
An Adjoint Approach for Stabilizing the Parareal Method

Feng Chen a, Jan S Hesthaven b, Yvon Maday c, Allan Nielsen b

aDepartment of Mathematics, Baruch College, New York, NY 10010, USA
bMathematics Institute of Computational Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL),

Switzerland
cSorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 4, place Jussieu

75005, Paris, France, Institut Universitaire de France and D.A.M., Brown University, Providence (RI) USA

Received *****; accepted after revision +++++

Presented by ?????

Abstract

The parareal algorithm seeks to extract parallelism in the time-integration direction of time-dependent differential
equations. While it has been applied with success to a wide range of problems, it suffers from some stability issues
when applied to non-dissipative problems. We express the method through an iteration matrix and show that
the problematic behavior is related to the non-normal structure of the iteration matrix. To enforce monotone
convergence we propose an adjoint parareal algorithm, accelerated by the Conjugate Gradient Method. Numerical
experiments confirm the stability and suggest directions for further improving the performance. To cite this
article: F. Chen, J.S. Hesthaven, Y. Maday, A. Nielsen, C. R. Acad. Sci. Paris, Ser. I ??? (2015).

Résumé

L’algorithme parareel en temps vise à proposer la parallélisation dans la direction temporelle de l’intégration
approchée déquations différentielles instationnaires. Cet algorithme a été appliqué avec succès sur une large gamme
de problèmes mais souffre néanmoins de certains problèmes de stabilité lorsqu’il est appliqué à des problèmes non
dissipatifs. Nous exprimons l’algorithme comme une méthode d’itération matricielle et nous montrons que le
comportement problématique est liée à la structure non-normale de la matrice d’itération. Pour retrouver une
convergence monotone nous proposons une version adjointe de l’ algorithme pararéel, accélérée par la méthode du
gradient conjugué. Des expériences numériques confirment la stabilité et proposent des pistes pour améliorer les
performances. Méthode adjointe pour la stabilisation de l’algorithme pararéel. Pour citer cet article :
F. Chen, J.S. Hesthaven, Y. Maday, A. Nielsen, C. R. Acad. Sci. Paris, Ser. I ? ? ? (2015).

Email addresses: feng.chen@baruch.cuny.edu (Feng Chen), jan.hesthaven@epfl.ch (Jan S Hesthaven),
maday@ann.jussieu.fr (Yvon Maday), allan.nielsen@epfl.ch (Allan Nielsen).

Preprint submitted to the Académie des sciences August 8, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148015312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Parareal in time algorithm

The increasing number of processors available at large computers presents a substantial challenge
for the development of applications that scale well. One potential path to increased parallelism is the
development of parallel time-integration methods. Once some standard methods-of-lines approach have
been applied, the problem is traditionally viewed as a strongly sequential process. Attempts to extract
parallelism have nevertheless been explored : a simple example is parallel Runge-Kutta methods where
independent stages allow for the introduction of parallelism [8]. The parareal method, first proposed in
[4], is another and more elaborate approach to achieve a similar goal. This algorithm borrows ideas from
spatial domain decomposition to construct an iterative approach for solving the temporal problem in a
parallel global-in-time approach. To present the method, consider the problem

∂u

∂t
+A (t,u) = 0

u (T0) = u0 t ∈ [T0, T]
(1)

where A : R× V → V ′ is a general operator depending on u : Ω×R+ → V with V being a Hilbert space
and V ′ its dual. Assume the existence of a unique solution u (t) to (1) and decompose the time domain
of interest into N individual time slices T0 < T1 < · · · < TN−1 < TN = T , where Tn = n∆T . Now, for
any n ∈ N, we define the numerical solution operator FTn

∆T that advances the solution from Tn to Tn+1 as

FTn

∆T (u (Tn)) ≈ u (Tn+1) (2)

This allows, starting from U0 = u0 to define recursively approximations U1, · · · ,UN to u(T1), · · · ,u(TN)
by setting, for n = 0, . . . , N − 1 : Un+1 = FTn

∆T (Un). It is pertinent, for what follows, to realize that
this numerical solution corresponds to the forward substitution solution method applied to the matricial
system MFŪ = Ū0 where MF , Ū and Ū0 are defined as follows

MF =


1

−FT0

∆T

. . .

. . .
. . .

−FTN−1

∆T 1

 , Ū =


U0

...

...

UN

 , Ū0 =


u0

0
...

0

 . (3)

If we instead solve the system using a point-iterative approach, i.e., seeking the solution on form Ūk+1 =
Ūk +

(
Ū0 −MFŪk

)
, we may observe that Ūk is known at each iteration, allowing a complete decoupled

computation of FT1

∆T , · · · ,F
TN

∆T on all intervals. However, for any k, we clearly have to wait k iterations
in order to get Uk

k = Uk hence we have to wait N iterations of the above iterative approach to solve
the problem. Consequently, the above approach does not provide any reduction in the time solution. In
order to reduce the number of iterations K needed to reach convergence, we need to find an appropriate
preconditioner to accelerate the iteration, a typical approach is to utilize an approximation MG ≈ MF ,
where MG is cheap to apply. We can readily create such an MG by defining another operator G∆T that
proposes a coarser approximation

GTn

∆T (u (Tn)) ≈ u (Tn+1) (4)

by reducing accuracy and choosing a coarse grained model or an entirely different numerical model.
Solving the system using standard preconditioned Richardson iterations we may write

Ūk+1 = Ūk + (MG)
−1 (

Ū0 −MFŪk
)
. (5)

This recovers the parareal algorithm on its standard form

Uk+1
n+1 = GTn

∆TUk+1
n + FTn

∆TUk
n − G

Tn

∆TUk
n with U0

n+1 = GTn

∆TU0
n and Uk

0 = u(T0). (6)

2

This approach has no inherent limits to the amount of parallelism that can be extracted. Important
contributions to the analysis of the method can be found in [6,1,3].

2. Instabilities

As the parareal algorithm is essentially a preconditioned point iterative method, (5) can be written

as Ūk+1 =
[(
I − (MG)

−1
MF

)]
Ūk + M−1

G Ū0. It is clear that if GT0

∆T is sufficiently accurate, then one

essentially recovers the serial solution process as expected. However, of GTn

∆T is far from accurate, the

iteration matrice, (MG)
−1
MF develops a degree of non-normality that increases as the quality of GTn

∆T

decreases. When solving problems that have a natural dissipation, e.g., a parabolic problem, this does
not pose a problem. However, when considering problems without dissipation, e.g., a wave dominated
problem, the impact of this non-normality becomes very apparent.

To demonstrate this problematic behavior, Figs. 1a and 1b illustrate convergence when the parareal
algorithm is used to solve the test equation d

dtu (t) = λu (t) over [0, 100], using a forward Euler method,
with a small time step dt = 10−3, for the fine solver F and a varying time step dT = R10−3 for the coarse
solver G (hence solved R-time faster than F). One clearly observes the problematic transient behavior for
problems with small dissipation and recognize the intermittent behavior as characteristic of iteration with
non-normal matrices [7]. It is also clear that strong intermittent behavior can be controlled by improving
the accuracy of GTn

∆T as one would expect. We refer to [2] for some ways to cure these problems based on
some conservation properties for hyperbolic equations.

0 10 20 30 40 50
10−8

100

108

1016

a = 2.0

a = 1.0

a = 0.5

a = 0.2

a = 0.1

1 N

∑ N n
=

0

∥ ∥ Uk n
−
u

(T
n
)∥ ∥ 1

(a)

0 10 20 30 40 50
10−6

10−4

10−2

100

a = 2.0

a = 1.0

a = 0.5
a = 0.2

a = 0.1

1 N

∑ N n
=

0

∥ ∥ Uk n
−
u

(T
n
)∥ ∥ 1

(b)

Figure 1. Error as a function of iterations when solving d
dt
u (t) = λu (t) with lambda λ = −a− i and dt = 0.001, ∆T = 1.

Ratio between timestep dT of G∆T and dt of F∆T (a) R = 500 (b) R = 50

3. An Adjoint Approach

As observed above, the parareal method exhibits problematic behavior for non-dissipative problems due
to the inherent non-normal nature of the iteration matrices, leading to increasing number interactions k for
the algorithm to converge. This adversely impacts the parallel efficiency which scales as 1/k. To overcome
this, we consider a symmetrized version, as was done in [5] for the application to control problem, by
constructing the adjoint operators F∆T and G∆T to (1). Consider the adjoint operator F∗∆T and

3

M∗FMFŪ = M∗FŪ0 = Ū0. (7)

For simplicity, we assume that the adjoint operator is the conjugate transposed of MF , but this not an
essential assumption. Clearly, M∗FMF is symmetric positive definite, and we can use the preconditioned
conjugate gradient (PCG) method to solve this problem. Inspired by the parareal method, it is natural

to consider
(
M∗GMG

)−1
as a preconditioner. It is noteworthy that M∗GMG is an approximation to the

Cholesky factorization of M∗FMF and it can be applied directly in the PCG method. The overall algorithm
is outlined in algorithm 1 below. We present a method developed for linear systems, but the algorithm
itself can be applied to nonlinear systems without modifications.

Algorithm 1 Pseudo code for PCG based Adjoint Parareal

Ū0 = (MG)
−1
Ū0 \\Creation of initial iterate

r(0) = Ū0 −M∗FMF Ū0 \\Parallel application of FTn

∆T and
(
FTn

∆T

)∗
to U0

n

d(0) =
(
M∗GMG

)−1
r(0) \\Sequential application of GTn

∆T and
(
GTn

∆T

)∗
on residual

G(0) = d(0)

\\Iterate
for k = 0 to Kmax ≤ N − 1 do

F(k) = M∗FMFd(k) \\Parallel application of FTn

∆T and
(
FTn

∆T

)∗
to d(k)

α(k) =
rT(k)G(k)

dT
(k)
F(k)

Ūk+1 = Ūk + α(k)d(k)

r(k+1) = r(k) − α(k)F(k)

if |Uk+1
n − Ukn | < ε∀n then

BREAK \\Terminate loop if converged
end if

G(k+1) =
(
M∗GMG

)−1
r(k+1) \\Sequential application of GTn

∆T and
(
GTn

∆T

)∗
on residual

β(k+1) =
rT(k+1)G(k+1)

rT
(k)
G(k)

d(k+1) = G(k+1) + β(k+1)d(k)

end for

4. Numerical Experiments

We again consider the test equation

d

dt
u (t) = λu (t) , u (0) = 1, t ∈ [0, 100] (8)

with a forward Euler discretization and λ = i, i.e., it is strictly non-dissipative. In Fig. 2a we show the
error between the exact solution u (t) = exp (λt) and the parareal iterative solution Ukn as a function of
the iteration count for different ratios between the coarse and the fine time-step. As the ratio R between
timestep dT in G∆T and dt in F∆T decreases, the coarse solver improves in accuracy and the level of
non-normality decreases.

In Fig. 2b we illustrate convergence of the PCG accelerated adjoint parareal algorithm for the same test
case and the expected rapid convergence is clear. The convergence rate of the PCG algorithm depends

4

on the condition number and the clustering of eigenvalues of the preconditioned system. In Fig. 4a the

eigenvalues of
(
M∗GMG

)−1
M∗FMF for (8) is given for different values of R. It is clear that as R increases,

small eigenvalues are introduced, contributing to the reduced convergence rate.
To improve the convergence rate, we define the projection P =

(
I + εV1V

T
1

)
where V1 is the eigenvector

of
(
M∗GMG

)−1
M∗FMF associated with the smallest eigenvalue µ1 that we attempt to shift. V1 is an

eigenvector of P
(
M∗GMG

)−1
M∗FMF , but now associated a new eigenvalue λ′1 = (1 + ε)µ1. In Fig. 4a the

modified preconditioned system is solved with P =
(
I + 1−µ1

µ1
V1V

T
1

)
to shift the smallest eigenvalue of

the preconditioned system to 1, illustrating the potential for a substantially improved convergence rate.

0 20 40 60 80 100
10−2

102

106

1 N

∑ N n
=

0

∥ ∥ Uk n
−
u

(T
n
)∥ ∥ 1 R = 500

R = 200

R = 100

R = 50

R = 25

(a)

0 5 10 15

10−2

10−1

10−0

1 N

∑ N n
=

0

∥ ∥ Uk n
−
u

(T
n
)∥ ∥ 1

(b)

Figure 2. Error as a function of parareal iterations k for solving (8) with dt = 10−3. R is the ratio between timestep dT in
G∆T and dt in F∆T . (a) Original parareal. (b) Adjoint parareal (dashed), modified adjoint, (solid).

As a second test we consider
∂u (x, t)

∂t
+
∂u (x, t)

∂x
= 0 , (t, x) ∈ [0, 100]× [0, 2]

u (x, 0) = exp (sin (2πx)) , u (0, t) = u (2, t)∀t ∈ [0, 100]
(9)

Using a spectral discretization in space and a forward Euler in time, we show in Fig. 3a the convergence
rate of the original parareal algorithm as a function of the ratio between the coarse and the fine time-step,
clearly exposing the same identified transient effect of the non-normal iteration matrix. In Fig. 3b the
convergence of the PCG based adjoint parareal algorithm is presented. While the convergence is monotone,
the rate of convergence is prohibitively slow. Figure 4b shows the eigenvalues of the preconditioned system
for (9), spanning from 10−4 to 108 in the case of the coarse discretization. While convergence can be
improved by shifting the small eigenvalues as discussed above, this quickly becomes prohibitive due to
the large number that needs to be shifted.

During the numerical tests we observed that by constructing a new preconditioner LL∗ as a modified
incomplete Cholesky factorization of M∗GMG , this improves the convergence rate dramatically. This is

illustrated in Fig. 3b. The eigenvalues of the preconditioned system (LL∗)
−1
M∗FMF are also better clus-

tered, Fig. 4b. It is surpricing that using a less accurate approximation of M∗GMG leads to a substantially
better preconditioner, we do not have a complete understanding of this observation.

5

0 10 20 30 40 50
10−4

10−3

10−2

10−1

100
1 N

∑ N n
=

0

∥ ∥ Uk n
−
u

(T
n
)∥ ∥ 1 R = 100

R = 80

R = 60

R = 40

R = 20

(a)

0 10 20 30 40 50
10−4

10−3

10−2

10−1

100

1 N

∑ N n
=

0

∥ ∥ Uk n
−
u

(T
n
)∥ ∥ 1

(b)

Figure 3. Error as a function of parareal iterations k solving (9) with dx = 2
49

and dt = 10−6. R is the ratio between

timestep dT in G∆T and dt in F∆T . (a) Original parareal. (b) Adjoint parareal (dashed), LL∗ precondtioner (solid).

500 200 100 50 25
10−2

10−1

100

101

E
ig

en
va

lu
es

(MGMG)−1 MFMF

P (MGMG)−1MFMF

(a)

100 80 60 40 20
10−4

100

104

108

E
ig

en
va

lu
es

(M∗GMG)−1M∗FMF

(LL∗)−1M∗FMF

(b)

Figure 4. Eigenvalues of the preconditioned systems as a function of R. (a) Equation (8) and (b) Equation (9).

References

[1] G. Bal, 2005, On the convergence and the stability of the parareal algorithm to solve partial differential equations,
Domain decomposition methods in science and engineering, Springer Berlin Heidelberg, 425-432.

[2] X. Dai, and Y. Maday, 2013, Stable parareal in time method for first-and second-order hyperbolic systems. SIAM Journal
on Scientific Computing, 35(1), A52-A78.

[3] M.J. Gander and S. Vandewalle, 2007, Analysis of the parareal time-parallel time-integration method, SIAM Journal

on Scientific Computing 29(2), 556-578.

[4] J.L. Lions, Y. Maday and G. Turinici. Rśolution d’EDP par un schéma en temps pararéel, 2001, Comptes Rendus de

l’Académie des Sciences - Mathematics, 332(7), 661-668.

[5] Y. Maday and G. Turinici, 2002, A parareal in time procedure for the control of partial differential equations. Comptes

Rendus Mathematique, 335(4), 387-392.

[6] G.A. Staff and E.M. Rønquist, 2005, Stability of the parareal algorithm, Domain decomposition methods in science and
engineering. Springer Berlin Heidelberg, 449-456.

6

[7] L.N. Trefethen., M. Embree, 2005, Spectra and pseudospectra: the behavior of nonnormal matrices and operators,

Princeton University Press.

[8] P. J. Van Der Houwen, B. P. Sommeijer and P. A. Van Mourik, 1989, Note on explicit parallel multistep RungeKutta

methods, Journal of computational and applied mathematics 27(3), 411-420.

7

