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Abstract The connection between derivative operators and wavelets is well known.
Here we generalize the concept by constructing multiresolution approximations and
wavelet basis functions that act like Fourier multiplier operators. This construction
follows from a stochastic model: signals are tempered distributions such that the ap-
plication of a whitening (differential) operator results in a realization of a sparse white
noise. Using wavelets constructed from these operators, the sparsity of the white noise
can be inherited by the wavelet coefficients. In this paper, we specify such wavelets
in full generality and determine their properties in terms of the underlying operator.

Keywords Fourier multiplier operators · Wavelets · Multiresolution · Stochastic
differential equations

Mathematics Subject Classification 42C40 · 42B15 · 60H15

1 Introduction

In the past few decades, a variety of wavelets that provide a complete and stable mul-
tiscale representation of L2(R

d) have been developed. The wavelet decomposition is
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very efficient from a computational point of view, due to the fast filtering algorithm.
A fundamental property of traditional wavelet basis functions is that they behave
like multiscale derivatives [17, 18]. Our purpose in this paper is to extend this con-
cept by constructing wavelets that behave like a given Fourier multiplier operator L,
which can be more general than a pure derivative. In our approach, the multiresolu-
tion spaces are characterized by generalized B-splines associated with the operator,
and we show that, in a certain sense, the wavelet inherits properties of the operator.
Importantly, the operator-like wavelet can be constructed directly from the operator,
bypassing the scaling function space. What makes the approach even more attractive
is that, at each scale, the wavelet space is generated by the shifts of a single function.
Our work provides a generalization of some known constructions including: cardi-
nal spline wavelets [5], elliptic wavelets [19], polyharmonic spline wavelets [25, 26],
Wirtinger-Laplace operator-like wavelets [27], and exponential-spline wavelets [15].

In applications, it has been observed that many signals are well represented by a
relatively small number of wavelet coefficients. Interestingly, the model that moti-
vates our wavelet construction explains the origin of this sparsity. The context is that
of sparse stochastic processes, which are defined by a stochastic differential equa-
tion driven by a (non-Gaussian) white noise. Explicitly, the model states that Ls = w

where the signal s is a tempered distribution, L is a shift-invariant Fourier multiplier
operator, and w is a sparse white noise [22]. The wavelets we construct are designed
to act like the operator L so that the wavelet coefficients are determined by a gener-
alized B-spline analysis of w. In particular, we define an interpolating spline φ, cor-
responding to L∗L, from which we derive the wavelets ψ = L∗φ. Then the wavelet
coefficients are formally computed by the L2 inner product

〈s,ψ〉 = 〈
s,L∗φ

〉 = 〈Ls,φ〉 = 〈w,φ〉.
Sparsity of w combined with localization of the interpolating spline φ results in
sparse wavelet coefficients [23]. This model is relevant in medical imaging applica-
tions, where good performance has been observed in approximating functional mag-
netic resonance imaging and positron emission tomography data using operator-like
wavelets that are tuned to the hemodynamic or pharmacokinetic response of the sys-
tem [14, 28].

Our construction falls under the general setting of pre-wavelets, which are compre-
hensively covered by de Boor, DeVore, and Ron in [8]. Two distinguishing properties
of our approach are its operator-based nature and the fact that it is non-stationary. Re-
lated constructions have been developed for wavelets based on radial basis functions
[4, 7, 21]. In fact, [7] also takes an operator approach; however, the authors were
focused on wavelets defined on arbitrarily spaced points.

This paper is organized as follows. In Sect. 2, we formally define the class of
admissible operators and the lattices on which our wavelets are defined. In Sect. 3,
we construct the non-stationary multiresolution analysis (MRA) that corresponds to
a given operator L and derive approximation rates for functions lying in Sobolev-
type spaces. Then, in Sect. 4, we introduce the operator-like wavelets and study their
properties; in particular, we derive conditions on L that guarantee that our choice of
wavelet yields a stable basis at each scale. Under an additional constraint on L, we
use this result to define Riesz bases of L2(R

d). In Sect. 5, we prove a decorrelation
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property for families of related wavelets. In Sect. 6, we present connections to prior
constructions, and we conclude with some examples of operator-like wavelets.

2 Preliminaries

The primary objects of study in this paper are Fourier multiplier operators and their
derived wavelets. The operators that we consider are shift-invariant operators L that
act on L2(R

d), the class of square integrable functions f : Rd → C. The action of
such a Fourier multiplier operator is defined by its symbol L̂ in the Fourier domain,
with

Lf = (L̂f̂ )∨.

The symbol L̂ is assumed to be a measurable function. The adjoint of L is denoted as
L∗, and its symbol is the complex conjugate of L̂; i.e., the symbol of L∗ is L̂∗. In the
previous equation, we used f̂ to denote the Fourier transform of f

f̂ (ω) =
∫

Rd

f (x)e−ix·ωdx.

We use g∨ to denote the inverse Fourier transform of g. Pointwise values of L̂ are
required for some of our analysis, so we restrict the class of symbols by requiring
continuity almost everywhere. Additionally, we would like to have a well-defined
inverse of the symbol, so L̂ should not be zero on a set of positive measure. To be
precise, we define the class of admissible operators as follows.

Definition 1 Let L be a Fourier multiplier operator. Then L is admissible if its symbol
L̂ is of the form f/g, where f and g are continuous functions satisfying:

1. The set of zeros of fg has Lebesgue measure zero;
2. The zero sets of f and g are disjoint.

Notice that each such operator defines a subspace of L2, consisting of functions
whose derivatives are also square integrable, and our approximation results focus on
these spaces.

Definition 2 An admissible operator L defines a Sobolev-type subspace of L2(R
d):

WL
2

(
R

d
) := {

f ∈ L2
(
R

d
) : ‖f ‖WL

2
< ∞}

,

where

‖f ‖WL
2

:=
(∫

Rd

∣∣f̂ (ω)
∣∣2(1 + ∣∣L̂(ω)

∣∣2)dω

)1/2

.

Having defined the class of admissible operators, we must consider the lattices on
which the multiresolution spaces will be defined. It is important to use lattices which
are nested, so we consider those defined by an expansive integer matrix. Specifically,
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an integer matrix A, whose eigenvalues are all larger than 1 in absolute value, defines
a sequence of lattices

Aj
Z

d = {
Ajk : k ∈ Z

d
}

indexed by an integer j . Using [13] as a reference, we recall some results about
lattices generated by a dilation matrix. First, we know that Aj

Z
d can be decom-

posed into a finite union of disjoint copies of Aj+1
Z

d ; there are |det(A)| vectors
{el}|det(A)|−1

l=0 such that

⋃

l

(
Ajel + Aj+1

Z
d
) = Aj

Z
d ,

and using this notation, our convention will be to set e0 = 0.
There are also several important properties that arise when using Fourier tech-

niques on more general lattices. A lattice in the spatial domain corresponds to a dual
lattice in the Fourier domain, and the dual lattice of Aj

Z
d is given by 2π(AT )−j

Z
d .

Also relevant is the notion of a fundamental domain, which for Aj
Z

d is a bounded,
measurable set Ωj satisfying

∑

k∈Zd

χΩj

(
x + Ajk

) = 1

for all x.
In this paper, we restrict our attention to lattices derived from matrices that are

constant multiples of orthogonal matrices; i.e., we assume a scaling matrix A satis-
fies A = aR for some orthogonal matrix R and constant a > 1. The lattices generated
by these matrices have some additional nice properties. For example, the lattices gen-
erated by A and AT are the same, and the lattices Aj

Z
d scale uniformly in every

direction for j ∈ Z. Also, for such matrices, there are only finitely many possible lat-
tices generated by powers of A; i.e., there always exists a positive integer n for which
An = anI.

In addition to the standard dilation matrices aI (where a = 2,3, . . . ), there are
other matrices satisfying the restriction described above. For example in two dimen-
sions, the quincunx matrix

A =
(

1 1
1 −1

)

is valid, and in three dimensions, one could use

A =
⎛

⎝
2 2 −1
2 −1 2

−1 2 2

⎞

⎠ .

3 Multiresolution Analysis

The multiresolution framework for wavelet construction was presented by Mallat in
the late 1980s [16]. In the following years, the notion of pre-wavelets was developed,
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and a more general notion of multiresolution was adopted. We consider this more
general setting in order to allow for a wider variety of admissible operators.

Definition 3 A sequence {Vj }j∈Z of closed linear subspaces of L2(R
d) forms a non-

stationary multiresolution analysis if

1. Vj+1 ⊆ Vj ;
2.

⋃
j∈Z Vj is dense in L2(R

d) and
⋂

j∈Z Vj is at most one-dimensional;

3. f ∈ Vj if and only if f (· − Ajk) ∈ Vj for all j ∈ Z and k ∈ Z
d , where A is an

expansive integer matrix;
4. For each j ∈ Z, there is an element ϕj ∈ Vj such that the collection of translates

{ϕj (· − Ajk) : k ∈ Z
d} is a Riesz basis of Vj , i.e., there are constants 0 < Aj ≤

Bj < ∞ such that

Aj‖c‖2
�2

≤
∥∥∥∥

∑

k∈Zd

c[k]ϕj

(· − Ajk
)
∥∥∥∥

2

L2(R
d )

≤ Bj‖c‖2
�2

.

Let us point out here a few remarks concerning this definition. First of all, note
that we have defined our multiresolution spaces Vj to be ‘growing’ as j approaches
−∞. Also, in the second condition we do not require the intersection of the spaces
Vj to be {0}. Instead, we allow it to be one-dimensional. This happens, for example,
when every space is generated by the dilations of a single function; i.e., there is a
ϕ ∈ L2(R

d) such that

Vj =
{ ∑

k∈Zd

c[k]ϕ(· − Ajk
) : c ∈ �2

(
Z

d
)}

for every j .
In order to produce non-stationary MRAs, we require additional properties on

an admissible operator. Together with a dilation matrix, the operator should admit
generalized B-splines (generators of the multiresolution spaces Vj ) that satisfy decay
and stability properties.

As motivation for our definition, let us consider the one-dimensional example
where L is defined by

Lf (t) = df

dt
(t) − αf (t),

for some α > 0. A Green’s function for L is ρ(t) = eαtH(t), where H is the Heav-
iside function. In order to produce Riesz bases for the scaling matrix A = (2), we
introduce the localization operators Ld,j defined by Ld,j f = f − e2j αf (· − 2j ).
Then for any j ∈ Z, the exponential B-spline ϕj := Ld,j ρ is a compactly supported
function whose shifts {ϕj (· − 2j k)}k∈Z form a Riesz basis. In the Fourier domain, a
formula for ϕj is L̂(ω)−1L̂d,j (ω), which is

ϕ̂j (ω) = 1 − e2j (α−iω)

iω − α
.
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In this form we verify the equivalent Riesz basis condition

0 < Aj ≤
∑

k∈Z

∣∣ϕ̂j

(· − 2π2−j k
)∣∣2 ≤ Bj < ∞.

In fact, based on the symbol of L, we could have worked entirely in the Fourier
domain to determine appropriate periodic functions L̂d,j . With this example in mind,
we make the following definition.

Definition 4 We say that an operator L and an integer matrix D are a spline-
admissible pair of order r > d/2 if the following conditions are satisfied:

1. L is an admissible Fourier multiplier operator;
2. D = aR with R an orthogonal matrix and a > 1;
3. There is a constant CL > 0 such that

CL
(
1 + ∣∣L̂(ω)

∣∣2) ≥ |ω|2r ;

4. For every j ∈ Z, there exists a periodic function L̂d,j such that ϕ̂j (ω) :=
L̂d,j (ω)L̂(ω)−1 satisfies the Riesz basis condition

0 < Aj ≤
∑

k∈Zd

∣∣ϕ̂j

(
ω + 2π

(
DT

)−j
k
)∣∣2 ≤ Bj < ∞,

for some Aj and Bj in R. Here, we require the periodic functions L̂d,j to be of

the form
∑

k∈Zd pj [k]eiω·Dj k for some p ∈ �1(Z
d).

Definition 5 Let L and D be a spline admissible pair. The functions ϕ̂j from Condi-
tion 4 of Definition 4 are in L2(R

d), and we refer to the functions

ϕj := (ϕ̂j )
∨

as generalized B-splines for L.

Proposition 1 Given a spline-admissible pair L and D, the spaces

Vj =
{ ∑

k∈Zd

c[k]ϕj

(· − Djk
) : c ∈ �2

(
Z

d
)}

form a non-stationary MRA.

Proof The first property of Definition 3 is verified using the definition of D and the
Riesz basis conditions on the generalized B-splines ϕj .

Density in L2(R
d) is a result of the admissibility of L, the Riesz basis condition

on ϕj , and the inclusion relation Vj+1 ⊆ Vj , cf. [8, Theorem 4.3]. Also, there is an
integer n for which Dn = anI, and the intersection of the spaces Vjn is at most one-
dimensional by Theorem 4.9 of [8].
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Property 3 follows from the definition of the spaces Vj , and lastly, Property 4 of
Definition 3 is valid due to Property 4 of Definition 4. �

The primary difficulty in proving spline-admissibility is verifying Condition 4,
which concerns the existence of generalized B-splines. This problem is closely re-
lated to the localization (or ‘preconditioning’) of radial basis functions for the con-
struction of cardinal interpolants [6]. As in that paper, the idea is to construct pe-
riodic functions L̂d,j that cancel the singularities of L̂−1. In one dimension, we
can verify spline-admissibility for any constant-coefficient differential operator. In
higher dimensions, spline admissibility holds for the Matérn operators, characterized
by L̂(ω) = (1 + |ω|2)ν/2, as they require no localization. In Sect. 6, we provide a
less obvious example and show how this Riesz basis property can be verified. As a
final point, note that if one is only interested in analyzing fine-scale spaces, Condi-
tion 4 need only be satisfied for j smaller than a fixed integer j0, but in this case, it is
necessary to include the space Vj0−1 in the wavelet decomposition.

We close this section by determining approximation rates for the multiresolution
spaces {Vj }j∈Z, in terms of the operator L and the density of the lattices generated
by Dj . In order to state this result, we define the spline interpolants for the operator
L∗L, whose symbol is |L̂|2. The spline admissibility of this operator is the subject of
the next proposition.

Proposition 2 If L is spline admissible of order r > d/2, then L∗L is spline admis-
sible of order 2r > d .

Proof Let L be a spline admissible operator of order r > d/2. First notice that L∗L is
an admissible Fourier multiplier operator. Also, we see that L∗L satisfies Condition
3 of Definition 4 with r replaced by 2r . Therefore spline admissibility follows if we
can exhibit generalized B-splines for L∗L that satisfy the Riesz basis condition, where
the integer dilation matrix is the same as for L. To that end, let ϕj be a generalized
B-spline for L. Then we claim that ̂̃ϕj := |ϕ̂j |2 defines the Fourier transform of a
generalized B-spline for L∗L.

An upper Riesz bound for ϕ̃j can be found by using the norm inequality between
�1 and �2:

∑

k∈Zd

∣∣ϕ̂j

(
ω + 2π

(
DT

)−j
k
)∣∣4 ≤

( ∑

k∈Zd

∣∣ϕ̂j

(
ω + 2π

(
DT

)−j
k
)∣∣2

)2

≤ B2
j .

To verify the lower Riesz bound for ϕ̃j , we make use of the norm inequality

∑

|k|≤M

∣∣ϕ̂j

(
ω + 2π

(
DT

)−j
k
)∣∣4 ≥ CM−d

( ∑

|k|≤M

∣∣ϕ̂j

(
ω + 2π

(
DT

)−j
k
)∣∣2

)2

, (1)

for an appropriately chosen M > 0. Now, note that the decay condition of spline
admissibility implies that for |ω| sufficiently large, there is a constant C > 0 such
that

∣∣L̂(ω)
∣∣−1 ≤ C|ω|−r
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This decay estimate on L̂−1 combined with the lower Riesz bound for ϕj gives

Aj ≤
∑

k∈Zd

∣∣ϕ̂j

(
ω + 2π

(
DT

)−j
k
)∣∣2

≤
∑

|k|≤M

∣∣ϕ̂j

(
ω + 2π

(
DT

)−j
k
)∣∣2 + C

∣∣L̂d,j(ω)
∣∣2

Md−2r
∣∣det(D)

∣∣2jr/d
,

and hence
∑

|k|≤M

∣∣ϕ̂j

(
ω + 2π

(
DT

)−j
k
)∣∣2 ≥ Aj − C

∣∣L̂d,j(ω)
∣∣2

Md−2r
∣∣det(D)

∣∣2jr/d
. (2)

Due to the fact that 2r > d , we can always choose M large enough to make the
right hand side of (2) positive. Using the estimate (2) in (1) establishes a lower Riesz
bound for ϕ̃j . �

The Riesz basis property of the generalized B-splines for L∗L imply that the L∗L-
spline interpolants φj (x), given by

φ̂j (ω) = ∣∣det(D)
∣∣j |ϕ̂j (ω)|2

∑
k∈Zd |ϕ̂j (ω + 2π(DT )−jk)|2 , (3)

are well-defined and also generate Riesz bases. Importantly, φj ∈ WL
2 does not de-

pend on the specific choice of the localization operator, as we can see from

φ̂j (ω) = ∣∣det(D)
∣∣j |L̂d,j (ω)|2|L̂(ω)|−2

|L̂d,j (ω)|2 ∑
k∈Zd |L̂(ω + 2π(DT )−jk)|−2

= ∣∣det(D)
∣∣j 1

1 + |L̂(ω)|2 ∑
k∈Zd\{0}|L̂(ω + 2π(DT )−jk)|−2

.

These L∗L-spline interpolants play a key role in our wavelet construction, which
we describe in the next section; however, for our approximation result, we are more
interested in the related functions

mj(ω) = |L̂(ω)|−2

∑
k∈Zd |L̂(ω + 2π(DT )−jk)|−2

, (4)

which are also needed for the decorrelation result, Theorem 4.
In order to bound the error of approximation from the spaces Vj , we apply the

techniques developed in [9]. In that paper, the authors derive a characterization of cer-
tain potential spaces in terms of approximation by closed, shift-invariant subspaces
of L2(R

d). The same techniques can be applied in our situation, with a few modifi-
cations to account for smoothness being determined by different operator norms.

The error in approximating a function f ∈ L2(R
d) by a closed function space X

is denoted by

E(f,X) := min
s∈X

‖f − s‖L2(R
d ),
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and the approximation rate is given in terms of the density of the lattice in R
d . The

lattice determined by Dj has density proportional to |det(D)|j/d , so we say that the
multiresolution spaces Vj provide approximation order r̃ if there is a constant C > 0
such that

E(f,Vj ) ≤ C
∣∣det(D)

∣∣j r̃/d‖f ‖WL
2 (Rd ),

for every f ∈ WL
2 (Rd).

Theorem 1 For a spline-admissible pair L and D of order r > d/2, the multiresolu-
tion spaces Vj provide approximation order r̃ ≤ r if

∣∣det
(
DT

)∣∣−2j r̃/d 1 − mj(ω)

1 + |L̂(ω)|2

is bounded, independently of j , in L∞((DT )−jΩ), where Ω = [−π,π]d .

Proof This result is a consequence of [9, Theorem 4.3]. To show this let us introduce
the notation fj (·) = f (Dj ·), which implies that f̂j = |det(D)|−j f̂ ◦ (DT )−j , where
◦ denotes composition. The spaces Vj are scaled copies of the integer shift-invariant
spaces

V
j
j := {

s
(
Dj ·) : s ∈ Vj

}

=
{ ∑

k∈Zd

c[k]ϕj

(
Dj (· − k)

) : c ∈ �2
(
Z

d
)}

.

We then write the error of approximating a function f ∈ WL
2 (Rd) from Vj in terms

of approximation by V̂
j
j as

E(f,Vj ) = ∣∣det(D)
∣∣j/2

E
(
fj ,V

j
j

)

= (2π)−d/2
∣∣det(D)

∣∣j/2
E

(
f̂j , V̂

j
j

)
,

where V̂
j
j is composed of the Fourier transforms of functions in V

j
j . Separating this

last term, we have

E(f,Vj ) ≤ (2π)−d/2
∣∣det(D)

∣∣j/2(
E

(
f̂jχΩ, V̂

j
j

) + ∥∥(1 − χΩ)f̂j

∥∥
2

)
, (5)

where χΩ is the characteristic function of the set Ω . We are now left with bounding
both terms on the right-hand side of (5). First, we have

∥∥(1 − χΩ)f̂j

∥∥2
2 =

∫

Rd\Ω
∣∣f̂j (ω)

∣∣2dω

= ∣∣det(D)
∣∣−2j

∫

Rd\Ω
∣∣f̂

((
DT

)−j
ω

)∣∣2 1 + |L̂((DT )−jω)|2
1 + |L̂((DT )−jω)|2 dω,
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and since L is spline-admissible of order r

∥∥(1 − χΩ)f̂j

∥∥2
2 ≤ CL

∣∣det(D)
∣∣2jr/d−j‖f ‖2

WL
2
.

Therefore

∣∣det(D)
∣∣j/2∥∥(1 − χΩ)f̂j

∥∥
2 ≤ C

1/2
L

∣∣det(D)
∣∣jr/d‖f ‖WL

2
. (6)

In order to bound the remaining term, we need a formula for the projection of f̂jχΩ

onto V
j
j . Notice that

1 − mj

((
DT

)−j ·) = 1 − |ϕ̂j ◦ (DT )−j |2
∑

k∈Zd |ϕ̂j ◦ (DT )−j (· − 2πk)|2

= 1 − |ϕ̂j ◦ Dj |2
∑

k∈Zd |ϕ̂j ◦ Dj (· − 2πk)|2
,

so we apply [9, Theorem 2.20] to get

E
(
f̂j χΩ, V̂

j
j

)2 =
∫

Ω

|f̂j |2
(
1 − mj

((
DT

)−j ·))

= ∣∣det(D)
∣∣−2j

∫

Ω

∣∣f̂ ◦ (
DT

)−j ∣∣2(1 − mj

((
DT

)−j ·)).

Now, changing variables gives

E
(
f̂j χΩ, V̂

j
j

)2 = ∣∣det(D)
∣∣−j

∫

(DT )−j Ω

|f̂ |2(1 + |L̂|2) 1 − mj

1 + |L̂|2

≤ ∣∣det(D)
∣∣−j‖f ‖2

WL
2

∥∥∥∥
1 − mj

1 + |L̂|2
∥∥∥∥

L∞((DT )−j Ω)

.

Applying our assumption on (1 − mj), we have

∣∣det(D)
∣∣j/2

E
(
f̂jχΩ, V̂

j
j

) ≤ C
∣∣det(D)

∣∣j r̃/d‖f ‖WL
2
. (7)

Substituting the estimates (6) and (7) into (5) yields the result. �

Concerning this theorem, an important point is that it describes the approximation
properties of the MRA entirely in terms of the operator; i.e., the guaranteed approx-
imation rates are independent of how one chooses the generalized B-splines ϕj for
the multiresolution spaces Vj .
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4 Operator-Like Wavelets and Riesz Bases

Using the non-stationary MRA defined in the previous section, we define the scale of
wavelet spaces Wj by the relationship

Vj = Vj+1 ⊕ Wj+1;
i.e., Wj+1 is the orthogonal complement of Vj+1 in Vj . Our goal in this section is
to define Riesz bases for these spaces and for L2(R

d). To begin, let us define the
functions

ψj+1 := L∗φj ,

which we claim generate Riesz bases for the wavelet spaces, under mild conditions
on the operator L. First, note that ψj+1 is indeed in Vj , because its Fourier transform
ψ̂j+1 is a periodic multiple of ϕ̂j , and thus

ψ̂j+1(ω) = ∣∣det(D)
∣∣j L̂d,j (ω)∗

∑
k∈Zd |ϕ̂j (ω + 2π(DT )−jk)|2 ϕ̂j (ω). (8)

A direct implication of our wavelet construction is the following property.

Property 1 The wavelet function ψj+1 behaves like a multiscale version of the
underlying operator L in the sense that, for any f ∈ WL

2 , we have f ∗ ψj+1 =
L∗(f ∗ φj ). Hence, in the case where φj is a lowpass filter, {L∗(f ∗ φj )}j∈Z cor-
responds to a multiscale representation of L∗f .

The next few results focus on showing that the Dj
Z

d \ Dj+1
Z

d shifts of ψj+1 are
orthogonal to Vj+1 and generate a Riesz basis of Wj+1.

Proposition 3 The wavelets {ψj+1(· − Djk)}k∈Zd\DZd are orthogonal to the space
Vj+1.

Proof It suffices to show 〈ϕj+1,ψj+1(· − Djk)〉 = 0 for every k ∈ Z
d\DZ

d . From
(8), we have

〈
ϕj+1,ψj+1

(· − Djk
)〉 =

∫

Rd

ϕ̂j+1(ω)eiω·Dj kL̂(ω)φ̂j (ω)dω

=
∫

Rd

L̂d,j+1(ω)eiω·Dj kφ̂j (ω)dω.

Now let Ω be a fundamental domain for the lattice 2π(DT )−j
Z

d . Then

〈
ϕj+1,ψj+1

(· − Djk
)〉 =

∫

Ω

L̂d,j+1(ω)eiω·Dj k
∑

n∈Zd

φ̂j

(
ω − 2π

(
DT

)−j
n
)
dω

= ∣∣det(D)
∣∣j

∫

Ω

L̂d,j+1(ω)eiω·Dj kdω.
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From Definition 4, we know that L̂d,j+1 has a series representation of the form
∑

n∈Zd pj+1[n]eiω·Dj+1n, so

〈
ϕj+1,ψj+1

(· − Djk
)〉 = ∣∣det(D)

∣∣j
∑

n∈Zd

pj+1[n]
∫

Ω

eiω·Dj (Dn+k)dω

=
∑

n∈Zd

pj+1[n]
∫

[0,2π]d
eiω·(Dn+k)dω.

Since k /∈ DZ
d , we see that Dn+k �= 0 for any n, and this implies that 〈ϕj+1,ψj+1(·−

Djk)〉 = 0. �

In order to prove that the Dj
Z

d \ Dj+1
Z

d shifts of ψj+1 form a Riesz basis of the
wavelet space Wj+1, we introduce notation that will help us formulate the problem
as a shift-invariant one. In the following definition, we use the fact that there is a set
of vectors

{
el ∈ Z

d : l = 0, ..,
∣∣det(D)

∣∣ − 1
}

such that
|det(D)|−1⋃

l=0

(
Djel + Dj+1

Z
d
) = Dj

Z
d .

Definition 6 For every j ∈ Z and every l ∈ {1, . . . , |det(D)| − 1}, we define the
wavelets

ψ
(l)
j+1(x) := ψj+1

(
x − Djel

)
,

and we define the collections

Ψ := Ψj+1 := {
ψ

(l)
j+1

}|det(D)|−1
l=1 .

In the following, necessary and sufficient conditions on the operator L are given
which guarantee that Ψj+1 generates a Riesz basis of Wj+1. The technique used
is called fiberization, and it can be applied to characterize finitely generated shift-
invariant spaces [20]. In this setting, a collection of functions defines a Gramian ma-
trix, and the property of being a Riesz basis is equivalent to the Gramian having
bounded eigenvalues. In our situation, the Gramian for Ψ is

GΨ (ω) = ∣∣det(D)
∣∣−j−1

( ∑

β∈2π(DT )−j−1Zd

̂
ψ

(k)
j+1(ω + β)

̂
ψ

(l)
j+1(ω + β)∗

)

k,l

= ∣∣det(D)
∣∣−j−1

( ∑

β∈2π(DT )−j−1Zd

e−iDj (ek−el )·(ω+β)
∣∣ψ̂j+1(ω + β)

∣∣2
)

k,l

,

where k and l range from 1 to |det(D)| − 1. The normalization factor |det(D)|−j−1

accounts for scaling of the lattice.
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Let us denote the largest and smallest eigenvalues of GΨ (ω) by Λ(ω) and
λ(ω), respectively. Then the collection Ψ generates a Riesz basis if and only if
Λ and 1/λ are essentially bounded (cf. [20] Theorem 2.3.6). To simplify this
matrix without changing the eigenvalues, we apply the similarity transformation
T (ω)−1GΨ (ω)T (ω), where T is the square diagonal matrix with diagonal entry
e−iDj el ·ω in row l. This transformation multiplies column l of GΨ by e−iDj el ·ω and
row k of GΨ by eiDj ek ·ω . Since the eigenvalues are unchanged, let us call this new
matrix GΨ as well. We then have

GΨ (ω) = ∣∣det(D)
∣∣−j−1

( ∑

β∈2π(DT )−j−1Zd

e−iDj (ek−el )·β ∣∣ψ̂j+1(ω + β)
∣∣2

)

k,l

.

Using the fact that
⋃

m(em + DT
Z

d) = Z
d and the notation

c(m;ω) := ∣∣det(D)
∣∣−j−1 ∑

β∈2π(DT )−jZd

∣∣ψ̂j+1
(
ω + 2π

(
DT

)−j−1
em + β

)∣∣2
, (9)

we write

GΨ (ω) =
(|det(D)|−1∑

m=0

c(m;ω)e−2πi(ek−el )·(DT )−1em

)

k,l

.

Definition 7 Let H be the |det(D)| × |det(D)| matrix

H := ∣∣det(D)
∣∣−1/2(

e2πiem·(DT )−1ek
)
k,m

,

which is the complex conjugate of the discrete Fourier transform matrix for the
lattice generated by DT [24]. Here, k and m range over the index set M :=
{0, . . . , |det(D)| − 1}. Also, define H0 to be the submatrix obtained by removing col-
umn 0 from H.

Lemma 1 The minimum and maximum eigenvalues λ(ω),Λ(ω) of the Gramian ma-
trix GΨ (ω) satisfy the following properties:

(i) λ(ω) ≥ |det(D)|minm∈M c(m;ω) and Λ(ω) ≤ |det(D)|maxm∈M c(m;ω)

(ii) There is a constant C > 0 such that

λ(ω) ≥ C
∣∣det(D)

∣∣ max
m0(ω)∈M

min
m∈M\{m0(ω)}

c(m;ω).

(iii) If for any fixed ω ∈ R
d , there exist distinct m1(ω),m2(ω) ∈ M such that

c(m1(ω);ω) = c(m2(ω);ω) = 0, then λ(ω) = 0.

Proof The Gramian matrix GΨ can be written as

GΨ (ω) = ∣∣det(D)
∣∣H∗

0D(ω)H0,
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where D(ω) is the |det(D)| × |det(D)| diagonal matrix with entry c(m;ω) in column
m:

∣∣det(D)
∣∣H∗

0D(ω)H0 = (
e−2πiek ·(DT )−1en

)
k,n

(
c(m;ω)

)
n,m

(
e2πiel ·(DT )−1em

)
m,l

= (
c(m;ω)e−2πiek ·(DT )−1em

)
k,m

(
e2πiel ·(DT )−1em

)
m,l

=
(|det(D)|−1∑

m=0

c(m;ω)e−2πi(ek−el )·(DT )−1em

)

k,l

.

Since D(ω) has non-negative entries, we write this as

GΨ (ω) = ∣∣det(D)
∣∣(D(ω)1/2H0

)∗(D(ω)1/2H0
)
.

Now consider the quadratic form

α∗GΨ (ω)α = ∣∣det(D)
∣∣(D(ω)1/2H0α

)∗(D(ω)1/2H0α
)

= ∣∣det(D)
∣∣∣∣D(ω)1/2H0α

∣∣2
,

where α ∈ C
|det(D)|−1. Since H0 is an isometry, |H0α| = |α|, and we immediately

verify (i).
To prove (ii), we first identify the range of H0. By the Fredholm alternative, a

vector is in the range of H0 if and only if it is orthogonal to the null space of H∗
0.

Since H∗ is a unitary matrix and its first row is a constant multiple of (1,1, . . . ,1)T ,
the range of H0 consists of vectors that are orthogonal to (1,1, . . . ,1)T . Therefore

λ(ω) = ∣∣det(D)
∣∣ min
α∈C|det(D)|−1

|α|=1

∣∣D(ω)1/2H0α
∣∣2

= ∣∣det(D)
∣∣ min

α∈C|det(D)|
|α|=1

α⊥(1,1,...,1)T

∣∣D(ω)1/2α
∣∣2

= ∣∣det(D)
∣∣ min

α∈C|det(D)|
|α|=1

α⊥(1,1,...,1)T

∑

m∈M
|αm|2c(m;ω),

where in the last equation, we use the notation α = (α0, . . . , α|det(D)|−1). Then a lower
bound is given by

λ(ω) ≥ ∣∣det(D)
∣∣ max
m0(ω)∈M

min
α∈C|det(D)|

|α|=1
α⊥(1,1,...,1)T

∑

m∈M\{m0(ω)}
|αm|2c(m;ω)

≥ ∣∣det(D)
∣∣ max
m0(ω)∈M

min
α∈C|det(D)|

|α|=1
α⊥(1,1,...,1)T

(
min

m∈M\{m0(ω)}
c(m;ω)

) ∑

m∈M\{m0(ω)}
|αm|2
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= ∣∣det(D)
∣∣ max
m0(ω)∈M

(
min

m∈M\{m0(ω)}
c(m;ω)

)(
min

α∈C|det(D)|
|α|=1

α⊥(1,1,...,1)T

∑

m∈M\{m0(ω)}
|αm|2

)
.

Notice that none of the standard unit vectors
{
(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)

}

are orthogonal to (1,1, . . . ,1)T , so there is a constant C > 0 such that

min
m0(ω)∈M

min
α∈C|det(D)|

|α|=1
α⊥(1,1,...,1)T

∑

m∈M\{m0(ω)}
|αm|2 = C.

We now use this constant to provide a lower bound for λ(ω):

λ(ω) ≥ C
∣∣det(D)

∣∣ max
m0(ω)∈M

min
m∈M\{m0(ω)}

c(m;ω).

Finally, for (iii), suppose that there are distinct m1(ω),m2(ω) ∈ M such that
c(m1(ω);ω) = c(m2(ω);ω) = 0. Then define the vector α = (α1, . . . , α|det(D)|−1) ∈
C

|det(D)| such that αm1 = 1/
√

2, αm2 = −1/
√

2, and all other entries are zero. This
vector is in the range of H0, and D(ω)1/2α = 0. Therefore λ(ω) = 0. �

Lemma 2 The collection Ψ generates a Riesz basis if and only if no two of the
functions c(m;ω) are zero for the same ω.

Proof Let Ωj be a fundamental domain for the lattice 2π(DT )−j
Z

d , and let Ωj

denote its closure.
For the reverse direction, we must show that there is a uniform lower bound of

λ(ω) over Ωj . By Lemma 1, it suffices to provide a lower bound for

max
m0(ω)∈M

min
m∈M\{m0(ω)}

c(m;ω). (10)

Based on (8) and (9), we verify that

c(m;ω) = ∣∣det(D)
∣∣j−1 |L̂d,j (ω + 2π(DT )−j−1em)|2

∑
k∈Zd |ϕ̂j (ω + 2π(DT )−j−1em + 2π(DT )−jk)|2 . (11)

Note that the numerator is a continuous function, and the denominator is bounded
away from zero, due to the Riesz basis condition on ϕj . Hence, c(m;ω) = 0 at a
point ω if and only if L̂d,j (ω + 2π(DT )−j−1em) = 0. Let us define the continuous
function

F(ω) := max
m0(ω)∈M

min
m∈M\{m0(ω)}

∣∣L̂d,j

(
ω + 2π

(
DT

)−j−1
em

)∣∣2
. (12)

Since no two functions c(m;ω) are zero at any point ω, F is positive on Ωj . Due
to the compactness of this set, there is a constant C > 0 such that F(ω) > C on Ωj .
Since F is bounded away from zero, (10) is as well.
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The forward direction follows from (iii) of Lemma 1. �

Lemma 3 If Ψj+1 generates a Riesz basis, then it provides a Riesz basis for Wj+1.

Proof We verify this fact by comparing the bases

Ψ ′
j+1 := {ϕj+1} ∪ Ψj+1,

Φj := {
ϕj

(· − Djem

)}
m∈M

for shift invariant spaces on the lattice Dj+1
Z

d . The Dj
Z

d shifts of ϕj are a Riesz
basis for Vj , or, equivalently, the Dj+1

Z
d shifts of the elements of Φj are a Riesz

basis of Vj . This basis has |det(D)| elements, and any other basis must have the same
number of elements.

The collections Ψj+1 and {ϕj+1} generate Riesz bases, and both are contained
in Vj . These bases are orthogonal, as was shown in Proposition 3. Therefore Ψ ′

j+1
generates a Riesz basis for a subspace of Vj , and Ψj+1 generates a Riesz basis for
a subspace of Wj+1. The fact that Ψ ′

j+1 has |det(D)| elements implies that Ψ ′
j+1

provides a Riesz basis for Vj (cf. [8, Theorem 2.26] and [1]), and the result follows. �

In Lemmas 1 and 2, we saw how Ψ generating a Riesz basis depends on the zeros
of the functions c(m; ·). From (11), it is clear that the zeros of c(m; ·) coincide with
the zeros of a shifted version of L̂d,j . In order to interpret the Riesz basis conditions
in terms of the operator L, we note that the zeros of L̂d,j are precisely the periodized
zeros of L̂.

Let us denote the zero set of the symbol L̂ as

N := {
p ∈ R

d : L̂(p) = 0
}
,

and for each scale j and each m = 0, . . . , |det(D)| − 1, let us define the periodized
sets

N (m)
j := {

p − 2π
(
DT

)−j−1
em + 2π

(
DT

)−j
k : p ∈N ,k ∈ Z

d
}
.

Note that N (m)
j is the zero set of L̂d,j (· + 2π(DT )−j−1em), and hence it is also the

zero set of c(m,ω).

Theorem 2 Let j ∈ Z be an arbitrary scale. Then the family of functions

Ψj+1 = {
ψ

(m)
j+1

}|det(D)|−1
m=1

generates a Riesz basis of Wj+1 if and only if the sets N (m)
j satisfy

N (0)
j ∩N (m)

j = ∅ (13)

for each 1 ≤ m ≤ |det(D)| − 1.
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Our wavelet construction is intended to be general so that we may account for a
large collection of operators. As a consequence of this generality, we cannot conclude
that our wavelet construction always produces a Riesz basis of L2(R

d). Here, we im-
pose additional conditions on L and multiply ψj+1 by an appropriate normalization
factor to ensure that a Riesz basis is produced. In order to preserve generality, we
focus on the fine scale wavelet spaces and include a multiresolution space Vj0+1 in
our Riesz basis.

Theorem 3 Let L be a spline admissible operator of order r , and suppose that there
exist ω0 > 0 and constants C1,C2 > 0 such that the symbol L̂ satisfies

C1|ω|r ≤ ∣∣L̂(ω)
∣∣ ≤ C2|ω|r

for |ω| ≥ ω0. Then there is an integer j0 such that the collection

{
ϕj0+1(· − β)

}
β∈Dj0+1

Zd

⋃

j≤j0

{∣∣det(D)
∣∣(r/d−1/2)j

ψj+1(· − β)
}
β∈DjZd\Dj+1Zd (14)

forms a Riesz basis of L2(R
d).

Proof Let j0 be an integer for which ω0 < π/4|det(D)|−j0/d . Considering Lemma 1,
the Riesz bounds for the wavelet spaces depend on the functions c(m;ω) of (9).
A Fourier domain formula for the wavelet ψj+1 is

ψ̂j+1 = ∣∣det(D)
∣∣j L̂(ω)−1

∑
k∈Zd |L̂(ω + 2π(DT )−jk)|−2

,

so we have

c(m;ω)

= ∣∣det(D)
∣∣−j−1 ∑

β∈2π(DT )−jZd

∣∣ψ̂j+1
(
ω + 2π

(
DT

)−j−1
em + β

)∣∣2

= ∣∣det(D)
∣∣j−1 ∑

β∈2π(DT )−jZd

∣∣∣∣
L̂(ω + 2π(DT )−j−1em + β)−1

∑
k∈Zd |L̂(ω + 2π(DT )−j−1em + 2π(DT )−jk)|−2

∣∣∣∣

2

.

We now need upper and lower bounds on the terms

∑

β∈2π(DT )−jZd

∣∣∣∣
L̂(ω + 2π(DT )−j−1em + β)−1

∑
k∈Zd |L̂(ω + 2π(DT )−j−1em + 2π(DT )−jk)|−2

∣∣∣∣

2

. (15)

Recall that the upper bound should be uniform across all values of m; however, for
the lower bound, it is sufficient to consider only |det(D)|−1 of the functions c(m;ω).

Define the lattices

Xj(m,ω) := {
xk = ω + 2π

(
DT

)−j−1
em + 2π

(
DT

)−j
k : k ∈ Z

d
}
.
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The value of (15) depends on position of Xj(m,ω) with respect to the origin, as well
as two density parameters. Let us introduce the notation hj for the fill distance and qj

for the separation radius of Xj(m,ω). Since each lattice Xj(m,ω) is a translation of
Xj(0,0), the quantities hj and qj are independent of m and ω, and they are defined
as

hj := sup
y∈Rd

inf
x∈Xj (0,0)

|y − x|

qj := 1

2
inf

x,x′∈Xj (0,0)

x �=x′

∣∣x − x′∣∣.

Given the structure of the matrix D, we can compute

hj = 2π
∣∣det(D)

∣∣−j/d sup
y∈Rd

inf
k∈Zd

|y − k|

= π
∣∣det(D)

∣∣−j/d√
d,

and likewise

qj = π
∣∣det(D)

∣∣−j/d
.

Considering the distance function

dist
(
0,Xj (m,ω)

) := min
x∈Xj (m,ω)

|x|,

we bound (15) by considering two cases:

1. dist(0,Xj (m,ω)) ≥ qj /2;
2. dist(0,Xj (m,ω)) < qj/2.

For Case 1, all points of the lattice Xj(m,ω) lie outside of the ball of radius ω0

centered at the origin. Therefore, (15) can be reduced to

( ∑

xk∈Xj (m,ω)

∣∣L̂(xk)
∣∣−2

)−1

. (16)

Applying Proposition 5, we can bound (16) from above by a constant multiple of
h2r

j = (π
√

d)2r |det(D)|−2rj/d , and applying Proposition 6, we bound (16) from be-

low by a constant multiple of q2r
j = π2r |det(D)|−2rj/d . Importantly, the proportion-

ality constants are independent of j .
For Case 2, we must be more careful, as one of the lattice points lies close

to the origin. However, for any fixed ω, there is at most one m for which
dist(0,Xj (m,ω)) < qj/2. Therefore, in this case, a sufficient lower bound for (15)
is 0; however, the upper bound must match the one derived in Case 1. Let us further
separate Case 2 into the cases
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2a. L̂ takes the value 0 at some point of the lattice Xj(m,ω)

2b. |L̂−1| < ∞ for every point of the lattice Xj(m,ω)

In Case 2a, we see that (15) is 0. In Case 2b, we again reduce (15) to (16), and we see
that 0 is a lower bound for (16). For the upper bound, we apply Proposition 5, and
the bound coincides with the one obtained in Case 1.

To finish the proof, we note that Lemmas 1, 2, and 3 imply that the wavelets
{
ψj+1(· − β)

}
β∈DjZd\Dj+1Zd

form a Riesz basis at each level j ≤ j0. Furthermore, the bounds obtained here on
c(m,ω) imply that the Riesz bounds are proportional to |det(D)|(1/2−r/d)2j . There-
fore, the collection (14) is a Riesz basis of L2(R

d). �

Let us remark that in the proof of this theorem, we used the fact that the lattices
corresponding to the matrix D scale uniformly in all directions. This allowed us to
find upper and lower Riesz bounds that are independent of j . However, the Riesz
bounds would depend on j for general integer dilation matrices.

5 Decorrelation of Coefficients

As was stated in the introduction, the primary reason for our construction is to pro-
mote a sparse wavelet representation. Our model is based on the assumption that the
wavelet coefficients of a signal s are computed by the L2 inner product

〈
s,ψj

(· − Djk
)〉
.

Here, we should point out that, unless the wavelets form an orthogonal basis, recon-
struction will be defined in terms of a dual basis. However, as our focus in this paper
is the sparsity of the coefficients, we are content to work with the analysis component
of the approximation and leave the synthesis component for future study.

Now, considering our stochastic model, it is important to use wavelets that (nearly)
decorrelate the signal within each scale, and one way to accomplish this goal is by
modifying the underlying operator. Hence, given a spline-admissible pair, L and D,
we define a new spline-admissible pair, Ln and D, by L̂n := L̂n, and we shall see that
as n increases, the wavelet coefficients become decorrelated. This result follows from
the fact that the (Ln)

∗Ln-spline interpolants (appropriately scaled) converge to a sinc-
type function, and it is motivated by the work of Aldroubi and Unser, which shows
that a large family of spline-like interpolators converge to the ideal sinc interpolator
[2]. To state this result explicitly, we denote the generalized B-splines for Ln by
ϕ̂n,j = ϕ̂n

j . Therefore the (Ln)
∗Ln-spline interpolants are given by

φ̂n,j (ω) = ∣∣det(D)
∣∣j |ϕ̂n,j (ω)|2

∑
k∈Zd |ϕ̂n,j (ω + 2π(DT )−jk)|2

= ∣∣det(D)
∣∣j |ϕ̂j (ω)|2n

∑
k∈Zd |ϕ̂j (ω + 2π(DT )−jk)|2n

,



J Fourier Anal Appl (2013) 19:1294–1322 1313

and we analogously define

mn,j (ω) = |ϕ̂j (ω)|2n

∑
k∈Zd |ϕ̂j (ω + 2π(DT )−jk)|2n

.

For any fundamental domain Ωj of the lattice 2π(DT )−j
Z

d , let χΩj
denote the as-

sociated characteristic function. Proving decorrelation depends on showing that the
functions mn,j converge almost everywhere to some characteristic function χΩj

. This
analysis is closely related to the convergence of cardinal series as studied in [10]. Our
proof relies on the techniques used by Baxter to prove the convergence of the La-
grange functions associated with multiquadric functions [3, Chap. 7]. The idea is to
define disjoint sets covering R

d . Each set has a single point in any given fundamental
domain, and we analyze the convergence of mn,j on these sets.

Definition 8 Let Ωj be a fundamental domain of 2π(DT )−j
Z

d . For each j ∈ Z and
for each x ∈ Ωj , define the set

Ej,x := {
x + 2π

(
DT

)−j
k : k ∈ Z

d
}
.

Since φ1,j generates a Riesz basis, each set Ej,x has a finite number of elements y

with m1,j (y) of maximal size. We define Fj to be the set of x ∈ Ωj such that there
is not a unique y ∈ Ej,x where m1,j attains a maximum; i.e., x is in the complement
of Fj if there exists y ∈ Ej,x such that

m1,j (y) > m1,j

(
y + 2π

(
DT

)−j
k
)

for all k �= 0.

Lemma 4 Let x ∈ Ωj\Fj , then for y ∈ Ej,x we have mn,j (y) → 0 if and only if
m1,j (y) is not of maximal size over Ej,x . Furthermore, if m1,j (y) is of maximal size,
then mn,j (y) → 1.

Proof Fix x ∈ Ωj\Fj and y ∈ Ej,x . Notice that the periodicity of the denominator
of m1,j implies that m1,j (y) is maximal iff |ϕ̂1,j (y)| is maximal.

Let us first suppose m1,j (y) is not maximal. If |ϕ̂1,j (y)| = 0, the result is obvious.
Otherwise, there is some k0 ∈ Z

d and b < 1 such that

∣∣ϕ̂1,j (y)
∣∣ ≤ b

∣∣ϕ̂1,j

(
y + 2π

(
DT

)−j
k0

)∣∣.

Therefore
∣∣ϕ̂n,j (y)

∣∣2 ≤ b2n
∣∣ϕ̂n,j

(
y + 2π

(
DT

)−j
k0

)∣∣2

≤ b2n
∑

k∈Zd

∣∣ϕ̂n,j

(
y + 2π

(
DT

)−j
k
)∣∣2

and the result follows.
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Next, suppose m1,j (y) is of maximal size. Since ϕ̂1,j has no periodic zeros,
|ϕ̂1,j (y)| �= 0. Therefore

mn,j (y) = 1

Bn,j (y)

with

Bn,j (y) =
∑

k∈Zd

∣∣∣∣
ϕ̂1,j (y + 2π(DT )−jk)

ϕ̂1,j (y)

∣∣∣∣

2n

.

Since |ϕ̂1,j (y)| is of maximal size, all terms of the sum except one are less than 1. In
particular, Bn,j will converge to 1 as n increases. �

Lemma 5 Let j ∈ Z, and let Ωj be a fundamental domain. If the Lebesgue measure
of Fj is 0, then

∑

k∈Zd

mn,j

(· + 2π
(
DT

)−j
k
)2

converges to χΩj
in L1(Ωj ) as n → ∞.

Proof The sum is bounded above by 1, so Lemma 4 implies that it converges to χΩj

on the complement of Fj . Hence, we apply the dominated convergence theorem to
obtain the result. �

With this theorem, we show how the wavelets corresponding to Ln decorrelate
within scale as n becomes large. The way we characterize decorrelation is in terms
of the semi-inner products

(f, g)n :=
∫

Rd

f̂ ĝ∗|L̂n|−2,

which are true inner products for the wavelets

ψn,j+1 = L∗
nφn,j .

Theorem 4 Suppose the Lebesgue measure of
⋃

j∈Z Fj is 0, where Fj is from Def-
inition 8. Then as n increases, the wavelet coefficients decorrelate in the following
sense. For any j ∈ Z,k ∈ Z

d\{0} we have

(
ψn,j+1,ψn,j+1

(· − Djk
))

n
→ 0

as n → ∞.

Proof First, we express the inner product as an integral

(
ψn,j+1,ψn,j+1

(· − Dkk
))

n
=

∫

Rd

ψ̂n,j+1(ω)
(
ψn,j+1

(· − Djk
))∧

(ω)∗|L̂n|−2dω
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= ∣∣det(D)
∣∣2j

∫

Rd

mn,j (ω)2e−iDj k·ωdω,

and we periodize the integrand to get
∫

Rd

mn,j (ω)2e−iDj k·ωdω =
∑

l∈2π(DT )−jZd

∫

Ωj +l
mn,j (ω)2e−iDj k·ωdω

=
∫

Ωj

e−iDj k·ω ∑

l∈2π(DT )−jZd

mn,j (ω − l)2dω.

The last expression converges to 0 by the Lebesgue dominated convergence theo-
rem. �

Let us now show how this result implies decorrelation of the wavelet coefficients.
Recall that our model for a random signal s is based on the stochastic differential
equation Ls = w, where w is a non-Gaussian white noise [23] and the operator L is
spline admissible. We denote the wavelet coefficients as

cn,j+1,k := 〈
s,ψn,j+1

(· − Djk
)〉

= 〈
w,φn,j

(· − Djk
)〉
.

Our stochastic model implies that the coefficients are random variables. Hence, for
distinct k and k′, the covariance between cn,j+1,k and cn,j+1,k′ is determined by the
expected value of their product:

E{cn,j+1,kcn,j+1,k′ } = E
{〈

w,φn,j

(· − Djk
)〉〈

w,φn,j

(· − Djk′)〉}.

As long as the white noise w has zero mean and finite second-order moments, the
covariance satisfies

E{cn,j+1,kcn,j+1,k′ } = 〈
φn,j

(· − Djk
)
, φn,j

(· − Djk′)〉

= (
ψn,j+1

(· − Djk
)
,ψn,j+1

(· − Djk′))
n

→ 0,

where the convergence follows from Theorem 4. Therefore, when the standard de-
viations of cn,j+1,k and cn,j+1,k′ are bounded below, the correlation between the
coefficients converges to zero.

6 Discussion and Examples

The formulation presented in this paper is quite general and accommodates many
operators. In this section, we show how it relates to previous wavelet constructions,
and we provide examples that are not covered by previous theories.
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6.1 Connection to Previous Constructions

Our operator-based wavelet construction can be viewed as a direct generalization of
the cardinal spline wavelet construction. To see this, define the B-spline N1 to be
the characteristic function of the interval [0,1] ⊂ R. Then for m = 2,3, . . . , let the
B-splines Nm be defined by

Nm(x) :=
∫ 1

0
Nm−1(x − t)dt.

The fundamental (cardinal) interpolatory spline φ2m is then defined as the linear com-
bination

φ2m(x) :=
∑

k∈Z
αk,mN2m(x + m − k), (17)

satisfying the interpolation conditions:

φ2m(k) = δk,0, k ∈ Z,

where δ denotes the Kronecker delta function. In [5], the authors define the cardinal
B-spline wavelets (relative to the scaling function Nm) as

ψm(x) :=
(

dm

dxm
φ2m

)
(2x − 1)

Within the context of our construction, the operator L is a constant multiple of
the order m derivative, and L∗L is a constant multiple of the order 2m derivative.
Therefore our L∗L spline interpolants (3) are equivalent to the φ2m defined in (17),
so we obtain the same wavelet spaces. In particular, ψm is a constant multiple of
L∗φ2m.

A more general construction is given in [19]. In that paper, the authors allow for
scaling functions ϕ that are defined in the Fourier domain by ϕ̂ = T/q , where T is a
trigonometric polynomial

T (ω) :=
∑

k∈Zd

c[k]e−ik·ω, ω ∈R
d

and q is a homogeneous polynomial

q(ω) :=
∑

|k|=m

qkω
k, ω ∈ R

d

of degree m with m > d . Here, q is also required to be elliptic; i.e., q can only be
zero at the origin. The authors then define the Lagrange function φ by

φ̂ = |ϕ̂|2
∑

k∈Zd |ϕ̂(· + 2πk)|2 ,
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and they define an elliptic spline wavelet ψ0 as

ψ̂0 = 2−dq∗φ̂
(
2−1·).

Thus, we can see that our construction is also a generalization of the elliptic spline
wavelet construction, the primary extension being that we allow for a broader class
of operators. In fact, both of the prior constructions use scaling functions associated
with operators that have homogeneous symbols. This special case has the property
that the multiresolution spaces can be generated by dilation.

Proposition 4 Let L be an admissible Fourier multiplier operator whose symbol L̂ is
positive (except at the origin), continuous, and homogeneous of order α > d/2; i.e.,

L̂(aω) = aαL̂(ω), for a > 0.

Further assume that there is a localization operator Ld,0 (of the form described in
Definition 4) such that the generalized B-spline ϕ0, defined by

ϕ̂0(ω) := L̂d,0(ω)

L̂(ω)
,

satisfies the Riesz basis condition

0 < A ≤
∑

k∈Zd

∣∣ϕ̂0(ω + 2πk)
∣∣2 ≤ B < ∞,

for some A and B in R. Then the pair L,D = 2I is spline admissible of order α.

Proof The first two conditions of Definition 4 are automatically satisfied. For the
third condition, let CL > 0 be a constant satisfying

CL
∣∣L̂(ω)

∣∣2 ≥ 1

on the unit sphere S
d−1 ⊂ R

d . Then for |ω| > 0, homogeneity of L̂ implies

CL
(
1 + ∣∣L̂(ω)

∣∣2) ≥ CL

∣∣∣∣L̂
(

|ω| ω

|ω|
)∣∣∣∣

2

≥ |ω|2α.

For the fourth property, we let L̂d,0(ω) = ∑
k∈Zd p[k]eiω·k and define

L̂d,j (ω) := 2−jα
∑

k∈Zd

p[k]eiω·2j k.

The generalized B-splines ϕj will then satisfy

ϕ̂j (ω) = L̂d,j (ω)L̂(ω)−1
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= 2−jαL̂d,0
(
2jω

)
L̂(ω)−1

= L̂d,0
(
2jω

)
L̂

(
2jω

)−1

= ϕ̂0
(
2jω

)
.

The Riesz basis property can then be verified, since

∑

k∈Zd

∣∣ϕ̂j

(
ω + 2π2−jk

)∣∣2 =
∑

k∈Zd

∣∣ϕ̂0
(
2jω + 2πk

)∣∣2
.

�

In summary, our wavelet construction generalizes these known constructions for
homogeneous Fourier multiplier operators, and it accommodates the more complex
setting of non-homogeneous operators.

6.2 Matérn and Laplace Operator Examples

The d-dimensional Matérn operator is not homogeneous, so it provides an exam-
ple that is not included in traditional wavelet constructions. Its symbol is L̂ν(ω) =
(|ω|2 + 1)ν/2, with the parameter ν > d/2. As L̂ν(ω)−1 satisfies the Riesz basis
condition, no localization operator is needed. Therefore, the operator Lν is spline-
admissible of order ν for any admissible subsampling matrix D.

Next, consider the iterated Laplacian operator with symbol L̂ = |ω|2m, where m >

d/4 is an integer, and let D = 2I. Localization operators Ld,j can be constructed as
in [6], and all of the conditions of Definition 4 are satisfied.

Note that each of these operators satisfies the growth condition of Theorem 3, so
the corresponding wavelet spaces may be used to construct Riesz bases of L2(R

d).

6.3 Construction of Non-standard Localization Operators

Here, we consider the Helmholtz operator L and construct corresponding localization
operators Ld,j . While we focus on this particular operator, the presented method is
sufficient to be applied more generally.

The Helmholtz operator is defined by its symbol L̂(ω) = 1/4−|ω|2. The wavelets
corresponding to L could potentially be applied in optics, as the Helmholtz equation,

�u + λu = f,

is a reduced form of the wave equation [11, Chap. 5]. In what follows, we show
that this is a spline-admissible operator for the scaling matrix D = 2I on R

2. How-
ever, since the wavelets ψj+1 = L∗φj do not form a Riesz basis for the coarse-scale
wavelet spaces, we only consider j ≤ 0.

Our construction of localization operators Ld,j is based on the fact that sufficiently
smooth functions have absolutely convergent Fourier series [12, Theorem 3.2.9]. This
implies that we can define Ld,j by constructing smooth, periodic functions L̂d,j that
are asymptotically equivalent to L̂ at its zero set. In fact, we define L̂d,j to be equal
to L̂ near its zeros.
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Notice that L̂ is zero on the circle of radius 1/4 centered at the origin, and it is
smooth in a neighborhood of this circle. Therefore, in the case j = 0, we choose
ε > 0 sufficiently small and define L̂d,0 to be a function satisfying:

1. L̂d,0(ω) = L̂(ω) for ||ω| − 1/4| < ε;
2. L̂d,0(ω) is constant for ||ω| − 1/4| > 3ε and ω ∈ [−π,π]2;
3. L̂d,0(ω) is periodic with respect to the lattice 2πZ2.

Such a function can be constructed using a smooth partition of unity {fn}Nn=1 on the
torus, where each fn is supported on a ball of radius ε. Here, we require each fn to
be positive, and the partition of unity condition means that

N∑

n=1

fn(ω) = 1.

We partition the index set {1, . . . ,N} into the three subsets Λ1,Λ2,Λ3 as follows:

1. If the support of fn has a non-empty intersection with the annulus ||ω|−1/4| ≤ ε,
then n ∈ Λ1;

2. Else if the support of fn lies in the ball of radius 1/4 − ε centered at the origin,
then n ∈ Λ2;

3. Else n ∈ Λ3.

We now define the periodic function

L̂d,0 :=
∑

n∈Λ1

fnL̂ +
∑

n∈Λ2

fn −
∑

n∈Λ3

fn,

on [−π,π]2, and it can be verified that this function has the required properties.
Using a similar approach, we can define L̂d,j for j < 0, and the conditions of

spline admissibility can be verified. Since the Helmholtz operator satisfies the condi-
tions of Theorem 3, the resulting wavelet system is a Riesz basis of L2(R

d).
In conclusion, we have constructed localization operators (and hence generalized

B-splines) for the Helmholtz operator. Furthermore, the presented method applies in
greater generality to operators whose symbols are smooth near their zero sets.

Appendix A: Discrete Sums

Let X = {xk}k∈N be a countable collection of points in R
d , and define

hX := sup
x∈Rd

inf
k∈N|x − xk|

qX := 1

2
inf
k �=k′|xk − xk′ |.

Also, let B(x, r) denote the ball of radius r centered at x. Proving Riesz bounds for
the wavelet spaces relies on the following propositions concerning sums of function
values over discrete sets.
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Proposition 5 If hX < ∞ and r > d/2, then there exists a constant C > 0 (depend-
ing only on r and d , not hX) such that

∑

|xk |≥2hX

|xk|−2r ≥ Ch−2r
X

Proof For |xk| ≥ 2hX , we have
∣∣∣∣xk − hX

xk

|xk|
∣∣∣∣ ≥ 2−1|xk|,

which implies

|xk|−2r ≥ 2−2r

∣∣∣∣xk − hX

xk

|xk|
∣∣∣∣

−2r

.

Then

∑

|xk |≥2hX

|xk|−2r ≥ 2−2r
∑

|xk |≥2hX

∣∣∣∣xk − hX

xk

|xk|
∣∣∣∣

−2r Vol(B(xk, hX))

Vol(B(xk, hX))

≥ 2−2r

Vol(B(0, hX))

∑

|xk |≥2hX

∫

B(xk,hX)

|x|−2rdx

≥ Ch−d
X

∫ ∞

3hX

t−2r+(d−1)dt

≥ Ch−2r
X �

Proposition 6 If r > d/2 and |xk| ≥ qX/2 for all k ∈ N, then there exists a constant
C > 0 (depending only on r and d , not qX) such that

∑

k∈N
|xk|−2r ≤ Cq−2r

X

Proof Using the fact that |xk| ≥ qX/2, we can write
∣∣∣∣xk + qX

4

xk

|xk|
∣∣∣∣ ≤ 2|xk|,

which implies

|xk|−2r ≤ 22r

∣∣∣∣xk + qX

4

xk

|xk|
∣∣∣∣

−2r

.

We now have

∑

k∈N
|xk|−2r ≤ 22r

∑

k∈N

∣∣∣∣xk + qX

4

xk

|xk|
∣∣∣∣

−2r Vol(B(xk, qX/4))

Vol(B(xk, qX/4))
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≤ 22r

Vol(B(0, qX/4))

∑

k∈N

∫

B(xk,qX/4)

|x|−2rdx

≤ 22r

Vol(B(0, qX/4))

∫

|x|>qX/4
|x|−2rdx

≤ Cq−d
X

∫ ∞

qX/4
t−2r+(d−1)dt

≤ Cq−2r
X . �
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