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Abstract—We propose a sparse coding approach to address the
problem of source-sensor localization and speech reconstruction.
This approach relies on designing a dictionary of spatialized
signals by projecting the microphone array recordings into
the array manifolds characterized for different locations in a
reverberant enclosure using the image model. Sparse represen-
tation over this dictionary enables identifying the subspace of
the actual recordings and its correspondence to the source and
sensor locations. The speech signal is reconstructed by inverse
filtering the acoustic channels associated to the array manifolds.
We provide rigorous analysis on the optimality of speech re-
construction by elucidating the links between inverse filtering
and source separation followed by deconvolution. This procedure
is evaluated for localization, reconstruction and recognition of
simultaneous speech sources using real data recordings. The
results demonstrate the effectiveness of the proposed approach
and compare favorably against beamforming and independent
component analysis techniques.

Index Terms—Sparse coding, Reverberation, Source localiza-
tion and separation, Multiparty (Overlapping) speech recogni-
tion, Microphone array, Sound spatialization.

I. INTRODUCTION

Many of the sound technologies rely on distant signal
acquisition using an array of microphones deployed in the
acoustic scene. This flexible acquisition setup requires effec-
tive methodologies to recover the desired information from
an acoustic clutter of unknown source signals. The forward
model of distant sound recordings is often approximated as
a linear operation through X = HS where S ∈ CN×1

denotes N original source signals; H ∈ CM×N consists of
the microphone array manifold vectors associated to N sources
with respect to M microphones and X ∈ CM×1 represents the
microphone array signals. We work with the frequency domain
spectral representation of the signals. Our goal is to recover the
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original source signals from the mixture recordings provided
by the microphone array.

The distant microphones enable spatial sampling through
projection of the spectral information embedded in the acoustic
scene into the spatial subspaces of microphone array manifold
vectors. In this context, source localization and separation
(demixing) amounts to recovering the spatio-spectral repre-
sentation of the individual sources. This problem is known to
be ill-posed, thus prior knowledge/assumptions on either the
characteristics/structure of the sources or the acoustic mixing
channels are often exploited.

A plethora of demixing methodologies rely on statistical
independence of the individual sources referred to as inde-
pendent component analysis (ICA). The separation is thus
formulated as estimating a demixing matrix such that the
recovered source signals are statistically independent [1]. To
account for the multipath propagation, characterization of the
room acoustics is integrated in the separation process [2].
However, the ICA-based separation schemes require large
amount of data recorded in a stationary acoustic condition to
provide a reasonable estimate of the model parameters. Also,
ICA performs poorly in underdetermined case. In addition,
it imposes a permutation problem due to misalignment of
the individual source components [3, 4, 5]. To further extend
this framework to non-invertible matrices, additional prior on
sparse representation of the sources can be incorporated [6, 7].

An alternative geometric demixing strategy is devised based
on the capability of a microphone array for directional ac-
quisition or beamforming. This procedure achieves source
separation by steering the beam pattern of the microphone
array towards the desired source thus filtering out the interfer-
ences regardless of their signal nature [8, 9]. The underlying
hypothesis is that the sources are uncorrelated; this assumption
is vulnerable to reverberation so the beamformer can mitigate
or cancel the desired signal in a reverberant acoustic. An
additional limiting factor is the spatial resolution for resolving
closely located sources. Furthermore, unlike the ICA approach,
beamforming requires precise information about the micro-
phone array configuration and the desired source location. Re-
cent work considers non-linear mixture of beamformers which
incorporates sparsity of the spectro-temporal coefficients to
address the underdetermined demixing [10]. The application
of this method is limited to the anechoic mixtures and the
performance is degraded due to reverberation.
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Furthermore, the multi-channel non-negative matrix factor-
ization (MC-NMF) has been studied for source separation in
convolutive mixtures [11, 12, 13]. The MC-NMF considers
the source model as a summation of elementary components
each representative of a characteristic spectral signature. This
method is particularly suited to polyphony and applied for
stereo source separation of music and speech mixtures [11].
One limitation is that decomposition is applied on squared or
magnitude STFT coefficients, thus the angle information is
almost lost. To address this issue, MC-NMF is applied in a
beamspace domain where the input data are represented by
direction of arrivals (DOAs) obtained from phase informa-
tion [12]. More recent developments integrate beamforming-
based DOA and NMF through modeling the spatial covariance
of individual sources as a weighted combination of DOA
kernels where the magnitude of the sources is obtained from
NMF [13]. Although this approach improves the spatial coher-
ence of the NMF separated sources, it only exploits the direct
path for DOA kernel formulation that limits its theoretical
accuracy in convolutive mixture modeling.

A blind channel identification approach for speech sepa-
ration and dereverberation is proposed in [14]. The mixing
procedure is delineated with a multiple-input multiple-output
mathematical model decomposed into sequential procedures
to remove spatial interference followed by deconvolution of
temporal echoes [15]. The major drawback of such imple-
mentation is that it can only perform channel identification
from single talk recordings in high input signal-to-noise ratio.
Another approach extends the maximum likelihood criteria
applied in weighted prediction error modeling for joint dere-
verberation and separation of individual speech sources from
determined and overdetermined mixtures [16]. This method
does not require channel estimation and assumes that source
spectral components are uncorrelated across time frames.
It also relies on a single source assumption and thus can
not achieve dereverberation when there are multiple sound
sources [17].

More recently, the sparse component analysis (SCA) tech-
niques are developed upon the assumption that the sources
admit a sparse representation [18]. Sparsity indicates that the
representation of signal occupies only a small part of a larger
space and the mixtures of sparse components are likely to
be disjoint. In practice, if the canonical representation of the
sources do not hold the sparsity premise, a linear transfor-
mation of the signal, through either a generic transformation
such as STFT, DCT or a data driven approach such as sparse
coding dictionary [19] yields sparse representation. The initial
techniques incorporate the geometric distinction to separate
the sources by exploiting the delay and attenuation differences
among the signals captured by microphones; this information
is used to construct a binary mask and extract the individual
signals [20]. The extensions of this algorithm have been
proposed for convolutive mixtures in [21, 22]. New advances
on SCA incorporates sparsity structures identified through the
principles of auditory segregation and multipath acoustic with
a model-based sparse component analysis framework [23, 24].

Earlier works in the context of sparse component analysis
for source localization and separation require prior knowledge

on the microphone array geometry. In [25], we investigated the
duality between source and sensor localization problems and
showed that if the source location is given, the microphone
array geometry can be calibrated using the sparse coding
approach. In this paper, we extend our earlier framework for
joint source and sensor localization. The sparsity-inducing
dictionary is devised through spatialization of the speech
signals. Sparse representation over this dictionary leads to
identification of the array manifold corresponding to the
distant signal recordings and its associated source and sensor
locations in the acoustic scene. Thus, it enables source-sensor
localization. To account for the multipath propagation in a
reverberant environment, the image model of the acoustic
is exploited through the technique elaborated in [24]. The
proposed scheme yields speech reconstruction through inverse
filtering the acoustic channel. The optimality of this approach
is investigated by showing its equivalence to speech separation
and channel deconvolution. In contrast to the prior works,
designing/identifying a linear filter for source separation and
dereverberation in time domain is not the objective of this
paper. Instead, we process each frequency of the signal inde-
pendently thus demixing is achieved in frequency domain.

The rest of the paper is organized as follows. The formula-
tion of the source-sensor localization via speech reconstruction
is stated in Section II. The sparse coding approach to tackle
this problem is elaborated in Section III. The sparse coding
approach relies on adaptive construction of a sparsifying dic-
tionary via spatialization of the signals and it can be efficiently
implemented through a greedy sparse recovery algorithm as
explained in Section III. The equivalence of reconstruction
via inverse filtering to speech separation and deconvolution is
worked out in Section IV. This framework is evaluated on real
data recordings for speech source localization and separation
and overlapping speech recognition; the results are provided
in Section V. Finally, the conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

A. Signal Model

We consider a scenario in which an unknown signal Sn(f)
at frequency f emanates from an unknown location νn in an
enclosure and impinges on a microphone located at µm. The
response of the acoustic channel from the source location νn

to the microphone location µm is denoted by H(f,νn,µm)

and the signal acquired by the distant microphone is

Xm(f) = H(f,νn,µm)Sn(f) (1)

Let Υ = {ν1, . . . ,νN} denotes the position of N sources and
Π = {µ1,µ2, · · · ,µM} denotes the position of M microphones.
We define

S(f) = [S1(f) · · · SN(f)]⊤, X(f) = [X1(f) · · ·XM(f)]⊤ (2)

where .⊤ stands for the transpose operator; we can characterize
the forward model of distant recordings as

X(f) = HΥ,Π(f)S(f), (3)

where
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HΥ,Π (f) =



H(f,ν1,µ1) · · · H(f,νN,µ1)

...
. . .

...
H(f,ν1,µM) · · · H(f,νN,µM)




is known as the array narrow-band manifold matrix which is
specific to the source and microphone locations.

In this paper, we build on our earlier work on room
acoustic modeling using the image method [24]. The image
method indicates that the multipath channel of an enclosure
is identified if the enclosure boundary, absorption coefficients
of the reflective surfaces and the source and sensor locations
are known. Given the room geometry and the absorption
coefficients, our objective is to estimate the location of the
sources (Υ) and sensors (Π) and reconstruct the original
signals (S) from the distant microphone recordings.

B. Spatialization Approach to Localization

In this section, we formulate a new localization approach
based on sound spatialization or reconstruction of the dis-
tant speech signal. Given an estimate of the array manifold
ĤΥ,Π(f) and assuming an over-determined system, i.e., N 6
M, the original source signal can be reconstructed as [26]

Ŝs(f) =
(
Ĥ∗

Υ,ΠĤΥ,Π(f)
)−1

Ĥ∗
Υ,ΠX(f) = Ĥ

†
Υ,Π(f)X(f),

where .∗ denotes the conjugate transpose operator and
Ĥ

†
Υ,Π(f) represents the pseudo-inverse of ĤΥ,Π(f). Thereby,

the projection of the distant recording into the array manifold
is obtained as

X̂(f) = ĤΥ,Π(f)Ŝs(f) = ĤΥ,Π(f)H
†
Υ,Π(f)X(f); (4)

this now gives us an effective handle to estimate Υ,Π:

Υ,Π = arg min
ν1,...,νN,µ1,...,µM

‖X(f) − X̂(f)‖2
2, (5)

For processing a broadband signal such as speech, the
above formulation can be succinctly stated in matrix form as
follows. Let F = {f1, f2, · · · , fB} represent a set of B adjacent
frequencies. The broad-band array manifold matrix HΥ,Π(F)

is obtained by stacking a set of B × B diagonal matrices
obtained from

Hdiag(F,νn,µm) =

diag ([H(f1,νn,µm) H(f2,νn,µm) · · ·H(fB,νn,µm)]) ,

HΥ,Π (F) =



Hdiag(F,ν1,µ1) · · · Hdiag(F,νN,µ1)

...
. . .

...
Hdiag(F,ν1,µM) · · · Hdiag(F,νN,µM)


 .

We define

Xm(F) = [Xm(f1) Xm(f2) · · ·Xm(fB)]
⊤ ,

X(F) =
[
X⊤

1 (F) · · ·X⊤
m(F) · · ·X⊤

M(F)
]⊤

,

Sn(F) = [Sn(f1) Sn(f2) · · · Sn(fB)]
⊤ ,

S(F) =
[
S⊤1 (F) · · · S⊤n(F) · · · S

⊤
N(F)

]⊤
.

The broadband extension equivalent of (3) is given by

X(F) = HΥ,Π(F)S(F). (6)

The source-sensor locations and the signal can be estimated

as

Υ,Π = arg min
ν1,...,νN,µ1,...,µM

‖X(F) − ĤΥ,Π(F)Ĥ
†
Υ,Π(F)X(F)‖

2
2

S(F) = Ĥ
†
Υ,Π(F)X(F).

(7)

This formulation indicates a parametric approach to source-
sensor localization and signal reconstruction by minimizing
the objective function stated in (7). It defines the locations as
continuous random vectors in space and results in a non-linear
objective which is difficult to optimize. In this paper, we resort
to a non-parametric method and cast the joint localization
and signal reconstruction problem as sparse coding over a
dictionary of spatialized signals.

III. SPATIALIZED SPARSE CODING

The enclosure area of sensor deployment and source posi-
tions is discretized into a grid of G cells such that M,N ≪ G.
The dictionary, C(F) is constructed of the spatialized signals
for all possible source-sensor locations (manifold matrices) as
expressed in

C(F) =
[
HΥ,Π(F)H

†
Υ,Π(F)X(F)

]
(νn,µm)

, C(F) ∈ C
MB×a

(8)
where a denotes the number of atoms and it is equal to the
combinatorial selection of M microphones and N sources out
of possible G grid cells. A binary (selector) vector is defined
as

P = [pg], pg ∈ {0, 1}a (9)

The source-sensor localization problem stated in (7) is cast as
the following sparse coding problem:

P̂ = arg min
P

‖X(F) − C(F)P‖2
2 s.t. ||P||0 = K, (10)

where the counting function ‖‖0 returns the number of non-
zero components in its argument and K = B is the number
of active frequency components. If a component of pg = 1, it
indicates that a sensor/source exists at the particular location
associated to that atom of the dictionary. Considering the broad
range of B frequencies, the components of P has a block
structure underlying its support. In the following Section III-B
an efficient sparse recovery algorithm to find the solution
of (10) is proposed.

A. Greedy Pursuit

The dictionary C(F) consists of the projections of the
microphone signals into the manifold matrices corresponding
to the source-sensor locations on the grid of G cells. Without
loss of generality and for the clarity of presentation, we assume
that N = 11. The possible number of sensor positions is

(
G
M

)
.

Considering that a source could be co-located with the sensor,
the total combinations of source-sensor positions adds up to
G
(
G
M

)
2. Corresponding to each of these G

(
G
M

)
arrangements,

1By the end of this section, we explain why this is actually a practical
assumption for processing the recordings of simultaneous speech sources;
larger values are evaluated for the experimental results presented in Section V.

2In case of having the source being co-located with the microphone, a
closed form exact solution to microphone localization problem exists which
is explained in Appendix I.
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there is an array manifold matrix which characterizes the
subspace of the microphone array recordings. The complexity
of the combinatorial search among all the possible locations
is very high so we take an iterative greedy sparse recovery
approach.

The basic idea of the greedy pursuit algorithm to solve the
problem stated in (10) is to find the location of a small subset
of K-microphones at each iteration through a combinatorial
search; In the first iteration, all possible source-sensor loca-
tions are considered for spatialization and the one selected by
sparse coding is indicated as the source location. In the rest of
the iterations, the source position is fixed and only the sensor
positions are altered. If the location of M− K of the sensors
is known a priori and only K sensor locations are unknown,
then the choice of possible manifold matrices reduces to

(
G
K

)
.

In the discussion below, we assume K = 1 for simplicity, but
the extension is straightforward for higher values of K.

Given the multi-channel signal recording X(F) ∈ CMB and
assuming that the position of source and M− 1 microphones
are known, we construct a dictionary denoted by C(F) ∈
CMB×GB, composed of projections of X(F) into G array
manifold matrices as given in (4). The gth manifold matrix
corresponds to a microphone array with M − 1 microphones
at known positions and the Mth microphone at cell g. More
specifically, the following set of array manifold matrices is
composed:

{HΥ,ΠM−1,µ1(F),HΥ,ΠM−1,µ2(F), · · · ,HΥ,ΠM−1,µG
(F)}

where HΥ,ΠM−1,µg
(F) represents the manifold matrix for the

array configuration where the first M− 1 microphones are in
their known locations, and the gth microphone is at µg, ∀g ∈
{1, · · · ,G}. We now write the dictionary as

C(F) = [HΥ,ΠM−1,µ1H
†
Υ,ΠM−1,µ1

(F)X(F), . . .

. . . HΥ,ΠM−1,µG
H

†
Υ,ΠM−1,µG

(F)X(F)];
(11)

P is now a GB×1 vector, with the property that it is B-sparse

with a block structure: at most B consecutive entries beginning
at index Bg can be non-zero. In other words, the support of
P is a 1-block-sparse vector that corresponds to the location
of the microphones.

B. Model-based Sparse Recovery

The sparse coding approach expressed in (10) indicates that
once the dictionary is constructed of all the spatial projections
of the multi-channel signals, finding the unknown locations
amounts to sparse approximation of the encoding vector P

which selects the projections corresponding to the right array
manifold matrix. Since the dictionary is constructed of B

adjacent frequencies, the non-zero components of P has a
block structure corresponding to the common support/cell
where the unknown microphone is located. To incorporate
the underlying structure of the sparse coefficients, we use the
block sparse recovery algorithm proposed in [27] which is an
accelerated scheme for hard thresholding methods with the
following recursion

Pi+1 = MO

(
Pi + κC⊤(X− CPi)

)
, (12)

where the step-size κ is the Lipschitz gradient constant to
guarantee the fastest convergence speed. To incorporate for the
underlying block structure, the model projection operator MO

thresholds and retains only the one (or more generally K) B-
block with the highest energy, with subsequent renormalization
[27]. The support of estimated P̂ determines the microphone
location. To estimate the 1-block-sparse solution, it is also
possible to find the combinatorial solution of (10) through a
linear search. We performed the combinatorial optimization
during the experimental analysis and the results were similar
to what we obtained by hard thresholding expressed in (12).
The summary of the spatialized sparse coding procedure is
stated in Algorithm 1.

Algorithm 1 The greedy sparse coding algorithm for source-sensor
localization
1. Initialize K as the number of microphones used for dictionary
construction.
2. Construct the dictionary of spatial signal projections for K micro-
phones and one source.
3. Find the 1-block-sparse solution to (10) for M = K along with
the source location.
4. Choose another microphone at an unknown position and construct
the dictionary and set K = K+ 1.
5. Find the 1-block-sparse solution to (10) for M = K.
6. Repeat 3 – 5 (multi-source) or 4 – 5 (single-source) until all
microphones/sources are localized.

This algorithm finds the location of the microphones one by
one by taking into account the already localized microphones;
however, it generalizes trivially to the case of K unknown mi-
crophone locations. Assuming that the sources are stationary,
the source locations are fixed at the initial iterations leading
to a substantial decrease in computational cost.

The estimation of distant signal based on single source
projection at each frequency is accurate if the sources have
fast decaying auto-correlation and are sufficiently separated.
Due to the sparsity of speech signal in Fourier domain,
this condition holds for processing segments of overlapping
speech recordings and it enables accurate multi-source local-
ization [23, 28].

Given the location of the sources and microphones, the
signals are reconstructed by inverse filtering the acoustic
channel. In Section IV, we provide rigorous analysis of the
optimality of speech reconstruction in multi-source scenario
by showing the equivalence of inverse filtering to speech
separation followed by channel deconvolution.

IV. EQUIVALENCE TO SOURCE SEPARATION AND

DEREVERBERATION

In this section, we show the equivalence of inverse filtering
to a two stage procedure: speech separation followed by
dereverberation. For the sake of brevity, the proof is explained
for two sources recorded by three sensors in Section IV-A. The
generalized theory for larger values of M and N is elaborated
in Section IV-B.
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Hence, the separated signals can sound more reverberant due
to the prolonged impulse response of the equivalent channels.
To perform exact deconvolution of the signals, Bezout theorem
for dereverberation of an acoustic system is exploited in [26]
referred to as multiple-input/output inverse-filtering (MINT)
theory of acoustic channel deconvolution. The Bezout theorem
is mathematically expressed as follows:

gcd [ FSm,1, FSm,2, ..., FSm,P ] = 1

⇔ ∃USm,1 USm,2 ..., USm,P :

P∑

p=1

FSm,pUSm,p = 1.
(19)

where gcd [.] denotes the greatest common divisor of the
involved polynomials. According to the Bezout theorem, if the
polynomials FSm,p (p = 1, 2, ..,P) have no common divisor or
equivalently acoustic channel responses Hnm, n = 1, 2, ...,N
do not share any common zeros, it is possible to equalize
each of the M channels. Therefore, having multiple channel
responses eliminates the requirement on minimum-phase im-
pulse response for perfect dereverberation. The considerations
raise when channel responses have common zeros. This can
happen if CSm

= gcd [H12, H22, H32 ] = gcd [ F1, F2, F3 ] 6=
1; having common zeros, the theorem can only partially dere-
verberate the speech signal up to the polynomial CSm

[14].

B. Generalized Theory

In Secion IV-A, we presented the proof of equivalence
of inverse filtering the room acoustic channel with speech
separation and dereverberation considering 3 microphones and
2 sources. In this section, we show that inverse filtering
of any M × N,M > N MIMO system is equivalent to a
two step procedure: source separation followed by channel

deconvolution.
Denoting the transfer function between microphone m and

source n as Hmn, a MIMO finite impulse response (FIR)
acoustic system can be represented in matrix notation as



X1
...

XM




︸ ︷︷ ︸

X

=



H11 · · · H1N

...
HM1 · · · HMN




︸ ︷︷ ︸

H



S1
...

SN




︸ ︷︷ ︸

S

(20)

Hence, the minimum mean square estimation (MMSE) of the
source is given by

Ŝ = arg min
S

(X−HS)2 = arg min
S

∑(MN)
i=1 (Xi −HiS)

2

(
M−1
N−1

) (21)

where submatrix Hi is an N × N matrix consisting of N

selected rows from H so we have
(
M
N

)
possible construction

for Hi. Corresponding to each Hi, we construct Xi hence,
we obtain

Xi = HiŜi ∀i = 1, · · · ,

(
M

N

)
(22)

where Ŝi is an estimation of S using Xi and Hi. To estimate

S, we compute the derivative of (21) with respect to S

1(
M−1
N−1

) ∂

∂S

(MN)∑

i=1

(Xi −HiS)
2 = 0

⇒
∑(MN)

i=1
HT

i Xi =

(MN)∑

i=1

HT
i HiŜ

⇒ Ŝ =

∑(MN)
i=1 HT

i HiŜi
∑(MN)

i=1 HT
i Hi

(23)

We now move onto show the equivalence to a two step pro-
cedure of source separation and dereverberation. Without the
loss of generality, we first separate S1 from Sj, j = 2, · · · ,N.
From Cramer’s rule in linear algebra we have

∣∣∣[XiH
/1
i ]

∣∣∣ = |Hi|S̃
i
1 = yS1,i (24)

where H
/1
i is Hi matrix with removing the first column of it.

Hence yS1,i is only dependent on S1 while the components of
S2, · · · ,SN are separated. By repeating (24) for all possible
Hi, we get the set of all estimates of S1 as yS1,1, · · · ,yS1,(MN)

.

In the second step, we perform deconvolution to extract Ŝ1.
We define the matrices

Y ,
[
yS1,1, · · · ,yS1,(MN)

]

F ,
[
|H1| · · · |H(MN)

|
] (25)

Hence, deconvolution of the channel from the separated source
is achieved via

Ŝ1 =
YFT

FTF
=

Y[|H1| · · · |H(MN)
|]T

∑(MN)
i=1 |Hi|2

=
[|H1|S̃

1
1 · · · |H(MN)

|S̃
(MN)
1 ][|H1| · · · |H(MN)

|]T

∑(MN)
i=1 |Hi|2

⇒ Ŝ1 =
|H1|

2S̃1
1 + · · ·+ |H(MN)

|2S̃
(MN)
1

∑(MN)
i=1 |Hi|2

(26)

If we calculate Ŝ2, · · · ŜN in the same manner, we have

Ŝ2 =
|H1|

2S̃1
2 + · · ·+ |H(MN)

|2S̃
(MN)
2

∑(MN)
i=1 |Hi|2

...

ŜN =
|H1|

2S̃1
N + · · ·+ |H(MN)

|2S̃
(MN)
N

∑(MN)
i=1 |Hi|2

(27)

By concatenation we stated in (20) , we obtain (28); the
equality to (23) is proved in Appendix VI.

Ŝ =
|H1|

2Ŝ1 + · · ·+ |H(MN)
|2Ŝ(MN)

∑(MN)
i=1 |Hi|2

=

∑(MN)
i=1 |Hi|

2Ŝi
∑(MN)

i=1 |Hi|2
(28)
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It may be noted that decomposition of inverse filtering
in two steps leading to separation and dereverberation is
particularly important in the context of source separation
since implementation of the filters requires different practi-
cal considerations [14]. Nevertheless, the theoretical results
established in this section are general results applicable for all
methods based on inverse filtering.

V. EXPERIMENTS

The experiments are conducted to evaluate the performance
of the proposed approach for multi-source localization and
signal reconstruction. The location of the microphones is
unknown and estimated through the proposed procedure. The
performance is evaluated in terms of source localization and
separation and speech recognition.

A. Microphone Array Corpus

The evaluation is carried out on two databases collected
on multi-channel overlapping numbers corpus (MONC) [29]
as well as multi-channel wall street journal (MC-WSJ) cor-
pus [30]. A brief overview of both databases is stated in the
following subsections. The readers are referred to the specific
documentations published in [29] and [30] for more details.

1) MONC: This database was collected by outputting ut-
terances from the Numbers corpus (telephone quality speech,
30-word vocabulary) on one or more loudspeakers, and record-
ing the resulting sound field using a microphone array and
various lapel and table-top microphones. The energy levels
of all utterances in the Numbers corpus were normalized to
ensure a relatively constant desired speech level across all
recordings. The corpus was then divided into 6049-utterances
as the training set, 2026-utterances as the cross validation
set, and 2061-utterances as the test set. Competing-sources
of the cross-validation and test sets were also produced by
rearranging the order of their respective utterances. The word
loop grammar is used and the task is speaker independent. The
acoustic of the enclosure is mildly reverberant and the average
SNR is 10 dB for single source recordings. The speech signals
are recorded at 8 kHz sampling frequency. The geometrical
set-up of the recordings are exactly measured and provided
in [29].

2) MC-WSJ: This database was used for PASCAL Speech
Separation Challenge II [31, 32]. The subset consists of two
concurrent sources who are simultaneously reading sentences
from the Wall Street Journal and being recorded with 8-
channel circular microphone array. The sources are either
seating or standing at 1.5×1.5 table and a circular microphone
array with diameter 20 cm is located at the center of the table.
The total number of utterances is 356 (or 178, respectively
given that two sentences are read at a time). The ground-truth
of the geometrical set-up is not provided hence, source-sensor
localization results can not be evaluated in the framework
of MC-WSJ. We use this corpus for overlapping speech
recognition due to its phonetically rich data.

B. Source-Sensor Localization Performance

The single source utterances are used for sensor localization.
The spectro-temporal representation is obtained by windowing
the microphone signals in 256 ms frames using a Hann func-
tion with 25% overlap. To perform localization of 8-channel
microphones, the greedy pursuit algorithm summarized in
Table 1 is used. First, the position of the source along with
the two broadside microphones are estimated. Thereafter, the
location of the other microphones are estimated one per itera-
tion. To increase the resolution of the estimates while keeping
the dimensionality of the sparse vector bounded, a coarse-
to-fine strategy is taken [33]. More specifically, the area is
discretized into 5 cm cells. The localized microphones are then
re-located in 1 cm accuracy using a finer discretization. The
average norm of source-sensor localization error is 8.9 mm.
Given that the complexity of the combinatorial optimization
increases as O(GM) whereas the greedy sparse recovery has
a complexity of O(GM), it is crucial to employ the sparse
recovery algorithms to enable accurate localization in our set-
up.

In addition, the method proposed in [34, 35] is implemented
and used to find the location of the circular array. This
method relies on diffuse noise model to find the topology
of the array. The results obtained for localization of circular
microphones is about 1.2 cm using about 10 s recording of
diffuse noise field. In practice however, the level and length
of the available diffuse noise might be challenging to employ
the technique proposed in [34]. Hence, our proposed approach
which requires only a few speech frames (less than 1 s)
provides a higher applicability and accuracy.

C. Speech Reconstruction and Recognition Performance

Given the location of the sources and the characterized
room acoustic channel, the desired signal is recovered by
inverse filtering to perform speech recognition. Assuming that
the channel responses do not have common zeros, we can
deconvolve the signal from the early room impulse response
function through least-squared (psuedo) inverse filtering. The
optimality of this approach by showing its relation to weighted
inverse filtering and equivalence to the two-step operation of
source separation and channel deconvolution is established in
Section IV.

Based on the proposed theories, the effect of early rever-
beration is mitigated. The late reverberation can be statis-
tically modeled as an exponentially decaying white Gaus-
sian noise [36] which also possess the diffuse character-
istics [37, 38]. To reduce the effect of late reverberation
and enhance the signal, we can apply the post-processing
techniques. Among several post-filtering methods proposed
in the literature [39, 38], the Zelinski post-filtering is a
practical implementation of the optimal Wiener filter; while
a precise realization of the later requires knowledge about
the spectrum of the desired signal, the Zelinski post-filtering
method uses the auto- and cross-power spectra of the multi-
channel input signals to estimate the target signal and noise
power spectra under the assumption of zero cross-correlation

between noise on different sensors [40]. We implemented the
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do not have common zeros. The experimental analysis verified
the applicability of the proposed framework using real data
recordings of multiparty speech reconstruction and recogni-
tion.

APPENDIX I. CLOSED-FORM SOLUTION TO SENSOR

LOCALIZATION

Consider a scenario where a single source signal and its
position ν1 is known; for instance the source is co-located
with one of the microphones. We can formulate an alternative
solution to the sensor localization problem which can be
admits a closed-form solution. Defining

S = diag [S(f1) · · · S(fB)] , S ∈ C
B×B

X = [X1(F) · · ·XM(F)]
⊤ , X ∈ C

M×B

H =



H(f1,ν1,µ1) · · · H(fB,ν1,µ1)

...
. . .

...
H(f1,ν1,µM) · · · H(fB,ν1,µM)



G×B

,

we can write
X = CH S (29)

where C ∈ {0, 1}M×G is a matrix consisting of binary values
with a single 1 at each row and all the other components
equal to 0 such that the column indices are exclusive and
‖C‖0= M; by this definition, Ci,j = 1 selects one of the
G cells where a microphone is located. For example, if we
have two microphones (M = 2) located at cells 10 and 20,
only C1,10 and C2,20 are 1. Thereby, it reveals the microphone
locations on the grid.

The formulation stated in (29) considers a rearrangement of
the spectral coefficients in X(F) to constitute the rows of X

(as opposed to vector concatenation in (6)). S is the diagonal
matrix consisting of B frequency components of the source.
Matrix H consists of the acoustic channel associated to the
source located at ν1 and the microphone located at either of the
G cells. Given this formulation of the microphone localization
problem, we can find the exact solution for C through least-
square:

C⊤ = (S H⊤)−1 X⊤ (30)

The matrix C encodes the location of the microphones. This
solution requires that B > G which hold for the broadband
signal and a reasonable resolution of the discretization.

APPENDIX II. THEORY OF LEAST SQUARES

A. Notation and auxiliary results

We need to define some notation before proceeding to the
main problem. For n ∈ N, we define [n] = {1, 2, . . . ,n} to
be the set of all integers from 1 to n. Let p ⊂ [n] be a
nonempty subset of [n] of size k and let A be an n × m

matrix. We denote by Ap a k×n matrix obtained by selecting
the rows of matrix A belonging to p, e.g. for p = {1, 2} Ap

is a 2 ×m matrix consisting of the first and the second row
of A. Let B be an arbitrary m × m matrix and let p ⊂ [n]

of size |p| = m. We denote by embb(B,p,n) the embedding
of columns of B inside an m × n matrix. To explain more
precisely, let us assume that the components of p are sorted

with p1 < p2 < · · · < pm. Then embb(B,p,n) is an all-zero
m×n matrix except that its pi-th column, i = 1, 2, . . . ,m, is
equal to the i-th column of B.

Let r, c ∈ N be arbitrary numbers. We define the linear
space of all r × c real-valued matrices by MR(r, c) with the
traditional matrix addition and scalar-matrix multiplication.
For arbitrary matrices M,N ∈ MR(r, c), we define the
following bilinear form 〈M,N〉 = tr(MN⊤) =

∑

i,j MijNij.
One can simply check that 〈, 〉 defines an inner product on
MR(r, c). We need the following lemma from linear algebra
that we prove for sake of completeness.

Lemma 1. Let r, s ∈ N and let M ∈ MR(r, c). If 〈M,N〉 = 0
for every N ∈ MR(r, c) then M = 0.

Proof: Let i ∈ [r], j ∈ [c] be arbitrary numbers and let N
be an all-zero matrix except for its ij-th component which is
Nij = 1. It results that

0 = 〈M,N〉 =
∑

k,ℓ

MkℓNkℓ = Mij = 0,

which immediately implies that M = 0.

Lemma 2. Let M be an square invertible matrix whose

components depend on a parameter t. Then ∂
∂t
M−1 =

−M−1( ∂
∂t
M)M−1.

Proof: Let I be the identity matrix of the same order
as M. Taking derivative from both sides of the identity I =

MM−1, one obtains 0 = ∂
∂t
MM−1+M ∂

∂t
M−1 which implies

that ∂
∂t
M−1 = −M−1( ∂

∂t
M)M−1.

Lemma 3. Let A be an square matrix of order d whose

components depend on a parameter t. Then ∂
∂t

det(A) =

tr(A−1 ∂
∂t
A)

Proof: Let Aij the component of A in row i and column
j. We first find ∂

∂Aij
det(A) and use the chain rule to obtain

∂

∂t
det(A) =

∑

i,j∈[d]

∂

∂Aij
det(A)

∂

∂t
Aij.

Notice that in order to compute det(A), we can expand it with
respect to the i-th row where we obtain

det(A) =
∑

k∈[d]

(−1)i+kAikdet(A
ĩk
),

where A
ĩk

is a (d−1)×(d−1) matrix obtained after removing
the i-th row and the k-th column of the matrix A. In particular,
it can be immediately checked that the only term that depends
on Aij in the summation is (−1)i+jdet(A

ĩj
), thus one obtains

∂

∂Aij
det(A) = (−1)i+jdet(A

ĩj
) = adj(A)ji,

where adj(A) denotes the adjoint of matrix A. Moreover, from
the formula A−1 =

adj(A)

det(A)
for the inverse of matrix A, one

immediately obtains that

∂

∂Aij
det(A) = det(A)(A−1)ji.
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Applying the chain-rule, it results that

∂

∂t
det(A) = det(A)

∑

i,j∈[d]

(A−1)ji
∂

∂t
Aij = tr(A−1 ∂

∂t
A),

where tr denotes the trace operator and where ∂
∂t
A denotes

the component-wise partial derivative of A with respect to t.

Lemma 4. Let M and S be n × n matrices where S is

symmetric. Then tr(AM) = tr(AM⊤).

Proof: The proof simply follows from the properties of
the trace operator:

tr(SM) = tr((SM)⊤) = tr(M⊤S⊤) = tr(M⊤S) = tr(SM⊤),

where we used the symmetry of S and the fact that for arbitrary
square matrices K,L of the same dimension, tr(KL) = tr(LK).

Theorem 1 (Cauchy-Binet). Let A and B be n×m matrices

with n > m. Then

det(A⊤B) =
∑

p⊂[n],|p|=m

det(Ap)det(Bp), (31)

where |p| denotes the cardinality (number of elements) of p ⊂
[n].

B. The main theorem and connections with overdetermined set

of linear equations

Let H be an n×m matrix where n > m. We assume that
H has full column rank which in particular implies that there
is a subset of rows of H of size m, namely p ⊂ [n], |p| = m,
such that det(Hp) 6= 0. Recall that Hp is a sub-matrix of H

consisting of all those rows with index in p. Let x ∈ Rn be an
arbitrary column vector and consider an overdetermined set of
linear equations given by x = Hs to be solved for the unknown
variables s ∈ Rm. If m = n the solution of this equation is
simply given by s = H−1x. For n > m, the equations might
be inconsistent, thus the set of linear equations x = Hs might
not have a solution. However, a solution exists if an only if
x ∈ span{H1,H2, . . .Hm}, where span denotes the subspace
spanned by a set of vectors and where Hi, i = 1, 2, . . .m,
denote the i-th column of H.

In general, even if the equations are inconsistent, one can
build a candidate solution by some kind of averaging all the
possible sub-solutions. More precisely, let P be the set of all
subsets of [n] of size m, i.e. P = {p ⊂ [n] : |p| = m},
and consider the set of all sub-matrices Hp with a nonzero
determinant det(Hp) 6= 0. For every Hp in this set, one can
consider a sub-solution sp = H−1

p xp, where xp is the a sub-
vector of x consisting of the components with index in p.
Taking the weighted average of all possible sub-solutions with
a weighting ωp > 0, p ∈ P, one obtains a candidate solution

sω =

∑

p∈P ωpsp
∑

p∈P ωp
. (32)

Notice that by changing the associated weighting ωp, one can
obtain different solutions sω. We will consider the weighting

function ωp = det(Hp)
2, which is equal to the squared

determinant of the sub-matrix Hp. We define the resulting
solution by

ŝ1 =

∑

p∈P det(Hp)
2H−1

p xp
∑

p∈P det(Hp)2
. (33)

Notice that if for a specific p ∈ P, det(Hp) = 0 then H−1
p

does not exist but, with some abuse of notation, this term does
not play a role because its corresponding weight det(Hp)

2 is
also equal to 0.

Another approach to find a candidate solution is the least
square approach where the resulting solution ŝ2 is given by
ŝ2 = arg mins∈Rm‖Hs − x‖2. Since H has full column rank,
one can explicitly obtain ŝ2 = (H⊤H)−1H⊤x. In this section,
we prove that exploiting the weighting ωp = det(Hp)

2, both
the estimates give exactly the same result, namely ŝ1 = ŝ2.

Theorem 2. Suppose H is a given n × m matrix (n > m)

with full column rank and assume that x ∈ Rn is an arbitrary

vector. Let ŝ1 be the weighted average solution given by (33)
and let ŝ2 = (H⊤H)−1H⊤x be the the least square solution.

Then ŝ1 = ŝ2.

Proof: Let us label n rows of matrix H with [n] =

{1, 2, . . . ,n} and let P = {p ⊂ [n] : |p| = m} denote the
set of all subset of [n] of size m. Applying the Cauchy-Binet
formula as stated in Theorem 1, one obtains

det(H⊤H) =
∑

p∈P

det(Hp)det(H⊤
p ) =

∑

p∈P

det(Hp)
2. (34)

Using Equation (34), one can write ŝ1 in the following form:

ŝ1 =

∑

p∈P det(Hp)
2H−1

p xp

det(H⊤H)

=

∑

p∈P det(Hp)
2 embb(H−1

p ,p,n)x

det(H⊤H)
.

Recall that for p ∈ P with elements p1 < p2 < · · · < pm, we
denote by embb(H−1

p ,p,n) an all-zero m× n matrix except
for its pi-th column witch is equal to the i-th column of H−1

p ,
i = 1, 2, . . . ,m. Therefore, it is essentially sufficient to prove
that for every x ∈ Rn, we have the following equality

(H⊤H)−1H⊤x =

∑

p∈P det(Hp)
2 embb(H−1

p ,p,n)

det(H⊤H)
x. (35)

Since this is true for every x ∈ Rn, we need to prove that
for every n×m matrix H with n > m and with full column
rank, the following matrix identity holds:

det(H⊤H) (H⊤H)−1H⊤ =
∑

p∈P

det(Hp)
2 embb(H−1

p ,p,n)

(36)

In order to prove the identity (36), let us define the function
F : MR(n,m) → R as follows:

F(H) = det(H⊤H) −
∑

p∈P

det(Hp)
2 (37)

From Cauchy-Binet identity as stated in Theorem 1, it is clear
that F(H) = 0 for every H ∈ MR(n,m). Let t = Hij be a
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parameter denoting the component of H at row i and column
j. It results that ∂

∂t
F(H) = 0 and this is true for every t = Hij,

i ∈ [n], j ∈ [m]. One has

∂

∂t
det(H⊤H)

(a)
= det(H⊤H)tr

{

(H⊤H)−1 ∂

∂t
(H⊤H)

}

(b)
= det(H⊤H)tr

{

(H⊤H)−1
(
(
∂

∂t
H)⊤H+H⊤ ∂

∂t
H
)}

(c)
= det(H⊤H)tr

{

(H⊤H)−1
(
H⊤ ∂

∂t
H+H⊤ ∂

∂t
H
)}

= 2 det(H⊤H)tr
{

(H⊤H)−1H⊤ ∂

∂t
H
}

(d)
= 2 det(H⊤H)tr

{

(H⊤H)−1H⊤Uij

}

(e)
= 2 det(H⊤H)

〈
(H⊤H)−1H⊤,U⊤

ij

〉
,

where (a) follows from Lemma (3) applied to the matrix
H⊤H, (b) follows from the chain rule applied to H⊤H, (c)
follows from Lemma (4) applied to the symmetric matrix
(H⊤H)−1 and matrix ( ∂

∂t
H)⊤H, (d) results by taking the

component-wise derivative of H with respect to t = Hij which
we denote by Uij, and where (e) results from the definition
of the inner product for two matrices. One can simply check
that Uij is an n×m matrix with all-zero components except
for ij-th component which is equal to 1. Taking the derivative
of the other term in Equation (37) with respect to t = Hij,
one obtains

∂

∂t

∑

p∈P

det(Hp)
2 =

∑

p∈P

2 det(Hp)
∂

∂t
det(Hp)

(a)
=

∑

p∈P

2 det(Hp)det(Hp)tr(H
−1
p

∂

∂t
Hp)

(b)
=

∑

p∈P

2 det(Hp)
2tr(embb(H−1

p ,p,n)
∂

∂t
H)

(c)
= 2 tr

{ ∑

p∈P

det(Hp)
2embb(H−1

p ,p,n)Uij

}

(d)
= 2

〈 ∑

p∈P

det(Hp)
2embb(H−1

p ,p,n),U⊤
ij

〉
,

where (a) results from Lemma (3) applied to the matrix Hp;
(b) results for the definition of embedding m columns of
H−1

p in an m × n matrix, specially that remaining columns
of the matrix embb(H−1

p ,p,n) are all zero which allows us
to replace Hp by H, (c) results from the linearity of the trace
operator tr and the definition of matrix Uij, and (d) results
from the definition of the matrix inner product. Therefore, one
obtains that

0 =
∂

∂t
F(H) = 2

〈
U⊤

ij,

det(H⊤H)(H⊤H)−1H⊤ −
∑

p∈P

det(Hp)
2embb(H−1

p ,p,n)
〉

.

Notice that equality holds for all matrices U⊤
ij, i ∈ [n], j ∈ [m].

Since, U⊤
ij form an orthonormal basis for the linear space

MR(m,n) under the standard matrix inner product, from

Lemma 1, it immediately results that

det(H⊤H)(H⊤H)−1H⊤ =
∑

p∈P

det(Hp)
2embb(H−1

p ,p,n).

From Equation 36, this is exactly what we needed to prove.

The content of this appendix is available online [46] for the
general audiences out of the scope of the present manuscript.
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