ϕ(·;µ) : Ω → Ω

µ
is a homeomorphism with ϕ(ΓD;µ) = ΓµD. Moreover, let R ∈ N and assume that

{Ωr}Rr=1 is a disjoint decomposition of Ω such that for r ∈ {1, . . . , R} the map ϕ(·;µ)|Ωr is affine, that is,
there are Cr : D → Rd and Gr : D → Rd×d such that ϕ(x;µ)|Ωr = Gr(µ)x + Cr(µ). Taking (1) in the
domain Ωµ and using the change of variables xnew = ϕ(xold;µ)−1 we obtain the following formulation:
find u(µ) ∈ V and p(µ) ∈ Q such that

a(u(µ),v;µ) + b(v, p(µ);µ) = F (v;µ) ∀v ∈ V,

b(u(µ), q;µ) = 0 ∀q ∈ Q,
(2)

where the parametric bilinear forms a : V × V × D → R and b : V × Q × D → R and the parametric
linear form F : V ×D → R can be expressed as

a(w,v;µ) =

R∑
r=1

d∑
i,j=1

νrij(µ)

∫
Ωr

∂w

∂xi
· ∂v

∂xj
dx, νr(µ) = det(Gr(µ))Gr(µ)−1Gr(µ)−T ,

b(v, q;µ) = −
R∑
r=1

d∑
i,j=1

θrij(µ)

∫
Ωr

q
∂vi
∂xj

dx, θr(µ) = det(Gr(µ))Gr(µ)−T ,

F (v;µ) =

R∑
r=1

ΘF
r (µ)

∫
Ωr

f · v dx, ΘF
r (µ) = det(Gr(µ)).

(3)

The problem (2) together with the affine decomposition (3) are instrumental to the RB methods for
Stokes problems. Standard RB methods for (2), as documented in [2,5], proceed as follows. Given N ∈ N
parameter sample points µ1, . . . , µN ∈ D, the pressure RB space is set to span{p(µn), 1 ≤ n ≤ N}.
The velocity RB space includes span{u(µn), 1 ≤ n ≤ N} but it is further enriched to achieve good
approximation and stability. We mention two exemplary ways for this enrichment:
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(i) adding N more basis functions to the velocity RB space by taking the so-called pressure supremizers,
evaluated at the parameter values of the pressure samples. An online linear system of size 3N is
obtained without a priori guarantee of its stability.

(ii) adding NQb more basis functions to the velocity RB space by taking the so-called partial pressure
supremizers, where Qb is the number of terms in an affine decomposition of b(·, ·;µ). Here one can
show approximation and algebraic stability but the online time cost can become very expensive,
since a dense linear system of size (Qb + 2)N needs to be solved.

In the following section we describe a RB method for the Stokes equation that has online time cost very
close to the fast method (i) and a priori stability properties as the method (ii).

3. A Petrov-Galerking RB method for the Stokes equation

Let X = V ×Q and denote by (·, ·)X a scalar product on X and let ‖ · ‖X be the corresponding norm.
Consider a conformal simplicial mesh of Ω and a stable pair of velocity and pressure finite elements, e.g.,
the P2/P1 Taylor-Hood elements. Let N ∈ N be the number of degrees of freedom of this discretization
and denote the (product) finite element space by XN ⊂ X. We write an approximation to (2) as a single
symmetric non-coercive problem: find U(µ) ∈ XN such that

A(U(µ),V;µ) = F (V;µ) ∀V ∈ XN , (4)

where the bilinear form A(·, ·;µ) : X ×X → R is defined by A((u, p), (v, q);µ) = a(u,v;µ) + b(v, p;µ) +
b(u, q;µ). The form A(·, ·;µ) and the forcing term F (·;µ) : X → R are affine in the parameter. Indeed,

we have A(W,V;µ) =
∑QA
q=1 ΘA

q (µ)Aq(W,V), where (3) ensures the existence bilinear forms Aq : X ×
X → R and functions ΘA

q : D → R for q ∈ {1, . . . , QA}, where QA ≤ 3Rd2. Similarly, F (V;µ) =∑R
q=1 ΘF

q (µ)F q(V), where functionals F q : X → R are easily deductible from (3).
Notice that (4) does not assume any special structure (as saddle-point). We assume that (4) is uniformly

continuous, i.e., there exists γmax ∈ R such that γ(µ) = ‖A(·, ·;µ)‖ ≤ γmax for every µ ∈ D and that the
following uniform inf-sup condition holds: there is βmin > 0 such that

βN (µ) = inf
W∈XN

sup
V∈XN

A(W,V;µ)

‖W‖X‖V‖X
≥ βmin ∀µ ∈ D.

We next describe the RB spaces and a low-dimensional projection of (4). Let µ1, . . . , µN ∈ D be N ∈ N
sample points and let

XN = span{U(µn), 1 ≤ n ≤ N}
be the solution RB space. Stability of the RB approximation is achieved by using a Petrov-Galerking
projection, where the test space is selected as an image of the so-called supremizer operator Tµ : XN →
XN applied on XN . For any W ∈ XN let Tµ(W) ∈ XN be such that (Tµ(W),V)X = A(W,V;µ) for
every V ∈ XN . Define the parameter-dependent test space

XN,µ = span{Tµ(U(µn)), 1 ≤ n ≤ N}.

The RB projection of (4) then reads: find UN (µ) ∈ XN such that

A(UN (µ),V;µ) = F (V;µ) ∀V ∈ XN,µ. (5)

Lemma 3.1 (approximation stability) The formulation (5) preserves the inf-sup stability, that is,

βN (µ) = inf
W∈XN

sup
V∈XN,µ

A(W,V;µ)

‖W‖X‖V‖X
≥ βN (µ).
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The proof is elementary. Using XN = Tµ(XN ) and A(W,V;µ) = (Tµ(W),V)X ≤ ‖Tµ(W)‖X‖V‖X ,
where equality occurs for V = Tµ(W), we get

βN (µ) = inf
W∈XN

‖Tµ(W)‖X
‖W‖X

≥ inf
W∈XN

‖Tµ(W)‖X
‖W‖X

= βN (µ).

Having defined the RB problem (5), we are left with a description of the offline-online decoupling, where
the goal is to obtain an online time cost independent of N . This is rather technical but also standard,
the main difficulty being how to deal with the parameter-dependent test spaces.

Let ζ1, . . . , ζN be an orthonormal basis of XN . Notice that Tµ(W) =
∑QA
q=1 T

q(W), where T q : XN →
XN is a linear operator defined as a solution to the problem: find T q(W) ∈ XN such that (T q(W),V)X =

Aq(W,V) for every V ∈ XN . Hence, the functions Tµ(ζn) =
∑QA
q=1 ΘA

q (µ)T q(ζn) for 1 ≤ n ≤ N span

XN,µ. Writing the RB solution as a linear combination of basis functions UN (µ) =
∑N
n=1 Un(µ)ζn and

similarly expressing the test functions, we obtain the online reduced system A
N

(µ)U(µ) = F
N

(µ) with

the matrix A
N

(µ) ∈ RN×N and the right-hand side F
N

(µ) ∈ RN given by

A
N

nm(µ) =

QA∑
q,r=1

ΘA
q (µ)ΘA

r (µ)Aq(ζn, T
r(ζm)), F

N

n (µ) =

QA∑
q=1

R∑
r=1

ΘA
q (µ)ΘF

r (µ)F r(T q(ζn)). (6)

The underlined quantities in (6) can be precomputed in the offline part and are obtained by a Greedy
procedure controlled by appropriate a posteriori error estimators mentioned below. Notice that the size
of the online linear system (6) is only N .

Lemma 3.2 (algebraic stability) The condition number of A
N

(µ) is at most γ(µ)2/βN (µ)2.
Proof. Using the Cauchy-Schwartz inequality one obtains γ(µ)‖W‖X ≥ ‖Tµ(W)‖X ≥ βN (µ)‖W‖X for

every W ∈ XN . Then, using the orthonormality of {ζn}Nn=1, we get βN (µ)2|W |2 ≤ A
N

(µ)W ·W ≤
γ(µ)2|W |2 for any W ∈ RN . The symmetry of A

N
(µ) then concludes the proof.

A posteriori error evaluation and the greedy construction of the RB spaces uses these inequalities:

‖U(µ)−UN (µ)‖X ≤
‖RNpr(·;µ)‖(XN )′

βN (µ)
, |F (U(µ);µ)− F (UN (µ);µ)| ≤

‖RNpr(·;µ)‖2(XN )′

βN (µ)
, (7)

where RNpr(W;µ) = F (W;µ)−A(W,UN (µ);µ) is the (primal) residual.

General outputs of Interest. The right inequality in (7) shows that the loading F (U(µ);µ), also
called the compliant output, can be estimated with improved (quadratic) accuracy. Consider now a
general output of interest S(µ) = L(U(µ);µ), where L : X × D → R is affine in the parameter. To
improve accuracy, we augment the system (4) with the dual problem: find Ψ(µ) ∈ XN such that

A(W,Ψ(µ);µ) = −L(W;µ), ∀W ∈ XN .

We independently use the same RB method (Lemma 3.1 and 3.2 are still valid) to obtain a dual RB

solution space XM
du and test space XM,µ

du based on a sample set µ1
du, . . . , µ

M
du ∈ D, constructed in an offline

stage similarly as XN and XN,µ. Using the RB solution ΨM (µ) ∈ XM
du we define an output estimate

SN.M (µ) = L(UN (µ);µ)−RNpr(Ψ
M (µ);µ), which satisfies

|S(µ)− SN,M (µ)| ≤ βN (µ)−1‖RNpr(·;µ)‖(XN )′‖RMdu(·;µ)‖(XN )′ ,

where the dual residual is RMdu(W;µ) = −L(W;µ) − A(W,ΨM (µ);µ). The evaluation of the output
of interest and of the error bounds can be also split into an offline and an online part [4]. The inf-sup
constants βN (µ) can be estimated as in [6].
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4. Numerical Example

We apply the proposed RB method to a contracting channel problem. Define the parameter-dependent
domain by Ωµ = ((−1, µ2))× (−µ1, µ1)) ∪ ((µ2, 1)× (−µ3, µ3)), where µ ∈ D = (0.5, 0.8)× (−0.3, 0.3)×
(0.2, 0.3). We consider Dirichlet boundary conditions, except for the periodic connection between {−1}×
(−µ3, µ3) and {1}× (−µ3, µ3). Primal-dual formulation is used here. Finally, let f ≡ (1, 0) and define the
output of interest as

∫ µ3

−µ3
u1(µ)(µ2, y) dy, which is the discharge through the contraction interface. We

reduced the affine decompositions to QA = 14 and R = 4 and ran the successive constraints method [3]
to obtain a lower bound of the inf-sup constant 0 < βSCM(µ) ≤ βN (µ). We observed an exponential
decay during the RB greedy algorithm, which is depicted in Figure 1 along with a geometry sketch and
a sample solution.

u1(µ)

µ = [0.8, 0, 0.2]

µ1

1 + µ2
1− µ2

µ3

Ωµ

periodic output 0 20 40 60

100

10−1

10−2

10−3

10−4

10−5

N,M

re
si

d
u

al

maxµ∈Ξ ∆N (µ)

maxµ∈Ξ ∆M (µ)

Figure 1. Numerical example from Section 4: sample plot of the horizontal velocity component (left), geometry varia-

tion (middle), and the convergence of greedy algorithm (right), where Ξ ⊂ D is the training set with 10 000 points and

∆N = βSCM(µ)−1‖RNpr(·;µ)‖(XN )′ and ∆M = βSCM(µ)−1‖RMdu(·;µ)‖(XN )′ .
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