Evaluating the Quality of Railway Timetables

Tomáš Robenek Shadi Sharif Azadeh Michel Bierlaire

Conference on Advanced Systems in Public Transport July 19 – 23, 2015

July 22, 2015

Supply x Demand

Figure : Calvin and Hobbes by Bill Watterson

Liberalisation -01.01.2010

Purely commercial rail passenger services in Europe

	Market closed for commercial national rail passenger services.
	Open access, but no external RUs providing commercial national rail passenger services .
	Open access with external RUs providing commercial national rail passenger services.
7///	AT and CZ: commencing end of 2011, external RUs providing purely commercial national rail passenger services.

Transport Demand

Passenger Point of View

Passenger Satisfaction

Perceived satisfaction of a given path using a given timetable (a path is defined as a sequence of train lines, in order to get from an origin to a destination):

$$C = \operatorname{argmin} \left(\alpha \cdot \sum_{i \in I} VT + \beta \cdot \sum_{j \in J^I} WT + \gamma \cdot NT + \max \left(\epsilon \cdot SD_e, \eta \cdot SD_l \right) \right)$$

for all possible sets I, where:

set of possible trains in a given path

J' − set of transfers in a given path using given trains

 α - value of time (monetary units per minute)

ø – value of waiting time (monetary units per minute)

 γ – penalty for having a transfer (monetary units)

 ϵ - value of being early (monetary units per minute)

value of being late (monetary units per minute)

TOC Point of View

Update of Planning

Inputs

Passenger

- OD Matrix
- Desired arrival time to D
- All paths
- Behavior

Operator

- Network
 - Fare structure
- Cost structure
- Rolling stock

Decision Variables I

 U_i^t – passenger satisfaction (utility)

w^t_i - the total waiting time of a passenger with ideal time t between OD pair i

tp - 1 - if passenger with ideal time t between OD pair i chooses path p; 0 - otherwise

 the value of the scheduled delay of a passenger with ideal time t between OD pair i

 the departure time of a train v on the line I (from its first station)

Decision Variables II

tplv – 1 – if a passenger with ideal time t between OD pair i on the path ptakes the train v on the line l; 0 otherwise

dummy variable to help modeling the cyclicity corresponding to a train v on the line I

train occupation of a train v of the line I on a segment g

number of train units of a train v on the line I

1 – if a train v on the line l is being operated; 0 - otherwise

Model

max (<i>revenue</i> — <i>cost</i>)	(1)
passenger satisfaction $\leq \epsilon$	(2)
satisfaction function	(3)
at most one path per passenger	(4)
link trains with paths	(5)
cyclicity	(6)
train scheduling	(7)
train capacity	(8)
scheduled delay	(9)
waiting time	(10)

Case Study – Switzerland

⁰source: www.myswitzerland.com

SBB 2014 (5 a.m. to 9 a.m.)

- OD Matrix based on observation and SBB annual report
- 13 Stations
- 156 ODs
- 14 (unidirectional) lines
- 49 trains
- Min. transfer 4 mins
- VOT 27.81 CHF per hour
- 3 scenarios SBB 2014, cyclic PCTTP, non-cyclic PCTTP

S-Train Network Canton Vaud, Switzerland

Current Timetable (Morning Peak)

Line	ID	From	То	Departures			
S1	1	Yverdon-les-Bains	Villeneuve	-	6:19	7:19	8:19
	2	Villeneuve	Yverdon-les-Bains	5:24	6:24	7:24 7:43	8:24
S 2	4	Palézieux					8:08
S3	5	Allaman	Villeneuve	-	6:08	7:08	8:08
33	6	Villeneuve	Allaman	-	6:53	7:53	8:53
S4	7	Allaman	Palézieux	5:41	6:41	7:41	8:41
34	8	Palézieux	Allaman	-	6:35	7:35	8:35
S11	9	Yverdon-les-Bains	Lausanne	5:26*	6:34	7:34	8:34
311	10	Lausanne	Yverdon-les-Bains	5:55	6:55	7:55	8:55
S21	11	Payerne	Lausanne	5:39	6:39	7:38*	8:39
321	12	Lausanne	Payerne	5:24	6:24	7:24	8:24
S31	13	Vevey	Puidoux-Chexbres	-	6:09	7:09	8:09
221	14	Puidoux-Chexbres	Vevey	-	6:31*	7:36	8:36

Results - Current Demand SBB 2014

€ [%]	0	20	40	60	80	100	100*
profit [CHF] satisfaction [CHF]	53 067 588 934	52 926 505 899	50 730 422 864	49 564 339 828	13 826 256 793	4 211 173 759	-27 168 173 758
ub/lb [CHF] gap [%]	54 046 1.84	54 598 3.16	54 776 7.98	54 394 9.74	54 600 294.91	51 195 1115.74	168 016 3.30
gap [CHF]	979	1 672	4 046	4 830	40 774	46 984	5 742
drivers [-] rolling stock [-]	17 32	17 32	22 32	22 32	46 46	48 55	49 98
covered [%]	99.35	99.34	100.00	100.00	100.00	100.00	100.00

Pareto Frontier

Sensitivity Analysis on Passenger Congestion

Sensitivity Analysis – Operator

Sensitivity Analysis – Passenger

Sensitivity Analysis – Pareto Frontiers

Conclusions

- Current demand
 - cyclic timetable is by 3 000 CHF better than the SBB 2014 timetable
 - the non-cyclic timetable is by 4 000 CHF better than the cyclic timetable
- Most congested
 - cyclic timetable is by 55 000 CHF better than the SBB 2014 timetable
 - the non-cyclic timetable is by 110 000 CHF better than the cyclic timetable

Future Work

- Heuristics to solve for a full day
- Estimate the cost of cyclicity

Thank you for your attention.