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Ahstract-The development of fast and mobile drug detection 
is an important aspect of personalized medicine. It enables 
the quick assessment of inter-individual differences in drug 
metabolism and corresponding adjustments of the dose. Recent 
developments of amperometric biosensors using cytochrome P450 

(CYP) show great promise, by lowering the detection limit to 
physiological range for several drugs via the usage of Multi 
Walled Carbon Nanotubes (MWCNT). The next challenge is 
to develop algorithms for processing the resulting sensor data 
compatible with low-power hardware, which would allow the 
development of portable battery-powered devices. In this work 
we pursue a novel approach to this problem. Here we provide 
a proof of principle by demonstrating how sensor data could 
be analyzed using a conventional multi-layer perceptron network 
with error-backpropagation. 

I. INTRODUCTION 

Ideally medical substances would affect each patient 
equally. However, this is rarely the case as subjects show 
inter-individual differences in metabolizing different types of 
drugs. This constitutes an important problem in personalized 
medicine that opens to new challenges in bioelectronics [1]. 
A possible solution is to analyze the patients metabolization 
rate before drug administration. However, this process is often 
time consuming and requires expensive and bulky equipment 
which hinders wide-spread application. Consequently there is 
a requirement for fast, cheap and mobile solutions. A possible 
candidate for the development of such mobile devices is 
amperometric biosensing employing cytochrome P450 (CYP), 
an enzyme involved in the metabolism of a wide variety of 
drugs [2]. Recent efforts in lowering the detection limit to 
physiological ranges via the usage of Multi Walled Carbon 
Nanotubes (MWCNT) [3] have shown to be successful for 
several drugs [4]. However there are still challenges on the 
way towards broader or even commercial applications of these 
sensors. One crucial problem is the low specificity of the 
CYP probes against several different drug compounds. [5]. A 
possible solution is to acquire calibration curves with inter
dependence among different drugs on the same biosensor 
[3]. Another one is to use the matrix approach on arrays 
of biosensors [6]. However, all these approaches are linear 
while the problem of drug-drug interaction on the single CYP 
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probe is clearly not [7]. A neural network approach with back
propagation, on the other hand, is capable of approximating 
non-linear functions. A further challenge is the development of 
algorithms for automatic analysis of the sensory data compat
ible with low power implementation and therefore suitable for 
the design of portable battery-powered devices. A first step is 
automating data preprocessing and demonstrating how neural 
networks can be used to directly predict drug concentration(s) 
from this preprocessed data. Given the limited data available 
from the sensors, a major limitation for a neural network 
approach is the training, which normally relies on a big 
data set. In order to overcome this problem, we introduce a 
method to generate training data by interpolating between real 
measurements from a set of calibration data. We also provide a 
proof of concept for the application of this method to multiple
drug measurements. 

II. METHODS 

A. Electrochemical measurements 

Screen-printed electrodes were functionalized with Multi 
Walled Carbon Nanotubess (MWCNTs) and microsomal cy
tochrome P450 (CYP) as described in [3], [7]. Amperometric 
biosensors based on the CYP enzyme family are widely 
investigated in research, because CYP is an enzyme primarily 
involved in the metabolism of drugs and steroids [8]. In the 
absence of the CYP substrate, CYP can react with oxygen 
when a redox potential is applied to the electrode. This reaction 
can be quantified by analyzing the reduction peaks in cyclic 
voltammetry measurements. The faradaic current associated 
with the reduction peak is dependent on the quantity of CYP 
immobilized onto the electrode, and the peak potential is 
influenced by the immobilization technique. When the drug 
(substrate) is added to a buffer solution in presence of oxygen, 
a further increase in the CYP reduction current is observed. 
Several CYP isoforms were used for the specific detection of 
the selected drugs: the CYP2C9 for Naproxen and Flurbipro
fen, CYP1A2 for Ftorafur and Etoposide, and CYP3A4 for 
Ifosfamide and Etoposide [3], [7]. 

B. Data preprocessing 

In order to enable fully automated data processing, we 
developed a standardized way for the preprocessing of voltam
metric data shown in Fig. 1: First the reduction part, i.e. 
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Fig. 1: Example of how to obtain the data. A: applied voltage 
ramping, B: resulting current loop, C: preprocessed curves with 
baseline subtraction. 

the currents acquired from the negative voltage sweep, were 
isolated. We then subtracted the baseline current which was 
acquired by measurements in Phosphate-Buffered Saline (PBS) 
without the presence of any drug. The resulting traces were 
normalized so that peaks resulting from drug measurements 
were positive, i.e. if the peaks were negative after background 
current subtraction they were multiplied by -1. The approx
imate voltage ranges for each drug peaks were known from 
previous research (Naproxen and Flurbiprofen [7]; Etoposide, 
Ftorafur, Ifosfamid and Cyclophosphamide [3]). 

C. Interpolating of data 

Our aim is to train a neural network to predict single or 
cocktail drug concentration from preprocessed sensor data. The 
goal of this approach is to avoid computationally expensive 
data processing and therefore facilitate the development of 
portable drug detection devices. However training and testing 
a neural network to predict drug concentration requires suffi
ciently large sets of training and testing data. Given the large 
extent of sensor-to-sensor variability, the training set has to be 
acquired for each sensor individually. Due to time-consuming 
biochemical experiments, the size of the calibration data set 
is not large enough to split it in reasonable sized training and 
testing data sets. Therefore, we developed a simple algorithm 
to interpolate between measurements from a small calibration 
data set, allowing the creation of arbitrarily large simulated 
data sets for training and testing. Under ideal conditions a 
measured drug would give a single peak in the reduction part 
of the voltammogram of approximately Gaussian shape, with 
a linearly dependent amplitude of the drug's concentration [1] 
[9]. However, since we are dealing with a complex system 
consisting of the CYP plus microsome, MWCNT, PBS and one 
or multiple drugs, we often get much more complex responses. 
We accounted for this problem by fitting with a sum of N 
Gaussians the response in current h to the input voltage V in 
presence of a single drug 

N - ( V - Pi ) 2 
h(V) = L aie 2<77 

i= 1 
(1) 

with the Gaussian components amplitude ai ;::: 0, position Pi 
and width (Yi. Given suitable sensor quality, at least one of 
these Gaussian components will show a linear concentration 
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(a) Measured data from Ftorafur (b) Interpolated data for Ftoratur 

Fig. 2: Data interpolation from different Ftorafur measure
ments exemplary for the amplitude (position and (Y not shown). 
(a): Parameter values resulting from fitting 3 Gaussian func
tions to the preprocessed measurement data. (b): Interpolated 
values used to create training data. 

dependency in their amplitude (see example in Fig. 2(a», as 
reported for the position of certain drug current responses [3]. 
Using this knowledge we can interpolate measurements from a 
suitable small set of calibration data. Amplitudes and positions 
(1'n) of Gaussian components are fit with a linear model 

(2) 

with intercept Wno, slope Wn1 for concentration c. In order 
to account for variability in the measurements we assume 
normally distributed deviations from this linear model, with 
variance 13;; 1 taken with respect to the calibration data set 
(see Fig. 2) 

P(')'nlc, Wn, 13n) = N(')'nlf(c, wn), 13;;1), (3) 

where N is the normal distribution. For the width of the 
Gaussian components we assumed normally distributed devi
ations around a constant mean. In order to account for the 
fact that measurement data contains noise, we added white 
noise to the training data, using random values drawn from 
a normal distribution. The standard deviation was estimated 
from the calibration data after subtracting the fit h(V) from 
the measurements. This is still a very simplified approach and 
possible improvements are mentioned in the discussion section 
of this paper. 

D. Comparison of interpolated data 

We used Matlab® Neural Network Toolbox to simulate and 
train a multi layer Perceptron (MLP) with a hidden layer, 
consisting of 10 units. The network was trained via back
propagation using gradient descent with adaptive learning rate 
(Matlab® training function traingda). The predictions made 
by the neural network depend largely on the parameter values 
of the linear model used to generate the training data and 
consequently on the quality of the calibration data set. Based 
on a set of real data on several drugs (Naproxen, Flurbiprofen, 
Ibuprofen, Cyclophosphamide and Ifosfamide), we created 
a calibration data set which included all measurements for 
interpolating the Gaussian components. With that we generated 
multiple simulated data sets for training and testing the 
neural network. We used the leave-one-out cross validation 
technique to quantify the accuracy of the simulated data. 
For the Naproxen example, we have a total of six simulated 
test sets, each with only 5 measured concentrations and a 
different concentration excluded for data interpolation. To 
assess reliability of the generated data sets we calculated the 
Pearson correlation coefficient R for each drug concentration 
and compared the correlation of the simulated new test sets to 
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Fig. 3: Example for the correlation; Showing simulated data 
sets for Naproxen at concentrations of (a) 30f..lM and (b) 
430f..lM. For the i-th test-set we left the i-th measurement out. 
The time depends on the temporal resolution of the applied 
voltage sweep in the original measurements. 

the training set that included all measurements for simulating 
the data. Fig. 3 shows the correlation of simulated data for 
Naproxen at concentrations of 30f..lM and 430f..lM. This was 
repeated for every concentration and all new sets. The mean 
value for R, all test-sets and all drugs shown in Fig. 4 is 
R = 0.97 which states a high correlation of new test set and the 
full training set, despite the few measurement samples used. 
However there are some outliers that result from the random 
noise added to the Gaussian components. The good correlation 
supports the choice of the proposed algorithm for interpolating 
data. Figure 4, shows R for different drugs plotted vs. the 
concentration, where each R is the mean value of all test-sets 
for one drug. This correlation depends on the quality of the 
measurement data. Especially the sets for Naproxen are highly 
correlated because it was the best data available. 

III. RESULTS 

The results of training a neural network using simulated 
data generated from measurements of Naproxen at 6 different 
concentrations are shown in Fig. 5. Six simulated test sets 
are created, each of them based on a different 'reduced' 
calibration data set, in which one concentration is left out. 
The mean error for the estimated concentrations is 22.9f..lM 
which is 4.6% of the maximum concentration but 45% of 
the smallest measured concentration. In case the simulated 
data set is generated using the full calibration data set, the 
mean error decreases to 15.79f..lM (about 3% of the maximum 
concentration). Similar results were obtained for the other 
drugs with a maximum concentration of 500f..lM, Flurbiprofen 
(mean error: 31.47 f..lM vs. 29.28f..lM) and Ibuprofen (mean 
error: 18.69f..lM vs. 14. 13f..lM). As shown in the example 
of Naproxen (see Fig. 5), there is a narrower distribution of 
errors for the full set, than for the test sets. As expected, the 
'reduced' calibration data sets produce a higher uncertainty in 
the concentration estimation, given the smaller concentration 
of data points for the interpolation. Nevertheless, the achieved 
error range of 3 - 6% is in a usable range taking into account 
that the US FDA accepts uncertainty of about 15% when 
dealing with biosensors for glucose (ISO 15197:2013). The 
main goal was not to create measurements with the best 
accuracy, but to find an approach for a cost efficient solution 
that is precise enough for therapeutic ranges. Our method 
seems to be valid for creating suitable data sets to train the 
classifier. Furthermore, the quality of the simulated data can 
be improved by increasing the size of the calibration data set 

_ R Cydophosph<lmide [0-80pMj 
_ R Ifosbmide [O-160,uMj 
_ R Flurbiprofen [O-500,uM) 

R Ibuprofen [O-500,uM) 
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Concentration [uM] em" 
Fig. 4: Mean values of R vs. concentration for several drugs. 
500 concentrations per test set between 0 and Cmax. Six 
test sets for Naproxen, Ibuprofen and Flurbiprofen. Five for 
Cyclophosphamide and Ifosfamide, because there were less 
measurements available. 

and optimizing the sensor's signal to noise ratio. However, 
the optimization of the sensors signal-to-noise ratio is not 
straightforward because the faradaic current associated with 
the reduction peak is dependent on the quantity of CYP 
inunobilized onto the electrode, on the enzyme immobilization 
technique, and on the amount of MWCNT deposited on the 
electrode. 

IV. MULTIPLE DRUG MEASUREMENTS WITH 

INTERFERENCE 

The results shown so far only deal with single drug mea
surements. However when multiple drugs are present the single 
drug current responses do not combine linearly, but are subject 
to non-linear interferences [7], [10]. These interferences have 
to be modelled in order to produce realistic simulated data 
for multiple drug measurements. We propose a modification 
of the method proposed by Carrara et al. in 2011, [7] and we 
incorporate the description of a single drug's current response 
as a sum of Gaussians as opposed to a single Gaussian 

i(V) = L:fkCk{ II Ak(Cj) } ma�(�
V
;v) ) , Vk V#k k (4) 

where h(V), as given by equation (1), replaces the single 
Gaussian term from the original equation in [7]. 

Since we currently lack suitable multiple-drug measure
ment data, we used this method to construct such data from 
single-drug measurements. This procedure allows us to con
struct a proof of concept that the proposed method can be ap
plied to multiple drug measurements. We chose measurements 
of Flurbiprofen and Naproxen using CYP2C9, because both 
the corresponding single-drug measurement data as well as 
enzyme kinetics models [10] were available to us. Interference 
strength as well as the unknown diffusion coefficients for both 
drugs (PBS at 7.4 pH) were chosen in a way that yielded 
clearly recognizable, but not extreme, interference between 
the drugs' current responses. Figure 6 shows that a network 
trained on such data is able to predict concentrations with 
reasonable errors. The mean error for Naproxen is 52.9f..lM 
and for Flurbiprofen 55f..lM. These results support the efficacy 
of this approach in the estimation of drug concentrations in 
multiple drug measurement data. 
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Fig. 5: Comparison of errors from a full set vs. test sets. The 
thick purple bars show the errors for the full set of Naproxen. 
The thin bars represent the test sets. Each test set excludes the 
i-th measurement's data for generating new data. The network 
was trained with the training set. Maximum measured con
centration is 500J.LM. Random concentrations were generated 
between 0 and the maximum measured concentration. 

V. DISCUSS ION 

We have developed a neural network approach for the 
estimation of drug concentrations from voltammetric mea
surement data. All computationally expensive steps of the 
proposed estimation procedure, i.e. fitting the measurement 
data with multiple Gaussians and training the neural network, 
can be delegated to a suitable computer. The results can then 
be used by a portable device for online drug concentration 
estimation at the computational cost required by simple data 
preprocessing and matrix operations. Since we described a 
novel exploratory approach to drug concentration estimation, 
we are confident that the current results can be improved 
further. The inclusion of larger calibration single-drug data sets 
will allow a more precise characterization of the statistics of 
simulated data as well as data sets suitable for the training. 
Multiple-drug data sets are required to confirm the validity 
of the simulation approach in the presence of non-linear 
interferences. In this work, the influence of voltage and analyte 
concentration on sensor noise [11] was neglected. We plan 
to add these effects into our model to further improve the 
results. The shown results represent a first milestone in the 
direction of the long term goal of developing portable battery
powered devices for personalized medicine. To this end, we 
will explore the feasibility of a spiking multi-layer Percep
tron [4] implementation of the classification algorithm. This 
alternative approach offers the advantage of latency coding, 
which in turn paves the way of applying neuromorphic circuits 
[12] to this problem. Neuromorphic circuits make use of 
the subthreshold characteristics of Metal-Oxide-Semiconductor 
Field-Effect Transistors (MOSFETs) to build analog models 
of spiking neurons [13]. In the sub-threshold domain the 
transistor operates with very small diffusion currents that lead 
to a very low power consumption in the order of several J.L W, 
depending on the size of the network and the neural activity 
(number of spikes). Therefore a successful classification on 
neuromorphic spiking neural networks has high potential for 
supporting the development of portable devices for personal
ized medicine. 
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Fig. 6: Error for simultaneous prediction of Naproxen and 
Flurpiprofen concentration from data generated with interfer
ence. Maximum measured concentration is 500J.LM. E1 : 0, 
E2 : 0.5 
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