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Abstract— In this paper, we propose a paradigm shift in
representing and optimizing logic by using only majority (MAJ)
and inversion (INV) functions as basic operations. We represent
logic functions by Majority-Inverter Graph (MIG): a directed
acyclic graph consisting of three-input majority nodes and regu-
lar/complemented edges. We optimize MIGs via a new Boolean
algebra, based exclusively on majority and inversion operations,
that we formally axiomatize in this work. As a complement
to MIG algebraic optimization, we develop powerful Boolean
methods exploiting global properties of MIGs, such as bit-error
masking. MIG algebraic and Boolean methods together attain
very high optimization quality. Considering the set of IWLS’05
benchmarks, our MIG optimizer (MIGhty) enables a 7% depth
reduction in LUT-6 circuits mapped by ABC while also reducing
size and power activity, with respect to similar AIG optimization.
Focusing on arithmetic intensive benchmarks instead, MIGhty
enables a 16% depth reduction in LUT-6 circuits mapped by
ABC, again with respect to similar AIG optimization. Employed
as front-end to a delay-critical 22-nm ASIC flow (logic synthesis
+ physical design) MIGhty reduces the average delay/area/power
by 13%/4%/3%, respectively, over 31 academic and industrial
benchmarks. We also demonstrate delay/area/power improve-
ments by 10%/10%/5% for a commercial FPGA flow.

Index Terms— Design methods and tools, Optimization, Ma-
jority Logic, Boolean Algebra, DAG, Logic Synthesis.

I. INTRODUCTION

NOWADAYS, Electronic Design Automation (EDA) tools
are challenged by design goals at the frontier of what is

achievable in advanced technologies. In this scenario, extend-
ing the optimization capabilities of logic synthesis tools is of
paramount importance.

In this paper, we propose a paradigm shift in representing
and optimizing logic, by using only majority (MAJ) and
inversion (INV) as basic operations. We use the terms in-
version and complementation interchangeably. We focus on
majority functions because they lie at the core of Boolean
function classification [1]. Thanks to that, majority inher-
its the expressive power from many other function classes.
Together with inversion, majority can express all Boolean
functions. Based on these primitives, we present in this work
the Majority-Inverter Graph (MIG), a logic representation
structure consisting of three-input majority nodes and regu-
lar/complemented edges. MIGs include any AND/OR/Inverter
Graphs (AOIGs), containing also the popular AIGs [2]. To
provide native manipulation of MIGs, we introduce a novel
Boolean algebra, based exclusively on majority and inversion
operations [3]. We define a set of five transformations forming
a sound and complete axiomatic system. Using a sequence
of these primitive axioms, it is possible to manipulate ef-
ficiently a MIG and reach all points in the representation

The authors are with the Integrated Systems Laboratory, Swiss Federal In-
stitute of Technology, Lausanne, EPFL, 1015 Lausanne, Switzerland (e-mail:
name.surname@epfl.ch). Copyright (c) 2015 IEEE. Personal use of this material is
permitted. However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

space. We apply MIG algebra axioms locally, to design fast
and efficient MIG algebraic optimization methods. We also
exploit global properties of MIGs to design slower but very
effective MIG Boolean optimization methods [4]. Specifically,
we take advantage of the error masking property of majority
operators. By selectively inserting logic errors in a MIG,
successively masked by majority nodes, we enable strong
simplifications in logic networks. MIG algebraic and Boolean
methods together attain very high optimization quality. For
example when targeting depth reduction, our MIG optimizer,
MIGhty, transforms a ripple carry structure into a carry look-
ahead like one. Considering the set of IWLS’05 benchmarks,
MIGhty enables a 7% depth reduction in LUT-6 circuits
mapped by ABC [2] while also reducing size and power
activity, with respect to similar AIG optimization. Focusing on
arithmetic intensive benchmarks, MIGhty enables a 16% depth
reduction in LUT-6 circuits, again with respect to similar AIG
optimization. Employed as front-end to a delay-critical 22-
nm ASIC flow MIGhty reduces the average delay/area/power
by 13%/4%/3%, respectively, over academic and industrial
benchmarks, as compared to a leading commercial ASIC flow.
We demonstrate improvements in delay/area/power metrics by
10%/10%/5% for a commercial 28-nm FPGA flow.

The remainder of this paper is organized as follows. Section
II gives background on logic representation and optimization.
Section III presents MIGs with their properties and associ-
ated Boolean algebra. Section IV proposes MIG algebraic
optimization methods and Section V describes MIG Boolean
optimization methods. Section VI shows experimental results
for MIG-based optimization and compares them to the state-
of-the-art academic tools. Section VI also shows results for
MIG-based optimization employed as front-end to commercial
ASIC and FPGA design flows. Section VII is a conclusion.

II. BACKGROUND AND MOTIVATION

This section presents first a background on logic represen-
tation and optimization for logic synthesis. Then, it introduces
the necessary notations and definitions for this work.
A. Logic Representation

The (efficient) way logic functions are represented in EDA
tools is key to design efficient hardware. On the one hand,
logic representations aim at having the fewest number of
primitive elements (literals, sum-of-product terms, nodes in
a logic network, etc.) in order to (i) have small memory
footprint and (ii) be covered by as few library elements as
possible. On the other hand, logic representation forms must be
simple enough to manipulate. This may require having a larger
number of primitive elements but with simpler manipulation
laws. The choice of a computer data-structure is a trade-off
between compactness and manipulation easiness.
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In the early days of EDA, the standard representation form
for logic was the Sum Of Product (SOP) form, i.e., a dis-
junction (OR) of conjuctions (AND) made of literals [5]. This
standard was driven by PLA technology whose functionality
is naturally modeled by a SOP [6]. Other two-level forms,
such as product-of-sums or EX-SOP, have been studied at that
time [17]. Two-level logic is compact for small sized functions
but, beyond that size, it becomes too large to be efficiently
mapped into silicon. Yet, two-level logic has been supported
by efficient heuristic and exact optimization algorithms. With
the advent of VLSI, the standard representation for logic
moved from SOP to Directed Acyclic Graphs (DAGs) [7]. In
a DAG-based logic representation, nodes correspond to logic
functions (gates) and directed edges (wires) connect the nodes.
Nodes’ functions can be internally represented by SOPs lever-
aging the proven efficiency of two-level optimization. From
a global perspective, general optimization procedures run on
the entire DAG. While being potentially very compact, DAGs
without bounds on the nodes’ functionality are not easy to
optimize. This is because this kind of representation demands
that optimization techniques deal with all possible types and
sizes of functions which is impractical. On top of that, the
cumulative memory footprint for each functionally unbounded
node is potentially very large. Restricting the permissible node
function types alleviates this issue. At the extreme case, one
can focus on just one type of function per node and add
complemented/regular attributes to the edges. Even though in
principle, this restriction increases the representation size, in
practice it unlocks better (smaller) representations because it
supports more effective logic optimization simplifying a DAG.
A notable example of DAG where all the nodes realize the
same function is Binary Decision Diagrams (BDDs) [11]. In
BDDs, nodes act as 2:1 multiplexers. With additional restric-
tion on the ordering of input variables, BDDs are canonical
and provide very efficient manipulation procedures. For this
reason, BDDs found application in various areas of EDA, such
as verification, testing, optimization, automated reasoning, etc
[5]. However, the price for such an optimal manipulation
efficiency is the BDD size, which is often too large for direct
mapping into silicon. Even though BDDs are not usually
mapped directly into silicon, they support in various ways
logic manipulation tasks in some optimization algorithms [9].
Another DAG where all nodes realize the same function is
the And-Inverter Graph (AIG) [2], [10] where nodes act as
two-input ANDs. AIGs can be optimized through traditional
Boolean algebra axioms and derived theorems. Iterated over
the whole AIG, local transformations produce very effective
results and scale well with the size of the circuits. This means
that, overall, AIGs can be made remarkably small through
logic optimization. For this reason, AIG is one of the current
representation standards for logic synthesis.

B. Logic Optimization

Logic optimization consists of manipulating a logic rep-
resentation structure in order to minimize some target
metric. Usual optimization targets are size (number of
nodes/elements), depth (maximum number of levels), inter-
connections (number of edges/nets), etc.

Logic optimization methods are closely coupled to the
data structures they run on. In two-level logic representation
(SOP), optimization aims at reducing the number of terms.

ESPRESSO is the main optimization tool for SOP [6]. Its
algorithms operate on SOP cubes and manipulate the ON-
, OFF- and DC-covers iteratively. In its default settings,
ESPRESSO uses fast heuristics and does not guarantee to
reach the global optimum. However, an exact optimization of
two level logic is available (under the name of ESPRESSO-
exact) and often run in a reasonable time. The exact two-level
optimization is based on Quine-McCluskey algorithm [18].
Moving to DAG logic representation (also called multi-level
logic), optimization aims at reducing graph size and depth or
other accepted complexity metrics. There, DAG-based logic
optimization methods are divided into two groups: Algebraic
methods, which are fast and Boolean methods, which are
slower but may achieve better results [21]. Traditional al-
gebraic methods assume that DAG nodes are represented in
SOP form and treat them as polynomials [7], [19]. Algebraic
operations are selectively iterated over all DAG nodes, until
no improvement is possible. Basic algebraic operations are
extraction, decomposition, factoring, balancing and substitu-
tion [20], [21]. Their efficient runtime is enabled by theories
of weak-division and kernel extraction. In contrast, Boolean
methods do not treat the functions as polynomials but handle
their true Boolean nature using Boolean identities as well
as (global) don’t cares (circuit flexibilities) to get a better
solution [5], [21], [24]–[26]. Boolean division and substi-
tution techniques trade off runtime for better minimization
quality. Functional decomposition is another Boolean method
which aims at representing the original function by means of
simpler component functions. The first attempts at functional
decomposition [27]–[29] make use of decomposition charts to
find the best component functions. Since the decomposition
charts grow exponentially with the number of variables these
techniques are only applicable to small functions. A different,
and more scalable, approach to functional decomposition is
based on the BDD data structure. A particular class of BDD
nodes, called dominator nodes, highlights advantageous func-
tional decomposition points [9]. BDD decomposition can be
applied recursively and is capable of exploiting optimization
opportunities not visible by algebraic counterparts [9], [22],
[23]. Recently, disjoint support decomposition has also been
considered to optimize locally small functions and speedup
logic manipulation [30], [31]. It is worth mentioning that the
main difficulty in developing Boolean algorithms is due to the
unrestricted space of choices. This makes more difficult to take
good decisions during functional decomposition.

Advanced DAG optimization methodologies, and associated
tools, use both algebraic and Boolean methods. When DAG
nodes are restricted to just one function type the optimization
procedure can be made much more effective. This is because
logic transformations are designed specifically to target the
functionality of the chosen node. For example, in AIGs, logic
transformations such as balancing, refactoring, and general
rewriting are very effective. For example, balancing is based
on the associativity axiom from traditional Boolean algebra
[12], [13]. Refactoring operates on an AIG subgraph which is
first collapsed into SOP and then factored out [19]. General
rewriting conceptually includes balancing and refactoring. Its
purpose is to replace AIG subgraphs with equivalent pre-
computed AIG implementations that improve the number
of nodes and levels [12]. By applying local, but powerful,
transformations many times during AIG optimization it is
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possible to obtain very good result quality. The restriction
to AIGs makes it easier to assess the intermediate quality
and to develop the algorithms, but in general is more prone
to local minimum. Nevertheless, Boolean methods can still
complement AIG optimization to attain higher quality of
results [2], [24].

In this work, we present a new representation form, based
on majority and inversion, with its native Boolean algebra. We
show algebraic and Boolean optimization techniques for this
data structure unlocking new points in the design space.

Note that early attempts to majority logic have already
been reported in the 60’s [14]–[16], but, due to their inherent
complexity, failed to gain momentum later on in automated
synthesis. We address, in this paper, the unique opportunity
led by majority logic in a contemporary synthesis flow.
C. Notations and Definitions

We provide hereafter notations and definitions on Boolean
algebra and logic networks.

1) Boolean Algebra: In the binary Boolean domain, the
symbol B indicates the set of binary values {0, 1}, the symbols
∧ and ∨ represent the conjunction (AND) and disjunction
(OR) operators, the symbol ′ represents the complementation
(INV) operator and 0/1 are the false/true logic values. Alter-
native symbols for ∧ and ∨ are · and +, respectively. The
standard Boolean algebra (originally axiomatized by Hunting-
ton [32]) is a non-empty set (B,∧,∨,′ , 0, 1) subject to identity,
commutativity, distributivity, associativity and complement ax-
ioms over ∧,∨ and ′ [1]. For the sake of completeness, we
report these basic axioms in Eq. 1. Such axioms will be used
later on in this work for proving theorems.

This axiomatization for Boolean algebra is sound and
complete [33]. Informally, it means that logic arguments, or
formulas, proved by axioms in ∆ are valid (soundness) and all
true logic arguments are provable (completeness). We refer the
reader to [33] for a more formal discussion on mathematical
logic. In practical EDA applications, only sound and complete
axiomatizations are of interest.

Other Boolean algebras exist, with different operators and
axiomatizations, such as Robbins algebra, Freges algebra,
Nicods algebra, etc. [33]. Boolean algebras are the basis to
operate on logic networks.

∆



Identity : ∆.I
x ∨ 0 = x
x ∧ 1 = x
Commutativity : ∆.C
x ∧ y = y ∧ x
x ∨ y = y ∨ x
Distributivity : ∆.D
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
Associativity : ∆.A
x ∧ (y ∧ z) = (x ∧ y) ∧ z
x ∨ (y ∨ z) = (x ∨ y) ∨ z
Complement : ∆.Co
x ∨ x′ = 1
x ∧ x′ = 0

(1)

2) Logic Network: A logic network is a Directed Acyclic
Graph (DAG) with nodes corresponding to logic functions and
directed edges representing interconnection between the nodes.

The direction of the edges follows the natural computation
from inputs to outputs. The terms logic network, Boolean net-
work, and logic circuit are used interchangeably in this paper.
A logic network is said irredundant if no node can be removed
without altering the Boolean function that it represents. A logic
network is said homogeneous if each node represents the same
logic function and has a fixed indegree, i.e., the number of
incoming edges or fan-in. In a homogeneous logic network,
edges can have a regular or complemented attribute. The depth
of a node is the length of the longest path from any primary
input variable to the node. The depth of a logic network is the
largest depth among all the nodes. The size of a logic network
is the number of its nodes.

3) Self-Dual Function: A logic function f(x, y, .., z) is said
to be self-dual if f = f ′(x′, y′, .., z′) [1]. By complementation,
an equivalent self-dual formulation is f ′ = f(x′, y′, .., z′).

4) Majority Function: The n-input (n being odd) majority
function M returns the logic value assumed by more than
half of the inputs [1]. For example, the three input majority
function M(x, y, z) is represented in terms of ∧,∨ by (x ∧
y) ∨ (x ∧ z) ∨ (y ∧ z). Also (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) is a
valid representation for M(x, y, z). The majority function is
self-dual [1].

III. MAJORITY-INVERTER GRAPHS

In this section, we present MIGs and their representation
properties. Then, we show a new Boolean algebra natively
fitting the MIG data structure. Finally, we discuss the error
masking capabilities of MIGs from an optimization standpoint.

A. MIG Logic Representation

Definition 3.1: An MIG is a homogeneous logic network
with an indegree equal to 3 and each node representing the
majority function. In a MIG, edges are marked by a regular
or complemented attribute.

To determine some basic representation properties of MIGs,
we compare them to the well-known AND/OR/Inverter Graphs
(AOIGs) (which include AIGs). In terms of representation
expressiveness, the elementary bricks in MIGs are majority
operators while in AOIGs there are conjunctions (AND) and
disjunctions (OR). It is worth noticing that a majority operator
M(x, y, z) behaves as the conjunction operator AND(x, y)
when z = 0 and as the disjunction operator OR(x, y) when
z = 1. Therefore, majority is actually a generalization of
both conjunction and disjunction. Recall that M(x, y, z) =
xy + xz + yz. This property leads to the following theorem.

Theorem 3.1: MIGs ⊃ AOIGs.
Proof: In both AOIGs and MIGs, inverters are represented

by complemented edge markers. An AOIG node is always a
special case of a MIG node, with the third input biased to logic
0 or 1 to realize an AND or OR, respectively. On the other
hand, a MIG node is never a special case of an AOIG node,
because the functionality of the three input majority cannot be
realized by a unique AND or OR.

As a consequence of the previous theorem, MIGs are at
least as good as AOIGs but potentially much better, in terms of
representation compactness. Indeed, in the worst case, one can
replace node-wise AND/ORs by majorities with the third input
biased to a constant (0/1). However, even a more compact MIG
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representation can be obtained by fully exploiting its node
functionality rather than fixing one input to a logic constant.

Fig. 1 depicts a MIG representation example for f =
x3· (x2 +(x′1 +x0)′). The starting point is a traditional AOIG.
Such AOIG has 3 nodes and 3 levels of depth, which is the best
representation possible using just AND/ORs. The first MIG
is obtained by a one-to-one replacement of AOIG nodes by
MIG nodes. As shown by Fig. 1, a better MIG representation
is possible by taking advantage of the majority function. This
transformation will be detailed in the rest of this paper. In this
way, one level of depth is saved with the same node count.

AOIG%!%MIG%
AND%

OR%

OR%

x0%x1%x3% x2%

f%

MAJ%

MAJ%

MAJ%

x0%x1%x3% x2%
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MAJ%

MAJ%
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x3%

1% 1% x2% x3%x0%x1%

MIG%!%MIGopt%

Fig. 1: MIG representation for f = x3· (x2 + (x′1 + x0)′).
Complementation is represented by bubbles on the edges.

MIGs inherit from AOIGs some important properties, like
universality and AIG inclusion. This is formalized by the
following.

Corollary 3.2: MIGs ⊃ AIGs.
Proof: MIGs ⊃ AOIGs ⊃ AIGs =⇒ MIGs ⊃ AIGs

Corollary 3.3: MIG is an universal representation form.
Proof: MIGs ⊃ AOIGs ⊃ AIGs that are universal repre-

sentation forms [10].
So far, we have shown that MIGs extend the representation

capabilities of AOIGs. However, we need a proper set of
manipulation tools to handle MIGs and automatically reach
compact representations. For this purpose, we introduce here-
after a new Boolean algebra, based on MIG primitives.
B. MIG Boolean Algebra

We present a novel Boolean algebra, defined over the set
(B,M,′ , 0, 1), where M is the majority operator of three
variables and ′ is the complementation operator. The following
five primitive transformation rules, referred to as Ω, form an
axiomatic system for (B,M,′ , 0, 1). All variables belong to B.

Ω



Commutativity : Ω.C
M(x, y, z) = M(y, x, z) = M(z, y, x)
Majority : Ω.M{

if(x = y): M(x, x, z) = M(y, y, z) = x = y
if(x = y′): M(x, x′, z) = z

Associativity : Ω.A
M(x, u,M(y, u, z)) = M(z, u,M(y, u, x))
Distributivity : Ω.D
M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z)
Inverter Propagation : Ω.I
M ′(x, y, z) = M(x′, y′, z′)

(2)
Axiom Ω.C defines a commutativity property. Axiom Ω.M

declares a 2 over 3 decision threshold. Axiom Ω.A is an
associative law extended to ternary operators. Axiom Ω.D
establishes a distributive relation over majority operators.
Axiom Ω.I expresses the interaction between M and com-
plementation operators. It is worth noticing that Ω.I does not

require operation type change like De Morgan laws, as it is
well known from self-duality [1].

We prove that (B,M,′ , 0, 1) axiomatized by Ω is an actual
Boolean algebra by showing that it induces a complemented
distributive lattice [34].

Theorem 3.4: The set (B,M,′ , 0, 1) subject to axioms in Ω
is a Boolean algebra.

Proof: The system Ω embed median algebra axioms [35].
In such scheme, M(0, x, 1) = x follows from Ω.M . In [36],
it is proved that a median algebra with elements 0 and 1
satisfying M(0, x, 1) = x is a distributive lattice. Moreover, in
our scenario, complementation is well defined and propagates
through the operator M (Ω.I). Combined with the previous
property on distributivity, this makes our system a comple-
mented distributive lattice. Every complemented distributive
lattice is a Boolean algebra [34].

Note that there are other possible axiomatic systems for
(B,M,′ , 0, 1). For example, one can show that in the presence
of Ω.C, Ω.A and Ω.M , the rule in Ω.D is redundant [37]. In
this work, we consider Ω.D as part of the axiomatic system
for the sake of simplicity.

1) Derived Theorems: Several other complex rules, for-
mally called theorems, in (B,M,′ , 0, 1) are derivable from
Ω. Among the ones we encountered, three rules derived from
Ω are of particular interest to logic optimization. We refer
to them as Ψ and are described hereafter. In the following,
the symbol zx/y represents a replacement operation, i.e., it
replaces x with y in all its appearence in z.

Ψ



Relevance – Ψ.R
M(x, y, z) = M(x, y, zx/y′)
Complementary Associativity – Ψ.C
M(x, u,M(y, u′, z)) = M(x, u,M(y, x, z))
Substitution – Ψ.S
M(x, y, z) =
M(v,M(v′,Mv/u(x, y, z), u),M(v′,Mv/u′(x, y, z), u′))

(3)
The first rule, relevance (Ψ.R), replaces reconvergent vari-

ables with their neighbors. For example, consider the func-
tion f = M(x, y,M(w, z′,M(x, y, z))). Variables x and
y are reconvergent because they appear in both the bot-
tom and the top majority operators. In this case, relevance
(Ψ.R) replaces x with y′ in the bottom majority as f =
M(x, y,M(w, z′,M(y′, y, z))). This representation can be
further reduced to f = M(x, y, w) by using Ω.M .

The second rule, complementary associativity (Ψ.C), deals
with variables appearing in both polarities. Its rule of re-
placement is M(x, u,M(y, u′, z)) = M(x, u,M(y, x, z)) as
depicted by Eq. 3.

The third rule, substitution (Ψ.S), extends variable replace-
ment to the non-reconvergent case. We refer the reader to Fig.
2 for an example about substitution (Ψ.S) applied to a 3-input
parity function.

Hereafter, we show how Ψ rules can be derived from Ω.
Theorem 3.5: Ψ rules are derivable by Ω.

Proof: Relevance (Ψ.R): Let S be the set of all possible
input patterns for M(x, y, z). Let Sx=y (Sx=y′ ) be the subset
of S such that x = y (x = y′) condition is true. Note that
Sx=y∩Sx=y′ = ∅ and Sx=y∪Sx=y′ = S. According to Ω.M ,
variable z in M(x, y, z) is only relevant for Sx=y′ . Thus, it is
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possible to replace x with y′, i.e., (x/y′), in all its appearance
in z, preserving the original functionality.

Complementary Associativity (Ψ.C):
M(x, u,M(u′, y, z)) = M(M(x, u, u′),M(x, u, y), z) (Ω.D)
M(M(x, u, u′),M(x, u, y), z) = M(x, z,M(x, u, y)) (Ω.M )
M(x, z,M(x, u, y)) = M(x, u,M(y, x, z)) (Ω.A)

Substitution (Ψ.S): We set M(x, y, z) = k for brevity.
k = M(v, v′, k) = (Ω.M )
M(M(u, u′, v), v′, k) = (Ω.M )
M(M(v′, k, u),M(v′, k, u′), v) = (Ω.D)
Then, M(v′, k, u) = M(v′, kv/u, u) (Ψ.R)
and M(v′, k, u′) = M(v′, kv/u′ , u) (Ψ.R)
Recalling that k = M(x, y, z), we finally obtain: M(x, y, z) =
M(v,M(v′,Mv/u(x, y, z), u),M(v′,Mv/u′(x, y, z), u′))

2) Soundness and Completness: The set (B,M,′ , 0, 1) to-
gether with axioms Ω and derivable theorems form our major-
ity logic system. In a computer implementation of our majority
logic system, the natural data structure for (B,M,′ , 0, 1) is
a MIG and the associated manipulation tools are Ω and Ψ
transformations. In order to be useful in practical applications,
such as EDA, our majority logic system needs to satisfy
fundamental mathematical properties such as soundness and
completeness [33]. Soundness means that every argument
provable by the axioms in the system is valid. This guarantees
preserving of correctness. Completeness means that every
valid argument has a proof in the system. This guarantees uni-
versal logic reachability. We show that our majority Boolean
algebra is sound and complete.

Theorem 3.6: The Boolean algebra (B,M,′ , 0, 1) axioma-
tized by Ω is sound and complete.

Proof: We first consider soundness. Here, we need to
prove that all axioms in Ω are valid, i.e., preserve the true
behavior (correctness) of a system. Rules Ω.C and Ω.M are
valid because they express basic properties (commutativity and
majority decision rule) of the majority operator. Rule Ω.I is
valid because it derives from the self-duality of the majority
operator. For rules Ω.D and Ω.A, a simple way to prove
their validity is to build the corresponding truth tables and
check that they are actually the same. It is an easy exercise to
verify that it is true. We consider now completeness. Here, we
need to prove that every valid argument, i.e., (B,M,′ , 0, 1)-
formula, has a proof in the system Ω. By contradiction,
suppose that a true (B,M,′ , 0, 1)-formula, say α, cannot be
proven true using Ω rules. Such (B,M,′ , 0, 1)-formula α
can always be reduced by Ψ.S rules into a (B,∧,∨,′ , 0, 1)-
formula. This is because Ψ.S can behave as Shannon’s ex-
pansion by setting v = 1 and u to a logic variable. Using ∆
(Eq. 1), all (B,∧,∨,′ , 0, 1)-formulas can be proven, including
α. However, every (B,∧,∨,′ , 0, 1)-formula is also contained
by (B,M,′ , 0, 1), where ∧ and ∨ are emulated by majority
operators. Moreover, rules in Ω with one input fixed to 0 and 1
behaves as ∆ rules (Eq. 1). This means that also Ω is capable
to prove the reduced (B,M,′ , 0, 1)-formula α, contradicting
our assumption. Thus our system is sound and complete.

As a corollary of Ω soundness, all rules in Ψ are valid.

Corollary 3.7: Ψ rules are valid in (B,M,′ , 0, 1).

Proof: Ψ rules are derivable by Ω as shown in Theo-
rem 3.5. Then, Ω rules are sound in (B,M,′ , 0, 1) as shown

in Theorem 3.6. Rules derivable from sound axioms are valid
in the original domain.

As a corollary of Ω completeness, any element of a pair
of equivalent (B,M,′ , 0, 1)-formulas, or MIGs, can be trans-
formed one into the other by a sequence of Ω transformations.
From now on, we use MIGs to refer to functions in the
(B,M,′ , 0, 1) domain. Still, the same arguments are valid for
(B,M,′ , 0, 1)-formulas.

Corollary 3.8: It is possible to transform any MIG α into
any other logically equivalent MIG β, by a sequence of
transformations in Ω.

Proof: MIGs are defined over the (B,M,′ , 0, 1) do-
main. Following from Theorem 3.6, all valid arguments over
(B,M,′ , 0, 1) can be proved by a sequence of Ω rules. A valid
argument is then M(1,M(α, β′, 0),M(α′, β, 0)) = 0 which
reads ”α is never different from β” according to the initial
hypothesis. It follows that the sequence of Ω rules proving
such argument is also logically transforming α into β.

3) Reachability: To measure the efficiency of a logic sys-
tem, thus of its Boolean algebra, one can study (i) the ability to
perform a desired task and (ii) the number of basic operations
required to perform such a task. In the context of this work, the
task we care about is logic optimization. For the graph size and
graph depth metrics, MIGs can be smaller than AOIGs because
of Theorem 3.1. However, the complexity of Ω sequences
required to reach those desirable MIGs is not obvious. In this
regard, we give an insight about the majority logic system
efficiency by comparing the number of Ω rules needed to get
an optimized MIGs with the number of ∆ rules needed to
get an evenly optimized AIGs. This type of efficiency metric
is often referred to as reachability, i.e., the ability to reach a
desired representation form with the smallest number of steps
possible.

Theorem 3.9: For a given optimization goal and an initial
AOIG, the number of Ω rules needed to reach this goal with a
MIG is smaller, or at most equal, than the number of ∆ rules
needed to reach the same goal with an AOIG.

Proof: Consider the shortest sequence of ∆ rules meeting
the optimization goal with an AOIG. On the MIG side, assume
to start with the initial AOIG replacing node-wise AND/OR
nodes with pre-configured majority nodes. Note that Ω rules
with one input fixed to 0/1 behave as ∆ rules. So, it is possible
to emulate the same shortest sequence of ∆ rules in AOIGs
with Ω in MIGs. This is just an upper bound on the shortest
sequence of Ω rules. Exploiting the full Ω expresiveness and
MIG compactness, this sequence can be further shortened.

For a deeper theoretical study on majority logic expresive-
ness, we refer the reader to [38]. In this work, we use the
mathematical theory presented so far to define a consistent
logic optimization framework. Then, we give experimental
evidence on the benefits predicted by the theory. Results in
Section VI show indeed a depth reduction, over the state-of-
the-art techniques, up to 48× thanks to our majority logic sys-
tem. More details on the experiments are given in Section VI.

Operating on MIGs via the new Boolean algebra is one nat-
ural approach to run logic optimization. Interestingly enough,
other approaches are also possible. In the following, we show
how MIGs can be optimized exploiting other properties of the
majority operator, such as bit-error masking.
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C. Inserting Safe Errors in MIG
MIGs are hierarchical majority voting systems. One notable

property of majority voting is the ability to correct different
types of bit-errors. This feature is inherited by MIGs, where
the error masking property can be exploited for logic optimiza-
tion. The idea is to purposely introduce logic errors that are
succesively masked by the voting resilience in MIG nodes. If
such errors are advantageous, in terms of logic simplifications,
better MIG representations can be generated.

In the immediate following, we briefly review hereafter
notations and definitions on logic errors [5], [39]. Then, we
present the theoretical grounds for “safe error insertion” in
MIGs. We define what type of errors, and at what overhead
cost, can be introduced. Note that, in this work, we use the
word erroneous to highlight the presence of a logic error. Our
notation do not relate to testing or other fields.
Definition The logic error in function f is defined as the
difference between f and its erroneous version g and is
computed as f ⊕ g.

In principle, a logic error can be determined for any two
circuits. In practical cases, a logic error is interpreted as a
perturbation A on an original logic circuit f .
Notation A logic circuit f affected by error A is written fA.

For example, consider the function f = (a+ b)· c. An error
A defined as ”fix variable b to 0 ” (A: b = 0) leads here to
fA = ac. In general, an error flips k entries in the truth table
of the affected function. In the above example, k = 1.

To insert safe (permissible) errors in a MIG we consider a
node w and we triplicate the sub-trees rooted at it. In each
version of w we introduce logic errors heavily simplifying the
MIG. Then, we use the three erroneous versions of w as inputs
to a top majority node exploiting the error masking property.
Unfortunately, a majority node cannot mask all types of
errors. This limits our choice of permissible errors. Orthogonal
errors, defined hereafter, fit our purposes. Informally, two logic
errors are orthogonal if for any input pattern they cannot
happen simultaneously. In the majority voting scenario the
orthogonality is important because it guarantees that no two
logic errors happen at the same time which would corrupt the
original functionality.
Definition Two logic errors A and B on a logic circuit f are
said orthogonal if (fA ⊕ f)· (fB ⊕ f) = 0.

To give an example of orthogonal errors consider again the
function f = (a + b)· c. Here, the two errors A: a + b =
1 and B: c = 0 are actually orthogonal. Indeed, by logic
simplification, we get (c⊕ f)· (0⊕ f) = (((a+ b)c)′c+ ((a+
b)c)c′)· ((a+ b)c) = ((a+ b)c)′c· ((a+ b)c) = 0. Instead, the
errors A: a + b = 1 and B: c = 1 are not orthogonal for f .
This is because the input (1, 1, 1) triggers both errors.

Now consider back a generic MIG root w. Let A, B and C
be three pairwise orthogonal errors on w. Being all pairwise
orthogonal, a top majority node M(wA, wB , wC) is capable
to mask A,B and C orthogonal errors restoring the original
functionality of w. This is formalized in the following theorem.

Theorem 3.10: Let w be a generic node in a MIG. Let A,
B and C be three pairwise orthogonal errors on w. Then the
following equation holds: w = M(wA, wB , wC)

Proof: The equation w = M(wA, wB , wC) is log-
ically equivalent to w ⊕ M(wA, wB , wC) = 0. The ⊕

(XOR) operator propagates into the majority operator as
w ⊕ M(wA, wB , wC) = M(wA ⊕ w,wB ⊕ w,wC ⊕ w).
Recalling that M(a, b, c) = ab + ac + bc we rewrite the
previous expression as (wA⊕w)· (wB⊕w)+(wA⊕w)· (wC⊕
w) + (wB ⊕ w)· (wC ⊕ w). As A,B and C are pairwise
orthogonal, we have that each term is 0, so 0 + 0 + 0 = 0.
So, w ⊕M(wA, wB , wC) = 0.

Note that a MIG w = M(wA, wB , wC) can have up to three
times the size and one more level of depth as the original w.
This means that simplifications enabled by orthogonal errors
A, B and C must be significant enough to compensate for
such overhead. Note also that this approach resembles triple
modular redundancy [40] and its approximate variants [41],
but operates differently. Here, we exploit the error masking
property in majority operators to enable logic simplifications
rather than covering potential hardware failures. More details
on how to identify advantageous orthogonal errors in MIGs
will be given in Section V-A together with related Boolean
optimization methods.

In the following sections, we present algorithms for alge-
braic and Boolean optimization of MIGs.

IV. MIG ALGEBRAIC OPTIMIZATION

In this section, we propose algebraic optimization methods
for MIGs. They exploit axioms and derived theorems of the
novel Boolean algebra. Our algebraic optimization procedures
target size, depth and switching activity reduction in MIGs.

A. Size-Oriented MIG Algebraic Optimization
To optimize the size of a MIG, we aim at reducing the num-

ber of its nodes. Node reduction can be done, at first instance,
by applying the majority rule. In the MIG Boolean algebra
domain this corresponds to the evaluation of the majority ax-
iom (Ω.M ) from Left to Right (L→ R), as M(x, x, z) = x. A
different node elimination opportunity arises from the distribu-
tivity axiom (Ω.D), evaluated from Right to Left (R → L),
as M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z). By
applying Ω.ML→R and Ω.DR→L to all MIG nodes, in an arbi-
trary sequence, we can actually eliminate nodes. By repeating
this procedure until no improvement exists, we designed a
simple yet powerful procedure to reduce a MIG size. Embed-
ding some intelligence in the graph exploration direction, e.g.,
the sequence of MIG nodes, immediately improves the opti-
mization effectiveness. Note that the applicability of majority
and distributivity depends on the particular MIG structure.
Indeed, there may be MIGs where no direct node elimination
is evident. This is because (i) the optimal size is reached or
(ii) we are stuck in a local minimum. In the latter case, we
want to reshape the MIG in order to encode new reduction
opportunities. The rationale driving the reshaping process is
to locally increase the number of common inputs/variables to
MIG nodes. For this purpose, the associativity axioms (Ω.A,
Ψ.C) allow us to move variables between adjacent levels
and the relevance axiom (Ψ.R) to exchange reconvergent
variables. When a more radical transformation is beneficial,
the substitution axiom (Ψ.S) replaces pairs of independent
variables, temporarily inflating the MIG. Once the reshaping
process has created new reduction opportunities, majority
(Ω.ML→R) and distributivity (Ω.DR→L) are applied again
over the MIG to simplify it. The reshaping and elimination
processes can be iterated over a user-defined number of cycles,
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Fig. 2: Examples of MIG optimization for size, depth and switching activity.

called effort. Such MIG-size algebraic optimization strategy is
summarized in Alg. 1.
Algorithm 1 MIG Algebraic Size-Optimization Pseudocode
INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
Ω.ML→R(α); Ω.DR→L(α);
Ω.A(α); Ψ.C(α);
Ψ.R(α); Ψ.S(α);
Ω.ML→R(α); Ω.DR→L(α);

end for

reshape eliminate

For the sake of clarity, we comment on the MIG-
size algebraic optimization of a simple example, reported
in Fig. 2(a). The input MIG is equivalent to the for-
mula M(x,M(x, z′, w),M(x, y, z)), which has no evident
simplification by majority and distributivity axioms. Con-
sequently, the reshape process is invoked to locally in-
crease the number of common inputs. Associativity Ω.A
swaps w and M(x, y, z) in the original formula obtaining
M(x,M(x, z′,M(x, y, z)), w), when variables x and z are
close to the each other. After that, the relevance Ψ.R modifies
the inner formula M(x, z′,M(x, y, z)), exchanging variable z
with x and obtaining M(x,M(x, z′,M(x, y, x)), w). At this
point, the final elimination process is applied, simplifying the
reshaped representation as M(x,M(x, z′,M(x, y, x)), w) =
M(x,M(x, z′, x), w) = M(x, x, w) = x by using Ω.ML→R.

B. Depth-Oriented MIG Algebraic Optimization

To optimize the depth of a MIG, we aim at reducing the
length of its critical path. A valid strategy for this purpose is

to move late arrival (critical) variables close to the outputs. In
order to explain how critical variables can be moved, while
preserving the original functionality, consider the general case
in which a part of the critical path appears in the form
M(x, y,M(u, v, z)). If the critical variable is x, or y, no
simple move can reduce the depth of M(x, y,M(u, v, z)).
Whereas, if the critical variable belongs to M(u, v, z), say
z, depth reduction is achievable. We focus on the latter case,
with order tz > tu ≥ tv > tx ≥ ty for the variables
arrival time (depth). Such an order can arise from (i) an
unbalanced MIG whose inputs have equal arrival times, or
(ii) a balanced MIG whose inputs have different arrival times.
In both cases, z is the critical variable arriving later than
u, v, x, y, hence the local depth is tz + 2. If we apply the
distributivity axiom Ω.D from left to right (L→ R), we obtain
M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z) where z
is pushed one level up, reducing the local depth to tz + 1.
Such technique is applicable to a broad range of cases, as
all the variables appearing in M(x, y,M(u, v, z)) are distinct
and independent. However, there is a size penalty of one extra
node. In the favorable cases for which associativity axioms
(Ω.A, Ψ.C) apply, critical variables can be pushed up with no
penalty. Furthermore, where majority axiom applies Ω.ML→R,
it is possible to reduce both depth and size. As noted earlier,
there exist cases for which moving critical variables cannot
improve the overall depth. This is because (i) the optimal depth
is reached or (ii) we are stuck in a local minimum. To move
away from a local minimum, the reshape process is useful. The
reshape and critical variable push-up processes can be iterated
over a user-defined number of cycles, called effort. Such MIG-
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depth algebraic optimization strategy is summarized in Alg. 2.
Algorithm 2 MIG Algebraic Depth-Optimization Pseudocode
INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
Ω.ML→R(α); Ω.DL→R(α); Ω.A(α);
Ω.A(α); Ψ.C(α);
Ψ.R(α); Ψ.S(α);
Ω.ML→R(α); Ω.DL→R(α); Ω.A(α);

end for

reshape push-up

We comment on the MIG-depth algebraic optimization
using two examples depicted by Fig. 2(b-c). The considered
functions are f = x⊕y⊕z and g = x(y+u· v) with initial MIG
representations derived from their optimal AOIGs. In both of
them, all inputs have 0 arrival time. No direct push-up opera-
tion is advantageous. The reshape process is invoked to move
away from local minimum. For g = x(y+uv), complementary
associativity Ψ.C enforces variable x to appear in two adjacent
levels, while for f = x ⊕ y ⊕ z substitution Ψ.S replaces x
with y, temporarily inflating the MIG. After this reshaping,
the push-up procedure is applicable. For g = x(y + u· v),
associativity Ω.A exchanges 1′ with M(u, 1′, v) in the top
node, reducing by one level the MIG depth. For f = x⊕y⊕z,
majority Ω.ML→R heavily simplifies the structure and reduces
the intermediate MIG depth by four levels. The optimized
MIGs have much smaller depth than their optimal AOIGs
counterparts. Note that Alg. 2 produces irredundant solutions.

C. Switching Activity-Oriented MIG Algebraic Optimization
To optimize the total switching activity of a MIG, we aim at

reducing (i) its size and (ii) the probability for nodes to switch
from logic 0 to 1, or vice versa. For the size reduction task, we
can run the same MIG-size algebraic optimization described
previously. To minimize the switching probability, we want
that nodes do not change values often, i.e., the probability of
a node to be logic 1 (p1) is close to 0 or 1 [42]. For this
purpose, relevance Ψ.R and substitution Ψ.S can exchange
variables with undesirable p1 ∼ 0.5 with more favorable
variables having p1 ∼ 1 or p1 ∼ 0. In Fig. 2(d), we show
an example where relevance Ψ.R replaces a variable x having
p1 = 0.5 with a reconvergent variable y having p1 = 0.1, thus
reducing the overall MIG switching activity.

V. MIG BOOLEAN OPTIMIZATION

In this section, we propose Boolean optimization methods
for MIGs. They exploit the safe error insertion schemes
presented in Section III-C. First, we introduce two techniques
to identify advantageous orthogonal errors in MIGs. Second,
we present our Boolean optimization technique targeting depth
and size reduction in MIGs. Note that also other optimization
goals are possible but are not discussed here for brevity.

A. Identifying Advantageous Orthogonal Errors in MIGs
In the following, we present two methods for identifying

advantageous triplets of orthogonal errors in MIGs.
1) Critical Voters Method: A natural way to discover

advantageous triplets of orthogonal errors is to analyze a
MIG structure. We want to identify critical portions of a MIG
to be simplified thanks to these errors. To do so, we focus
on nodes1 that have the highest impact on the final voting

1In the context of the critical voters technique we consider also the primary
inputs to be a special class of nodes with no fan-in.

decision, i.e., influencing a Boolean function most. We call
such nodes critical voters of a MIG. Critical voters can also be
primary input themselves. To determine the critical voters, we
rank MIG nodes based on a criticality metric. The criticality
computation goes as follows. Consider a MIG node m. We
label all MIG nodes whose computation depends on m. For
all such nodes, we calculate the impact of m by propagating
a unit weight value from m outputs up to the root with
an attenuation factor of 1/3 each time a majority node is
encountered. We finally sum up all the values obtained and
call this result criticality of m. Intuitively, MIG nodes with
the highest criticality are critical voters.

For the sake of clarity, we give an example of criticality
computation in Fig. 3. Node m5 has criticality of 0, since
it is the root and does not propagate to any node. Node m4
has criticality of 1/3 (a unit weight propagated to m5 and
attenuated by 1/3). Node m3 has criticality of 1/3 (m4) +
(1/3+1)/3 (direct and m4 contribution to m5) which sums up
to 7/9. Node m2 has criticality of 1/3 (m3) + 4/9 (m4) +
7/27 (m5) which sums up to 28/27. Node m1 has criticality
1/3 + criticality of m2 attenuated by factor 3 which sums up to
about 2/3. Among the inputs, only x1 has a notable criticality
being 1/3 (m3) + 1/9 (m4) + (1/3+1/9+1)/3 (m5) which sums
up to 25/27. Here the two elements with highest criticality are
m2 and x1.

We first determine two critical voters a and b and a set of
MIG nodes fed directly by both a and b, say {c1, c2, ..., cn}.
In this context, an advantageous triplet of orthogonal errors
is: A: a = b′, B: c1 = a, c2 = a, ..., cn = a and C: c1 =
b, c2 = b, ..., cn = b. Consider again the example in Fig. 3.
There, the critical voters are a = m2 and b = x1, while
c1 = m3. Thus, the pairwise orthogonal errors are m2 = x1′

(A), m3 = x1 (B) and m3 = m2 (C), as shown in Fig. 3. The
actual orthogonality of A, B and C type of errors is proved
in the following theorem.

Theorem 5.1: Let a and b be two critical voters in a MIG.
Let {c1, c2, ..., cn} be the set of MIG nodes fed by both a and
b in the same polarity. Then, the following errors are pairwise
orthogonal: A: a = b′, B: c1 = a, c2 = a, ..., cn = a and C:
c1 = b, c2 = b, ..., cn = b.

Proof: Starting from a MIG w, we build the three
erroneous versions wA, wB and wC as described above. We
show that orthogonality holds for all 3 pairs. Pair (wA, wB):
We need to show that (wA⊕w)· (wB ⊕w) = 0. The element
wA ⊕ w implies a = b, being the difference between the
original and the erroneous one with a = b′ (a 6= b). The
element wB ⊕ w implies ci 6= a (ci = a′), being the
difference between the original and the erroneous one with
ci = a. However, if a = b then ci cannot be a′ because
ci = M(a, b, x) = M(a, a, x) = a 6= a′ by construction.
Thus, the two elements cannot be true at the same time,
making (wA⊕w)· (wB ⊕w) = 0. Pair (wA, wC): This case
is analogous to the previous one. Pair (wB, wC): We need
to show that (wB⊕w)· (wC⊕w) = 0. As we deduced before,
the element wB ⊕ w implies ci 6= a (ci = a′). Similarly, the
element wC ⊕ w implies ci 6= b (ci = b′). By the transitive
property of equality and congruence in the Boolean domain
ci 6= a and ci 6= b implies a = b. However, if a = b, then
ci = M(a, b, x) = M(a, a, x) = M(b, b, x) = a = b which
contradicts both ci 6= a and ci 6= b. Thus, wB , wC cannot be
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Fig. 3: Example of criticality computation and orthogonal errors.

true simultaneously, making (wB ⊕ w)· (wC ⊕ w) = 0.
Even though focusing on critical voters is typically a good

strategy for safe error insertion in MIGs, sometimes other
techniques can be also convenient. In the following, we present
one of these alternative techniques.

2) Input Partitioning Method: As a complement to critical
voters method, we propose a different way to derive advanta-
geous triplets of orthogonal errors in MIGs. In this case, we
focus on the inputs rather than looking for internal MIG nodes.
In particular, we search for inputs leading to advantageous
simplifications when erroneous. Analogously to the criticality
metric in critical voters, we use here a decision metric, called
dictatorship [43], to select the most profitable inputs for logic
error insertion. The dictatorship is the ratio of input patterns
over the total (2n) for which the output assumes the same value
as the selected input, in a chosen polarity [43]. For example,
in the function f = (a + b)· c, the inputs a and b have equal
dictatorship of 5/8 while input c has an higher dictatorship
of 7/8. The inputs with the highest dictatorship are the ones
where we want to insert logic errors. Indeed, they have the
largest influence on the circuit functionality and its structure.

Exact computation of the dictatorship requires exhaustive
simulation of an MIG structure, which is not feasible for
practical reasons. Heuristic approaches to estimate dictatorship
involve partial random simulation and graph techniques [43].

After exact or heuristic computation of the dictatorship, we
select a subset of the primary inputs with highest dictatorship.
Next, for each selected input, we determine a condition that
causes an error. We require these errors to be orthogonal. Since
we operate directly on the primary inputs, we already divide
the Boolean space into disjoint subsets that are orthogonal.
Because we need at least three errors, we need to consider
at least three inputs to be made erroneous, say x, y and z.
A possible partition is the following: {x 6= y, x = y = z,
x = y = z′}. The corresponding errors are A: x = y for
{x 6= y}, B: z = y′ when x = y for {x = y = z} and C:
z = y when x = y for {x = y = z′}. We formally prove A,B
and C orthogonality hereafter.

Theorem 5.2: Consider the input split {x 6= y, x = y = z,
x = y = z′} in a MIG. Three errors A,B and C selectively
affecting one subset but not the others are pairwise orthogonal.

Proof: To prove the theorem it is sufficient to show that

the split {x 6= y, x = y = z, x = y = z′} is actually a
partition of the whole Boolean space, i.e., a union of disjoint
(non-overlapping) subsets. It is an easy exercise to enumerate
all the eight possible {x, y, z} input patterns and associate
with each of them the corresponding {x 6= y, x = y = z,
x = y = z′} subset. By doing so, one can see that no {x, y, z}
pattern is associated with more than one sub-set, meaning that
all subsets are disjoint. Moreover, all together, they form the
whole Boolean space.

For the sake of clarity, we report an illustrative exam-
ple on the input partitioning method. The function is f =
M(x,M(x, y′, z),M(x′, y, z)). The input split is {x 6= y,
x = y = z, x = y = z′} which is affected by errors A,B
and C, respectively. The first error A imposes x = y leading
to fA = M(x,M(y, y′, z),M(x′, x, z)) which can be further
simplified into fA = M(x, z, z) = z by Ω.M . The second
error B imposes z = y′ when x = y. This is the case for the
bottom level majority operators M(x, y′, z) and M(x′, y, z)
which are transparent when x = y. Therefore, error B leads to
fB = M(x,M(x, y′, y′),M(x′, y, y′)) which can be further
simplified into fB = M(x, y′, x′) = y′ by Ω.M . The third
error C imposes z = y when x = y holds. Analogously to
error B, error C leads to fC = M(x,M(x, y′, y),M(x′, y, y))
which can be further simplified into fC = M(x, x, y) = x by
Ω.M . A top majority node finally merges the three functions
into f = M(fA, fB , fC) = M(z, y′, x) which correctly
represents the objective function but has 2 fewer nodes and
1 level less than the original representation.

B. Depth-Oriented MIG Boolean Optimization

The most intuitive way to exploit safe error insertion in
MIGs is to reduce the number of levels. This is because
the initial overhead in w = M(wA, wB , wC), where w is
the initial MIG and wA, wB , wC are the three erroneous
versions, is just one additional level. This extra level is usually
amply recovered during simplification and optimization of
MIG erroneous branches. For depth-optimization purposes, the
critical voters method introduced in Section III-C enables very
good results. The reason is the following. Critical voters appear
along the critical path more than once. Thus, the possibility
to insert simplifying errors on critical voters directly enables
a strong reduction in the maximum number of levels. Some-
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Fig. 4: MIG Boolean depth-optimization example based on critical voters errors insertion. Final depth reduction: 60%.

times, using an actual MIG root for error insertion requires an
unpractical size overhead. In these cases, we bound the critical
voters search to sub-MIGs partitioned on a depth criticality
basis. Once the critical voters and a proper error insertion
root have been identified, three erroneous sub-MIG versions
are generated as explained in Section III-C. On these sub-
MIGs, we want to reduce the logic height. We do so by
running algebraic MIG optimization on them (Alg. 2). Note
that, in principle, also MIG Boolean methods can be re-used.
This would correspond to a recursive Boolean optimization.
However, it turned out during experimentation that algebraic
optimizations already produce satisfactority results at the local
level. Thus, it makes more sense to apply Boolean techniques
iteratively on the whole MIG structure rather than recursively
on the same logic portion. At the end of the optimization
of erroneous branches, the new MIG-roots must be given
in input to a top majority voting node. This re-establishes
the functional correctness. A last gasp of MIG algebraic
optimization is applied at this point, to take advantage of
the simplification opportunities arosen from the integration
of erroneous branches. This Boolean optimization strategy is
summarized in Alg. 3.

We comment on the MIG Boolean depth optimization with
a simple example, reported in Fig. 4. First, the critical voters
are searched and identified, being in this example the input x1
and the node m2 (from Fig. 3). The proper error insertion root
in this small example is the MIG root itself. So, three different
versions of the root f are generated with errors fm2/x1′ ,

Algorithm 3 MIG Boolean Depth-Optimization Pseudocode
INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
{a, b}=search critical voters(α);// Critical voters a, b searched
c=size bounded root(α, a, b);// Proper error insertion root
xn1=common parents(α, a, b);// Nodes fed by both a and b
cA=cb/a

′
;// First erroneous branch

cB=cx
n
1 /a;// Second erroneous branch

cC=cx
n
1 /b;// Third erroneous branch

MIG-depth Alg Opt(cA);// Reduce the erroneous branch height
MIG-depth Alg Opt(cB);// Reduce the erroneous branch height
MIG-depth Alg Opt(cC);// Reduce the erroneous branch height
c=M(cA, cB , cC);// Link the erroneous branches
MIG-depth Alg Opt(c); // Last Gasp
if depth(c) is not reduced then

revert to previous MIG state;
end if

end for

fm3/m2 and fm3/x1. Each erroneous branch is handled by
fast algebraic optimization to reduce its depth. The detailed
algebraic optimization steps involved are shown in Fig. 4.
The most common operation is Ω.M that directly simplifies
the introduced errors. The optimized erroneous branches are
then linked together by a top fault-masking majority node. A
last gasp of algebraic optimization on the final MIG structure
further optimizes its depth. In summary, our MIG Boolean
optimization techniques attains a depth reduction of 60%.
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C. Size-Oriented MIG Boolean Optimization
Safe error insertion in MIGs can be used for size reduc-

tion. In this case, the branch triplication overhead in w =
M(wA, wB , wC) imposes tight simplification requirements.
One way to handle this situation is to enforce stricter selection
metrics on critical voters. However, the benefits deriving from
this approach are limited. A better solution is to change the
type of error inserted and use the input partitioning method.
Indeed, the input partitioning method can focus on the most
influent inputs of a MIG, and introduces selective simplifica-
tion on them. The resulting Boolean optimization procedure
is similar to Alg. 2 but with depth techniques replaced by
size techniques, and critical voter search replaced by input
partitioning methods.

VI. EXPERIMENTAL RESULTS

In this section, we test the performance of our MIG opti-
mization techniques on academic and industrial benchmarks.
We run logic optimization experiments (comparing logic net-
works) and complete design experiments (consisting of logic
synthesis and physical design) on commercial ASIC and
FPGA flows. Finally, we give our vision on nanotechnology
design via MIGs.

A. Methodology
We developed a majority-logic manipulation package, called

MIGhty, consisting of about 8k lines of C code. It embeds
various optimization commands based on the theory presented
so far. In this work, we use a particular MIGhty optimization
strategy targeting strong depth reduction interleaved with size
recovery phases. The top-level optimization script is depicted
by Alg. 4. This technique starts by reducing the depth by
Algorithm 4 Top-Level MIG-optimization Script
INPUT: MIG α. OUTPUT: Optimized MIG α.

MIG-depth Alg Opt(α);// small size overhead
MIG-reshaping(α);// reshuffling
MIG-size Alg Opt(α);// no depth overhead
MIG-depth Bool Opt(α);// pronounced size overhead
MIG-reshaping(α);// reshuffling
MIG-depth Alg Opt(α);// small size overhead
MIG-size Bool Opt(α);// small depth overhead
MIG-size Alg Opt(α);// no depth overhead
MIG-reshaping(α);// reshuffling
MIG-depth Alg Opt(α);// small size overhead
MIG-size Alg Opt(α);// no depth overhead

algebraic methods implying a small size overhead. After a
fast reshaping step, it decreases the size of the MIG by level-
bounded size reduction. At this point, Boolean MIG depth
optimization is invoked to significantly reduce the number of
levels at the price of a temporary MIG size inflation. Further
level reduction opportunities are exploited in an algebraic
depth reduction step. Then, size recovery is achieved by
Boolean intertwined with algebraic size reduction. A small
depth overhead is possible in this phase due to the size reduc-
tion. Finally, a last gasp of algebraic depth optimization further
compacts the MIG followed by level-bounded algebraic size
reduction. All optimization steps have a runtime complexity
linear w.r.t. the MIG size, i.e., are imposed to consider each
node at least once.

The script in Alg. 4 is a composite optimization strategy,
similarly to the class of resyn scripts in ABC [2].

MIGhty reads files in Verilog or AIGER format and writes
back a Verilog description of the optimized MIG. In order to
simplify successive mapping steps, MIGhty reduces majority
functions into AND/ORs if no size/depth overhead is implied.
Thus, only the essential majority functions are written. Also,
the number of inversions is minimized by Ω.I before writing.

We consider IWLS’05 Open Cores benchmarks and larger
arithmetic HDL benchmarks. As a case study, we also consider
various adder circuits. All the Verilog files deriving from
our experiments can be downloaded at [44], for the sake
of reproducibility. In all benchmarks, we assumed the input
signals to be available at time 0. In total, we optimized about
half a million equivalent gates over 31 benchmarks.

For the pure logic optimization experiments, we use as
reference tool the ABC academic synthesizer [2], with the
delay oriented script if−g; iresyn. The initial if−g optimiza-
tion strongly reduces the AIG depth by using SOP-balancing
[51]. The latter iresyn optimization performs fast rewriting
passes on the AIG, reducing mostly the number of nodes but
potentially also the number of levels.

We chose the AIG script if−g; iresyn because its opti-
mization rationale is close to our MIG optimization strategy
and the respective runtimes are comparable. Note that ABC
offers many other optimization scripts. Some of them may
give better results under determinate conditions (benchmark
type, size etc.). As the purpose of this work is primarily to
assess the potential of MIG optimization w.r.t. to analogous
AIG optimization, we neglect considerations and comparisons
related to other ABC commands.

While comparing size and depth of MIGs vs. AIGs already
gives some good intuition on a data structure and optimization
effectiveness, we aim at providing results on even grounds. For
this reason, we map both AIG-optimized and MIG-optimized
circuits onto LUT6. We perform LUT mapping using the
established ABC script dch−f ; if −m −K 6.

For the complete design experiments, we consider a 22-nm
(28-nm) commercial ASIC (FPGA) flow suite. The commer-
cial flow consists of a logic synthesis step followed by place &
route. In this case, we use the MIG-optimized Verilog file as
input to the commercial tools in place of the original Verilog
file. In other words, the MIGhty package operates as a front-
end to the flows. Indeed, the efficiency of MIG-optimization
helps the commercial tool to design better circuits. With the
final circuit speed being our main design goal, we use an ultra-
high delay effort script in the commercial tools.

TABLE I: Adder Optimization Results
Type Bit Orig. AIG Map. AIG Opt. MIG Map. MIG

Operands Width size depth lut6 depth size depth lut6 depth

2-op 32 352 96 65 13 610 12 150 4
2-op 64 704 192 132 26 1159 11 272 5
2-op 128 1408 384 267 52 14672 19 3684 7
2-op 256 2816 768 544 103 7650 16 1870 7
3-op 32 760 68 127 14 1938 16 349 8
4-op 64 1336 136 391 27 2212 18 524 7

B. Optimization Case Study: Adders
We first test the MIG optimization capabilities for adders,

that are known hard-to-optimize circuits [52]. Results for more
general benchmarks are given in the next subsection. Table I
shows the adder results. Our optimized MIG adders have 4 to
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TABLE II: MIG Logic Optimization and LUT-6 Mapping Results
MIGhty ABC

Benchmark I/O Opt. MIG Map. MIG Opt. AIG Map. AIG
Open Cores IWLS’05 Size Depth LUT6 Depth Runtime (s) Size Depth LUT6 Depth Runtime (s)
DSP 4223/3953 40517 34 11077 11 7.98 39958 41 11309 12 5.39

ac97 ctrl 2255/2250 10745 8 2917 3 6.52 10497 9 2914 3 8.98
aes core 789/668 20947 18 3902 4 11.78 20632 19 3754 5 8.22
des area 368/72 4186 22 735 6 1.04 5043 24 1012 7 2.11
des perf 9042/9038 67194 15 12796 3 34.22 75561 15 12814 3 25.43
ethernet 10672/10696 57959 15 18108 6 23.69 56882 22 18267 6 36.54

i2c 147/142 971 8 270 3 0.11 1009 10 268 4 0.05
mem ctrl 1198/1225 7143 19 2333 7 0.38 9351 22 2582 7 0.33

pci bridge32 3519/3528 18063 16 5294 6 3.28 16812 18 5424 7 2.22
pci spoci ctrl 85/76 932 11 276 4 0.04 994 13 287 4 0.02

sasc 133/132 621 6 152 2 0.11 657 7 152 2 0.03
simple spi 148/147 837 8 206 3 0.05 770 10 211 3 0.01

spi 274/276 3337 19 812 6 3.71 3430 24 854 7 2.28
ss pcm 106/98 397 6 104 2 0.01 381 6 104 2 0.01

systemcaes 930/819 9547 25 1845 7 5.26 11014 31 2060 8 4.79
systemcdes 314/258 2453 19 515 5 2.21 2495 21 623 5 1.05

tv80 373/404 7397 30 1980 11 6.43 7838 35 2036 11 2.97
usb funct 1860/1846 12995 19 3333 5 13.45 13914 20 3394 5 9.04
usb phy 113/111 372 7 136 2 0.11 380 7 136 2 0.05

IWLS’05 total 266613 305 66791 96 120.38 277618 354 68201 103 109.52
Arithmetic HDL Size Depth LUT6 Depth Runtime (s) Size Depth LUT6 Depth Runtime (s)

MUL32 64/64 9096 36 1852 10 2.90 8903 40 1993 11 1.90
sqrt32 32/16 2171 164 544 54 1.02 1353 292 236 55 1.22
diffeq1 354/289 17281 219 4685 45 56.32 21980 235 4939 45 16.88
div16 32/32 4374 102 818 37 4.67 5111 132 806 38 2.44

hamming 200/7 2071 61 517 14 2.01 2607 73 590 17 2.54
MAC32 96/65 9326 41 2095 11 4.30 9099 54 2044 12 7.76

metric comp 279/193 18493 77 6202 29 16.21 21112 95 6796 31 9.51
revx 20/25 7516 143 1937 40 10.70 7516 162 2176 42 12.02

mul64 128/128 25773 109 6557 31 13.84 26024 186 6751 43 10.09
max 512/130 4210 29 1023 12 1.67 2964 113 818 20 2.23

square 64/127 17550 40 4393 13 18.66 17066 168 4278 35 12.24
log2 32/32 31326 201 8809 59 23.32 30701 272 8223 73 15.54

Arithmetic total 149727 1222 39432 355 155.62 154436 1822 39650 422 94.37

48× smaller depth than the original AIGs. In all cases, the
optimized MIG structure resembles a carry-look ahead design
which is known to be the most depth-efficient for adders.
Considering LUT mapped results, MIG-optimization enables
significantly less deep circuits, having 1.75 to 14× smaller
depth than LUT6 circuits mapped from the original AIGs.

C. General Optimization Results
Table II shows general results for MIGhty logic optimization

and LUT-6 mapping. For the IWLS’05 and HDL arithmetic
benchmarks, we see a total improvement in all size, depth and
switching activity metrics, w.r.t. to AIG optimized by ABC.
The switching activity is computed by the ABC command ps
-p. The same improvement trend holds also for LUT mapped
circuits. Since logic depth was our main optimization target,
we notice there the largest reduction.

Considering the IWLS’05 benchmarks, that are large but not
deep, MIGhty enables about 14% depth reduction. At the LUT-
level, we see about 7% depth reduction. At the same time, the
size and switching activity are reduced by about 4% and 2%,
respectively. At the LUT-level, size and switching activity are
reduced by about 2% and 1%, respectively.

Focusing on the arithmetic HDL benchmarks, we see a
better depth reduction. Here, MIGhty enables about 33%
depth reduction. At the LUT-level, it enables about 16%
depth reduction. At the same time, MIGhty reduces size and
switching activity by 4% and 0.1%. At the LUT-level, this
corresponds to about 1% size reduction and practically the
same switching activity.

The switching activity numbers are not reported in Table II
for space reasons but can be reproduced using the ABC
command ps -p on the files downloadable at [44].

Table II confirms that the runtime of our tool is similar with
that of if − g; iresyn ABC script.

All MIG output Verilog files passed formal verification tests
(ABC cec and Synopsys Formality) with success.

D. ASIC Results
Table III shows the results for ASIC design (synthesis fol-

lowed by place and route) at a commercial 22-nm technology
node2. In total, we see that by using MIGhty as front-end
to the ASIC design flow, we obtained better final circuits, in
all relevant metrics including area, delay and power. For the
delay, which was our critical design constraint, we observe an
improvement of about 13%. This improvement is not as large
as the one we saw at the logic optimization level because some
of the gain got absorbed by the interconnect overhead during
physical design. However, we still see a coherent trend: We
got about 4% and 3% reductions in area and power.

E. FPGA Results
Table IV shows the results for FPGA design (synthesis

followed by place and route) on a commercial 28-nm technol-
ogy node3. By employing MIGhty as front-end to the FPGA
design flow, we obtain better final circuits, in LUT count,
delay and power metrics. For the delay, that was our critical
design constraint, we observe an improvement of about 10%.

2Design tools and library names cannot be disclosed due to our license.
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TABLE III: MIG 22-nm ASIC Design Results
Benchmark MIGhty+ASIC flow ASIC flow

µm2 ns mW µm2 ns mW
DSP 6958.23 0.57 1.82 1841.76 2.95 1.82

ac97 ctrl 2045.48 0.12 0.55 2070.83 0.15 0.56
aes core 4599.62 0.29 1.75 4417.46 0.29 1.64
des area 853.21 0.31 0.59 1084.60 0.36 0.53
des perf 14417.90 0.20 11.21 15808.09 0.23 11.81
ethernet 10835.31 0.25 1.61 10631.93 0.29 1.59

i2c 210.13 0.10 0.04 210.04 0.11 0.04
mem ctrl 1359.41 0.30 0.27 1372.58 0.33 0.27
pci b32 3215.69 0.26 0.79 3259.76 0.29 0.79

pci spoci 159.34 0.16 0.08 177.47 0.16 0.09
sasc 125.12 0.08 0.02 139.98 0.10 0.02

simple spi 169.60 0.12 0.04 178.64 0.14 0.04
spi 542.22 0.39 0.21 503.41 0.42 0.18

ss pcm 85.33 0.08 0.02 89.23 0.08 0.02
systemcaes 1328.08 0.35 0.65 1427.94 0.43 0.66
systemcdes 538.97 0.31 0.37 641.30 0.33 0.45

tv80 1299.34 0.43 0.37 1213.84 0.50 0.40
usb funct 2269.22 0.25 0.72 2337.65 0.26 0.77
usb phy 111.15 0.05 0.02 115.73 0.07 0.02
MUL32 1862.55 0.55 1.81 1748.45 0.56 1.90
sqrt32 498.65 2.54 0.62 504.76 2.74 0.62
diffeq1 3460.48 3.19 4.33 3713.87 3.49 4.68
div16 595.86 1.64 0.26 948.66 2.06 0.40

hamming 325.65 0.90 0.56 348.46 1.04 0.58
MAC32 2281.57 0.58 1.95 2194.88 0.60 1.89
metric c 4274.04 1.36 1.68 4642.09 1.55 1.72

revx 1401.04 2.23 1.42 1451.11 2.63 1.48
mul64 6378.20 1.43 7.01 6330.08 1.82 6.95
max 628.23 0.45 0.33 631.46 0.56 0.33

square 4031.05 0.46 3.69 3895.13 0.67 3.57
log2 6784.70 3.07 7.45 7197.50 3.59 8.03
Total 83645.37 23.02 53.37 86270.09 26.47 55.04

TABLE IV: MIG 28-nm FPGA Design Results
Benchmark MIGhty+FPGA flow FPGA flow

LUT6 ns W LUT6 ns W
DSP∗ 9599 8.22 7.76 9501 8.54 7.73

ac97 ctrl∗ 2417 4.54 3.91 2444 4.67 3.92
aes core 4440 5.54 1.93 4788 5.63 1.94
des area 955 15.24 0.96 1212 15.73 0.98
des perf∗ 8480 5.22 18.56 11350 5.40 18.75
etherne∗t 14840 6.26 23.89 16343 6.74 23.84

i2c 274 10.58 0.83 264 10.38 0.83
mem ctrl∗ 1929 6.74 2.00 2044 7.25 1.99
pci b32∗ 4542 5.76 7.77 4741 6.39 7.78
pci spoci 260 9.86 0.81 290 9.99 0.81

sasc 141 10.02 0.88 137 10.04 0.88
simple spi 192 9.91 0.93 200 10.23 0.93

spi 994 15.72 1.32 814 18.57 1.35
ss pcm 92 9.60 0.78 89 9.58 0.78

systemcaes 1445 6.67 2.31 1445 6.96 2.32
systemcdes 667 14.93 1.31 798 15.90 1.31

tv80 1892 16.44 1.57 1975 17.47 1.57
usb funct∗ 2988 6.02 3.25 2887 5.79 3.21

usb phy 97 10.00 0.82 94 10.06 0.82
MUL32 1776 11.05 0.88 1867 12.02 0.89
sqrt32 447 25.46 0.68 560 27.81 0.70
diffeq1 5134 22.36 1.56 6545 30.89 1.82
div16 1160 26.03 0.72 765 28.12 0.70

hamming 519 16.20 13.16 657 17.65 17.81
MAC32 2220 12.47 0.93 2338 15.83 0.94
metric c 5486 34.57 1.11 6416 38.65 1.13

revx 2010 26.19 0.79 2333 31.04 0.80
mul64 7109 22.54 1.77 6224 25.07 1.41
max 952 20.10 1.04 754 22.19 1.04

square 4327 17.05 1.16 3579 17.56 1.11
log2 9944 44.13 1.42 14166 51.75 1.79
Total 97328 455.41 106.81 107620 503.97 111.88

Also here, P&R absorbs part of the advantage predicted at
the logic-level. Regarding LUT number and power, we see
improvements of about 10% and 5%, respectively. Some of

the values reported (marked by∗) are just post synthesis results
because the placement and routing on FPGA failed due to
excessive number of I/Os.

In summary, MIG synthesis technology enables a consistent
advantage over the state-of-the-art commercial design flows.
It is worth noticing that we employed MIG optimization just
as a front-end to an existing commercial flow. We foresee
even better results by integrating MIG optimization inside the
synthesis engine of commercial tools.

F. Nanotechnology Design via MIGs
Due to their ultra-scaled dimensions, nanotechnologies often

operate on physics principles that are different from those
of traditional CMOS. For example, logic switches in some
nanotechnologies do not even use electron charge as the state
variable [45]. This brings new logic primitives to the attention
of logic synthesis. In particular, various promising nanotech-
nologies realize devices behaving as majority voters. Specific
examples include, but are not limited to, spin-wave device
[46], quantum-dot cellular automata [47], DNA-based logic
[48], ReRAM device [49] and ambipolar FET nanotechnolo-
gies [50]. For these nanotechnologies, MIGs are the natural
and native circuit abstraction for automated design. MIGs
can fully harness the logic advantage over CMOS provided
by these new switches, which is often a pivotal asset in
the corresponding nanotechnologies. Preliminary experiments
already shown superior results for SWD, ambipolar FET and
ReRAM nanotechnologies [46], [49], [50]. Based on our
studies and results so far, we foresee an even broader impact
of MIGs in nanotechnology design.

VII. CONCLUSIONS

In this paper, we proposed a paradigm shift in repre-
senting and optimizing logic circuits, by using only ma-
jority (MAJ) and inversion (INV) as basic operations. We
presented the Majority-Inverter Graphs (MIGs): a directed
acyclic graph consisting of three-input majority nodes and
regular/complemented edges. We developed algebraic and
Boolean optimization techniques for MIGs and we embedded
them into a tool, called MIGhty. Over the set of IWLS’05
(arithmetic intensive) benchmarks, MIGhty enabled a 7%
(16%) depth reduction in LUT-6 circuits mapped by ABC
while also reducing size and switching activity, with respect
to similar AIG optimization. Employed as front-end to a
delay-critical 22-nm ASIC flow, MIGhty reduced the average
delay/area/power by about 13%/4%/3%, over 31 benchmarks.
We also demonstrated improvements in delay/area/power by
10%/10%/5% for a commercial 28-nm FPGA flow.
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