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ABSTRACT: We demonstrate the directional emission of
individual GaAs nanowires by coupling this emission to Yagi-
Uda optical antennas. In particular, we have replaced the
resonant metallic feed element of the nanoantenna by an
individual nanowire and measured with the microscope the
photoluminescence of the hybrid structure as a function of the
emission angle by imaging the back focal plane of the
objective. The precise tuning of the dimensions of the metallic
elements of the nanoantenna leads to a strong variation of the
directionality of the emission, being able to change this
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emission from backward to forward. We explain the mechanism leading to this directional emission by finite difference time
domain simulations of the scattering efficiency of the antenna elements. These results cast the first step toward the realization of
electrically driven optical Yagi-Uda antenna emitters based on semiconductors nanowires.
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B ecause of the unique optical properties of semiconductor
nanowires they are an excellent platform for optoelec-
tronic and photonic applications.'" ™ The possibility of
controlling their composition, geometry, and crystallographic
morphology opens up a great freedom in designing different
devices with desired properties.* In recent years, several studies
have been realized on optically’ and electrically® driven
nanolasers, solar cells,” > optical switches,'® and single photon
sources coupled to optical waveguides.'"'> The photo-
luminescence properties of nanowires and the coupling of
their emission to leaky and guided modes have been studied
extensively.”>™"” In addition, the coupling of nanowires with
plasmonic nanostructures modifies their optical properties.'® >
In paralle], in the past decade many efforts have been done to
enhance the efficiency and modify the direction of the emission
of quantum emitters including quantum dots and fluorescent
molecules.”' ~*° Yagi-Uda optical antennas are an example of a
structure showing a pronounced directionality of the
emission.”*?*™" In this system, the emission of a single
quantum emitter couples to the antenna feed element, which is
a metallic nanorod acting as a half-wavelength dipole
nanoantenna. The permittivity of noble metals, including Au,
Ag, and Al, and the size of the nanorods leads to plasmonic
resonances in the visible range of the electromagnetic spectrum.
These resonances modify the spontaneous emission rate of
nearby emitters due to the change of the local density of optical
states.®> Subsequently, the scattering of the feed element
emission with the antenna elements and the interference of this
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scattered radiation in the far-field leads to a strong directional
emission. This emission can be controlled by the resonant
response of the elements forming the Yagi-Uda antenna and
their spacing.

In this Letter, we demonstrate a hybrid semiconductor—
metal Yagi-Uda antenna. This hybrid system is realized by
replacing the resonant metallic feed element of the Yagi-Uda by
a nonresonant semiconductor nanowire. As we show, the
nonresonant emission from the nanowire is not a limitation for
the strong directional emission of the Yagi-Uda antenna. The
measurements have been performed on GaAs nanowires using
a Fourier microscope, that is, a microscope that images the
reciprocal space or the angular distribution of the emission. To
demonstrate the strong dependence of the emission with the
antenna parameters, we have fabricated two devices with
different dimensions to direct the emission in opposite
directions. The mechanism leading to the directional emission
is studied by means of the finite difference time domain
(FDTD) method and explained in terms of the scattering
efficiencies of the antenna elements. The results of this Letter
can be exploited for the development of electronically driven
optical Yagi-Uda antennas for directional single photon
emission. The schematic representation of the nanowire—
Yagi-Uda hybrid system is shown in Figure la. The antenna is
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Figure 1. (a) Schematic representation of an hybrid nanowire—plasmonic Yagi-Uda antenna. The nanowire is represented by the long red structure,
while the plasmonic reflector and directors are represented by the yellow rods. All structures are fabricated on silica substrates. (b,c) SEM images of
the hybrid nanowire-Yagi-Uda optical antennas. (b) Corresponds to YU17S with the reflector length of 175 nm and (c) to YU300 with the reflector

length of 300 nm.
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Figure 2. (a) Photoluminescence spectrum of a GaAs nanowire with diameter of 70 + S nm. The SEM image of the nanowire on the silica substrate
is shown in the inset of panel (a). The dotted lines indicate the bandwidth of a filter used to collect only the nanowire emission in the Fourier
measurements. (b) Radiation pattern of a GaAs nanowire in Fourier space. A relatively homogeneous emission across the Fourier plane can be seen.
The light gray circle represents the collection angle of the objective with a numerical aperture of 0.95. (c) Simulation of the radiation pattern of a
GaAs nanowire on a silica substrate. The simulated emission is normalized by its maximum value.

formed by a GaAs nanowire (red bar in Figure la) acting as
feed element of the emission; three metal rods acting as
directors, and a bigger metal rod on the opposite side of the
nanowire acting as reflector. The role of the directors is to
beam the emission of reflector—nanowire pair into smaller solid
angles toward their side. This solid angle is determined by the
number of directors. Hybrid Yagi-Uda antennas were fabricated
by the procedure explained in detail in Methods. Scanning
electron microscopy (SEM) images of the two investigated
antennas are shown in Figure 1b,c. The main difference
between the antennas are the length of the reflectors and the
distance between the elements. Detailed information on the
dimensions of the antennas is available in Methods. We name
these antennas as YU17S (Figure 1b) and YU300 (Figure 1lc)
in reference to the length of their directors, which are 175 and
300 nm, respectively. Note that the distance between the
semiconductor nanowire and the metallic rods is relatively large
(>100 nm). Therefore, we do not expect to have any strong
modification of the luminescence decay rate in this
system. 212228

We have used Fourier microscopy to measure the
directionality of the emission from the hybrid Yagi-Uda.*
The schematic representation of the setup is shown in Figure
S1 (Supporting Information). The nanowire is excited with a
focused beam (fwhm ~650 nm) from a continuous wave laser
diode (4 = 785 nm) by means of a 100X objective with a
numerical aperture of 0.95. The illuminated power for all
experiments is kept constant and equal to 25 mW. The
photoluminescence is collected by the same objective and
decomposed on the back focal plane of the objective in its plane
wave components, each with a defined wave vector. This plane
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is imaged by the Fourier lens located at the distance 2f, where f
is its focal length. A charge-coupled device (CCD) camera is
positioned at the distance 2f from the Fourier lens to obtain the
image of the back focal plane of the objective. To detect only
the emission of GaAs nanowires and to filter out the scattered
light from the excitation laser, a band-pass filter, 880 + 20 nm,
followed by a notch filter at 785 nm were placed in front of the
CCD camera.

The photoluminescence spectrum of a bare GaAs nanowire
at room temperature is shown in Figure 2a. The peaked
emission at A ~ 870 nm is characteristic of GaAs nanowires.
The SEM image of this nanowire is displayed in the inset of
Figure 2a. The Fourier emission pattern obtained from the bare
nanowire is shown in Figure 2b. The Fourier image represents
the measurement of intensity in Cts/s in color scale as a
function of the components of the emission wave vector in the
plane of the sample (k,, k,) normalized by k, = 277/4. The light
gray circle in the figure indicates the acceptance angle of the
objective with a numerical aperture of 0.95. This emission
exhibits centrosymmetric radiation pattern. The FDTD
simulation of the radiation pattern shown in Figure 2c, and
described in Methods, is in good agreement with the
measurement.

To understand the physics leading to the radiation pattern
shown in Figure 2, we have calculated the dispersion of the
guided and leaky modes supported by an infinitely long
cylinder embedded in homogeneous medium** (see the Figure
S2 in the Supporting Information). The fundamental mode
(HE,,) is the only guided mode that is supported by GaAs
nanowires with a diameter of 70 nm. However, the coupling
efficiency of the nanowire emission to this mode is low due to
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Figure 3. (a) Radiation pattern measurement of YU300. Most of the radiation is directed toward the reflector (right direction). (b) Simulation of the
normalized radiation pattern of YU300. (c) Measurement of the radiation pattern from YU175. Most of the emission is directed toward the reflector
(left direction). (d) Simulated radiation pattern of YU175 normalized by its maximum.

the mode profile extending mainly in the surrounding
medium.'” Therefore, most of the emission leaks out of the
nanowire close the region where the nanowire is excited.'®
Hence, the far-field radiation pattern of the horizontal nanowire
becomes highly nondirectional as shown in Figure 2b. This
important characteristic facilitates the coupling of the emission
from the nanowire to the metallic elements of the Yagi-Uda
antenna.

Figure 3a shows the measurement of the radiation pattern of
YU300. A large fraction of the radiation is directed toward the
forward direction (the k, > O direction), that is, the
directionality of the emission is toward the side of the directors
of the Yagi-Uda antenna. Furthermore, a strong beaming that
confines the emission in the range of —0.4 < k,/ky < 0.4 can be
seen. The FDTD simulation of the radiation pattern of this
antenna is shown in Figure 3b and confirms the measurements
with an excellent agreement. The effect of the reflector length
on the directionality of the antenna emission is experimentally
shown in Figure 3c. By decreasing the length of the reflector
element to 175 nm in YU17S, the emission points toward the
backward direction, that is, the k, < 0 direction. Moreover, a
weaker directionality and beaming of the emission are obtained
in this device.

One criterion in the assessment of the antenna performance
is the front-to-back emission ratio (F/B). This factor is defined
as the ratio between the emission intensity along the radiation
direction defined by the directors (k, > 0 in our antenna) and
the intensity at the opposite direction. The F/B ratio for
YU300 determined at k,/k, = 0.83, that is, the wave vector of
maximum emission, is 1.8 for the experiment and 4 in the
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simulation. The difference between the experimental and
theoretical F/B values can be attributed to the background
intensity in the far-field radiation pattern originating from the
excitation of the nanowire. As discussed in Methods, to
simulate the radiation pattern of the devices a single electrical
dipole is placed in the middle of the nanowire, oriented along
its long axis.>>*® Consequently, a very localized excitation of
the emission is considered for the simulations. However, in
experiments the nanowire is excited by a diffraction-limited
focused laser spot. This illumination excites regions of the
nanowire relatively far from the Yagi-Uda elements and
introduces a background intensity in the directional emission
pattern. Another source that can lead to the background
emission is the excitons diffusion along the nanowire. Typical
exciton diffusion length for these type of GaAs nanowires is <1
um.*” This is comparable with the size of the excitation beam.
Therefore, it is not possible to distinguish from the measure-
ments what the origin of the emission background is. However,
this background could be significantely reduced if embedded
heterostructures or quantum dots are used as the emission
source. For YU17S, the F/B ratios defined at the same k,/k; as
for YU300 are 0.48 (experiment) and 0.62 (simulation). These
F/B ratios smaller than 1 indicate beaming of the emission
along the wrong direction. The response of YU17S is thus
dominated by the large scattering efficiency of the reflector,
resulting for its resonant behavior at the nanowire emission
wavelength, and the directors do not have a significant
influence on the emission directionality.

In order to give a simple description in the mechanism
leading to the pronouncedly different directionality of the
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Figure 4. Numerical simulations of the scattering efficiency of Au rods with a height of S0 nm and a width of 60 nm on a silica substrate. (a)
Simulation of two rods with lengths of 130 and 300 nm representing the directors and reflector of YU300. (b) As in (a) but for rods with a length of
130 and 175 nm representing the directors and reflector of YU17S, respectively. The emission peak of the GaAs nanowire (4 = 870 nm) is indicated
by the black dashed line in both panels. The red dotted curves are Lorentzian fits to the scattering efficiency simulations. (c,d) The calculated phase
of the Lorentzian oscillators in panels (a) and (b), respectively. (e,f) Snapshots from the FDTD simulation of the normalized amplitude of the y-
component of the electric near-field in YU175 and YU300, respectively.

emission of different antennas, we have numerically calculated
the scattering efficiency of Au rods with the dimensions of the
antenna elements, that is, width of 60 nm, height of 50 nm, and
with different lengths, placed on a silica substrate. The length of
the rod is varied between 130 to 300 nm. The scattering
efficiency is defined as the scattering cross section normalized
by the geometrical cross section of the rod. The metallic rod is
illuminated at normal incidence by a polarized plane wave along
the length of the rod. The calculated values of the scattering
efficiency are shown in Figure 4a,b for the director and reflector
rods of YU300 and YU17S, respectively. The corresponding
absorption efliciencies are given in Figure S3 in the Supporting
Information. These absorption efficiencies are ~5 times lower
than the scattering efficiencies. Therefore, the dominant
mechanism leading to the directional emission can be ascribed
to scattering. The scattering efficiency exhibits the characteristic
resonant behavior due to a localized surface plasmon polariton,
that is, the coherent oscillation of the free electrons in the
metallic rod. These resonances correspond to the lowest order
plasmonic mode, that is, the 4/2 resonance. As expected, a
considerable redshift of the resonance frequency occurs by
increasing the length of the rod. The scattering efficiency of
each rod can be considered as a reliable criteria for selecting the
proper geometrical parameters to control the directional
emission of a Yagi-Uda antenna.’® In Figure 4a, that is,
YU300, the length of the directors and the reflector are 130 and
300 nm, respectively. At the emission wavelength of the
nanowire, A = 870 nm (vertical dashed line), both rods are off-
resonance. The resonance frequency for the 130 nm rod is at a
shorter wavelength, while it is at a longer wavelength for the
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300 nm rod. However, the scattering efficiency is similar for
both rods at 870 nm. In YU17S, (Figure 4 b), the longer rod,
that is, the reflector, is at resonance at A = 870 nm by setting its
length to 175 nm, . Consequently, the scattering efficiency for
this element is ~7 times larger than for the shorter rods, that is,
the directors.

The scattering efficiency simulations have been fitted to
Lorentzian functions (red dotted curves in Figure 4a,b)
describing the harmonic charge oscillation of the surface
plasmons in order to estimate the phase difference between the
induced polarization vector and the incident electric field. In
Figure 4c,d, the Lorentz oscillator phase is represented for the
rods of YU300 and YU175, respectively. In YU300, (Figure 4c)
at A = 870 nm the charge oscillation in the rods with the length
of 130 nm (director) and 300 nm (reflector) are approximately
in antiphase with respect to each other; while, for YU17S
(Figure 4d) the relative phase difference between director and
reflectors is much smaller.

In YU17S, the amplitude of the scattered field by the rods
leads to strong scattering by the reflector and relatively weak
scattering by the directors. This difference in scattering
efficiency, together with the relative phase of the scattered
field by the reflector and the directors, prevents the scattered
field from the reflector element to destructively interfere with
the emission of the nanowire along the backward direction.
However, when the length of the reflector element is 300 nm,
the resonance frequency is significantly redshifted with respect
to the emission peak of nanowire at A = 870 nm. Hence, the
scattering efficiencies of the reflector and directors are similar at
the nanowire emission wavelength. This condition, together
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with the antiphase oscillation of the localized surface plasmons,
leads to the effective cancellation of the emission from the
nanowire in the backward direction.

The spectral difference between the resonance peaks in
Figure 4a,b for the reflectors and directors shows a flexible
range of operational wavelengths for the emitting element.
Because the emission peak of the GaAs nanowire is centered at
A = 870 nm, we do not have the possibility of varying this
wavelength. However, changing GaAs to other materials will
still lead to significant directionality as long as the emission is in
the range where the scattering efficiencies of reflector and
directors are similar.

The full three-dimensional (3D) simulation of the antenna
emission and the electric field components originating from an
electric dipole embedded in the nanowire can provide deeper
insight regarding the performance of the antennas. Figure 4ef
shows snap-shots of the near field amplitude in the xy plane of
the E, electric field component. This is the dominant field
component of the emission for YU300 and YU17S,
respectively. The first conspicuous feature related to the
performance of the antennas is the phase difference between
reflector and the directors that can be appreciated qualitatively
by the color coded E,. The temporal evolution of the electric
field shows that in one period of oscillation of the radiating
dipole in YU175 the phase difference between the reflector and
first director is similar as described earlier. This does not
provide the proper interference condition for beaming in the
forward direction. On the contrary, for YU300 the phase
difference between these two elements provides a destructive
interference on the backward direction and beaming in the
forward direction. An animation of scattered near-fields for the
two different designs is provided in the Supporting
Information.

In conclusion, we have demonstrated strong directional
emission of GaAs nanowires by coupling this emission to a
Yagi-Uda nanoantenna fabricated around the nanowire. This
structure forms a hybrid metallic—semiconductor optical
antenna. We have also demonstrated that the directionality of
the emission can be modified by varying the size of the
elements forming the antenna. FDTD simulations of the
emission shows excellent agreement with the experimental data.
The mechanism leading to this directionality is explained by
calculation of scattering efficiencies of the individual metallic
elements of the antenna and by full electrodynamic 3D
simulations of the full structures. These results constitute the
first steps toward the realization of electrically driven directional
antennas based on semiconductor nanowires.

Methods. Fabrication. We have used thin (diameter <100
nm) nanowires to minimize the coupling of the emission to
guided modes supported by the nanowire.'” Because of the
recent advancement of the semiconductor growth technology,
GaAs nanowires with a high degree of control on the geometry
and the doping concentration can be achieved.>® The GaAs
nanowires were grown on Si(111) undoped wafer via Ga-
assisted method in DCA P600 solid source MBE machine. A
Ga rate of 0.3 A/s as flux of 2.5 X 107 Torr and a substrate
temperature of 640 °C was used for the growth process. During
growth, the substrate was rotated by 7 rpm and a V/III beam
equivalent pressure ratio of 50. Applying these conditions give
rise to the growth of nanowires with a diameter of 55 nm and
length of approximately 12 pm. After the growth of the
nanowire core, a 4 nm layer of Al,Ga; ,As (x = 0.3) and
another 3 nm capping layer of GaAs were grown by changing
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the growth conditions to the “two-dimensional epitaxy”.>* The
presence of AlGa, ,As layer passivates the core of the
nanowire and decreases the destructive nonradiative surface
recombination.**™* At the end of the process, the final
diameter of the nanowire is ~70 nm. The nanowires were
removed from the as-grown silicon substrate in an isopropanol
solution by ultrasonic bath for 1 min. A few drops of the
isopropanol solution containing nanowires were transferred to
a patterned fused silica substrate. After the dispersion of the
nanowires on the substrate, the position of the nanowires was
recognized with optical microscopy. Each area on the pattered
substrate encoded the relative position of the nanowire on the
wafer. The nanoantennas around the individual nanowires were
designed by custom-made software and translated to the files to
write e-beam structures. The final position of the nanowires was
assigned by a “shape recognition algorithm” giving rise to
position accuracy of less than 50 nm.™ The substrate was spin
coated by a double resist layer of methyl methacrylate and
poly(methyl methacrylate) and 10 nm of Cr was evaporated on
top of the resist in order to discharge the charge accumulation
during e-beam lithography. After the lithography step, Cr was
etched and the evaporation of 5 nm Ti and 50 nm Au was
performed. The presence of Ti improves the adhesion of gold
to the silica substrate.

Table 1 shows the geometrical dimensions of the antenna
elements measured by SEM. It should be noted that all the

Table 1. Dimensions of the Fabricated Yagi-Uda + Nanowire
Hybrid Antennas®

antenna do L, Ly w a, aq it
YU175 75 175 130 60 185 205 860
YU300 75 300 130 60 155 120 575

“All the dimensions are in nanometers.

measurements on bare nanowire, YU175 and YU300 are done
on separate nanowires taken from the same growth batch. d,,,, is
the diamter of nanowire, L. and Ly are the lengths of the
reflector and directors, respectively, w is the width of the
metallic rods, a, is the distance between the center of the
reflector to the center of the nanowire, and a4 is the distance
between the center of the director to the center of the nanowire
and the distance between the directors.

Numerical Simulations. The simulations of the radiation
patterns were performed with the FDTD method (Lumerical’s
FDTD Solution). The GaAs nanowire with the length of 6 um
and the diameter of 70 nm is placed horizontally on top of a
silica substrate. The medium on top of the substrate is
considered to be air (n = 1). The optical constants of GaAs
were taken from Palik.*> An oscillating electrical dipole along
the long axis of the nanowire is considered as the emission
source. The near-field components of the electric field were
detected by a planar monitor parallel to the substrate. The far-
field patterns were calculated using the near-field to far-field
conversion method.
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Supporting Information shows the schematic representation of
the Fourier setup, dispersion of the leaky and guided modes in
GaAs nanowires, absorption and scattering efficiencies of the
antenna elements, effect of the number of directors on the
directionality, near-field map of intensity enhancement, and
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animations of the y-component of scattered near-fields for two
different antennas. The Supporting Information is available free
of charge on the ACS Publications website at DOIL: 10.1021/
acs.nanolett.5b00565.
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