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Abstract 

Magnetic micro- and nanoparticles (‘magnetic beads’) have been advantageously used in many 

microfluidic devices for sensitive antigen (Ag) detection. Today, assays that use as read-out of the signal 

the number count of immobilized beads on a surface for quantification of a sample’s analyte 

concentration have been among the very sensitive ones and have allowed protein detection lower than the 

fg mL-1 concentration range. Recently, we have proposed in this category a magnetic bead surface 

coverage assay,1 in which ‘large’ (2.8 μm) antibody (Ab)-functionalized magnetic beads captured their 

Ag from a serum and these Ag-carrying beads were subsequently exposed to a surface pattern of fixed 

‘small’ (1.0 μm) Ab-coated magnetic beads. When the system was exposed to a magnetic induction field, 

the magnet dipole attractive interactions between the two bead types were used as a handle to approach 

both bead surfaces and assist with the Ag-Ab immunocomplex formation, while unspecific binding (in 

absence of an Ag) of a large bead was reduced by exploiting the viscous drag flow. The dose-response 

curve of this type of assay had two remarkable features: (i) its ability to detect an output signal (i.e. the 

bead number count) for very low Ag concentrations, and (ii) an output signal of the assay that was non-

linear with respect to the Ag concentration. We explain here the observed dose-response curves and show 

that the type of interactions and the concept of our assay is in favor of detecting the lowest analyte 

concentrations (where typically either zero or one Ag is carried per large bead), while larger 

concentrations are less efficiently detected. We propose a random walk process of the Ag-carrying bead 

over the magnetic landscape of small beads and this model description allows explaining the enhanced 

overall capture probability of this assay and its particular non-linear dose response curves.
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Introduction 
 
Measuring Ags at very low concentration in blood or serum samples allows early disease diagnosis and is 

important for proposing more accurate medical treatments that allow increasing the survival rates of the 

patients.2 Detection of a disease by measuring a specific Ag in a serum matrix is often the preferred minimally-5 

invasive solution. Very sensitive nucleic acid detection is enabled by polymerase chain reaction techniques, but 

there is no comparable method that can be used to ‘amplify’ proteins,3 which necessitates the development of 

very sensitive types of assays. Moreover, blood contains, besides the protein that is the Ag of interest, many 

different molecules varying over a huge amount of concentrations (in the pg/mL - mg/mL range).4, 5 While, 

traditionally, protein purification is obtained starting from milliliter blood samples to increase the number of 10 

molecules to be detected, microsystems techniques enable usage of much lower blood sample consumption. 

However, detecting low-concentration biomarkers in small sample volumes evidently may be an issue and 

would require developments of analytical techniques with ultrahigh sensitivity. A lot of the microfluidics 

literature of recent years has focused therefore on improving the limit of detection (LOD), i.e. decreasing the 

lowest concentration at which the presence of the Ag can be detected, and a truly impressive progress has been 15 

noted.6-8 Often, these techniques proved to be not accurate for the lowest concentrations and follow-up work 

will focus now on the most promising assays, so that also the limit of quantification (LOQ),9 i.e. the limiting 

concentration at which the Ag can still be accurately measured, will be decreasing in future. 

Among the most sensitive surface coverage immunoassays, which use evaluation of the number of immobilized 

beads on a surface for quantification of a sample’s analyte concentration, S. V. Mulvaney et al. 10 presented 20 

magnetic bead-based assays that were denominated as sequential and semi-homogenous assays. The target Ags 

in a sequential assay, and subsequently the detection Abs, were incubated on the wall of a microfluidic chamber 

that carried capture Abs. Hereafter, magnetic beads functionalized with detection Abs were transported over the 

detection surface, and so-called force discrimination was in a buffer flow was exploited to detach unspecifically-

bound beads. 100 fg mL-1 of staphylococcal enterotoxin B (SEB) could be detected in 2 µL phosphate buffer 25 

saline (PBS). Alternatively, for the semi-homogenous assay configuration, the beads were pre-mixed with target 

Ags and subsequently they were transported over the detection area. The semi-homogenous assay had a LOD of 

1 fg mL-1 SEB. Morozov et al.11 described instead sequential force flow discrimination assays. Here, the target 

molecules were concentrated on a detection area by applying an electrophoretic force. Then, magnetic beads 

conjugated to detection Abs were led over the Ag-carrying detection area in presence of a magnetic field. The 30 

assay showed a LOD as low as 1 fg mL-1 for streptavidin spiked in buffer. S. J. Osterfeld et al.12 also proposed a 

sequential assay principle. In this work, first target Ags were immobilized on a surface and were linked to 

biotinylated detection Abs; subsequently streptavidin-coated magnetic beads were transported over the thus 

prepared surfaces. During this procedure, magnetic beads that were attached on the detection surface via 

streptavidin-biotin bonds could be live-monitored via giant magnetoresistance-based sensors, whose electrical 35 

resistances change in the presence of beads.13 The study resulted in a 200 fg mL-1 LOD for carcinoembryonic 
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antigen.14 Moreover, signal amplification permitted to lower the LOD to 10 fg mL-1. Furthermore, for most of 

these assays, the dose-response curve is largely expected to be described by a Langmuir relationship. Indeed, the 

sample is first injected over a substrate decorated with Ab which will bind the Ag. The amount of bound Ag is 

here expected to be described by a Langmuir relationship. In a second step, a large quantity of magnetic beads is 

injected in the device and is expected to bind to all of the immobilized Ag. As a consequence, in the case where 5 

the Ag is first bound of the walls of the microchannel, the calibration curve is expected to be described by the 

Langmuir relationship. 

Previously, we have demonstrated a microfluidic method for ultra-sensitive protein detection, in which first 

‘large’ (2.8 μm) Ab-functionalized magnetic beads specifically captured Ags from a serum matrix under active 

microfluidic mixing.1 Subsequently, the large beads loaded with the Ags were exposed to a surface pattern of 10 

fixed ‘small’ (1.0 μm) Ab-coated magnetic beads. During this exposure, attractive magnetic bead dipole-dipole 

interactions improved the contact between the two bead types and helped the Ag-Ab immunocomplex 

formation. Finally, the Ag concentration was detected by counting the number of surface pattern-bound large 

magnetic beads. A LOD of only 200 molecules of Tumor Necrosis Factor-TNF- in a serum sample volume 

of 5 L, corresponding to a concentration of 1 fg mL-1, was demonstrated. In the present manuscript, we present 15 

a theoretical model that actually explains both the very low detection limit obtained in this kind of assay and the 

particular shape of its dose-response curve. 

Materials and Methods 
 

Microfluidic chip and assay protocol 20 

Briefly, the reported assay was performed in a polydimethylsiloxane (PDMS) microfluidic chip featuring 

microfluidic channels, pneumatic valves and an integrated mixer.15  This device was connected through ports to 

external syringe pumps (Nemesys - Cetoni, Korbussen, Germany) for automated fluidic manipulations  All the 

different microfluidic device operations (e.g.: valve opening/closing, on-chip mixing) were handled via a home-

built Labview (National Instruments, Austin TX, USA) program. Optical micrographs were taken with a 25 

Pixelink PL-P742 digital camera that was linked via a 0.5× TV adapter (Zeiss product no. 456101) to an Zeiss 

Axiovert S100 inverted microscope, which was provided with a 32× Zeiss LD-Achroplan magnification 

objective. 

The detection area of our chip was represented by a 250 µm x 2500 µm pattern of Ab-functionalized 1 µm 

superparamagnetic beads, which were immobilized on a glass substrate via electrostatic self-assembly on 30 

aminopropyl-trietoxysilane (APTES) dot structures.16 Larger Ab-coated magnetic beads (diameter 2.8 μm) were 

used for specifically capturing target Ags from the sample solution under analysis. More specifically, for each 

assay, ~3500 ‘large’ large beads were introduced to the mixing chamber together with a 5 µL sample solution 

and active on-chip mixing was performed to extract the target Ags from the sample via specific binding to the 

large beads’ surface. Ag-carrying beads in buffer were then transported towards the detection zone, through a 35 



 

4 
 

250 µm wide, 60 µm high microfluidic channel. The sandwich immunoassay was performed by 

magnetophoretically exposing the small bead pattern to the large beads by placing the chip in a 27 mT magnetic 

field, as generated by an external permanent magnet. The small magnetic bead pattern on the chip leaded to 

local magnetic field maxima, enhancing interaction between the immobilized small beads and the moving large 

ones, through magnetic dipole-dipole forces (Fig. 1a). The improved selectivity of the small bead-large bead 5 

binding was based on the fine-tuning of the balance between magnetic dipolar interactions and drag forces, 

which allowed selectively removing non-specifically bound beads, i.e. beads that were not linked via Ag 17 (Fig. 

1b). 

Subsequently, simply counting the large beads immobilized on the pattern of small beads provided the detection 

signal that allowed quantification of the Ag concentration (Fig. 1c). As an example of the obtained results, the 10 

reported dose-response curve for biotinylated anti-streptavidin that was used as ‘Ag’ spiked in 5 L serum is 

shown in Fig. 1d, as already reported in our previous work.1. Protein detection experiments were performed by 

preparing and testing fetal bovine serum (FBS) samples containing progressively lower concentrations of target 

Ags. The number of Ag molecules corresponding to each Ag concentration is simply calculated by considering 

the molecular weight of the molecule of interest. 15 

Chemicals and materials 

Si and float glass wafers (4-inch 550 µm thick), de-ionized water were provided by the Center of Micro- and 

Nanotechnology of EPFL. Negative photoresist GM 1075 SU-8 was obtained from Gersteltec (Pully, 

Switzerland). AZ ECI 3027 positive photoresist was from AZ Electronic Materials (Wiesbaden, Germany). 

PDMS Sylgard 184 was purchased from Dow Corning (Wiesbaden, Germany). The microfluidic chip was 20 

composed of four bonded PDMS layers, each replicated using a different SU-8 master microstructure on a Si 

wafer. SU-8 was patterned using standard lithography. The solution of APTES (product no. 440140), 10× 

concentrate solution of  phosphate buffered saline (PBS) (product no. 5493), Tween-20 (product no. 1379) and 

biotin (product no. B4501) were acquired from Sigma-Aldrich (Buchs, Switzerland). Biotinylated goat anti-

streptavidin and streptavidin were purchased from Vector Laboratories (Reactolab SA, Servion, Switzerland). 25 

Dynabeads MyOne Streptavidin C1 (small beads), Dynabeads M-280 Streptavidin (large beads), and fetal 

bovine serum (FBS) dialyzed were obtained from Life Technologies (Zug, Switzerland). FBS standard quality 

was purchased from PAA Laboratories (Chemie Brunschwig AG, Basel, Switzerland) and Pluronic F-127 was 

purchased from BASF (Basel, Switzerland). A PBS (0.15 M NaCl, 0.01 M phosphate, pH 7.4) solution was 

acquired by diluting a 10× concentrated PBS solution. PBS-Tween solution (PBST n%, with n a number) was 30 

made by diluting n% (volume/volume) Tween-20 within PBS. A buffer solution was prepared by dilution of 

0.08% (weight/volume) Pluronic F127 in the PBS. To reach the experimental ligand concentration levels, 

biotinylated anti-streptavidin dilutions in PBS or FBS dialyzed were prepared.   
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Results and Discussion 
 
Enhancement of the large bead capture efficiency 

During their passage through the detection area, large beads “scan” the immobilized beads pattern by repeatedly 

interacting with their Ab-functionalized surface. The distance between two immobilized beads has been 5 

estimated as ~12 μm, and the large beads slide at a constant speed (~1 mm s-1) over the surface of the device, so 

that the time between two large bead/ immobilized bead interactions is estimated as 12 ms.18  Each large bead 

can be considered, in first approximation, as a sphere, of which only a fraction of the surface is covered by Ags 

and can be specifically bound to the Abs on the small beads. Ideally, capture is immediately triggered when an 

Ag-covered part of the surface encounters the small bead pattern. The probability to successfully bind the large 10 

bead, Pcapture, is therefore directly related to the capability of the device to intercept this small area over the 

whole bead surface. Two different cases can now be considered. 

In the absence of immobilized beads, each large bead would merely slide over the glass surface. The vertical 

orientation of the bead is in fact pinned by the presence of the 27 mT vertical magnetic field at the glass surface, 

and, assuming a perfectly spherical geometry, the contact between the large bead and the sensing substrate 15 

would be reduced to a single point, over the duration of the whole experiment.19 The binding probability can 

therefore be reduced to the probability that this contact point exactly corresponds to the location of the adsorbed 

Ags. Pcapture is then proportional to the ratio of the part of the bead surface that is effectively covered with Ags 

over the whole bead surface 20: 

(1) 

with N the number of Ags on the large bead surface, rligand the average radius of a ligand molecule (for the 20 

biotinylated anti-streptavidin - streptavidin couple, it is more appropriate to speak of a ligand-receptor rather 

than an Ag-Ab system) and rlarge the radius of the large bead. This probability is evidently extremely low for 

single molecule carrying beads. We refer to this case as the ‘no bead-scanning’ case. 

 

In our assay, the presence of the small bead pattern introduces instead what we define as “bead-scanning” 25 

mechanism. In our device, the external magnetic field still vertically pins the magnetic moment of the large 

beads, but their lateral orientation is induced to vary continuously, at each encounter with any of the Ndots pattern 

dots. Hence, a progressively increasing portion of the large bead surface gets in contact with the functionalized 

surface of the small beads (Fig. 2a).20 If Pcapture,i is the probability that the large bead is captured on the ith dot of 

small beads, we can write that: 30 

 

(2) 
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Given the sequential scanning of the large bead by the array of dots, a binding at the ith dot is equivalent to (i-1) 

non-binding encounters with the (i-1) previous dots in the trajectory of the large bead, followed by a successful 

encounter on the ith dot. If we introduce PSB, the probability of a successful binding of the large bead upon an 

encounter with a small bead dot, we obtain that: 

 (3) 

Hence, Pcapture can be written as: 5 

 

(4) 

PSB is the factor indicating the probability of Ag-Ab binding upon an inter-bead encounter. In the considered 

case, it corresponds to the ratio between the fraction of surface scanned during a large bead/ small bead 

interaction and the total surface of the large bead. Therefore,  

 

 
    (5)

where δ is the angle intercepting the arc formed by the point of contact during the large bead/ small bead 10 

interaction, with:  

 

(6) 

The successful capture probability can then be written as (first order approximation, assuming ): 

 
(7) 

In our system, we experimentally observed that each large bead interacts, in average, with about 200 pattern 

dots during its passage through the whole detection area, i.e. Ndots~200. 

In Fig. 2b, Pcapture has been calculated using equation (1) (‘no bead-scanning’) and equation (4) (‘bead-15 

scanning’), taking N=1 and = 2.2 nm, showing indeed the dramatically higher Pcapture obtained from the 

bead-scanning system. In Fig. 2bi, the radius of the small bead is fixed at 0.5 µm, and the large bead radius is 

varied. This analysis shows that increasing the radius of the large bead decreases the probability of capture, 

because it increases the large bead’s surface, therefore reducing the probability of a successful encounter 

between the ligand and the receptor. In Fig. 2bii, this time the radius of the large bead is fixed at 2.8 µm, and the 20 

radius of the small bead is varied. The ‘no bead-scanning’ case shows no variation, as this model does not take 

the small beads into account. As expected, if the bead-scanning is enabled, increasing the size of the small bead 
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improves the capture efficiency, as a larger section of the large bead is explored at each interaction with a small 

bead, from the definition of δ. It is worthy to notice that, in these first estimations, the capture probability 

enhancement has been calculated by assuming only lateral rotation of the large beads, at each interaction with a 

small bead dot. However, we cannot exclude that further large bead reorientations occur between successive 

collisions with pattern dots. Moreover, even vertical flipping and rolling of the large beads are very plausible 5 

events in our system, likely triggered by temporary unspecific binding events and driven by the strong shear 

forces acting on the large beads under the presence of fast flow in the microchannel. 

This first model is aimed at emphasizing the importance of the scanning mechanism in improving the detection. 

This is a simple model, principally taking into account geometrical considerations. However, our main purpose 

is to use this system as an analytical system, to detect low levels of Ag. A second analytical model aiming at 10 

understanding and predicting the calibration curves is therefore needed. In the next sections, rather than the 

mere scanning mechanism, the topic of interest is the relation between the output signal and the concentration of 

Ag injected in the device. 

 

Analytical model for the dose-response curve 15 

Intuitively, it is already clear that this type of assay will be more efficiently detecting low Ag concentrations 

than higher concentrations. Indeed, if a few thousand large beads each carry one Ag, they theoretically could all 

be specifically bound to the small bead pattern and the large beads could be counted as representing the number 

of Ags. On the other hand, suppose now that the large beads had been mixed in the mixing chamber with a 

higher concentration sample and that each large bead would carry 10 or 100 Ags; in this case, at best, all large 20 

beads could be linked to the small bead pattern, so that these higher concentrations would be less efficiently 

detected indeed. The logic consequence of this is that the output signal of our assay (i.e. the count of the number 

of large beads) will not be a linear function of the number of Ags present in the sample. However, in order to 

obtain an analytical expression for the dose-response curve, a more rigorous treatment is necessary.  

For the reader’s convenience, we present here the main reasoning behind the model, as mentioned and based on 25 

previously reported results.20-22 We assume first that the binding probability of the large bead Pb(l), as a function 

of the distance l travelled in the microchannel along the small bead landscape, satisfies a 1st order reaction 

kinetics law 

 

(8) 

where L is the characteristic distance of successful binding and P0 the probability of binding for a large bead for 

. In principle, the factor can be evaluated from the geometrical aspects of the system. In our 30 

system l<< L, Pb(l) can be linearized to P0 l/L.20 This arises from the low fraction (< 2%) of beads captured over 

the length of the channel, thus confirming that the binding probability is low and that l<< L. As expected, a 
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linear-like behaviour is observed for the large bead count over the length of the detection zone.20 As a 

consequence, the variations of the captured fraction vs. l can be directly related to Pb(l) and hence to the inverse 

of the characteristic length L. Furhermore, it has been previously shown that the bead slides over the substrate at 

an average speed v0 in between the small bead dots. This observation allows to relate the value of L to a 

characteristic binding time τ . 5 

A random walk model of the contact point on the large bead’s surface is used to describe the interactions 

between the large bead and the immobilized small bead dots (Figure 3a). This contact point is stochastically 

displaced over the large bead surface until it finds an Ag that is bound to the large bead. The duration of this 

random walk, until the large bead is captured, is expected to be related to the mean first passage time (tMFP) for a 

point randomly walking over the surface of a sphere from a starting point to a target position, which can be 10 

generally expressed as 23 

 

(9) 

where d is a dimensionless distance separating the starting point of the walk on the sphere from its target 

position, and A and B are constants, and where it can be proven that the factor A is significant only for low d 23. 

For low densities of bound Ags on the large bead surface, the random walk length d necessary to encounter an 

Ag is big, as assumed above (l<< L), and we therefore assume that the contribution of A can be neglected. To 15 

derive the distance d, we consider an uniform distribution of NAg,bound points, which correspond to locations of 

Ags bound on the surface of a sphere. We assume here a homogeneous distribution of Ag over the surface of the 

bead with radius rlarge, leading to 24, 25  

 

(10)

so that 

 

(11)

where γ is a constant. To express NAg,bound as a function of NAg, i.e. the total number of Ags in the sample, we 20 

assume a Langmuir relationship between these two values,26, 27 with α being a constant (Fig. 3b): 

 

(12)

The Langmuir relationship typically describes the amount of molecules adsorbed onto a surface in equilibrium 

with a solution of known concentration. Above a certain concentration of Ag, the response saturates, as all the 

possible adsorption sites are occupied. For low amounts of Ag molecules, the relation between amount of free 
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and bound Ag is linear. The parameter α controls the Ag concentration at which the system switches from the 

linear to the saturated response. It largely accounts for the affinity of the ligand to the receptor as well as the 

mixing efficiency in the chip. The system saturates at lower Ag concentrations for larger α values. Fig. 3b shows 

profiles obtained from equation (12) for different values for α. 

Finally,  can be expressed as a function of the experiment-derived time τ, i.e. the characteristic time at 5 

which a large bead carrying an Ag would have been effectively linked to the small bead pattern. The probability 

that the bead is captured exactly at the time t, the instantaneous capture probability, pc(t) is introduced. This 

probability is nothing else but the probability density function of Pb(t) : 

 

(13) 

It is assumed that the first encounter between, on the one hand, the point of contact between a large and a small 

bead and, on the other hand, an Ag bound to the large bead. Therefore, the first passage of this point of contact 10 

at the position of an Ag results in the binding of the large bead. Hence, tMFP can be evaluated from pc(t) 

following 

 

(14)

By solving the integral, and using the expression for Pb(t), we find that  and tMFP is hence directly 

proportional to τ, so that: 

 

(15) 

and the total number of bound large beads as a function of NAg, i.e. output(NAg), can be written as:  15 

 

(16)

where β is a negative constant. For NAg=0, an output value of 0 is obtained. 

Fig. 4a,b,c shows plots of equation (16)  for different conditions. The experimental data was fit to the model 

defined in equation (16), as shown in Fig. 4d, returning the following values for the fitting parameters: α= 

1.3x10-12 molecule-1, β= -0.15, γ=2.6. These parameters were used to compute with one of the parameters being 

varied (α, β and γ on panels a, b and c in Fig. 4, respectively), the other ones being fixed to the values obtained 20 

from the experimental fit. Even though it is possible to explain the contribution of different physical phenomena 
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to the parameters α, β and γ, it is not possible to provide an exact expression for these values. Indeed, most of 

the equations shown above describe relations of proportionality rather than equality, and some parameters, such 

as α or L, are not fully described by an exact equation. As a consequence, fitting the experimental results to the 

described model is the only way to obtain estimations. 

This analysis shows that α, which is obtained from the Langmuir equation, controls the concentration from 5 

which the Ag coverage over the bead is sufficiently high, so that the assumption l<< L is not satisfied anymore. 

As shown in Fig. 4a, the curves actually diverges towards +∞ for . The parameter therefore 

accounts for the binding affinity and the mixing efficacy in the system. The effect of the negative parameter β is 

shown in Fig. 4b. Here, no obvious effect can be observed, as this is merely a multiplication constant which 

scales the magnitude of the response. More importantly, it is expected that this value depends on P0 and v0, from 10 

equation (15), and more generally on the beads size. Indeed, through the intercept angle δ, these can modulate 

the surface of the large bead that is accessible to the small bead, and therefore the overall capture probability. 

This parameter also accounts for the random walk over the bead surface (equation 9). In this case, a slower 

random walk (or a larger tMFP) would indicate a larger parameter B in equation 9, and a smaller β. This would 

result in a lower output, at fixed NAg. This also corresponds, qualitatively, to an increase in L. 15 

Finally, in the case of γ (Fig. 4c), a behavior similar to α is observed. High γ values induce a divergence of the 

curve for lower Nag. From equation 11, γ accounts for the distribution of the ligands over the large bead surface 

(equation 10). It is therefore determined by the geometry of the large bead. Large γ values therefore indicate a 

faster saturation of the large bead surface with Ag because of a shorter inter-adsorbed Ag distance d (equations 

10 and 11). 20 

As stated above, this model is valid only for low Ag amounts. At higher concentrations, equation 8 cannot be 

linearized anymore, and a different expression for the output(NAg) function is expected. Moreover, the Ag 

concentration is largely assumed to be a continuous function in the model, whereas it actually describes a low 

number of discrete molecules. The result from this fact is that the response of the system is discrete too. For 

instance, if only one Ag is injected, only two results can theoretically be obtained for output(NAg), 0 and 1/3500 25 

(as 3500 large beads were injected). In this case, it is expected that the result obtained from output(NAg) would 

then be better described by the average of several experiments. We can therefore speculate that, at very low Ag 

amounts, the output of the assay would be seen as a stochastic variable with two states (output(NAg)= 0 and 

output(NAg)= 1/3500) and the model would return the expected value of this random variable. Technically, this 

case was not encountered in our analysis, as the LOD of the assay was found to be ~200 Ag and the signal 30 

obtained for this value is at least an order of magnitude above 1/3500. 
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Conclusions
 
A theoretical description of the dose-response curve of a microfluidic magnetic bead-based surface coverage 

sandwich assay was presented. This model was found to fit well the experimental data, explaining the sub-linear 

behaviour of the system. Furthermore, this analysis emphasizes the basic mechanisms controlling this type of 5 

assays. As the ligand and receptors are bound to surfaces, it is critical to increase the probability that they 

encounter each other, thus triggering recognition and a capture event. Simulating the trajectory of the point of 

contact, with a random-walk (or any other well-chosen model), can account well for the behaviour of the 

system. This fact also suggests that the mechanism of the whole chip can, under certain assumptions, be reduced 

to this stochastic motion of the contact point. Our modeling approach allows moreover clearly identifying the 10 

experimental factors which determine the sub-linear behaviour of the system, thus readily suggesting how to 

modify the assay to further to enhance its performance. In these terms, three main experimental modifications 

are foreseen to improve the system: (i) the length of the detection area will be increased, for a more efficient 

capture of the Ag-carrying large beads; (ii) longer on-chip mixing times will be used to enhance the efficacy of 

Ag extraction from the sample and specific binding on the large beads; (iii) the size of large beads will be 15 

reduced (and/or the one of small beads will be enlarged), to ensure a larger contact surface for the scanning 

mechanism and, therefore, higher probability of specific bead binding. 

Several so-called magnetic surface coverage immunoassays based on fluidic flow discrimination have now 

shown extreme sensitivity.1, 10, 11 We think that the possibility of fine-tuning immunocomplex-induced binding 

between magnetic beads and the surface is key to these findings. Also these systems exploit the viscous drag 20 

forces, as imposed by the flow, to wash non-specifically attached beads from the detection area. Equally well 

important are the rapid dynamic extraction of target Ags from the original raw sample, as is the subsequent 

processing of the magnetic beads in a clean buffer solution, which are factors that are in favour of 

reproducibility and accuracy of the assay results. A possible disadvantage of many ultrasensitive protein 

detection techniques is the need to use more complex and sophisticated assay protocols; however, we think that 25 

the mentioned assays that provide the assay detection signal via a magnetic bead surface coverage will provide 

interesting options for future accurate and sensitive immunoassays. Besides sensitivity, robustness, large 

dynamic range, low-cost, accuracy and the possibility of multiplexing represent important criteria that will be 

key in deciding on the success of future analytical systems, and these mostly outstanding issues will have to be 

addressed in future.  30 
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Figures  
 
 

 
 5 

Figure 1. (a) Schematic representation of the time-lapse motion of a large bead exploring the detection area and 

interacting with the functionalized surface on the small beads through magnetic dipole-dipole forces. (b) Large 

bead capture mechanism: (bi) in absence of ligands, large beads are transported by the microfluidic flow 

through the whole detection area and washed away; (bii) if at least one ligand molecule is present on the large 

bead surface, the bead is captured onto the detection area via ligand-receptor binding. (c) Assay readout: 10 

counting of the captured large beads provides a measure of the number of molecules present in the sample under 

analysis. (d) Experimental data for the detection of anti-streptavidin in Fetal Bovine Serum (FBS) (n=3-4, errors 

bars are SD). 

 

 15 
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Figure 2. (a) Schematic representation of the bead-scanning mechanism: the orientation of the large bead 

changes at every encounter with a group of small beads and a progressively increasing portion of the large bead 

surface gets in contact with the functionalized surface of the small beads available for specific binding. (b) 5 

Theoretical estimation of the large bead capture probability Pcapture for ‘bead scanning’ and ‘no bead scanning’ 

conditions and for different sizes of both the (bi, rsmall= 0.5 µm) large and the (bii, rlarge= 2.8 µm) small beads. 

 

 

 10 
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Figure 3. (a) Schematic representation of the random walk modeling approach: the contact point between large 

and small beads describes a random-walk on the surface of the large beads, from the initial contact point to the 

location of a captured ligand molecule. (b) Calculation of the large bead coverage of captured ligand molecules, 5 

assuming a Langmuir relationship for molecule capture, and different values of the parameter α (10-3, 10-6 and 

10-9 molecule-1).  
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Figure 4.  Plots of the function describing the assay readout (equation (16)), for different values of the fitting 

parameters (a) α is a parameter, β= -0.15, γ =2.6, (b) β is a parameter, = 1.3x10-12 molecule-1, γ =2.6, and (c) γ 5 

is a parameter, β= -0.15 and = 1.3x10-12 molecule-1. (d) Comparison between the experimental data for the 

detection of anti-streptavidin in Fetal Bovine Serum (FBS), shown in Fig. 1(d), and the model predictions. 

Experimental data have been fitted using equation (16), yielding α= 1.3x10-12 molecule-1, β= -0.15 and γ=2.6, 

with R2 = 0.99. 
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