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It is good to have an end to journey toward;
but it is the journey that matters, in the end
— Ursula K. Le Guin
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Abstract

Mobility is a central aspect of our life, and our movements reveal much more about us
than simply our whereabouts.

In this thesis, we are interested in mobility and study it from three different perspectives:
the modeling perspective, the information-theoretic perspective, and the data mining
perspective.

For the modeling perspective, we represent mobility as a probabilistic process described by
both observable and latent variables, and we introduce formally the notion of individual
and collective dimensions in mobility models. Ideally, we should take advantage of both
dimensions to learn accurate mobility models, but the nature of data might limit us.
We take a data-driven approach to study three scenarios, which differ on the nature of
mobility data, and present, for each scenario, a mobility model that is tailored for it.
The first scenario is individual-specific as we have mobility data about individuals but
are unable to cross reference data from them. In the second scenario, we introduce the
collective model that we use to overcome the sparsity of individual traces, and for which
we assume that individuals in the same group exhibit similar mobility patterns. Finally,
we present the ideal scenario, for which we can take advantage of both the individual
and collective dimensions, and analyze collective mobility patterns in order to create
individual models.

In the second part of the thesis, we take an information-theoretic approach in order to
quantify mobility uncertainty and its evolution with location updates. We discretize the
user’s world to obtain a map that we represent as a mobility graph. We model mobility
as a random walk on this graph —equivalent to a Markov chain —and quantify trajectory
uncertainty as the entropy of the distribution over possible trajectories. In this setting,
a location update amounts to conditioning on a particular state of the Markov chain,
which requires the computation of the entropy of conditional Markov trajectories. Our
main result enables us to compute this entropy through a transformation of the original
Markov chain. We apply our framework to real-world mobility datasets and show that
the influence of intermediate locations on trajectory entropy depends on the nature of
these locations. We build on this finding and design a segmentation algorithm that
uncovers intermediate destinations along a trajectory.

The final perspective from which we analyze mobility is the data mining perspective:
we go beyond simple mobility and analyze geo-tagged data that is generated by online
social medias and that describes the whole user experience. We postulate that mining



Abstract

geo-tagged data enables us to obtain a rich representation of the user experience and all
that surrounds its mobility. We propose a hierarchical probabilistic model that enables
us to uncover specific descriptions of geographical regions, by analyzing the geo-tagged
content generated by online social medias. By applying our method to a dataset of 8
million geo-tagged photos, we are able to associate with each neighborhood the tags that
describe it specifically, and to find the most unique neighborhoods in a city.

Keywords: Mobility, probabilistic mobility models, individual, collective, Markov trajec-
tories, entropy of Markov trajectories, data mining, hierarchical probabilistic model.
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Résumé

La mobilité occupe une place prépondérante dans notre vie et les endroits que nous
fréquentons sont le miroir de notre identité et de notre personnalité.

Ce travail de theése a pour but ’étude de la mobilité, que nous analysons sous trois angles
certes différents mais complémentaires : I’angle de la modélisation, celui de la théorie de
I'information, et enfin celui de ’analyse des données.

Nous commencons par la modélisation et représentons la mobilité d’un individu en
tant qu’un modele probabiliste. Nous supposons que ce modele est caractérisé par deux
dimensions que nous définissons formellement : la dimension individuelle, qui reflete
la spécificité de 'individu (personnalité, centres d’intérét), et la dimension collective,
qui reflete des notions partagées par tous les individus (normes sociales, contraintes
géographiques). Il s’agit de présenter trois types de modeles probabilistes en expliquant
les scénarios et le type de données pour lesquelles ils conviennent. Le premier scénario
est celui du modele purement individuel qui convient dans le cas ou les données sur les
individus sont indépendantes, ce qui implique qu’on ne peut pas recouper les données
entre individus. Le deuxieéme scénario est celui du modele collectif, dans lequel nous
supposons que les individus peuvent étre regroupés de telle sorte que chaque groupe est
composé d’individus ayant des mobilités similaires. Le troisieme scénario est le scénario
idéal car nous pouvons exploiter aussi bien la dimension individuelle que la dimension
collective.

L’approche théorie de l'information se focalise sur la mesure de 'incertitude sur la
mobilité d’un individu et I’évolution de celle-ci lorsque cet individu révele des endroits
par lesquels il est passé. Notre approche se base sur une discrétisation du monde de
I'utilisateur ou sa mobilité est représentée comme une marche aléatoire sur un graphe de
mobilité. Un nceud du graphe représente un endroit sémantique comme la maison ou
le lieu de travail, alors qu’une arréte représente la possibilité de transition entre deux
endroits. Etant donné que la trajectoire d’un individu représente sa mobilité, le degré
d’incertitude sur sa mobilité est quantifié par ’entropie de la distribution de trajectoires.
Ce degré d’incertitude évolue quand l'utilisateur partage un sous-ensemble des endroits
visités, ce qui correspond formellement a I'entropie de sa trajectoire conditionnée sur ces
endroits intermédiaires. L'une des contributions principales de cette theése est une méthode
qui permet de calculer ’entropie des trajectoires markoviennes conditionnelles. Cette
méthode est basée sur la transformation de la chaine de Markov originale, de sorte que la
distribution de trajectoires dans la chaine de Markov obtenue est égale a la distribution
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Abstract

conditionnelle de trajectoires dans la chaine de Markov originale. Nous appliquons cette
méthode afin analyser les trajectoires de milliers d’utilisateurs et montrons un lien entre
la position d’un endroit dans le graphe de mobilité et son impact sur I’entropie de
trajectoires. Nous montrons également que les points intermédiaires qui augmentent
I’entropie conditionnelle sont plus enclins a étre des destinations intermédiaires.

La troisieme et dernier angle, est celui de ’analyse de données sous lequel on considere
la mobilité non plus comme une simple séquence d’endroits visités, mais comme une
riche expérience vécue par 'utilisateur. Analyser les traces numériques relatives a cette
expérience nous permet non seulement de la décrire mais aussi de décrire ’espace
dans lequel elle se manifeste. Nous concrétisons cette idée en développant une méthode
probabiliste qui nous permet de retrouver ce qui rend une zone géographique unique. En
utilisant cette méthode, nous analysons des millions de photos géo-taguées et obtenons
une description spécifique de chaque quartier de New York et de San Francisco.

Cette méthode nous permet également de quantifier a quel point un quartier est unique
et de comparer des quartiers de deux villes différentes.

Mots clefs : Mobilité, mobilité individuelle, mobilité collective, modele probabiliste de

mobilité, trajectoires Markoviennes, entropie de trajectoires Markoviennes, analyse de
données, modele probabiliste hiérarchique.
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Il Introduction

Your imagination leaves digital traces.
— Bruno Latour

1.1 Motivation

A major characteristic of modernity, as well as post-modernity, is spatial mobility:
“Modern society is a society on the move” [6]. Spatial mobility is an essential component of
the way societies organize space, and it traditionally refers to a geographical displacement,
i.e, “the movement of entities from an origin to a destination along a specific trajectory
that can be described in terms of space and time” [43]. These entities can be tangible (e.g.,
objects, animals or people) or abstract (e.g., information, ideas or social norms). With
the technological developments in transport and communication systems, the speed of
displacements has significantly increased, which has compressed distances and globalized
the mobility of ideas and people.

Spatial mobility is much more than a link from an origin to a destination; it is a
structuring dimension of life in society. At the collective level, the change in mobility
patterns is at the base of fundamental societal changes, which explains the fact that the
social, cultural, economic and political consequences of these dynamics are much debated
in the social sciences. Human geographers, for example, study the spatio-temporal
patterns in the flow of migrant populations, and historians study military campaigns
and analyze the movements of armies (the Russian military campaign of Napolean is
depicted in Figure 1.1) and populations. Urban planners study the mobility in urban
spaces to detect patterns and support decision makers with the knowledge needed to
enhance urban mobility and reduce congestion, accidents and pollution.
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At the individual level, mobility reveals much more about individuals than simply their
whereabouts, as people tend to favor places where they feel comfortable and avoid areas
where they do not fit in [60]. In fact, our daily mobility routine reveals our social status,
and the locations we visit reflect our habits, tastes and certain personality traits such as
our degree of extraversion and openness. Many location-based services, such as personal
navigation systems or intelligent personal assistants, benefit from learning our mobility
patterns and predicting our future whereabouts. Moreover, these services offer a unique
economic opportunity as merchants and companies can target precisely a given audience
(based on age, gender, and consumption habits) and promote their product with high
effectiveness.

Studying both individual and collective mobility patterns is therefore crucial in many fields
including social sciences, history, urban planing and economy. In the twentieth century,

Carte (T‘gumlwe 06 pectes, i b e ' Qemie Frangacise-dams fa Campague de Russie 1812 1813,
[l ae I Mimazd, L a0 Lonts e Clha cbail
. m/r- 'IWC}WM s wssiek on e o &20]100%1]:&18@
s monabess homancs pisonts dows—p . .

20 Bowes . [Lzauabaw Y — i (S P jodc % ,_:OSCOU

2aws fes ouoeages de Jr[Jle/)m‘ld eSequr; de Fezendac; de Chambray « !Jmalamam.d Jac ﬂbf&wwuayaquagfml 28 Octobee. N

Foue wicuse (wmmtmuumw 2eLanmie L 02 u Masichal O i et adtachis s Nins: El s

e NMobilow »mu,wm Oscha s Wi, assiems—towoncs mschis avee Lamee . Gyjat H

aaaaa

Polotek

ors
S
Hohilorw

|
| L
‘ | TABLEAU CﬂAPH‘ UE dela températute en degiés du thermométre de Réaumur au dessous de zéro.

| | [ role 88

s Cuiajuas passn au galp | - — — . S A [
e N, g s

—oflc 4 91" Las

g s —

— 26717 X

Thteg por Regnir, T Pas 5% Maris 4G Fars g ik Ry Do

Figure 1.1 — Charles-Joseph Minard created this cartographic depiction of Napoleon’s
disastrous Russian campaign of 1812. The width of the line represents the size of his
army at specific locations during their advance (brown line, from left to right) and retreat
(black line from, from right to left). It displays different types of data that include the
temperature and location relative to specific dates.

studies about human behavior were based on two types of data: surface data about many
people and deep data about a few individuals or a small group [7]. Surface data is used in
all fields that adopted quantitative approaches (i.e., statistical or computational techniques
for data analysis), whereas deep data is used in the humanities such as qualitative schools
of psychology, anthropology and ethnography. For example, a quantitative sociologist
works with surface data as he analyzes census data that describes most of a country’s
citizens. However, this data is collected only every ten years and describes each individual
macroscopically, without her opinions, emotions, tastes and motivations. In contrast,
a psychologist studies the behavior of a few individuals over a long period of time



1.1. Motivation

and collects personal data that a census is unable to capture. In between these two
methodologies, surface data and deep data, we find sampling methods. By carefully
choosing a sub-population (sample), researchers take a result found for a few and
generalize it into knowledge about many. For example, the Swiss Federal Statistical
Office [4] conducts, every 5 years, a survey about mobility in Switzerland. The most
recent survey was based on a sample of 62,868 individuals, nearly 1% of the population
of Switzerland. Based on data obtained through phone interviews, the survey describes
the mobility of the Swiss population and analyzes, for example, the link between mobility
and socio-demographic attributes.

Data about this sub-population, however, does not tell us anything about the actual
day-to-day mobility patterns of every individual or every household. Moreover, even for
the individuals who are in the studied sub-population, data does not tell us everything
about their individual mobility patterns. It does not tell us about their favorite places,
their favorite neighborhoods or the regions where they like to spend the weekends.

With the rise of social media comes the promise of deep data about millions of individuals:
we no longer have to choose between depth and scale. There are many reasons for the
data explosion. The first reason is technology, as the capabilities of digital devices soar
and the number of people that have access to powerful mobile devices increases. The
second reason is that practically everything on the Internet is recorded. In fact, we
leave digital traces as we are moving, communicating, maintaining social relationships,
making purchases or traveling. The field that can benefit the most from this data deluge
is the study of human behaviors, and in particular human mobility. In fact, with the
democratization of GPS-enabled smart phones, every digital experience can be associated
with a location (geo-tagged). As a consequence, deep data, which used to describe the
behavior of a few individuals, is now about millions of mobile individuals: we have
access to a geo-tagged description of the experiences of millions of individuals as they
are moving.

In conjunction with the tremendous data explosion, our capacity to extract knowledge
from unstructured data is continuously increasing because of the emergence of new
computational tools [1-3, 19,23, 30] that can handle massive amounts of data. The
development of these computational tools is driven by the open-source software community.
The Hadoop [1] open-source implementation of Map-Reduce [23], for example, is playing
a crucial role in the “Big data” ecosystems, and is adopted by numerous startups but
also industry heavyweights such as IBM and Oracle.

In 2007 [48], Bruno Latour summarized the opportunity offered by the digitization of
our life as follows: “The precise forces that mould our subjectivities and the precise
characters that furnish our imaginations are all open to inquiries by the social sciences.
It is as if the inner workings of private worlds have been pried open because their inputs
and outputs have become thoroughly traceable.”
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1.2 Thesis Objectives

This thesis addresses a number of important questions regarding mobility. We identify
fundamental research challenges that can be summarized with the three following points

Modeling and predicting individual mobility. How can we learn accurate and inter-
pretable mobility models?

Quantifying mobility uncertainty. How can we rigorously quantify mobility uncertainty
and its evolution with location updates?

Mining geo-tagged data. How can we take advantage of geo-tagged data in order to
characterize the whole experience surrounding mobility?

Each of these questions is associated with a specific perspective from which we study

mobility.

1.3 Dissertation Outline

1.3.1 The modeling perspective

The first perspective from which we study mobility is the modeling perspective. We
assume that mobility data is a realization of a probabilistic process that is described
by both observable and latent variables. For example, the observable variables might
correspond to location or time, whereas latent variables might correspond to abstract
concepts such as individual emotion or tastes. We postulate that, in order to learn
accurate individual mobility models, we need to take advantage of the interplay between
the individual (e.g., taste, habits) and collective (e.g., social groups, urban environment)
dimensions that influence mobility. To do this, we introduce formally, in Chapter 2, the
notion of individual and collective dimensions in a mobility model, and we link these
dimensions to the nature of the parameters that describe the model. Moreover, we
explain how the nature of the data from which we learn the mobility model might limit
the dimensions we can take advantage of; ideally, we should take advantage of both
individual and collective dimensions to learn accurate individual mobility model.

First, we study the case where the nature of data limits us to individual specific models.
In Chapter 3, we illustrate this situation by describing our participation in the Nokia
Mobile Data Challenge [28,29]: The data provided consists of a rich set of features
—actual deep data —recorded from the smartphones of 170 individuals, but all sensitive
data was processed to make it individual specific thus preventing cross-referencing people
and places between users. We show that, given enough data at hand, we are still able to
predict accurately the future whereabouts of an individual but the predictive power of
individual-specific models diminishes as soon as data about an individual is sparse.

4
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We then present, in Chapter 4, the collective models that we use to overcome the sparsity
of individual traces, and for which we assume that individuals can be assigned to mobility
groups so that individuals of the same group share the same mobility patterns. We
illustrate this approach by our work on a mobility model [42] of Ivory Coast population
learned from Call Data Records of 5 Million Orange customers in Ivory Coast. This
mobility model is a central component of epidemic mitigation strategies that are based
on personalized mobility recommendation to individuals.

Finally in Chapter 5, we study the ideal scenario where we can take advantage of both
the individual and collective dimensions in order to learn individual mobility models.
We illustrate this scenario with our work on modeling the behaviors of ants, which is
based on the analysis of a dataset that describes, with high precision, the behaviors of
nearly 1000 ants distributed in 6 colonies. We show that our approach enables us not
only to uncover the fundamental collective behaviors in the colony but also to express
the mobility of each ant as a time-dependent random combination of these collective
behaviors.

1.3.2 The information-theoretic perspective

In the second part of the thesis, we take an information-theoretic approach to quantify
mobility uncertainty and its evolution as additional information becomes available. In
contrast to the tailored models of the first part of this thesis, the mobility model we
consider is general enough to represent most situations while still capturing mobility
patterns. We discretize the user’s world to obtain a map that we represent as a mobility
graph: A vertex represents a branch point where the user takes the decision about where
to move next and it can correspond, for example, to a semantic place (e.g., home, work
place); an edge represents a direct transition between two vertices. We model mobility as
a random walk on this graph, or equivalently a Markov chain; and in order to quantify
the uncertainty about the user’s mobility, we choose to compute the entropy of the
distribution over all possible trajectories between the source and destination vertices. To
do so, we use the result of Ekroot and Cover [26], which enables us to compute the entropy
of Markov trajectories. For this model, a location update amounts to conditioning the
trajectory on a given sequence of vertices. Hence, we need to compute the entropy of
Markov trajectories conditional on a set of intermediate states.

In Chapter 6, we introduce one of the main contributions of this thesis [41]: We propose
a method for computing the entropy of conditional Markov trajectories through a
transformation of the original Markov chain into a Markov chain that exhibits the desired
conditional distribution of trajectories. Computing the entropy of conditional Markov
trajectories enables us to quantify the change of entropy for each location update, given
the model and the previously revealed locations.
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In Chapter 7, we apply this result to quantify the evolution of the uncertainty about a
user’s mobility as she reveals intermediate locations. Furthermore, we empirically link
the evolution of conditional trajectory entropy as we reveal a location along a trajectory
and the nature of this intermediate location. We build on this finding and design an
algorithm that uncovers intermediate destinations along a trajectory.

1.3.3 The data mining perspective

The last part of this thesis is dedicated to the data mining perspective: We postulate
that mining the geo-tagged digital traces of a user enables us to gain more insight, not
only into her personal experience, but also into the nature of the environment where she
moves.

We propose, in Chapter 8, a method [40] that enables us to uncover a specific description
of a geographical region, by analyzing the geo-tagged content generated by online social
medias. The method is based on a hierarchical probabilistic model that encodes the
assumption that the data observed in a region is a random mixture of terms generated by
different levels of a geographical hierarchy. Our model further quantifies the diversity of
local content, for example, by allowing for the identification of the most unique or most
generic regions amongst all regions in the hierarchy. We apply our method to a dataset
of 8 million geo-tagged photos taken in the neighborhoods of San Francisco and New
York City and described by approximately 20 million tags. We are able to associate with
each neighborhood the tags that describe it specifically and coefficients that quantify its
uniqueness. This enables us to find the most unique neighborhoods in a city and to find
mappings between similar neighborhoods in both cities.

1.4 Related work

As modeling mobility is at the heart of this thesis, it is important that we present a
selection of articles that are representative of the evolution of the research on mobility
modeling. Mobility is intrinsically related to human behavior which explains that studying
and modeling human mobility sparked interest in different research communities that
include wireless networks [18,45], social networks [70] and statistical physics [34, 63].
From this rich literature, we distinguish two main approaches to mobility modeling:
descriptive and predictive.

The descriptive approach, which originates from the physics community, focuses on
describing the statistical properties of human mobility in order to find universal laws
or probability distributions that characterize human mobility. In migration theory and
urban planning, the gravity model of mobility [5,75] and the intervening opportunity
model [68] are used to model mobility flows between an origin and a destination. On one
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hand, the gravity model of mobility, inspired from Newton’s law of universal gravitation,
assumes that humans move like particles whose behaviors are governed by a law similar
to the physical law of gravitational attraction. The mobility flow between an origin and
a destination areas is proportional to their importance (e.g., population size or gross
domestic product) and inversely proportional to the distance between them. On the other
hand, the intervening opportunity model, introduced by Samuel Stouffer [68], states that
migration is influenced most by the opportunities to settle at the destination (e.g., jobs),
less by distance or population pressure at the starting point.

Until recently, a large scale empirical validation of these models suffered from the lack of
large-scale datasets that describe the movements of individuals. The situation, however,
changed when Call Data Records (CDRs) became available to a few research groups. In
fact, mobile phone operators record the nearest antenna each time a user initiates a call or
send a text message. By associating, for each communication event, the location of a user
with the location of the antenna that handles this communication, we obtain a relatively
low-resolution version of the mobility of all individuals. Using this approach, Gonzalez
et al. [34] analyzed the mobility of 100,000 mobile phone users whose whereabouts
are tracked for a six-month period. To model mobility, they analyzed the empirical
distributions of mobility-related statistics such as the distance between consecutive
locations visited or the radius of gyration, and found that the power-law distribution
characterizes well the distribution of these quantities. The power-law distribution of the
travel distance reflects, for instance, the frequent existence of short movement and the
rare presence of very long movements.

The universality of these results, however, have to be taken with a grain of salt because
they depend heavily on the dataset analyzed. For instance, Isaacman et al. [39] study
the mobility of hundreds of thousands mobile-phone users in Los Angeles and New York
and demonstrate clearly different mobility patterns between the two cities (for example
different distributions of travel distance).

The descriptive approach to mobility focuses on the properties of collective mobility
and is therefore suitable for the applications that depend on mobility-related quantities.
This is the case, for example, of opportunistic wireless networks as the distribution
of inter-contact times impacts the performance in terms of delivery delay [18]. The
descriptive approach, however, does not enable us, as opposed to the predictive approach,
to predict the future locations an individual will visit.

The predictive approach focuses on the implementation of methods that predict accurately
the locations an individual will visit in the future. We distinguish two groups of mobility
predictors: The first group is composed of predictors that are based on probabilistic
models [11,20,65] such as Markov chains or Bayesian networks, whereas the second group
is composed of “black box” approaches such as support vector machine or artificial neural
networks. Among the probabilistic models, the Markov chain is a very popular model for
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mobility. Song et al. [65] evaluate several location predictors using a two-year trace of the
mobility of over 6000 users, represented as the sequence of Wi-Fi access points detected.
The most accurate predictor is a second order Markov chain with a fallback mechanism
for unseen contexts. Cho et al. [20] model individual mobility as a time-dependent
mixture of Gaussian whose components represent latent semantic locations such as home

and work place.

In this thesis, we take a predictive approach, based on probabilistic models, to model
human mobility. This approach enables us not only to model individual mobility
accurately, but also to have interpretable results as we encode the relationships between
different mobility-related variables. Again, analyzing the statistical properties of human
mobility does not enable us to predict accurately the future whereabouts of individuals.
The opposite is, however, true. In fact, as collective mobility is the sum of individual
mobilities, accurate individual models enable us to model collective mobility, and capture
the statistical properties that are the focus of the descriptive approach to mobility.

1.5 Contributions

e The individual-specific mobility model we created is an important component of
the mobility-prediction algorithm that enabled our team to win the Nokia Mobile
Data challenge (7% more accurate than the runner-up).

e The model we use to analyze ant behaviors enables us not only to uncover the
fundamental behaviors in ant colonies but also to express the behavior of each as a
function of these behaviors. Moreover, the results of our model match the results
that are hand-annotated by domain experts.

e We propose a closed-form expression that enables us to compute the entropy of
Markov trajectories under conditions weaker than those assumed in [26].

e We express the entropy of Markov trajectories —a global quantity —as a linear
combination of local entropies associated with the Markov chain states.

e We propose a method to compute the entropy of conditional Markov trajectories
through a transformation of the original Markov chain so that the transformed
Markov chain exhibits an (unconditional) distribution of trajectories equal the
desired conditional distribution of trajectories in the original Markov chain.

e We use the trajectory entropy framework to analyze individual trajectories. We
quantify the evolution of the uncertainty about the mobility of a user as intermediate
locations are revealed. We also design a recursive algorithm, based on trajectory
entropy, that uncovers intermediate destinations along a trajectory.

e We propose a probabilistic hierarchical model that enables us to find a specific
description of a region within a given geographical hierarchy. We apply our method
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to a dataset of 8 million geo-tagged photos described by approximately 20 million
tags. This enables us to find specific descriptions of the neighborhoods of San
Francisco and New York, and to find mapping between similar neighborhoods in
both cities.
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From Collective to Individual

Mobility

Society exists only as a mental concept;
in the real world there are only individuals.
— Oscar Wilde

2.1 Introduction

Collective and individual mobility are interdependent. On one hand, we can see collective
mobility as the aggregation of complex individual mobilities that are influenced by
personal attributes such as culture, home and work places. On the other hand, individual
mobility is shaped by social groups (friends and family) and collective dynamics (urban
transportation, cultural events). Ideally, we should take advantage of both individual
and collective dimensions in order to develop accurate mobility models for individuals.
However, we are often limited by the nature of the data available for learning these
models. This limitation is dictated mainly by the trade-off between the richness of the
data and the privacy of individuals.

In this chapter, we distinguish three general scenarios that differ in the characteristics
of the available data, and we present different modeling approaches tailored for each
scenario. We begin by studying the case of individual-specific data. In such a scenario,
the inability to cross reference data from different users limits our arsenal to individual
mobility models that are independent of each other. In the second scenario, the data
about the mobility of an individual is extremely sparse. We can, however, take advantage
of the individual’s attributes in order to create homogeneous groups whose individuals
exhibit similar mobility patterns. Finally, we explore the ideal scenario for which we
have complete information about the behaviors and attributes of individuals. We will
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show that in such a scenario, we are able not only to uncover the fundamental collective
behaviors but also to express the mobility of each individual as a combination of these
collective behaviors.

Collective

A

edense individual traces
e common locations
A esparse individual traces
e common locations

* dense individual traces
eindividual-specific locations

>

Individual

Figure 2.1 — In this thesis, we propose mobility models that are tailored to the position
of the dataset in the individual-collective space. A dataset that is characterized by dense
but individual-specific mobility traces (circle) is adequate for a individual specific model
whereas a dataset composed of numerous but very sparse individual traces fits well to
collective models. The ideal situation is the situation for which the dataset (star) enables
us to learn a model that takes advantage of both individual and collective dimensions.
An example of such a dataset includes dense individual traces in addition to traces of
interactions between individuals.

2.2 Models

In this section, we introduce formally the notion of individual and collective dimensions in
mobility models. The abstract setting we consider is as follows: we observe the behavior
of a set of N individuals that are indexed by the integer ¢ € {1,..., N}. We assume that
data about individuals is not fully observed: the behaviors of these users can be described
using both observable and latent (i.e., non observable) variables. For example, the
observable variables might correspond to the locations visited by an individual whereas
the latent variables represent abstract concepts that cannot be directly observed, such as
psychological state, individual taste or the membership to a social category. We denote
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the set of all observable variables by X, in which X, represents data for individual 7,
and similarly we denote the set of latent variables by Z, in which Z; represents the
latent variables for individual i. Without loss of generality, we assume that a latent
variable corresponds to a discrete component label in {1,...,C}, which implies that the
distribution of the observed variables is a mixture of distributions. Introducing latent
variables in our models enables us to describe the individual behaviors by using relatively
complex distributions that are formed from simple components.

Each model is described by a set of parameters: We denote the set of model parameters
that are linked to the observed variables X by ©, and we denote the set of parameters
linked to the latent variables Z by II. The parameters © represent the individual
components of the mixture and might consist, for example, of normal distributions each
with its own mean and independent covariance matrix. The parameters IT are called the
mixture coefficients and can be interpreted as the prior probabilities for the value of the
latent variable.

Throughout this thesis, we use graphical models (Bayesian networks) in order to represent
formally the structure of the probabilistic models and the dependence between their
components. In order to estimate the parameters of our model, we maximize the
log-likelihood of the observed data

logp (X|©,1I) = log Y p(X,Z[O,1I). (2.1)
Z

A key observation is that the summation over the latent variable is inside the logarithm,
which prevents the logarithm from acting directly on the joint distribution, resulting
in complicated expressions for the maximum-likelihood solution. A powerful method
for finding maximum likelihood solutions for models with latent variables is called the
Expectation-Mazimization or EM algorithm [24]. It is based on the idea that our state
of knowledge about the latent variables Z is given only by the posterior distribution
p(Z|X,0), and hence we need to maximize the expected data log-likelihood under this
posterior distribution. Throughout this thesis, we will apply this algorithm to find the
best parameters for different models with latent variables.

The individual dimension of a model is captured by the parameters that are individual-
specific, whereas the collective dimension is captured by the parameters that are shared
by a group of individuals. We therefore categorize a model as being individual, collective
or a combination of both as a function of the nature of its parameters. In this thesis, we
distinguish the three following types of model.

Individual model In Figure 2.2, we show a Bayesian network that represents an
individual-specific model: we suppose that the data X; that describe the behavior of
individual ¢ is explained by the parameters (@; and II;) that are specific to this user,
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Figure 2.2 — Bayesian network that represents independent individual models with
individual specific parameters only. The behavior of each individual is described by
a mixture of distributions whose components and mixture coefficients are individual
specific.

which implies that these parameters are As a consequence, these parameters are learnt
from the data associated with individual ¢ only, and the model has a high predictive
power if the data about this individual is dense enough.

We illustrate this scenario in Chapter 3 through examples taken from our participation in
the Nokia Mobile Data Challenge [49]. In this challenge, the dataset is characterized by
dense individual traces that are not expressed as a function of the same set of locations.

Collective model In Figure 2.3, we show a Bayesian network that represents a
collective model. We group the individuals in K <« N disjoint groups where the
observations associated with each group k are explained by the parameters (@ and Ily).
These parameters are shared by the individuals that form group k and learnt from the
data associated with them. As a consequence, this model is adequate when (a) individual
traces are very sparse, and (b) we are able to group users given their attributes. These
attributes can correspond, for instance, to socio-demographic categories if we assume
that individual from the same socio-demographic category exhibit similar behaviors.
Naturally, when the number of groups K is equal to the number of individuals N, the
collective model boils down to the individual-specific model.

In Chapter 4, we illustrate such a model with a scenario for which we overcome the
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Figure 2.3 — Bayesian network that represents collective models composed of K groups.
The behavior of each individual is described by a mixture of distributions whose compo-
nents and mixture coefficients are specific to the group this individual belongs to.

sparsity of individual traces by taking advantage of the collective dimension and by
assuming that individuals who share the same home region exhibit similar mobility
patterns.

Individual-Collective model In Figure 2.4, we show a Bayesian network that repre-
sents an individual-collective model. With such a model, the observations associated with
each individual are explained by both individual-specific parameters II; and collective
parameters @. The collective parameters ® are shared by all individuals and learnt
from the whole dataset, whereas each individual set of parameters IT; is learnt from the
data associated with individual ¢ only. In such a model, the mobility of an individual is
represented by a mixture of distributions whose components (@) are shared collectively
and mixture coefficients IT; are individual-specific. This model is adequate when two
conditions are met (a) the individual traces are very dense, and (b) the individual traces
are expressed in the same vocabulary.

In order to study the behaviors of ant colonies, we introduce such a model in Chapter 5.
We show how it enables us to uncover collective behaviors in ant colonies and to describe
the behavior of each individual ant as a combination of these behaviors.

17
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I [T 1IN

Figure 2.4 — Bayesian network that represents an individual-collective model. The
behavior of each individual is represented by a mixture of distributions whose components
© are shared by all individuals, and mixture coefficients IT; are individual specific.

Parameters Comparing between the number of parameters associated with different
models enables us to compare between the predictive abilities of these models for the
same number of observations: the larger the number of free parameters, the more complex
is the model and the higher the risk of overfitting for the same number of observations.
Without loss of generality, we assume that the observed variables are discrete random
variables that take value in {1,...,V}. As a consequence, the distribution of the observed
data is a mixture of C' multinomials each described with V' — 1 parameters.

For the individual model, the behavior of each individual is described by C(C —1)(V —1)
parameters, making NC'(C' — 1)(V — 1) parameters in total.

For the collective model, the behavior of each group is described by C(C — 1)(V — 1)
parameters, making KC(C — 1)(V — 1) parameters in total. This suggests that we can
compensate the sparsity of individual traces by a large number of individuals in each

group.

For the individual-collective model, the behavior of each individual is described by (C' —1)
parameters and each collective parameter is described by (V' — 1) parameters, making
N(C —1)+ C(V — 1) parameters in total.

For the same number of data points, the individual collective model generalizes better
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than the individual specific model: the number of free parameters for each individual is
C(C — 1)V for the individual model, whereas it is (C' — 1) for the individual-collective
model. Moreover, the collective parameters acts as a regularization procedure because
the estimation of the model’s parameters improves by learning from the data of all
individuals.
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Modeling individual mobility would certainly improve by taking advantage of mobility
correlation between individuals. However, in some situations, data is made user specific
in order to protect the privacy of users. The data released should not, for example,
enable an attacker to infer that two individuals were in the same location at the same
time. This limits the type of models to individual specific models for which we can take
advantage of the individual dimension only. In this chapter, we explore this scenario
through examples taken from our participation in the Nokia Mobile Data Challenge
(NMDC) [46]. For this challenge, the data publicly released has been anonymized and
made user specific in order to ensure that the privacy of the individuals is respected.

3.1 Mobile Phone Dataset

The NMDC is [49] “a large-scale research initiative aimed at generating innovations
around smartphone-based research, as well as community-based evaluation of related
mobile data analysis methodologies”. It was organized by Nokia and took place from
January to April 2012. It featured an open track, in which participants were able
to propose their own problems to study, and three dedicated tracks, each defining a
specific problem for teams to solve: semantic place prediction, next-place prediction and
demographic attributes prediction.

At the heart of this challenge is the dataset gathered during the Lausanne Data Collection
Campaign (LDCC) [46]. This dataset is an example of deep data as we describe it in
Chapter 1: Smartphones are allocated to nearly 170 participants for periods of time
ranging from a few weeks to almost two years. A data collection application runs on
the background of these phones, yielding a digital representation of the participants life:
social interactions (e.g., phone calls, text message), location data, media creation and
usage (e.g., images and videos) and behavioral data (e.g., accelerometer and application
usage). In order to preserve the privacy of the participants when sharing the data with
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the research community, the location identifiers were encrypted using user-specific keys.
As a consequence, researchers are unable to assess whether two users have visited the
same location.

The Next-Place Prediction challenge, the focus of this chapter, was assigned a subset of
80 users. For each user, the last 50 days of data were kept as a test set for the evaluation
of each team’s submissions, and the rest was used as training data.

For privacy reasons, all identifiers (phone numbers, WLAN SSIDs, contact names, etc.)
were encrypted, but more importantly, physical locations were not released. Instead, for
each user, the organizers of the NMDC first identified places - corresponding to discs
with a 100-meter radius - by using both GPS and WLAN data. Then, they represented
each place by a unique identifier. Consequently, a sequence of geographic coordinates is
represented as a sequence of place identifiers.

These visits represent the basic unit for the prediction task. They are defined by their
starting and ending times, and the corresponding place. In addition, several types of
data are available: accelerometer, application usage, GSM, WLAN, media plays, etc.
The complete list can be found in the dataset description [49].

We present below two major constraints (imposed by the rules of the NMDC) that restrict
the range of methods we could use, which makes our task more challenging:

User specificity for privacy. To prevent cross-referencing people and places between
users, all sensitive data are user-specific: The identifiers are encrypted using different
keys, and places are independently defined and numbered for each user. Moreover,
the rules of the challenge explicitly forbade all participants to reverse this process,
or to make some links between users. We were therefore not allowed to build joint
models over the user population, i.e., to learn from one user to make a prediction
about another. For this reason, we build individual specific mobility models that
are independent of each other.

Memory-less predictors. The input for the Next-Place Prediction task is a current
visit, along with all additional data recorded from a user’s phone during a time.
However, we do not have access to the history of the user, i.e., the sequence of
previous visits. If we did, we could develop higher-order predictors that not only
take into account the current place but also the sequence of places visited just before.
Indeed, such information is very useful: If a user is currently at a transportation
hub, e.g., a bus station, knowing whether he was home or at work just before
greatly helps in predicting his next move. Because this information is not available
to us in this challenge, we limit ourselves to memoryless predictors, i.e., methods
that take into account only the current context, without any knowledge of the past.
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We now explore some characteristics of the dataset, and define the framework within
which we develop our model.

Dataset characteristics We show in Figure 3.1 an intuitive representation of the
mobility traces of three users selected from the dataset. The figure depicts a user’s
behavior over one year as a matrix, where each column is a day of the year and each line
an interval of one hour. We map each place to a color and leave blank intervals of time
during which we have no information about the user’s location.

User 143, whose mobility is represented in Figure. 3.1a, has a very regular behavior,
which seems to support the results (such as those presented by Song et al. [64]) claiming
that human mobility is very predictable. However, similarly to User 1 (Figure 3.1c), the
majority of users show no clear regular pattern in their behavior. Of course, a lack of
visual regularity does not imply that there is no latent structure in a user’s mobility. We
will see in Section 3.3 that we can still predict the behavior of such users with reasonable
accuracy.

We summarize below some salient characteristics of the data that we believe are critical
to the prediction task:

Non-stationarity. We often observe a significant change in users’ habits over time, as
illustrated in Figure 3.1b. The fact that some users change their home or work
location right at the end of the observation period complicates the prediction task.
To overcome this, we implement aging mechanisms, as described in Section 3.3.
Moreover, to get a realistic estimation of our predictors’ performances, we keep the
last part of the dataset as testing data, as explained in Section 3.3.1.

Data gaps. We experience, for some users, periods (ranging from a few hours up to
a few months) with no information about their behavior. Moreover, as shown in
Figure 3.1c, these gaps are sometimes followed by a change of mobility habits. To
limit the effect of such transitions, our model takes into account the possibility
that we have missed some data between two detected visits.

Sparsity. The period of observation for some users is too short (less than 15 days) to
reflect faithfully their mobility patterns.
We believe that taking the above observations into account in the design of predictors

has a significant effect on their prediction accuracy.

Before formally introducing our mobility model, we need to define the variables that
describe the dataset. During the study period, a user makes a certain number of visits of
variable duration to L distinct places, represented by the set £ = {1,...,L}.
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(a) User 143: regular mobility pattern.
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(¢) User 1: irregular mobility pattern characterized by data gaps and non-stationarity.

Figure 3.1 — Mobility of users over a year, shown as matrices where each column is a
day of the year and each line an interval of one hour. We map each place to a color,
and leave blank intervals of time during which we have no information about the user’s
location. Figure (a) illustrates the behavior of a very regular user, Figure (b) a home
change, and Figure (c) data gaps and non-stationarities.
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Definition ‘ Domain ‘ Explanation

L N Number of distinct places
L {1, ..., L} | Set of visited places

k N Time resolution

X (n) L Place

Ts(n) N Absolute starting time
HEF(n) {1,...,k} | Quantized starting hour
Dy(n) = day(Ts(n)) {1,...,7} | Starting day

Ws(n) = weekday(Ts(n)) {0,1} Indicates whether the visit starts
on a weekday

Te(n) N Absolute ending time
HE(n) {1,...,k} | Quantized ending hour
(n) = day(T.(n)) {1,...,7} | Ending day

D,

We(n) = weekday (Te(n)) {0,1} Indicates whether the visit

ends on a weekday

U(n) {0,1} Indicates whether there might be
an unobserved place between
X(n)and X(n+1)

Table 3.1 — List of the definition and domain of the variables relative to an individual, as

well as those describing his n'" visit.

In Table 5.2, we list the variables corresponding to an individual, as well as those relative

to his nth

visit. All time-relative variables are derived from the starting and ending
times, which are given as absolute times. The binary variable U(n), which is given as a
feature in in the NMDC dataset, indicates whether there might be an unobserved place
between X (n) and X (n+ 1). This situation arises typically when location data are partly
available between the two visits. In such cases, we say that the transition from X (n) to

X (n + 1) is not necessarily direct.

To allow for various quantizations of the day, we introduce a time resolution parameter
k. This lets us consider a coarser segmentation of the day: instead of always splitting a
day into 24 hours, we can choose to split it into & time periods. For instance, if k£ = 2,
HE(n) € {1,2}, with H¥(n) = 1 corresponding to the n'" visit starting between midnight
and noon. Such a coarse segmentation can be helpful when training predictors for a user
for which few data are available.

3.2 Model

We model the mobility patterns of individuals as a Dynamical Bayesian Network (DBN). A
DBN involves a modeling phase where we express causal relationships and independence
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assumptions between the features that describe the mobility of an individual. The
assumptions in our model are as follows: The next place a user will visit depends on his
current place and on the time at which he leaves it. The dependence between the current
and next place is strong when the difference between the ending time of the current visit
and the starting time of the next one is small (typically the case for direct transitions).
However, as this time difference increases, the influence of the present place on the next
one fades away and the starting time of the next visit bears increasing importance.

As we do not know the starting time of the next visit, the main challenge is to model its
randomness, given carefully chosen information about the current visit.

T

N

Time n+1

—

© O—
—O—O

g

AN J

Figure 3.2 — Graphical model representing the DBN associated with a user.
The conditional distribution of the next place p (X (n+ 1)|X(n), He(n),U(n), We(n))
is a random mixture of place-dependant p(X(n+1)|X(n)) and time-dependent
p(X(n+ 1)|He(n),We(n),U(n)) distributions. Note that the structure of the DBN
reflects the conditional independence of X (n + 1) and (He(n), We(n),U(n)) given
(Hs(n+ 1), Ws(n+1)).

As shown in Figure 3.2, our DBN captures these intuitions: The conditional distribution
of the next place p (X (n+1)|X(n), He(n),U(n), We(n)) is a random mixture of place-
and time-dependent distributions

mp (X (n+1)[X(n)) + (1 —7)p (X (n + 1)|He(n), We(n), U(n)),

where 0 < 7 < 1 is the mixture parameter that governs the contribution of each
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distribution.

For ease of notation, we omit the time resolution parameter k and assume that it is fixed.
The place-dependent distribution

p(X(n +1)[X(n)) (3.1)

is simply a first order Markov chain that encodes the frequency of transitions between
places.

Using Bayes’ rule, we express the time-dependent distribution
p(X(n+1)[He(n), We(n),U(n)) (32)

as

SN {p (X + D Hy(n + 1), Wy(n + 1), He(n), We(n), U(n))
Ws Hs

p (Hy(n + 1), Wy(n + 1)|He(n), We(n), U(n)) }.

Note that the conditional distribution

p(Hs(n+1), Ws(n + 1)|He(n), We(n), U(n)) (3-3)

models the randomness of the starting time of the next visit (Hs(n + 1), Ws(n + 1)) given
the ending time of the current one (H.(n), W.(n)) and the directness of the transition
U(n). In addition to reflecting the temporal rhythm at which a specific user moves from
one place to another, the conditional distribution (3.3) also captures the randomness of
the data gaps. Empirically, we observe that direct transitions usually imply a shorter
time interval between the visits. This is not surprising: If the transition between the n'™®
and (n + 1) visits is direct (U(n) = 0), then we are sure that there are no intermediate
visits between them. The main assumption we make when designing our DBN is that
X(n+1) is independent of H.(n), We(n) and U(n) given Hg(n + 1) and Ws(n). We can
therefore write (3.2) as

DY p(X(n+1)|Hs(n+ 1), Wy(n + 1)) p(Hg(n + 1), We(n + 1)|He(n), We(n), U(n)) .
Ws Hg

The assumption of independence makes sense, as knowing the time (H.(n), We(n)) at
which a user leaves his current place is not informative (with respect to the next place
X(n+ 1)) if we know the starting time of the next visit (Hs(n + 1), Ws(n + 1)).
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We show in Figure 3.2 a graphical model that represents our DBN. We formulate the
mixture of distributions with respect to a latent variable z: We introduce a binary
random vector z, whose dimension is the number of visits, that indicates, for each visit,
the distribution from which it was sampled. In other words, z; = 1 means that the "
visit is sampled from the place-dependent distribution (3.1), whereas z; = 0 implies that
it is sampled from the time-dependent distribution (3.2).

The choice of the model structure and variables is driven by our intuition and confirmed by
empirical evidence. We tested several variants of our model: For example, we incorporated
in our DBN the distribution p(X(n+ 1)|X(n),U(n)) instead of the distribution p(X (n +
1)|X (n)) to check whether the directness of the transition contains information about
the next place. However, the prediction accuracy decreased. Furthermore, the lack of
data prohibits us from learning more sophisticated distributions, as over-fitting a small
training set leads to very poor generalization.

Maximum likelihood solution To predict the user’s next place using our model, we
need to estimate, for each user of our dataset, the corresponding DBN’s parameters.
Estimating the joint distribution (3.3) about the start time of the next visit is straight-
forward: we use a maximum likelihood estimator on the data about the transitions
from one place to the other. However, the learning procedure for the parameters ,
p(X(n+1)|X(n)), p(X(n+1)|Hs(n+ 1), Ws(n+ 1)) is more complicated because of
the dependence between them: We then use an Ezpectation-Maximization algorithm [13]
to maximize the likelihood of the data with respect to the model parameters. Moreover,
the structure of the DBN enables us to derive closed-form expressions for the update of
the model parameters.

3.3 Mobility Prediction from Instantaneous Information

Overcoming non-stationarity

The idea of introducing aging mechanisms in the learning process is based on the
observation that, when a user changes his habits, recent history is more representative
of his future behaviour than the accumulated information. The first method we use
to reduce the negative effect of non-stationarity on the prediction performance is the
introduction of an aging mechanism, governed by an aging parameter. An example of an
aging process is to introduce a multiplicative parameter that intervenes in the learning
process to reduce the count (contribution) of old samples. As a result, recent samples will
have more of an effect on the user’s mobility model. The second method is an algorithm
that detects changes in home locations and adapts the learning process accordingly. At
any moment ¢, we define home as the place where the user spends more than Tipreshold
hours of his sleeping periods during the interval of time [t — Thistorys t]. The parameter
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Algorithm 1: Home-change detection algorithm

Input: visits, Tinreshold > 05 Thistory > 0, sleeping period.
Output: visits.

1 for v € wvisits do

t < starting time of the visit v;
home candidate < place where the user spent most of his sleeping period in
[t - Thistorya t] )
Teandidate < time spent in home candidate during the sleeping period in
[t - Thistorya t] ;
if (Tcandidate Z Ehreshold) then
L add home candidate to home list;

7 final home < last element of home list ;
8 for v € visits do

10

11

if (v.place belongs to home list) then
L (v.place belongs to home list)

return visits

Thistory controls to which extent we keep in memory the past behavior of the user. At
the end of the observation period corresponding to the training set, the user who changes
his habits will have at least two places flagged as home. We declare the last place flagged
as such as his final home. More importantly, the history of visits is modified as if the
user’s home has always been his final home. Such modification enables us to capture
the user’s habits while avoiding the lengthy process of adapting to a home change. The
pseudo-code of the home-change detection algorithm! is shown in Algorithm 1. Empirical
results show that applying our home-change detection algorithm results in a significant
improvement in the prediction accuracy for the users who change their habits during the
observation period.

3.3.1 Training

The training procedure is as follows: we separate the data about an individual into three
parts that are illustrated in Figure 3.3. We define the first 80% of the visits as the
training set (set A), the following 10% as the validation set (set B), and the last 10% as
test set (set C). Finally, we denote set D the undisclosed part of the dataset, on which
the performance of our algorithm for the Next-Place Prediction Challenge is computed.
The reason we divide the dataset deterministically is that our goal is to maximize the
prediction accuracy on set D. In fact, if we take into account the non-stationarity of
the data, we expect set D to be much more similar to the end of the dataset than to
its beginning. Moreover, even if an individual’s behavior is globally non-stationary, it

Based on empirical evidence, we choose Thistory = 14 days, Tinreshoia = 18 hours and sleeping period
to be between 3 a.m. and 6 a.m.
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Chapter 3. Individual Mobility

usually shows regular patterns over smaller time intervals. Having set C' as close in time
as possible to set D maximises the likelihood of their samples belonging to the same
“stationary” period. Moreover, by training our models on “past” data and evaluating
?

them on very recent data (set C'), we can test whether they are able to adapt to users
changes of habit.

Available data Undisclosed data
Set A SetB SetC :  SetD
| | l l >
| | | |
0% 80% 90% 100% Individual’s visits

Figure 3.3 — Separation of the data associated with an individual. We define the first
80% of the visits as set A, the following 10% as set B, and the last 10% as set C. Finally,
we denote set D the undisclosed part of the dataset, on which the final performance for
the NMDC are computed.

3.3.2 Evaluation

Prediction accuracy To evaluate the performance of a predictor, we measure its
prediction accuracy, i.e., the proportion of samples for which it successfully predicts the
next place. First, consider a predictor ¢: It takes as input ©(™), the data corresponding
to the n'® visit, and outputs a probability distribution over the possible next places.
More formally, a predictor is a function

L
$:V = {xel0,1)": Zml =1},
=1

where V is the space of data corresponding to a visit.
The place Xﬁf predicted by ¢ for the visit v(™ is hence the most likely next place

X, = arg max(¢(v™));,
lec

where (¢(v(™)); is the I*® component of the vector outputted by ¢ when given the data
corresponding to the n™® visit as input, i.e., the probability that the next visited place is
l.

Finally, we define the prediction accuracy Ag(¢) of the predictor ¢ over the samples in
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3.3. Mobility Prediction from Instantaneous Information

t .S
set S as ]

As(¢) = 5]

If o vriis
iGZS {x?=xG+1)}
where |S] is the number of samples in set S, X (i+ 1) is the true next place corresponding
to the ith visit, and Iy 4) is the indicator function, taking value 1 if the event A is true,
and 0 otherwise.

Baseline methods In addition to our model we consider the following baseline pre-
dictors

Most visited
Always predicts that the next visit is to the most visited place.

First order Markov chain (MC)
First order Markov chain that encodes the probability of transitions between places.
It predicts that the next visit is to the most likely location given the current
location.

Artificial neural network (ANN)
We train for each individual a two-layer artificial neural network with different sets
of features that include, among others, location, time of the day, day of the week,
and charging. We combine these different features in an exhaustive way and obtain
more than 200 ANNs for each user. We then choose the ANN that maximizes the
prediction accuracy on the validation set C.

Results We show in Table 3.2, for different predictors, the prediction-accuracy on set
C averaged over all users. With a prediction accuracy of 0.52, our DBN outperforms all
the other predictors. In spite of their very close prediction accuracies, DBN has a crucial
advantage over ANN: we can relate its parameters to the behavior and habits of users.
For example, the distribution p (Hs(n + 1), Wg(n + 1)|He(n), We(n),U(n)) encodes the
randomness of the starting time of the next visit, given the ending time of the current
one, whereas the mixture coefficient 7 reflects the extent to which the current place and
time have an influence the next place to visit.

NMDC results The accuracy of the predictors participating in the Nokia Next-
Place Prediction Challenge were evaluated on the undisclosed set D. We proposed
a predictor [28,29] that is a combination of the DBN introduced here, an ANN and
a Gradient Boosted Decision Tree (GBDT). As shown in Table 3.3, our predictor
outperformed all the other competitors with an average prediction accuracy of 0.56. The
runner-up predictors were a periodicity based model [71] and a smoothed spatio-temporal
model (HPHP) [37].
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Average accuracy

Most visited 0.35
MC 0.44

ANN 0.51

DBN | 0.52

Table 3.2 — Prediction accuracy on set C.

‘ Average accuracy

Periodicity model 0.52
HPHD 0.52
Our method ‘ 0.56

Table 3.3 — Prediction accuracy on set D.

Limitations Individual specific models has severe drawbacks when data is sparse.
Indeed, a model with individual specific parameters that are learnt from a few samples
leads inevitably to overfitting and therefore poor prediction performance. We show
in Figure 3.4 the histogram of accuracy on set C. We observe a high variance in the
predictability of users: We reach a prediction accuracy of 100% for the most predictable
user, whereas we predict correctly 0% of the time for the least predictable one. In addition
to the intrinsic unpredictability, the major factor causing such a poor performance is the
conjunction of individual specific models and the lack of data: the data available about
the user, for which we make no correct prediction, span over a period of only 12 days. In
Chapters 4 and 5, we will present individual mobility models that take advantage of the
collective dimension in order to predict accurately the mobility of individuals, even if the

individual traces are sparse.

3.4 Conclusion

We have introduced in this chapter an example of individual specific models that are
tailored to scenarios where mobility data is user specific. We have showed, through
the description of our participation in the Next-Place Prediction Challenge organized
by Nokia, that we are able to learn accurate individual models given dense individual
traces. However, the Achilles heel of these models is data sparsity as a few data samples
about an individual leads inevitability to overfitting and results in models that have
poor predictive power. In Chapter 4 and 5, we present a solution to overcome this data
sparsity; we enhance the individual model by taking advantage of the collective dimension
of mobility.
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Figure 3.4 — Histogram of the accuracy on set C, for all users. For each user, we chose
the best predictor on set B. This figures shows that there is a high variance in the
predictability of users.
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In Chapter 3, we have seen that individual-specific models are suitable when individual
traces are very dense but fail to predict the behavior of individuals for which we have
few data samples. In this chapter, we are interested in the modeling challenges faced
when data about the behavior of each individual is very sparse. This can be the case,
for example, when the sampling rate is very low or the observation period very short.
In such scenarios, the naive approach of building independent individual models fails
because generalizing from few samples leads to severe over-fitting. We can, however, take
advantage of the collective behavior in order to enhance individual models. This solution
comes at the price of a simplifying yet reasonable hypothesis: We assume that individuals
can be assigned to mobility groups so that individuals of the same group share similar
mobility patterns. To illustrate this approach, we present our work about the modeling
of population mobility based on the analysis of Call-Data Records of Orange customers
in Ivory Coast. This mobility model is then used to anticipate and influence the mobility
of individuals in order to mitigate effectively the spread of an epidemic.

4.1 Mobility and Epidemics

The effective mitigation of the spread of infectious diseases is a long standing public health
goal. The stakes are high: throughout human history, epidemics have had significant
death tolls. In 430 BCE, the overcrowded city of Athens was devastated by a plague
that killed an estimated one-third to two-thirds of the population. More recently, the
region of West Africa has witnessed the largest Ebola outbreak ever documented, with
around 24,000 cases and 9400 deaths!. For these epidemics, human mobility clearly
plays a crucial role as it enables the epidemic to spread geographically. In fact, the
mobility of infectives defines the locations where they interact with healthy individuals,
and therefore the epidemic propagation network. Consequently, an accurate mobility
model is a mandatory step towards an accurate modeling of the spread of a disease.

"http://apps.who.int/ebola,/ accessed February 2015
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4.2 Call-Data Records Dataset

With around five million customers, Orange has a significant market share in Ivory
Coast, whose population is estimated to be around 20 million individuals. The Orange
“Data For Development" dataset [16] is based on anonymized call-data records of phone
calls and SMS exchanges between five million of Orange’s customers in Ivory Coast
between December 1, 2011 and April 28, 2012. This amounts to 2.5 billion calls and
SMS exchanges between five million customers. The format of CDRs data is

time, caller id, callee id, call duration, antenna id

Moreover, we have for each antenna the corresponding, but slightly blurred, location.
The dataset of interest contains high resolution trajectories of 50,000 randomly selected
individuals over two-week periods. The original raw data was split into consecutive
two-week periods. For each period, 50,000 of the customers are randomly selected and
then assigned anonymized identifiers. To protect their privacy and avoid the identification
of customers based on observing their trajectories over a long time period, identifiers are
regenerated every two weeks. As a consequence, the mobility traces of each individual
are very sparse: they are composed of the locations of the antennas from which they
made a phone call or sent an SMS over a two-weeks period only.

4.3 Collective Mobility Models

The challenge here is to create accurate individual mobility models, despite the sparsity
of the individual traces. To do this, we explore the dimension of collective mobility by
assuming that the population can be divided in mobility groups. Each mobility group
is composed of individuals who share common attributes and exhibit similar mobility
characteristics. Ideally, these attributes could include workplace, gender, age, ethnicity,
socio-economic status and hobbies. However, in our situation, we have no personal
information about individuals but only a description of their call activity. Hence, the
attribute that defines mobility groups is limited to statistics that are related to CDRs.

We choose home location as the attribute that defines mobility groups: the home location
of an individual strongly shapes her mobility patterns because the places she visits
regularly (e.g., workplace, school or shopping center) depend on their proximity to home.
Typically, we expect the most visited location (home) and the second most visited location
(school, university or work) to be geographically close to each other. In addition to
this geographical component, mobility is strongly time-dependent: individuals commute
between home and work during the weekdays, with a substantial change in travel behavior
during the weekends.
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4.3. Collective Mobility Models

Figure 4.1 — The geographical reparation of the Orange antennas in Ivory Coast.

We therefore make the assumption that the individuals who share the same home-
location exhibit a similar time dependent mobility pattern, and we construct a location
and time-based mobility model that depends on the variables presented in Table 4.1.
The conditional distribution of the location X (n) of user u depends on his home antenna
home (1), but also on the time of the visits (h*(n), w(n)):

P (X (0)[u,t(n)) = p (X (0)[H¥ (1), w(n), ahome (1)) . (4.1)

First, we choose the time resolution k£ = 3, in order to divide a day in 3 distinct periods:
morning (6 am to 1 pm), afternoon (1 pm to 8 pm) and night (8 pm to 6 am). Second,
conditioning on the day type w(n) enables us to distinguish between weekdays and
weekends. Finally, the home antenna apome(u) of user u is defined as the most visited
antenna during the night period. Consequently, given the period of the day, the day type
and the home antenna of user u, the distribution of the location she might visit (4.1)
is a multinomial distribution with |.A| categories. The correponding graphical model is
shown in Figure 4.2.
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Definition ‘ Domain | Explanation
A={1,...,1231} - Set of antennas

SP ={1, ..., 255} - Set of sub-prefectures
k N Time resolution
SPhome (1) SP Home sub-prefecture
Ahome (W) A Home antenna

X(n) A Antenna

t(n) N Absolute time

h* (n) {1,...,k} | Period of the day
d(n) = day(t(n)) {1,...,7} | Day of the week
w(n) = weekday(t(n)) {0,1} Day type: weekday or weekend

Table 4.1 — List of the definition and domain of the variables relative to user u, as well
as those describing his n'! visit.

Maximum likelihood solution In order to assign non-zero probability to locations
that were not observed for a given group, we assume that each multinomial distribu-
tion (4.1) is drawn from an exchangeable Dirichlet distribution, which implies that the
inferred distribution is a random variable drawn from a posterior distribution conditioned
on the training data. A more detailed description of this smoothing procedure is given
by [15].

Evaluation In order to evaluate our mobility model, we separate the data into two
parts: For each user, we put 90% of the samples in the training set and the remaining 10%
in the test set. First, we build a mobility model by learning from the training set by using
a maximum likelihood estimator. Then, we test the accuracy of our model by computing
the average log-likelihood of the samples in the test set; the average log-likelihood then
reflects how well our model generalizes to unseen data.

We tested several variants of mobility models by varying their structure and parameters
(time resolution, day of the week, etc). Among these predictors, we present three
representative baseline models

Time-based Mobility (TM)
The first baseline model is a time-based mobility model defined by

p(X()[u, t(n)) = p (X (n)|A*(n), w(n)), (4.2)
which implies that all users exhibit the same time-dependent mobility pattern.

Markov Chain (MC)
the second baseline method is a location-dependent first order Markov Chain defined
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Figure 4.2 — Graphical model representing the collective mobility model for user whose
home antenna is apome. The location of this user, at time step n, depends on his home
antenna apome, the period of the day h*(n) and the day type w(n).

by
p(X(n)|u,t(n), X(n —1),...,X(0)) = p(X(n)|X(n—1)) (4.3)

where the current location of a user depends only on the location he visited just
before.

Sub-Prefecture Mobility (SPM)
The third baseline is a time and sub-prefecture dependent Mobility model defined
by
p(X(n)u, t(n)) = p (X (n)|h*(n), w(n), $Ppome () ) - (4.4)

In other words, all users who share the same home sub-prefecture exhibit a similar
mobility pattern. This is similar to our approach, as it assigns users to mobility
groups depending on their personal attributes, but is different in the granularity of
aggregation level.

The experimental results are shown in Table 4.2. It is not surprising that the first-order
Markov chain (MC) performs the worst, because the time difference between two call-
records varies greatly, ranging from a few minutes to a few days. The location associated
to a call made a few hours or days ago does not necessarily have an effect on the current
location. As the location data is sporadic, it is not surprising that time-based mobility
models perform better than any model that is based on learning from transitions. Our
model performs the best, and by comparing it to the time-based model (TM), we realize
that knowing the home-locations of users contributes the predictive power of the mobility

39



Chapter 4. Collective Mobility

Mobility model | Average log-likelihood

MC -6.49

™ -2.9

SPM -1.67
Our model ‘ -1.07

Table 4.2 — Log-likelihood of the unseen data from the test set. Our mobility model
significantly outperforms the baseline models since its predictive power, with respect to
the test set, is higher.

model. Moreover, the granularity of this home location is crucial: Our model significantly
outperforms the sub-prefecture dependent mobility because it has a finer home-location
granularity.

4.4 Conclusion

In this chapter, we have focused on the collective mobility model for which we assume that
individuals can be assigned to groups whose members exhibit homogeneous behaviors.
We illustrate such an approach with our work on modeling the mobility of a population in
order to anticipate the propagation of an epidemic. Despite the sparsity of the individual
traces, we are able to create accurate individual mobility models by grouping the data of
individuals based on their home antenna. Our empirical analysis, conducted on the data
of Orange customers in Ivory coast, reveals the importance of a wise choice of the attribute
that defines mobility groups. The approach we take is to consider different options (home
antenna vs. home sub-prefecture) and to choose the one with the maximum predictive
power on a test set. As it is unfeasible to exhaustively test all possible attributes, our
choice might be sub-optimal.

In the next chapter, we will show that, given enough data about each individual, we are
able to automatically detect these homogeneous mobility groups that explains the best
the variance observed in the data.
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From Collective to Individual

Mobility

In this chapter, we study the scenario where we take advantage of both the individual
and collective dimensions in order to learn an individual mobility model. This mobility
model goes further than the models introduced in Chapter 3 and 4 as it captures not
only the individual mobility patterns but also the correlation between the behaviors of
different individuals. It takes advantage of the collective dimension in order to improve
the modeling of individual behaviors. We illustrate this scenario with our work about
modeling the behaviors of ants. We show that our approach enables us not only to uncover
the fundamental collective behaviors in the colony but also to express the mobility of
each ant as a time-dependent random combination of these collective behaviors.

5.1 Camponotus Fellah Dataset

The dataset we use in this section was collected by Mersch et al. [54] who recorded, using
an automated video tracking system, the activity of six colonies that are composed of a
total of 956 Camponotus fellah ants. The set-up is divided in a nest area (Figure 5.1a)
and a foraging area (Figure 5.1b) made of Plexiglas. Each area is rectangular and has
on its short side an exit hole of 10 mm diameter that is connected to a tunnel and that
enables ants to move from one area to the other. The foraging area contains a water
source, food and liquid honey. Both areas are filmed from above with a high resolution
camera (4560 x 3048 pixels) equipped with an enlarging lens and infrared light flash.
The queens and all workers are marked with a unique barcode that allows for their
identification in each image taken by the camera: their locations are estimated with a
mean precision of 2.37 pixels (i.e., 0.14 mm, 0.8% — 2% of a Camponotus fellah ant).
The continuous recording (2 images per second) results in a rich dataset that describes
with great accuracy and resolution the mobility of each ant. Table 5.1 presents different
statistics of the dataset.
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Z20,83-2811 B5:086 88|

(¢) Nest area of colony 18. (d) Foraging area of colony 18.

Figure 5.1 — We show the nest and foraging areas of colony 4 and 18. The important
areas of the nest, as delimited by domain experts, are colored manually: The brood
(brown), the rubbish pile (violet) and nest entrance (green).
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5.2. Model

No. of colonies 6

No. of ants 956

No of days 11
Observations frequency 2 per second
No of time steps 1,900,800

No of observations 1,817,164,800

Table 5.1 — Statistics of the Camponotus fellah dataset.

5.2 Model

Uncovering the collective behaviors that govern the colony of ants is challenging yet
necessary to understand and describe the colony behavior. Hence, our model should enable
us to uncover latent collective behaviors and describe the behavior of each individual
ant as a function of these collective behaviors. But, first we need to define the notion of
behavior. In this work, we describe the behavior of an ant as a function of the following
variables.

Location represents a location within the nest or foraging area, and is indexed by an
integer x € X. We further distinguish the locations that are within the nest z € A},
from those that are within the foraging area x € &’;.

Activity is a binary variable a € {0,1} that indicates whether an ant is moving or not.
An ant is declared to be active if it moves more than the camera precision per
frame for a significant number of time frames.

We describe the state of ant ¢ at time ¢ using two time-dependent stochastic processes
{(X;i(t), Ai(t)),t € T}. The process X;(t) € X indicates the location of ant i at time ¢,
and the process A;(t) € {0, 1} indicates whether this ant is active at that time. As we
are interested in describing macroscopically the geographical distribution of ants and
their activity, we assume that

p(Xi, Ay) = p(Xi(t1), Ai(t), ... Xi(tn), Ai(tn))
=[] p(Xi(1). Ai(1)). (5.1)

where the joint distribution p(X;(t), A;(t)) describes probabilistically the state of the ant
i at time t. As stated above, we assume that the individual behavior of an ant can be
expressed as a random combination of K collective behaviors that are learnt from the
behaviors observed in the whole colony. This translates to the fact that we can express
the joint distribution p(X;(t), A;(t)) with respect to a latent variable z € {1,... K} that
indicates for each state (z,a) the behavior it was sampled from. More formally, we can
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write
K
p(Xi(t) =z, Ai(t) = a) = Z p(z,alz)p(z|i,t),
z=1

= 0.(x,a)p(z]i,t). (5.2)

The K collective behaviors represent the collective dimensions of our model and are
described by the shared multinomial distributions 0y (z,a). The individual dimension is
captured by the mixture coefficients p(z|i,t) that quantify to which extent the behavior
of ant ¢ at time ¢ samples from the collective behavior k. Given that we are interested in
analyzing the individual ontogeny (mid-long term development) of ants while removing
the variations that are due to the circadian rhythm (short term) of ants [38], we choose 24
hours as a temporal unit. Therefore, we assume that the behavior of an ant is stationary
over a day i.e.,

p(Xi(t) = =, Ai(t p(zli,t)

K
K
Z d(t), z), (5.3)
where d(t) is the day that corresponds to time ¢. Hence, the generative process, for ant i
at time t, is as follows:

1. Adopting randomly the behavior z according to the mixture coefficient 7;(d(t), z)

2. Selecting randomly a state (x, @) from the the joint distribution distribution p(z, a|z)

We show in Figure 5.2 the corresponding graphical model: The collective dimension is
captured by the multinomial distributions 6y that are shared by all individuals of the
colony whereas the individual dimension is captured by the mixture coefficients II; that
are specific to individual ants.

Training The parameters of our model are the multinomial distributions 6;, associated
with each collective behavior and the mixture coefficients I1;;(¢). In order to learn
the model parameters that maximize the likelihood of data, we use the Expectation-
Maximization (EM) algorithm for which we derive closed-form expressions of the E and
M updates.

Finding the number of canonical behaviors In order to find the number of col-
lective behaviors that explains the data the best, we repeat the following process 100
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Figure 5.2 — Graphical model representing the behavior of ant i at a given day.

times for each colony ¢: We divide randomly the dataset of colony ¢ in a training (95%)
and a test set (5%), and train our model for different values of the number of collective
behaviors K € {1...7}. We then compute the log-likelihood of the test set given the
parameters learnt from the training set. We obtain the results shown in Figure 5.3
by averaging the log-likelihoods of the 600 (6 colony and 100 random splits) test sets
obtained by randomly splitting the dataset of each colony. We observe that the number
of behaviors that maximizes the average likelihood of the test sets is K = 3. This implies
that having 3 collective behaviors in the colony is the configuration that generalizes the
best to unseen data.

Describing the collective behaviors In order to be able to map the behaviors
uncovered in different colonies between each other, we assign labels to these behaviors
according to the probability of being in the nest.

e Nest (N) the behavior z that maximizes the probability of being in the nest
p(z € Xyl2).

e Foraging (F) the behavior z that maximizes the probability of foraging p(z €
Xrlz).

e Intermediate (I) the remaining behavior.
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Definition Domain Explanation

t T CRy Time step

c C = {4,21,78,58,29,18} Colony id

i {Z.,ceC} Ant id

X N Set of locations

Xy XX Set of locations in the foraging area

X, X, CX Set of locations in the nest area

d(t) N Day associated with time ¢

k {1,...K} Collective behavior id

K N Number of collective behaviors

X;(t) X Location of ant i at time ¢

A;(t) {0,1} Indicates whether ant 7 is active at time ¢

mi(d, 2) K — 1 simplex Mixture coefficients of behavior z at day d for ant i
7;(d) - Vector [m;(d,1),...,mi(d, K)] for ant 4

Bi(t) {1,...K} Dominant behavior of ant ¢ at time ¢

Or(z,a) X x{0,1} multinomial distribution representing behavior k

Table 5.2 — List of the definition and domain of the variables relative to an ant, as well
as those describing its state at time t.

Average log-likelihood

-3.15

-3.20

-3.25

-3.30

-3.35

-3.40 L L

Figure 5.3 — Average log-likelihood vs. the number of collective behaviors K. These
values are obtained by averaging the log-likelihoods of the 600 test sets obtained by
randomly splitting the dataset of each colony
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Mobility In order to visualize the location distributions associated with the behaviors
uncovered by our model, we plot in Figure 5.5 and Figure 5.7 the top 1000 locations of
each behavior z ranked according to the probability p(x|z). These locations represent,
for each behavior, the area where an ant that adopts this behavior would spend most of
its time. Moreover, we show in Figure 5.8 the locations of each colony colored according
to the mixture coefficients p(z|z). We focus on Figure 5.5 and note that the top locations
associated with the behavior N capture well the shape of the brood pile, as shown in
Figure 5.5c. Moreover, the most likely locations associated with behavior F' captures the
entrance of the foraging area and food source (Figure 5.5d) where foragers spend most
of their time. The same observation is valid when we show, in Figure 5.7, the 1000 top
locations associated with all other colonies. In order to confirm these observations, we
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0.8 1.0

Figure 5.4 — The blue (dark) curve represents the average proportion of time in the brood
pile as a function of the mixture coefficient 7;(d, z = N) for behavior N, and the red
(light) curve represents the average proportion of time in the nest as a function of the
mixture coefficient 7;(d, z = I) for behavior I.

compare the mixture coefficients m;(d, z) for behaviors N and I to the proportion of time
an ant would spend in the correponding area as delimited by domain experts. In fact,
Mersch et al. [54] annotated manually the most important region in the nest, namely the
brood pile (brown region in Figure 5.5¢), and then measured the time each ant spends
inside and outside this region. The purpose of these measurements is to associate ants
with tasks in the colony, for example, nurses around the brood pile. In Figure 5.4, we
plot these quantities as a function of the mixture coefficients m;(d, z) associated with
behaviors N and I: The proportion of time an ant spends in the brood pile increases with
the mixture coefficient associated with behavior N while the proportion of time spent
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‘ Behavior N ‘ Behavior 1 ‘ Behavior F
Colony 4 | 0.26 0.36 0.51
Colony 18 | 0.27 0.28 0.4
Colony 21 | 0.28 0.33 0.42
Colony 29 | 0.29 0.4 0.4
Colony 58 | 0.22 0.39 0.52
Colony 78 | 0.26 0.28 0.46

Average | 0.26 (0.02) | 0.34 (0.04) | 0.45 (0.05)

Table 5.3 — The probability of being active p(a = 1|z) for each colony and each behavior.

in the nest —but outside the brood pile —increases with mixture coefficient associated
with behavior I. More importantly, the fact that the average proportion of time in the
brood pile is very close to the mixture coefficient of behavior N confirms that the area
associated with behavior N matches accurately the area of the brood pile, as delimited
manually by domain experts. Our approach would therefore enable biologists to detect
the tasks performed by the ants in a colony without going through the tedious process of
manual annotation.

Activity In Table 5.3, we show the probability of being active for each behavior and
each colony. We notice that (a) inactivity prevails in the colony, and (b) the probability
of being active increases as we move outside the nest. In fact, independently of the
behavior adopted, an ant spends most of its time inactive. In fact, for all behaviors, the
probability of being inactive is always higher than the probability of being active: the
probability of being active is p(a = 1|z) = 0.35 on average. However, this probability
increases as we ants move away from the brood pile. For all colonies, the ants that adopt
behavior NV are less likely to be active than ants that adopt the intermediate behavior.
The foragers are clearly the most active individuals, as their probability of being active
is, on average, p(a = 1|z) = 0.45.

Ant behavior We show in Figure 5.6 a scatter plot of the mixture coefficients 7;(d, z)
for each behavior and each colony. Most of these coefficients are concentrated on the edges
of the triangle that represents the 3 dimensional simplex. This suggests that the majority
of ants adopt a mixture of two behaviors. For example, the mixture coefficient that is
close to the edge from N to I corresponds to an ant whose behavior is a combination of
behavior N and I but exhibits no signs of behavior F.
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Figure 5.5 — We plot the top 1000 locations of each behavior z ranked according to the
probability p(z|z). Behavior N is concentrated around the brood pile, whereas behavior
F is concentrated around the water source and food.
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Figure 5.6 — Each dot plotted in the simplex represents a mixture of behaviors (coefficient
m;i(d, z)). Note that these coefficients are concentrated on the edges of the simplex, which

implies that one distribution dominates the others.
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5.3 Conclusion

In this chapter, we study the ideal scenario for which the mobility model expresses both
the individual and collective dimensions. We model the behaviors of Camponotus fellah
ants by analyzing large-scale digital traces that describe their mobility. Our model take
advantage of the correlation between the behaviors of individual ants to uncover the
fundamental collective behaviors in a colony, and to express the behavior of each ant
as a time-dependent combination of these behaviors. More importantly, the collective
behaviors found by our model correspond to actual functional behaviors in ant colonies:
the spatial distributions associated with them match well the spatial distributions as
defined by domain experts. This example illustrates well the predictive power of mobility
models that take advantage of both the individual and the collective dimensions of
mobility.
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Introduction

In the first part of this thesis, we studied mobility from the modeling perspective: We
learnt sophisticated models that are tailored to the data and scenario of interest; then
we use them in order to predict individual behaviors. This also enabled us to quantify
mobility predictability by measuring the proportion of accurate predictions made by our
model on unseen data.

In this chapter, we study mobility from a different yet complementary perspective: We
take an information theoretic approach to rigorously quantify mobility uncertainty and its
evolution with additional information. The mobility model we consider has the advantage,
as opposed to the tailored model learnt in the first part of this thesis, of being general
enough to be representative of most scenarios. This parsimonious model represents
mobility in its simplest form —sequence of decision points —but still captures mobility
patterns. We discretize the user’s world to obtain a map that we represent as a mobility
graph G: A vertex represents a branch point where the user takes the decision about
where to move next, and an edge represents a direct physical path between two vertices.
A vertex typically corresponds to a semantic place such as home or work place. The
advantage of this representation, over full geographical trajectories, is that it encodes the
space of possible user decisions, while abstracting away any finer but irrelevant details of
the mobility process.

In this model, the mobility of a user is simply a sequence of vertices (trajectory) generated
by a random walk on the mobility graph G. The randomness of the user mobility is
captured by the distribution over all possible trajectories. As our goal is to quantify
mobility uncertainty , we need a measure that enables us to quantify the randomness
of the trajectory taken by a user; we choose to compute the entropy of the trajectory
distribution. To do so, we use the result of Ekroot and Cover [26] in order to compute
the entropy of Markov trajectories with fixed initial and final states. For this model,
a location update amounts to conditioning on a particular state of the Markov chain.
Hence, we need to compute the entropy of Markov trajectories conditional on a set of
intermediate states.

In this chapter, we introduce one of the main contributions of this thesis: We propose
a method for computing the entropy of conditional Markov trajectories through a
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Figure 5.9 — We discretize the user’s world and assume that she moves on a mobility
graph: A vertex of this graph represents a decision point where the user can choose
their next move, and an edge represents a direct physical path between two vertices. We
model the user mobility as a random trajectory on the mobility graph. Our goal is to
quantify the impact of the locations revealed by the user (green stars) on the uncertainty
about his trajectory and hence the undisclosed locations (red triangles).

transformation of the original Markov chain into a Markov chain that exhibits the desired
conditional distribution of trajectories. Computing the entropy of conditional Markov
trajectories enables us to quantify the change of entropy for each location update, given
the model and the previously revealed locations. We apply this result in order to quantify
the evolution of the uncertainty about mobility of a user as intermediate locations are
revealed. We also find an empirical relation between the change in trajectory entropy
brought by the disclosure of a particular intermediate location and the nature —is it
an intermediate destination? —of this location. We build on this finding and design an
algorithm that uncovers intermediate destinations along a trajectory.
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The Entropy of Conditional
Markov Trajectories

6.1 Introduction

Quantifying the randomness of trajectories over Markov chains has applications in graph
theory [73], statistical physics [51] and the study of random walks on graphs [17,61].
The need to quantify the randomness of Markov trajectories first arose when Lloyd
and Pagels [51] defined a measure of complexity for the macroscopic states of physical
systems. They examine some intuitive properties that a measure of complexity should
have and propose a universal measure called depth. They suggest that the depth of a
state should depend on the complexity of the process by which that state arose, and
they prove that it must be proportional to the Shannon entropy of the set of trajectories
leading to that state. Subsequently, Ekroot and Cover [26] studied the computational
aspect of the depth measure. In order to quantify the number of bits of randomness in a
Markov trajectory, they propose a closed-form expression for the entropy of trajectories
of an irreducible finite state Markov chain. Their expression does not allow, however, for
computing the entropy of Markov trajectories conditional on the realisation of a set of
intermediate states. Computing the conditional entropy of Markov trajectories turns out
to be very challenging yet useful in numerous domains, including the study of mobility
uncertainty and its dependence on location side information.

Consider a scenario where we are interested in quantifying the uncertainty about user
mobility. We discretize the world and assume that the user moves on a mobility graph G
for which a trajectory is a realization of a random walk from a starting vertex s to a
destination vertex d. The randomness of the trajectory a user would follow is represented
by the distribution of trajectories whose randomness is captured by the entropy of
Markov trajectories between the source and destination vertices. Now, if we obtain
side information stating that the user went (or has to go) through a set of intermediate
vertices, quantifying the evolution of the uncertainty about her mobility requires the
computation of the trajectory entropy conditional on the set of known intermediate
states. For example, if the entropy conditional on the set of known intermediate states is
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zero, then this set reveals the whole trajectory of the user.

In this chapter, we introduce the notion of Markov trajectories and propose a method
for computing the entropy of Markov trajectories conditional on a set of intermediate
states. The method is based on a transformation of the original Markov chain so that
the transformed Markov chain exhibits an (unconditional) distribution of trajectories
equal the desired conditional distribution of trajectories in the original Markov chain. We
also derive an expression that enables us to compute the entropy of Markov trajectories,
under conditions weaker than those assumed in [26]. Moreover, this expression links the
entropy of Markov trajectories to the local entropies at the Markov chain states.

6.2 Model

Let {X;} be a finite state irreducible and aperiodic Markov chain (MC) with transition
probability matrix P whose elements are the transition probabilities

P,

TnTntl (Xn+1 = $n+1’Xn = l'n)

=p
= p(Xn+1 = mn—i—l’Xn =Tp,..., X1 = xl)‘

This MC admits a stationary distribution II, which is the unique solution of
II=IIP

The entropy rate H(X) is a measure of the average entropy growth of a sequence generated
by the process {X;} and is defined as

1
H(X)= lim —H (X1, X2,..., Xp).
n—o0 n,
For the particular case of an irreducible and aperiodic MC, the limit above is equal
to [21, p. 77]

H(X) = ZH(@)H(P,;.),

where P; denotes the i row of P and where H(P;.) = — >_; Pijlog(P;;) is the local
entropy of state i. Note that, throughout this chapter, we use M Cp as shorthand for the
Markov chain whose transition probability matrix is P.

The entropy of markov trajectories We follow the setting of [26] closely. We define
a random trajectory Tsq of a MC as a path with initial state s, final state d, and no
intermediate state d, in other words, the trajectory is terminated as soon as it reaches
state d. Using the Markov property, we express the probability of a particular trajectory
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6.2. Model

tsq = STa...xkd given that X; = s as

p(tsd) - Pszszzazg Pa:kd (61)

Let T4 be the set of all trajectories that start at state s and end as soon as they reach
state d. As the MC defined by the matrix P is finite and irreducible, we have

> pltsg) =1 for all s, d.
tsa€Tsa

So the discrete random variable T4 has as support the set 7,4, with the probability mass
function p(tsq). Subsequently, we use p(tsq) as shorthand for p(Tsq = tsq). We can now
express the entropy of the random trajectory Tyq as

Hyg=H(Toa) = — Y pltsq)logp(tsq).

tsa€Tsd

We define the matrix of trajectory entropies H where H;; = H(T;;). Ekroot and Cover [26]
provide a general closed-form expression for the matrix H of an irreducible, aperiodic
and finite state MC. They take advantage of the convergence properties of the matrix of
transition probability P in order to compute the matrix of trajectory entropies without
expressing explicitly the distribution of trajectories.

0.5

O !

Figure 6.1 — An irreducible, 5-state, Markov chain annotated with the transition proba-
bilities.

Example In order to illustrate the concept of trajectory entropy, we compute the
matrix of trajectory entropies H for the finite-state irreducible and aperiodic MC shown
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in Figure 6.1. The transition matrix associated with this MC is

0 025 07 0 O
0 0 0 0 1
P=]10 05 0 05 0f,
0 0 0 0 1
0.5 0 0 05 0
and its stationary distribution is
0.17
0.11
II=10.13
0.24
0.35

Given the vector of local entropies (0.81,0, 1,0, 1), we compute the entropy rate using (6.2)
and find that H(X) = 0.61 bits per transition. Note that the presence of cycles implies
that the set of trajectories between some pair of states might have infinite cardinality
(|T14] = o0, for example). Therefore, in addition to being complex, the naive approach
of enumerating all trajectories is not always possible. Now we compute the closed-form
expression [26] to obtain the associated trajectory entropies

3.56 3.69 1.74 3.18 1.56
2 569 3.7 259 0
H=] 3 384 474 229 1
2 569 3.7 259 O

2 569 3.7 259 1.78

The zero elements of the matrix H correspond to deterministic trajectories such as Tbs,
which is equal to the path 25 with probability 1 because no other path allows a walk to
go from 2 to 5. The entropy of the random Trajectory T35 is 1 bit because this trajectory
takes two values —{3,2,5} or {3,4,5} —with equal probability. Despite the fact that
the set 714 has an infinite number of members, we are able to compute the entropy of the
random trajectory T14 = 3.18 bits without having to explicitly express its distribution.

Hitting time and trajectory entropy in d-regular graphs We show here an
interesting link between trajectory entropy and hitting times for a random walk on a
regular graph. We consider a random walk on d-regular graph G(V, E): given that we are
at a given vertex v, we move to a neighborhood of v with probability 1/d. The sequence
of vertices visited by the random walk is a Markov chain whose matrix of transition
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probability is

iy = .
0 otherwise.

b {1/5 if (i, §) € E,

We define the access time or hitting time S;; as the expected number of steps before the
vertex j is visited, given that the walk starts at vertex ¢. For all 4, j € V', we prove the
following equality

Proposition 1.
Hij = 10g(5) Szg

Proof. By definition, we have
Hy=—-E [Ing(Tsd)] :

Using the Markov property, we express the probability of a particular trajectory tzq =
8T9...xTkd as
p(tsd) = PS$2P1'213 R kad-

Since the trajectory is generated by a random walk on a J-regular graph, we have

1

P(tsd) = i)

where [(tsq) be the length of the trajectory tgq. Thus

1 1
Hyy=—-E [log (&(Tm)) =-E [Z(Tsd) log 5} = log(0) E [I(Tsa)] -
The expected length E [[(Ts4)] of the random trajectory Tyq is equal to the hitting time
Ssq because the trajectory Tiq is a path from s to d that terminates as soon as it reaches
vertex d. Therefore

Hsd = IOg(é) Ssd-

In other words, as all vertices have the same degree, the entropy of a trajectory generated
by a random walk on a regular graph is proportional to its expected length. We show in
Figure 6.2 a grid for which we consider a random walk that starts at the center of the grid
s = (6,6). Having a closed form expression for the hitting times would enable us to use
the result of Proposition 1 in order to compute the trajectory entropy. However, despite
the symmetry that characterizes this random walk, finding a closed-form expression of

63



Chapter 6. The Entropy of Conditional Markov Trajectories
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Figure 6.2 — We consider a random walk on 10 x 10 grid and color each vertex d according
to the trajectory entropy Hgq (bits), where s is the central vertex (6,6).

the hitting times for this random walk is hard. Consequently, we compute directly the
matrix of trajectory entropy H and color each vertex v according to the value of the
entropy Hs,. We see in Figure 6.2 that the trajectory entropy Hs, increases as we move
away from the starting vertex s, which is not surprising given that the entropy Hg, is
proportional to the expected length of the trajectory Tk,.

In the next section, we study the entropy of Markov trajectories conditional on multiple
intermediate states and derive a general expression for this entropy.

6.3 The Entropy of Conditional Markov Trajectories

We are interested in computing the entropy of the random trajectory Tsq given additional
information about intermediate states. We denote by H,g, the entropy of the trajectory
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from s to d, given that it goes through u. The definition of this entropy is

Hsd\u = H(Tsd|Tsd € 7-5%[) = - Z p(tsd|Tsd € 7;%[) logp(tsd’Tsd € 7;%!)7 (62)

=

where 7% is the set of all trajectories in 74q with an intermediate state u
Tai={tsda € Tsqa:tsa=5...u...d}.

The major challenge is to compute efficiently the entropy Hyg),. Even the costly approach
of computing all the terms of the sum (6.2) is not always possible because the set 7.4 has
an infinite number of members in the case where, after removing state d, the transition
graph of the MC is not a DAG. It is important to emphasize that the entropy H,g),, is
not the entropy of the random variable T,y given another random variable—a quantity
which is easy to compute—but rather the entropy of Ty conditional on the realization of
a dependent random variable. We return to the example of the MC shown in Figure 6.1:
the entropy of the random trajectory 715 is 1.56 bits. Now imagine that we have an
additional piece of information stating that the trajectory 7115 goes through state 4.
Intuitively, we would be tempted to argue that the entropy Hys)4 of the trajectory 115
conditional on going through state 4 is equal to Hy4 + Hys, but this additivity property
does not hold. Indeed, the conditional entropy Hjs|s is zero because the trajectory 75,
conditional on the intermediate state 4, can only be equal to the path 1345, whereas
Hy4 = 3.18 bits, hence Hiq + Hys = 3.18 + 0 = 3.18 # Hy5)4 bits.

Let aguq denote the probability that the random trajectory Ty goes through the state u
at least once:
Agyd = p(Tsd € 7?:1)

This is also equal to the probability that a walk reaches the state u before the state d,
given that it started at s. In order to compute cg,q, the technique from [44,67] is to make
the states u and d absorbing (a state i is absorbing if and only if P;; = 1) and compute
the probability of being absorbed by state u given that the trajectory has started at
state s. In Figure 6.3, we show an example of a biased random walk and the associated
probabilities agyq.

Our first step towards computing H,g,, is to express it as a function of quantities that are
much simpler to compute. The idea is to relate the entropy of a trajectory conditional on
a given state to its entropy that is conditional on not going through that state. Therefore,
we define the entropy H,q); of a trajectory from s to d given that it does not go through
u to be

Hqia = H(Tsa|Tsa & Toq)

Using the chain rule for entropy, we can derive the following equation that relates H,qy,
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10.1

Figure 6.3 — We consider a biased random walk on 10 x 10 grid for which the probability
of moving to right, up and down are 0.6, 0.2, and 0.2, respectively. We focus on the
random trajectory Tsq where s is the vertex (1,6) and d the vertex (10,6), and we color
each vertex u according to the probability g, following the color map displayed on the
right. Naturally, we have that the probability asqq = assq¢ = 1, because we condition on
starting at vertex s and ending at vertex d. Moreover, the vertices that are in the direct
path from s to d are the most likely.

to Hsd7Hsd|ﬂ and gy
Hgq = CVsudI—Isdht + (1 - asud)Hde + h<aSUd) (63)

for all u, where h(agyuq) is the entropy of a Bernoulli random variable with success
probability agyq-

Proof. First, we define the indicator variable I by

0 otherwise.

, {1 if Tog € T,
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Using the chain rule for entropy, we express the joint entropy H (T4, I) in two different

ways,
H(Tsdvl) = H(I) + H(Tsdu)v
H(Tyq,I) = H(Tsq) + H(I|Tsq) = H(Tsq),

where the last equality follows because I is a deterministic function of T,4. So the entropy
of the random trajectory T4 can be expressed as

H(Tsq) = H(I) + H(Tqll)

H(I) + H(Todl T = Dp(I = 1) + H(TyulT = 0)p(I = 0)
= H(I) + H(Tsa|Tsa € Toq)p(Tsa € Toq) + H(Tsal Tsa & Toq)p(Tsa & Tsq)-

Since ogyqg = p(Tsqa € To4) = p(I = 1), we obtain
H(Tsd) = asudH(Tsd|Tsd € 7?:[) + (1 - O‘sud)H(Tsd’Tsd ¢ 7;?1) + h(asud)~

O]

As we know how to compute Hgg and asyq [26,44,67], if we are able to compute Hg)a,
we can use (6.3) to find H,g,. However, generalizing (6.3) to trajectories conditional
on passing through multiple intermediate states turns out to be difficult. Therefore we
propose an approach that circumvents this problem. As we will see, the difficulty of our
approach also boils down to computing the entropy of a trajectory conditional on not
going through a given state.

First, we define 72, the set of all trajectories in 7,q that exhibit the sequence of
intermediate states w = ujus...uy, i.e.,

TS%:{tsd€7;d:tsdzs...ul...u2...ul...d}.

For an arbitrary sequence of states u = ujus ... satisfying p(Tsq € T.%) > 0, we prove
the following lemma.

Lemma 1.
-1

H(Tya|Tsa € Tog) = Y Hyp 1 1a + Husds (6.4)
k=0

where ug = s.

Proof. First, given Tyq € T4, the random trajectory T4 can be expressed as a sequence of
random sub-trajectories (Tsu;, Tuyugs - - - » Luy_yuy> Tuyd)- Therefore, the conditional entropy
H(Ts4|Tsq € T2), which we denote by Hgju,..uy» can be written as a joint sub-trajectory
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entropy
Hsd\ul...ul = H(T5u17Tu1’ug7 s 7Tuld’Tsd E 7?:[)

By applying the chain rule for entropy, we obtain successively

Hsd|u1...ul = H(TSU17Tu1u27 cee 7Tuld|Tsd S 7-51;{)
= H(Tsm ‘Tsd € 7?5)
+ H(Tuyus [ Tsuy; Tsa € Tgg)

+ H<Tuzd‘Tsu1a ooy Ly w3 Tsa € 7-8%)

The Markovian nature of the process generating the trajectory Ty implies that each of
the sub-trajectories Ty, ,, is independent of those preceding it, given its starting point
ug. Since the sequence su = sujus . .. u; defines the starting point of each sub-trajectory,
we can therefore write that

H(Tuk“k+1 ‘TSUN <. 7T“k—1uk; Tsa € 7?5) - H<Tukuk+1 ‘Tsd S 7?5) (6'5)

Using (6.5), the expression for the conditional entropy becomes

Hsd\ul...ul = H(Tsu1 |Tsd € 7?&)
+ H(Tmm ’Tsd S 7?:1)

+ H(Ty,q|Tsq € Tog)-

Note that for each trajectory Ty, v, ,, the only restriction imposed by the event {Tyq € 7.4}
is that the final state d cannot be an intermediate state of any of the first [ trajectories
Tsuis Turuss - - > Tuy_qu;- As a result,

Hsd\ul...ul = H(Tsm |Tsu1 ¢ 7;(1111)
+ H(Tuyus| Tuyua & Tiu)

+ H(Tuzd)
-1

= Z Hukuk+1|J + H“ld’
k=0

where ug = s. ]

Now, if we are able to compute H, , . 4 we can use (6.4) to derive H(Tsq|Tsa € Tyg)-

The following lemma shows how the conditional entropy Hy 4|4 can be obtained by a
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simple modification of the MC.

We consider a MC whose transition probability matrix is P, and three distinct states s,
d" and d such that aggy = p(Teqg € 7;%/) < 1. Let P be the transition matrix of the
same MC but where both states d and d’ are made absorbing, and whose entries are thus

0 ifi=d,d andi#j
Pj=11 ifi=d,d andi=j (6.6)

P;; otherwise.

Next, we define a second matrix P’, obtained by a transformation of the matrix P

Ndd D i o
PZ/J _ ) @ PZJ if Qidld > 0, (6.7)
P otherwise.

Lemma 2. (i) The matriz P' is stochastic and (ii) If T.; is a random trajectory defined
on the MC whose transition probability matriz is P’ then

H(Tyq|Tyqg ¢ TSy) = H(T, ).

Proof. (i) The matrix P is the transition probability matrix of a MC where the states d
and d’ are absorbing. We can therefore introduce the vectors of absorption probability
aqg = (a14,a2d, - - -, ang) and ag = (arq, Goqrs - - - , Apg’) Where a;q and a;q are, respectively,
the probability of being absorbed by d and d’, given that the trajectory starts at i. These
vectors are eigenvectors of P associated with the unit eigenvalue [67, p. 227]

Pad = aqg Pad/ = Qag. (68)

Moreover as M C 5 has only two absorbing states d and d’, for all 7, a;qg = 1 — a;¢r. Recall
that for all 4, ajyrq = a;¢ hence (6.7) can be written as
Qa; gl .
p [P 0
“ ]5,-j otherwise.

Note that all transitions leading to state d in M Cs will have zero probability in MCp:.
In fact, consider a state 7 such that Py > 0 and a;y > 0. In the new matrix P’ , the
probability of transition from i to d will be P}, = aga Pid /aiq , which is zero because
agq = 0. Proving that P’ is stochastic is now straightforward: First, the entries of P’ are
positive; Second, they are properly normalized and sum up to one. Indeed, if we consider
a state ¢ such that a;» = 0, we have that Zj Pl-’j = Zj Rj = 1, whereas if a;¢ # 0, we
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have that

>r =3 U,
J J

Qgq! Q5q!
because of (6.8).

(ii) Let p and p’ be the probability measures defined, respectively, for MCp and MCp:
on the same sample space Tyy. Any trajectory from the set Ty has the form tyy =
s'wo..xpd .

Iftyy € 7;%/,
P(tya) =0 (6.9)

since we have constructed M Cps such that all transitions leading to state d have zero
probability.

If tyw ¢ T4y, we have

Pl(ts’d/) — P// P/ /

s'xot xoxs *t xpd

azgd/ D, aajgd’ D ad/d’ D
= Pyay =2 P 2P,

Qg ! Qgod! Qg d!

ad'd 5 5 5
= Y Py Proyws - - Popar, (6.10)
asldl

but ag 4y = 1 as the probability to be absorbed by state d’, given that we have started at
this same state, is 1. Moreover, we know from (6.6) that P;; = P;;, for all i # d,d’. As

we have supposed that the trajectory ¢4 does not admit either d or d’ as intermediate
states, Py, Pryzs - - .kad/ = Pyyy Prozy - - - Pyoar. Rewriting (6.10) yields

1
p/(ts’d’) = Ps’:czpmx:; ce Pa;kd’
a,sld/

p(ts/d’)
1 —agyq
p(tsar)

— = o(tup|Tor & TE). 6.11
L= p(Toq € T4, ptsa|Tsar & Toar) (6.11)

Combining (6.9) and (6.11), we have therefore proven, for all ty 4 € Tyq, that
P (tyar) = pltya | Tva & Tiq)- (6.12)

Consequently, if the random variable 77, describes the trajectory between s’ and d' in
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MCps, (6.12) implies that

H(Tya|Tya ¢ Toy) = H(Thq).

For the particular case where s’ = d’, we still can use Lemma 2 to express the conditional
entropy H ss|d" We modify the MC by removing the incoming transitions of s’ and
creating a new state s” that will inherit them. The conditional entropy H,, )d in the

original MC is equal to H, 7 in the modified one and, since s’ # s”, we can use Lemma 2

sll‘
to express it.

Building on Lemma 1 and Lemma 2, we can now state the main result of this chapter:
a general expression for the entropy of Markov trajectories conditional on multiple
intermediate states.

Theorem 1. Let P be the transition probability matriz of a finite Markov chain and
sud = suy ... wd a sequence of states such that p(Tsq € T4) > 0. Then, we have the
following equality

-1
H(T|Tsa € T5) = > H(T, )+ H(Twa), (6.13)

UpUk+1
k=0

where ug = s, and T), is a random trajectory defined on the Markov chain whose

kUk+1
transition probability matriz P], is defined as follows

0 if 1 = upy1,d and i # j,
1 if i = ugy1,d and i = j,
(P)ij = o (6.14)
1—aigy .
ﬁ i i1 # upgr, d and Qygy, ., < 1.

Proof. The matrix P}, is obtained from P using (6.14), which is equivalent to applying
successively (6.6) and (6.7) where the starting, intermediate and ending states are,
respectively, uy, d and ugyq. Therefore, using Lemma 2, we have

d
H(Tvikuk+1) = H(Tukuk+1 ‘Tukuk+l ¢ nkuk+1)

for all 0 < k <[ — 1. Consequently, we can write that

-1 -1
Z H(Tqikuk+1) + H(Tuzd) = Z H(Tukuk+1 |Tukuk+1 ¢ ’Eiulwrl) + H(Tuld)7
k=0 k=0

71



Chapter 6. The Entropy of Conditional Markov Trajectories

where ug = s. Using Lemma 1, we finally obtain

-1
> H(T, )+ H(Tyq) = H(Tsa|Tsa € TY).

UpUk+1
k=0

Now that we have derived a general expression for the entropy of Markov trajectories
conditional on multiple states, we introduce, in the next section, a method that enables
us to compute this expression.

6.3.1 Entropy computation

The closed-form expression for the entropy of Markov trajectories proposed by Ekroot
and Cover [26] is valid only if the Markov chain studied is irreducible. However, the
Markov chain M Cps obtained from M Cp after the transformations (6.6) and (6.7) is not
necessarily irreducible: All transitions leading to state u have zero probability, which
implies that possibly many states do not admit any path leading to d. Therefore, we
need an expression for the entropy of Markov trajectories that is valid under milder
conditions. In order to identify these conditions, we study the properties of M Cp/. Let
S be the set of all states in MCps and let S; and Sy be two subsets that partition S in
the following manner

Slz{iGS:aid>0} SQZ{iES:aid:0}.

The set S; is closed as no one-step transition is possible from any state in &; to any state
in Sp. In fact, if i € §; and j € So, (6.7) yields that Pi,j = Ejajd/aid = 0. Clearly, all
trajectories leading to state d are composed of states belonging to S;. Now, we propose
a closed-form expression for the entropy of Markov trajectories that is valid under the
weaker condition that the destination state d can be reached from any other state of the
MC. Moreover, we prove that the trajectory entropy can be expressed as a weighted sum
of local entropies. We also provide an intuitive interpretation of the weights.

Lemma 3. Let P be the transition probability matriz of a finite state MC' such that
there exists a path with positive probability from any state to a given state d. Let Qg be a
sub-matriz of P obtained by removing the d"* row and column of P.

Prg
p= Qd \ P

Pa - ‘Pdd
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For any state s # d, the trajectory entropy Hgsq can be expressed as

Hy = Z((I - Qd)fl)skH(Pk,), (615)

kAd

where H(Py.) is the local entropy of state k.

Proof. First, observe that the matrix Qg is a sub-matrix of P corresponding to all states
except state d and that we use Q4 to derive the entropy of all trajectories ending at d.
Applying the chain rule for entropy, we express the entropy of a trajectory as the entropy
of the first step plus the conditional entropy of the rest of the trajectory, given this first
step
Hy=H(Ps)+ Y PyHpa.
k#d
We expand this equality further by recursively expanding the entropy Hyq as follows

Hyq=H(P.)+ Y Py (H(Pk-) + ) Pk:k’Hk’d)

k#d k'#£d

= H(P.)+ Y PyH(Py)+ Y Pa Y PuwHpa
k#d k#d k' +£d

=H(P.)+ > PaH(Pp)+ > Pa > Piw - | H(Pw.) + > Powr | H(Por) + ...
k#d k#d k'#£d k' #£d

_H(P)+ Y (i(@f')sk) H(P) =Y (i@di)sk) H(Py), (6.16)

kAd \i=1 k#d \i=0
with Qdo =1.

Observe that the matrix Q4 describes the Markov chain as long as it does not reach
state d. Moreover, the matrix (g has a finite number of states and there is a path with
positive probability from each state to state d. As a consequence, the Markov process
will enter state d with probability 1, i.e., lim;, o Q4" = O (zero matrix). In addition,
since

(I-Qa)I+Qi+Qd+...+Q4" ") =1-Q4",
we can easily verify that

> Qd =T —-Qa)~" (6.17)
=0
Replacing (6.17) in (6.16), we have

Hog =Y ((I—Qa) " H(Py).

k£d
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We have shown that the entropy of a family of trajectories can be expressed as a weighted
sum of the states’ local entropies. The weights are given by the matrix (I — Qg)~!. In
the Markovian literature, the matrix (I — Qq)~! is referred to as the fundamental matrix
[44,67]. In fact, the (sk)'™ element of the fundamental matrix (defined with respect
to the destination state d) can be seen as the expected number of visits to the state k
before hitting the state d, given that we started at state s. As a result, the entropy of
the random trajectory Tiq is the sum over the chain states of the expected number of
visits to each state multiplied by its local entropy. This is a remarkable observation as it
links a global quantity, which is the trajectory entropy, to the local entropy at each state.

Example I Recall that in the example shown in Figure 6.1, we found that the entropy
of the trajectory 715 is equal to 1.56 bits. We can retrieve this result by computing the
fundamental matrix with respect to state 5. First, we remove the 5" row and column of
matrix P to extract the submatrix

0 025 075 0
0O 0 0 0
=10 05 0o o3|
0O 0 0 0

and then compute the fundamental matrix

1 0625 0.75 0.375
0 1 0 0

I—Q5) t=

(I'=@s) 0 05 1 05
0 0 0 1

The (ij) element of this matrix is equal to the expected number of visits to state j
before hitting state 5, given that we started at state ¢. For example, the expected number
of visits to state 3, given that we start at state 1, is equal to 0.75 as a trajectory 115 can
go through state 3 only once and this happens with probability 0.75. Multiplying the
fundamental matrix by the matrix of local entropies

0.81 0.81 0.81 0.81
0 0 0 0
1 1 1 1
0 0 0 0
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6.3. The Entropy of Conditional Markov Trajectories

yields the column vector of trajectory entropy

1.56

5
0
1
0

As expected, we retrieve the results obtained in Section 6.2. For example, the entropy of
the trajectory T15 = 1.56 bits whereas the entropy of the trajectory T35 = 1 bit.

Example IT In Figure 6.4, we show a 7 x 7 grid characterized by an upper half that has
more edges than the lower half. We created these irregularities by randomly removing
vertical edges from the lower half of grid. We consider a biased random walk on this grid:
the probability of moving to the right, up and down are 0.8, 0.1, and 0.1, respectively. We
are interested in the trajectories between the starting vertex s = (1,4) and destination
d = (7,4), and we color each vertex u of the graph according to the probability g, that
the trajectory Tsq goes through this vertex. The result is shown in Figure 6.4.

For each vertex u of the same graph, we compute the conditional trajectory entropy
H,qp, and we color each vertex according to the normalized entropy Hg,/Hsq. As
shown in Figure 6.5, revealing a vertex along the most likely path from s to d decreases
trajectory entropy, as uncertainty diminishes and as we become more confident that
the trajectory follows the direct path from s to d. However, revealing a vertex might
increase trajectory entropy. For example, revealing that the trajectory T4 went through
vertex (7,5) increases trajectory entropy because the posterior distribution of trajectories
becomes concentrated in the upper part of the grid that is much richer that the other
parts of the graph. We emphasize the fact the the probability of the revealed intermediate
vertex does not determine its influence on trajectory entropy: the vertices (1,1) and (1,7)
have the same probability of belonging to the trajectory Ts; but have opposite effects
on trajectory entropy. On one hand, conditioning on vertex (1,7) increases trajectory
entropy because the family of possible trajectories is much richer in the upper part of
the grid than in the rest of the grid. On the other hand, conditioning on vertex (1, 1)
decreases trajectory entropy because the lower part of the graph has fewer edges, which
reduces the uncertainty about the random trajectory.

6.3.2 Algorithm

In Algorithm 2, we define the set of steps needed to compute the entropy of Markov
trajectories conditional on a set of intermediate states. The worst-case running time
for the algorithm is O(IN?3), where N is the number of states of M Cp, and [ the length
of the sequence of intermediate states w. This complexity is dominated by the cost of
computing the inverse of the matrix (I —@Qg), which is needed to compute the entropy Hq
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O—O—CO—(C0O—(O0O—O0——0O 1.0

0.9
O—O——0O—0O—(0O—0O0——0O 0.8
O—O—O—O0—0O0—0—0 >

0.6
o—0 —0—O0—XO0—XC—09 10.5
(\ N N\ o N M\ /) 194
J j: / -/ N\ -/ \ 103
O—O—CO0O—CO0O——(O0O——0O0——0O 192

{0.1
O—(O—A4O—C0——(0O0——O0O——=0O 100

Figure 6.4 — We consider a biased random walk on 7 x 7 grid and color each vertex u
according to the probability gy, where s = (1,4) and d = (7,4).
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Figure 6.5 — We consider a biased random walk on 7 x 7 grid and color each vertex u
according to the normalized entropy H g,/ Hsq-
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Algorithm 2: Computing the conditional trajectory entropy

Input: Matrix of transition probability P,
source state s, destination state d,
sequence of intermediate states u = wuy...uy;.
Output: H,gjy,. .4,
UuUg < S ;
for k=0tol—1do
Compute P/ from P using (6.14) ;
Compute H(Ty,,, ) from Pj using Lemma 3 ;
Hukuk+1\cz A H(Tékuk+1) )
Compute H,,q from P using Lemma 3;

_ i1 . :
Hdluy..ir = 2h=0 Huyuyy)d T Hurd 3
return Hgjy, .y, ;

in (6.15). However, since we only need the s row of the matrix (I — Q) to compute the
trajectory entropy H,g, we can solve a system of—potentially sparse—Ilinear equations.
Moreover, many iterative methods [33, p. 508] take advantage of the structure of the
matrix representing the system of linear equations in order to solve them efficiently.

Coming back to the example shown in Figure 6.1, we use the algorithm above to compute
the conditional entropy Hys53 = 1 bit. We leave no ambiguity about the trajectory 715
when we condition on both states 3 and 2 and find that Hyg39 = Hyg5 + Hags + Has =0
bits.

6.3.3 Divergence between the prior and posterior distribution of tra-
jectories

We are interested in quantifying the divergence between the prior distribution of trajecto-
ries p(Tsq) and the posterior distribution of trajectories given an additional information
that indicates that the trajectory Tyy belongs to a set A C Tyq. We are therefore
interested in the divergence between the distributions p(Tsq) and p(Tsq|Tsq € A). In
order to quantify this divergence, we compute the relative entropy or Kullback-Leibler
divergence [21] between these distributions

P(tsg|Tsq € A
KL(TualTua € AlTud) = 3" pltaalToa € A) log Pzt T €A)
tsa€Tsa p(tSd)

We show the following result

Proposition 2.
KL(Tsd|Tsd € A”Tsd) = - Ing(Tsd € A) :
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Proof. We model the additional information as an indicator variable of the set of trajec-

tories A C Toq
1 ifTgg e A,
Ttay =

0 otherwise.

Using the definition of the Kullback-Leibler divergence, we can write

p(tsdllay = 1)
KL(TSd‘Tsd S AHTsd) = KL(Tsd|I{A} = 1HTsd) = Z p(tsd‘I{A} = 1) log #
tsa€Tsd 5

For ease of notation, we replace Iy 4y by I. Because p(tsq|l =1) =0 if tyg ¢ A, we have

p tsd I=1
KL(TyqlI = 1||Tsa) = Y pltsall = 1)10g(8(t))
tsdE.A p sd
Applying Bayes’ theorem, we have
P I=1Jt d)P t d
p(tsduzl): ( ‘8)(8)

p(I=1)

However, for all t,4 € A,
p(I = 1jtsq) =1,

which implies

p(tsd)
pltsgll =1) = —— Vigq € A.
Gl =D =30y "
It follows that
KL(Tog|l = 1||Tsa) = Y pltsall = 1)10gM
tog€A p(tsd)p(I = 1)
=—logp(l =1) Z p(tsqll = 1)
tsq€A
= —logp(I = 1),

which is equivalent to
KL(Tsd|Tsd € AHTsd) = —logp (Tsd € A) :

O]

We are therefore able to compute the divergence between the prior distribution p(Tq)
and the posterior distribution of this trajectory, given additional information represented
by the event {Ts4 € A}: the less likely the event {Tsq € A} is, the larger the divergence
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between the distributions p(Tyq) and p(Tsq|Tsq € A) is. This result enables us, for
example, to use the bound [21, p. 300] in order to bound the L; norm between these two
distributions

||p(Tsd) _p(Tsd’Tsd € A)Hl = Z ‘p(tsd) —D (tsd‘Tsd € A) | < _2111(2) 1ng (Tsd € A) .

tsa€Tsd

More importantly, we will use this result in order to compute the divergence between the
conditional random trajectory Tsq|Tsq € T, and the random trajectory (Tsy,Tud)

Proposition 3. KL(Tsq|Tsq € T4 (Tsu, Tua)) = —logp (Tsu ¢ 7;%) :

Proof. By definition, we have

TglTeq € TY
KL(TdeTSdemu(Tsu,Tud))_E(bgp( sd| Tsd )Sd))

p(TSUa Tud

The random trajectory Tsq can be expressed as a sequence of random sub-trajectories
(Tsu, Tyaq). Moreover, the Markovian nature of the process that generates the trajectory
Tsq implies that the sub-trajectories Ty, and T,4 are independent of each other, given
the intermediate point u.

p TsmTud|Td € Tzél))
T. Tsu,Tu =E[(] =
KL(Tl T € T2l (T o) = . (1og Zte 2ot S
p su|Tsd € ) (Tud|Tsu§ Tsq € 1&))
=E(lo =
& (Tszud)
p su|Tsu ¢ Teu) ( )
=E | log
( )p(Tud)
S’lL TS’lL d
. <1og | gz)m))

= KL SU|Tsu ¢ 7;[11L||Tsu)

Using Proposition 2, we can write

KL(Tsd‘Tsd S 7;1&|’(TSU=Tud)> = —logp (Tsu ¢ Tsi) .

O

This result implies that, if p(Ty, & TZ) = 1, the random trajectories Tyq|Tsq € T and
(Tsu, Tua) are identically distributed. Exploiting the fact that H(Tsy, Tywa) = Hsuy + Hud,
we obtain that

Hsd|u = Hgy + Hya- (618)

Recall that, in the beginning of Section 6.3, we gave an example that shows that this
equality does not hold in general. We have now expressed a condition under which this
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equality holds. More importantly, we are now able to quantify the divergence between
the distributions Tyq|Tsq € T, and (Tsy, Tyq). A direction of future research is to find
an upper bound for the difference between the entropy H,qp, and the sum of entropies
Hg, + Hyqg.

Conditioning on a set of states

Figure 6.6 — A Markov chain annotated with the transition probabilities. The dashed
lines between states 4 and 2 represent the m equiprobable paths leading from state 4
to state 2. We choose 0 < ¢; < 1 and m > 1 to guarantee that |715] > 0 and that
p(T15 S 7-1?;;2) > 0.

So far, we have focused on computing the entropy of Markov trajectories conditional on a
sequence of states. A natural extension is the computation of this entropy conditional on a
non-ordered set of states. Finding a general expression for this conditional entropy appears
to be very hard, and there is no simple relation linking it to the entropy conditional
on a sequence. In Figure 6.6, we show an example that illustrates an interesting and
counter-intuitive result about conditioning on a set of states. Intuitively, we would expect
that the entropy of a random trajectory conditional on a sequence of states is always less
than the entropy of the same trajectory conditional on the set formed by these states.
However, this is not true. We take the MC shown in Figure 6.6 as an example and we
compute, using Theorem 1, the entropy of the random trajectory Ti5 conditional on

80



6.4. Conclusion

going through the sequence of intermediate states (3, 2)
Hy530 = Hyg5 + Hgop5 + Hos = h(eo) + logm + Hgs,

where h(eg) is the entropy of a Bernoulli random variable with success probability €.
To compute the entropy of the random trajectory 115 conditional on going through the
set of states {2,3}, we apply the chain rule for entropy and express the entropy of a
trajectory as the entropy of the first two steps plus the conditional entropy of the rest of
the trajectory given these first two steps

€0€1 €0€1 1-— €0
Hisj23y =h ( )

1—60(1—61) 1—60(1—61) + 1—60(1—61)

Since Hys = logm + Hos = logm + H3s, we have that

€0€1 €0€1
H v =nh 1 Hss. 6.19
15/{2,3} (1 _60(1_61)) —el—a) og(m) + Hss (6.19)
Using (6.3.3) and (6.19), we can write
€0€1 1—¢g
H - H =h —h 1 .
15(32 15/{2,3} = h(€o) (1 (- 61)> Tz ol —en) ogm

This difference can therefore be lower bounded by

1—¢g

Hys)30 — Hislq23) = —1 + 1—e(l—er)

log m.

As a consequence, if logm > 1+ €pe1 /1 — €p, the entropy of the random trajectory Ty
conditional on going through the sequence (3,2) is strictly greater than the entropy of
the same trajectory conditional on going through the set of states {2,3}. The reason
is that conditioning on the sequence (3,2) implies that the random trajectory Tis is
composed of a random sub-trajectory Ty whose entropy can be made arbitrary large by
increasing the parameter m. More generally, this example illustrates the absence of a
simple relation between the entropy of random trajectories conditional on a sequence
of states and the entropy of the same trajectory conditional on the set formed by these
same states.

6.4 Conclusion

In this chapter, we have taken an information theoretic approach in order to quantify
rigorously mobility uncertainty and its evolution with additional information. We
have modeled individual mobility as a random trajectory on a graph that represents a
discretized map of an individual’s world. We quantify mobility uncertainty as the entropy
of the distribution of possible trajectories and addressed the problem of computing the
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entropy of conditional Markov trajectories. Our method is based on a transformation
of the original Markov chain into a Markov chain that yields the desired conditional
entropy. We also derived an expression that enables us to compute the entropy of Markov
trajectories, under conditions weaker than those assumed in [26]. Furthermore, we have
shown the link between the entropy of Markov trajectories —a global quantity—to the
local entropy of states. We also computed the divergence between the prior and posterior
distribution of trajectories. These results have applications in various fields including
mobility mining and trajectory segmentation. In fact, we show in the next chapter,
how our framework enables us to quantify the uncertainty about user mobility and its
evolution with locations updates, and to uncover intermediate destinations along a given
trajectory in the absence of time information.
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id Applying Trajectory Entropy to
Mobility

7.1 Introduction

In their seminal paper [26], Ekroot and Cover presented a method to compute the
entropy of Markov trajectories for irreducible finite-state Markov chains. This work
was based on the need to quantify the thermodynamic depth as defined by [51]: the
descriptive complexity of the process (or path) by which a state of a physical system
arises. In Chapter 6, we have extended this work and have presented a method that
enable us to compute the entropy of Markov trajectories as additional information about
intermediate states becomes available. More generally, quantifying the randomness of
Markov trajectories offers us powerful tools that enable us to study the properties of
dynamics on graphs.

In this chapter, we present two mobility-related applications for which we use tools
borrowed from the trajectory entropy framework introduced in Chapter 6. First, we
quantify mobility uncertainty and its evolution with location updates and link the
evolution of conditional entropy to the nature of the intermediate locations revealed.
Then, we propose a segmentation algorithm that infers the likely intermediate destinations
along a trajectory, based on the conditional trajectory entropy. For both applications,
we take an empirical approach that is based on the analysis of actual city maps and a
large scale dataset of 20,000 GPS trajectories.

7.2 Datasets

In this section, we introduce the datasets we use throughout this chapter. The first
dataset is composed of graphs that represent city maps, and the second dataset is
composed of GPS trajectories collected for Geolife [74], an experiment that involved 182
users over a five-year period.
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OpenStreetMap We can describe the urban environment in which we evolve by a
graph whose vertices and edges represent the geometrical shape of the roads. To obtain
this representation, we use the data from OpenStreetMap (OSM), a collaborative project,
with over 1.9 million registered users, that was created in order to provide free geographic
data. The geo-spatial databases of OSM are built by a community of mappers who
contribute to maintain up to date data about roads, trails, and points of interest. The
maps provided by the OSM project are represented using a standard geospatial vector
data format called shapefile. We download the shapefiles that encode these maps, and we
process them to represent the city road map as a graph G(V, F) similar to the one shown
in Figure. 7.1. In addition to being connected, the graph G is weighted: we associate
with each edge (i,j) € E a cost ¢;; > 0 equal to its length.

NP

Figure 7.1 — The graph extracted from the geospatial data of OSM about the city of
Lausanne, Switzerland. The vertices and edges of the graph enable us to represent the
geometrical shape of the roads.

Geolife The Geolife Project [74] consisted in collecting the mobility traces of 182 users
over a five-year period. The collected dataset contains around 18,000 trajectories (more
than 1,300,000 km), mainly located in China. A trajectory of this dataset is represented
as a sequence of time-stamped points described by their latitude, longitude and altitude.
The sampling rates vary between users but remain very high in general: 91.5% of the
trajectories are logged in a dense representation (e.g., every 1 — 5 seconds). The range
of activities associated with these trajectories is also quite broad: some trajectories are
associated with home-to-work routines, whereas others are associated with shopping
and sightseeing. We process the data as follows: First, we discretize the GPS records
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by dividing the surface of the globe into identical areas (squares whose side lengths
are 1km). A square basically represents the set of locations enclosed within the area it
covers. Then we represent each trajectory in the dataset as the sequence of areas visited
and the associated residence time in each area i.e., the total time spent by the user in
this area. In Figure. 7.2, we show the empirical distribution of trajectory length given
as the number of areas covered by the trajectory. The trajectory lengths range from
very short trajectories (1 or 2 locations) that correspond to short urban trips to very
long trajectories that correspond to inter-city trips. In fact, in the raw dataset, 36% of
the trajectories span a distance that is less than 5 km, whereas 5% of the trajectories
span a distance superior to 100 km. Moreover, as the majority of the trajectories are
geographically within city of Beijing [74], we choose to focus on the data produced in
this capital.
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Figure 7.2 — Histogram of the length of Geolife trajectories after pre-processing. The
trajectory lengths range from very short trajectories that correspond to short urban trips
to very long trajectories that correspond to inter-city trips.

7.3 Mobility Uncertainty and Its Evolution with Location
Updates

Mobility is a central aspect of our life and the locations we visit reveal our habits, tastes,
occupations and personal traits. This has led to a wide spectrum of location-based services
and applications (maps, social networks, local search, etc.) that collect mobility patterns:
Mobility data offers a unique economic opportunity, as companies and local businesses
are able to precisely target a given audience (based on age, gender, consumption habits)
and promote their product with high effectiveness.
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The collateral collection of this information raises strong concerns and vigorous debates
about the privacy implications of mobility data mining. A particular problem arises
in mobility inference: some services can benefit from inferring the locations visited
by a user, but obviously this predictability also carries major risks to privacy. This
is especially important given that users tend to overestimate their privacy level when
sharing information [8]. Quantifying the evolution of the uncertainty about our mobility
if we share our location lets us situate the subjective frontier above which we consider
that sharing becomes over-sharing. This empowers users with an objective technique to
protect their mobility privacy: they are able to anticipate the evolution of their mobility
uncertainty as they reveal a subset of the locations they visited. This is especially
important in the light of the results we find: The informational value of locations varies
greatly, and revealing one intermediate location along a trajectory might be as threatening
to privacy as revealing the whole trajectory would be.

In this section, we use the tools borrowed from the trajectory entropy framework in order
to measure the level of mobility uncertainty and its evolution with location updates. We
assume that we have a Markov chain that captures the users’ mobility patterns. As seen
in Chapter 2, this MC can be an individual-specific, collective or a combination of both
(e.g., a random mixture of individual and collective Markov chains). A user then provides
selective location updates based on her needs (e.g., a search request or a check-in); these
updates, in combination with the mobility model, enable the service provider to infer the
user’s trajectory with a level of uncertainty.

7.3.1 Analysis of trajectories on city maps

In this section, we model urban mobility by applying a route-choice model that was
developed by the community of research on transportation, on city maps. We then show
how knowing the structure of a city and a few locations visited might be sufficient to
make mobility very predictable.

Route choice model For a given source vertex s and destination vertex d, we associate
with each edge (7,7) € E a weight w(; j)|s,« defined as

D b\ "2
e =1—1-= sd 7.1
W(z7])|s,d (Dsz + Cij + Djd) ) ( )

where D;; is the cost of the shortest path between vertices 7 and j, and ¢;; the length

of edge (i,7). The weight (7.1) is inspired from the cumulative distribution function
of Kumaraswamy’s double-bounded distribution [47], defined on the interval [0, 1] and
having two non-negative shape parameters by and by. It indicates to which extent the cost
of a path going through the edge (7, j) deviates from the cost of the shortest path between

86



7.3. Mobility Uncertainty and Its Evolution with Location Updates

the vertices s and d. The weights definition is based on the paper [31] in which the
authors propose a method to stochastically generate paths for a given origin-destination
pair, without having to enumerate all paths between these points. Considering that the
choice of a route is only justified by its length is a simplifying yet realistic assumption:
Golledge et al. [32] are interested in the criteria people use to choose a route to take
between two given locations. Using both laboratory and field experiments, the authors
conclude that a person’s perception of distance and environment configuration is very
subjective and varies greatly between individuals. Nevertheless, the predominant criteria
for route choice remains shortest time or distance.

Now that the mobility graph is well defined, we model the user mobility as a second
order MC whose state space is the set of vertices V. Equivalently, we can represent it
as a first order Markov chain X; with an extended state space E: a state represents a
directed edge (i,7) € E.

Therefore, the transition probabilities are given by

P ey = P(Xns1 = (B, )X = (i, 7))

As we are interested in the mobility between two fixed vertices s and d, we define the
transition probabilities between the states (i, ), (k,l) € E as

W(k,1)|s,d it j =k,
Plig) ety = 221 e (k) Wk 11)]s.d (7.2)
0

otherwise.

Note that we choose a second order MC because we want to keep in memory the
momentum of the mobility and to have a realistic behavior of the random walker: The
next location he will visit is different from the one he just left.

In Figure 7.3, we plot the road map G = (Vg, Fr) of an area surrounding the train
station in the city of Lausanne, Switzerland. We are interested in the trajectories between
two locations represented by the vertices s (green star) and d (red triangle). Using the
mobility model defined in (7.2) with b; = 2 and b = 1, we obtain a second order MC,
where a state represents a sequence of two vertices or, more simply, a directed edge in
Eyp.

The entropy Hgq is equal to 7.13 bits, the expected number of bits needed to represent
the random trajectory Tsy. Equivalently, the trajectory Ty is as predictable as a random
choice made between 2713 = 140 objects. However, as we will see below, revealing only
one intermediate location might be enough to make this trajectory as predictable as a
random choice between two values.

In order to quantify the effect of revealing an intermediate location along a given edge,
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Figure 7.3 — The graph G, = (V1 E) represents an area around the train station of
the city of Lausanne. We focus on the trajectory between the vertices s (green star)
and d (red triangle), and color each directed edge (u,v) proportionally to the value of
the conditional entropy Hg)(y,0)/Hsq- Light gray represents a low value of entropy and
hence a low uncertainty about trajectory.

we associate with each directed edge (i, j) the value of the conditional entropy Hyg (i ;)
which represents our level of uncertainty the trajectory between the locations s and d
given that it goes through the edge (i,7). We plot in the Figure 7.3 the graph G and
color each edge (7, j) € EL with a color that is proportional to the value Hyg(; )/ Hsd-
First, we notice a high variability of the quantity Hg(; j) /Hsq whose range is the interval
[0.13,1.1]. Unsurprisingly, this means that we cannot consider location updates as having
an equal effect on the trajectory uncertainty: revealing one location can have almost no
effect on the uncertainty about a trajectory, whereas revealing another location can be
more threatening to privacy as it drastically decreases trajectory uncertainty.

To understand the reason behind an important decrease of the entropy value, we have to
dig a bit deeper and study the trajectory conditional distribution. We observe that the
distribution of trajectories conditioned on the directed edge that minimizes entropy is
dominated by two trajectories with very close probabilities. If we reveal this intermediate
edge, the randomness of the trajectory would be equivalent to the randomness of Bernoulli
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random variable with p ~ 0.5.

Revealing an intermediate location might increase trajectory entropy. In fact, the maximal
conditional entropy is slightly higher than the entropy H,; because conditioning on a
intermediate location might yield a posterior distribution of trajectories that is very
different from the prior. This posterior distribution of trajectories might have an entropy
larger than the unconditional entropy. In Section 7.4.2, we will explore the characteristics
of intermediate locations that increase trajectory entropy and we will show their links
with intermediate destinations.

7.3.2 Analysis of GPS trajectories

In this section, we analyze the GPS traces collected for the Geolife Project [74] to gain
more insight into the link between conditional entropy, mobility uncertainty, and the
position of intermediate locations. Using the Geolife datatset, we focus on the pair of
squares (s,d) with the largest set of trajectory realizations, in other words, the number
of trajectories starting at square s and ending at square d is larger than the number of
trajectories between any other pair of source-destination. Limiting our analysis to this set
of trajectories enables us to interpret and understand the link between the evolution of
conditional entropy and the geographical position of intermediate locations. In Figure 7.4,
we plot the raw trajectories and observe that two main roads, with similar lengths,
allow for reaching the destination d. As we will see in this section, a side information
indicating which one of these roads is followed to reach the destination has an important
effect on the uncertainty about chosen trajectory. Finally, we infer, using a maximum
likelihood estimator, the first order MC that have generated the observed trajectories.
In such a model, an observed trajectory t.q is a sequence of states —squares of 1 km?
—which starts with the state s, ends with the state d, and admits no intermediate state
d. We remove self transitions because they reflect only the number of samples within an
area. Note that we choose a first order MC because the training data available is not
sufficient for training a higher order MC, similar to the one presented in Section 7.3.1.
Having constructed the MC that represents the mobility between two fixed areas, we can
apply the trajectory entropy framework in order to quantify the evolution of trajectory
uncertainty.

In Figure 7.5, we show the set of locations that, when revealed, decreases the most
significantly trajectory entropy. The fact that this area is along one of the two main
roads leading from s to d explains its high likelihood: the probability of going through it
is 0.56. Knowing this, it is not surprising that the entropy decreases to 73% of its initial
value by just conditioning the trajectory on going through this blue square. Revealing
this intermediate location excludes the trajectories that go through the second main road
leading to d, thus decreasing significantly the uncertainty about the trajectory taken.
In contrast, revealing some other locations has a small effect on trajectory uncertainty:
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Figure 7.4 — We plot all the raw trajectories, starting inside the area delimited by the
green square (upper part) and ending inside the area delimited by the red square (lower
part). Observe that the starting and ending areas are connected by two main roads.

The probability of going through an intermediate location shown in Figure 7.5 is equal
to 0.96 as this square is just next to the starting location when heading towards the
destination. As a result, revealing such information has a small effect on the trajectory
distribution and decreases the entropy by only 2%. Similarly to the results shown in
Section 7.3.1, we observe that revealing a location might yield a posterior distribution of
trajectories that is completely different from the prior distribution. As a consequence, the
entropy of the conditional trajectory might be larger than the initial entropy. Figure 7.5
shows how revealing an intermediate location —that is on a lengthy path between the
source and destination —increases the entropy by 70%. Visualizing the raw trajectories
enables us to see that this intermediate destination is not on the most popular paths
between the source and destination. In the next section, we will show empirically that
the intermediate locations that increase trajectory entropy are likely to be intermediate
destinations much more than the other locations.
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Equal ——

Figure 7.5 — It is not surprising that revealing an intermediate location that is adjacent
to the starting location has a small effect on the trajectory distribution and decreases
the entropy by only 2%. However, revealing an intermediate location in an area along
one of the two main paths decreases the trajectory entropy to 73% of its initial value,
which significantly increases trajectory uncertainty. Moreover, revealing the location in
the lower-right corner changes completely the distribution of trajectories and maximizes
conditional entropy.

7.4 Conditional Entropy and Trajectory Segmentation

Revealing some intermediate locations along a trajectory increases entropy because
the conditioning of trajectories to pass through these locations drastically changes the
distribution of trajectories. In a sense, these intermediate locations are outliers given the
prior distribution of trajectories. In this section, we take advantage of this observation
in order to develop a method that infers the set of waypoints given a trajectory. We
formulate it as an optimization problem, for which we classify every vertex on a trajectory
as either a waypoint or an intermediate point. First, we find an empirical connection
between the class of a vertex on a trajectory (waypoint or intermediate point) and the
conditional entropy of that vertex. More specifically, we show that, through an extensive
analysis of real mobility traces, waypoints are those with a high ratio Hyg),/Hsq. It is
remarkable that waypoints can be found from trajectories in the mobility graph G alone
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without requiring any timing information nor any absolute geographic locations.

Next, we build on this finding and develop a segmentation algorithm, based on the
conditional trajectory entropy, that infers the likely waypoints for a given trajectory.
We evaluate this algorithm over the Geolife dataset introduced in Section 7.2: We show
that the points corresponding to high conditional entropy tend to be those with high
residence time, which is much more likely for a waypoint than an intermediate point.
The entropy-based heuristic used by our algorithm outperforms alternative approaches,
as it is 43% more accurate than a geometric approach and 20% more accurate than path
stretch based approach. Moreover, it is computationally efficient for online segmentations
of trajectories, given that offline computations of conditional entropies are performed
only once.

7.4.1 Mobility Model

After the pre-processing phase described in Section 7.2, we construct a weighted graph
G(V, E) whose vertices represent geographical areas and edges direct —no loss of GPS
signal between two observations —transitions. As we are interested in actual transitions
between areas, we exclude jumps that are due to a loss of GPS signal, as well as self-
transitions that would only reflect repeated location samples within the same area. As a
result, the weight of an edge (i,j) € E is equal to the number of direct transitions from
area 1 to area j.

We infer, using a maximum likelihood estimator, the first order MC that has generated
the observed data. The training set Tiain contains the trajectories of all users and
the resulting MC is therefore a low order mobility model that captures the population
mobility pattern. We choose a low order MC because the training data available is too
sparse to train a higher order MC, similar to the one we present in Section 7.3.1. In
fact, for the same predictive accuracy, the number of samples needed to train a MC
increases exponentially with the order of the MC. Having fewer samples than the number
needed for a correct training of a high order MC leads to severe over-fitting. Having
constructed the MC that captures the patterns of population mobility, we can analyze
the link between trajectory entropy and waypoints.

7.4.2 Waypoints increase trajectory entropy

As discussed in Section 7.3, conditional trajectory entropy can be larger than unconditional
trajectory entropy. A plausible explanation for such a Bayesian surprise —the posterior
distribution of trajectory is very different from the prior distribution—is that the location
revealed is not simply an intermediate location: It is a waypoint in itself. To explore
this hypothesis, we conduct the following experiment: we observe the mobility of a user
whose trajectory tsq starts at location s and ends at location d. Suppose that this user
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has a waypoint u along his trajectory. As this waypoint is more important than the
intermediate locations that lead to it, the time the user would spend at this waypoint
u should presumably be larger than the average time spent at the other intermediate
locations. If the locations that increase the entropy are more likely to be waypoints,
the average time spent by the users at these locations —a proxy for their importance
—should be larger than the average time spent at other intermediate locations.

If our hypothesis is true, we would be able to quantify more accurately the importance of
a location, even when the location records are not associated with time steps; observing
the evolution of trajectory entropy would enable us to detect these important waypoints.

To test this hypothesis, we conduct the following experiment: we associate with each
trajectory tsq the set of locations U, (ts4) that depends on the parameter a € [0,1] , and
is defined as

I/Ia(tsd) = {'LL S tsd’Hsd|u > Ostd}. (7.3)

This set contains the intermediate locations u whose conditional entropy Hg,, is larger
than aHgy. For a = 0, the set Uy (tsq) is equal to the trajectory tsq, whereas for a = 1,
the set U, (tsq) is the set of all locations in ¢s4 that strictly increase the trajectory entropy.

We introduce the continuous random variable R(u) that represents the residence time at
location u. We are interested in analyzing the evolution of the expected residence time
at a location, as a function of the change of trajectory entropy if we reveal this location.
More formally, we analyze the evolution of

to = E[R(u)[u € Ua(Tsa)] (7.4)
as we increase the value of the parameter a.
We approximate the quantity (7.4) by its empirical average

- Ztsdeﬁrain Zuetsd T<u7 tSd)ﬂueuOé (tsd)

(07

, (7.5)

Ztsd eﬂrain Zuetsd Hueua (tsd)

where r(u,tsq) is the residence time at location u along the trajectory tgq.

Figure 7.6 illustrates the evolution of fi, as a function of a. As we increase the value of
a, we become increasingly restrictive and consider only the intermediate locations that
satisfy the inequality Hg, > aHsq. We notice that the average time fi, increases with
«a. More importantly, as soon as we consider only the points that increase the trajectory
entropy, we observe a sharp transition in the value of [i,. In fact, the average time a user
spends at a location is less than 4 minutes, whereas the average time spent at locations
that increase the trajectory entropy (Hgqj, > 1.3 Hyg) is larger than 8 minutes.

We take a step further and study the evolution of the distribution of the conditional

93



Chapter 7. Applying Trajectory Entropy to Mobility

600

OO+l

4500

il S]

BOO[ v g

250 -evcoeeeeeremenere bl

i i i i
20%.0 0.5 1.0 1.5 2.0 2.5
(0%

Figure 7.6 — Evolution of the average time spent at a location fi, as a function of the
entropy ratio a. We observe a sharp transition in the value of [i, as we consider only the
points that increase trajectory entropy. This strongly supports our hypothesis stating
that locations that increase trajectory entropy are more likely to be waypoints.

residence time R(u)|u € Uy (Tsq) for different values of a: In Figure 7.7, we show the
evolution of the empirical distribution of the conditional residence time as a function
of . Each column of the matrix is normalized count over intervals of residence time
for fixed values of a: each square is colored according to the density of values within
the corresponding interval. Note that, for sake of readability, we truncate the residence
time values so that the interval [900, 1000] includes the values that are larger than 1000.
We observe a change in the distribution of residence time that explains the behavior of
the average residence time shown in Figure 7.6. Indeed, the probability of observing
a large residence time increases as soon as we consider only the points that increase
trajectory entropy. Naturally, the probability to observe intermediate locations with low
residence time is still the highest because (a) the majority of the trajectories don’t admit
intermediate locations with high residence time, and (b) even if a trajectory admits an
intermediate location with high residence time, the locations adjacent to it will have a
similar conditional entropy but a much lower residence time. In Section 7.4.4, we will
provide empirical evidence about these claims using an method that detects, for a given
trajectory, intermediate waypoints.

To explore further this direction, we compare the distribution of the residence time
R(u) at locations that decrease entropy or leave it unchanged (Hgqp, < Hyq) with the
distribution of residence time at locations that increase it (Hqp,, > H, sd). Figure 7.8 shows
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Figure 7.7 — Empirical distribution of the conditional residence time R(u)|u € Un(Tsq)
as function of the value of . Each column of the matrix is a normalized count over
intervals of residence time for a fixed values of a, and each square is colored according to
the logarithm of the normalized density of values within the corresponding interval.

two CCDFs (complementary cumulative distribution functions) of the residence time
R(u) for both situations. We clearly observe that the CCDFs have the same evolution
for low values of residence time but they diverge starting at » = 8 minutes. Above this
value, observing a large residence time is much more likely in a location that increases
the entropy than in a location that decreases it. For example, observing a user that
spends more than 30 minutes at a location is 10 times more likely at a location that
increases the entropy than at a location that decreases it.

Taken all together, our results strongly support our hypothesis stating that locations that
increase trajectory entropy are more likely to be waypoints where a user might spend
more time. Furthermore, these results imply that, using a low order mobility model that
is based on the patterns of population mobility, we are able —with no time information
—to segment individual trajectories by detecting waypoints.

In the next section, we build on these findings and propose an algorithm that uses a
entropy-based heuristic in order to automatically segment a given trajectory.
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Figure 7.8 — Log-log plot of the complementary cumulative distribution function (CCDF)
of the residence time R.

7.4.3 Trajectory segmentation algorithm

We propose a recursive algorithm (pseudo-code in Algorithm 3) that segments a trajectory
by finding intermediate locations that increase the conditional entropy. The input of the
algorithm is a trajectory ts4, a MC transition probability matrix P and the sensitivity
parameter a > 0. The algorithm recursively segments the trajectory tsq by finding the
intermediate point u that maximizes the conditional entropy Hggj, (line 21). If this
conditional entropy H,g), is larger than aHgg, the point u is added to the sequence
of waypoints U. Note that the sensitivity parameter « controls to which extent the
segmentation process is conservative: The higher alpha is, the more selective the algorithm
is at declaring a point as a waypoint. If a waypoint u is chosen, the segmentation algorithm
continues by applying the same procedure to the two sub-trajectories tg, and t,q. Our
algorithm bears similarity with the Ramer-Douglas-Peuker algorithm [57] that is used
for polygonal approximation of plane curves. The conditional trajectory entropy in
our algorithm is analogous to Euclidean distance between the original curve and the
simplified curve in [57].

Complexity We study the average case complexity of our algorithm for a N states
MC and a trajectory of length I. The expected number of nested calls is upper bounded
by logl: in the most balanced situation, we divide the trajectory into two sub-trajectories
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7.4. Conditional Entropy and Trajectory Segmentation

Algorithm 3: Trajectory segmentation

Input: trajectory traj, transition probabilities matrix P, sensitivity «
Output: indices of waypoints U

begin
U<+— 10 // global variable
if len(traj) > 2 then
‘ segment (traj, 0, len(traj) — 1)
end
return U
end

Function segment (traj, i, j)
k <— partition(traj, i, j)
if k>0 then

U<+— UU{k}

if i+ 1 < k then

‘ segment (traj, i, k)
end

if k+1 < j then

‘ segment (traj, k, j)
end

end

Function partition(traj, i, j)
s < trajli],d < traj[j]
k <— argmax; ;. ; Hqdjtraj[k] // finding the element that maximizes
conditional entropy
u <— trajk]
if Hsd\u > aH,; then
‘ return k
else
‘ return —1
end

with approximately the same length. Typically, the number of nested calls is much lower
than log ! because the number of waypoints in a trajectory of length [ is much lower than
[. For each call, we compute the conditional entropy for O (1) candidates; this requires
the computation of the fundamental matrix introduced in Section 6.3.1. Computing the
fundamental matrix has a O (N?) complexity because of the inversion of a matrix of size
O (N). However, for a given MC, we can pre-compute the conditional entropies H,qj,
offline and then use these results in order to segment all the trajectories on this MC. In
such a situation, the expected time complexity of segmenting a trajectory of length [ is
O (llogl) which enables for very efficient online segmentation of trajectories.

Another interesting direction we explore is the approximation of the conditional entropy
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H,qp, by the sum of entropies Hgy, + Hyq. Such an approximation would reduce the
complexity of computing the conditional entropies H,g), because we would be able to
use the matrix of trajectory entropies H —O (N 3) complexity to compute the entropy
between all pairs s,d € V2 —to approximate the conditional entropy H sdju- In fact, we
prove in Proposition 3 that

KL(Tsal Taa € Tegl|(Tou Tua)) = —logp (Tou & Tih)

which implies that the larger the probability p (Tsu o4 7;%) is, the closer the distributions
of the random trajectories T5q|Tsq € T4 and (T, Tyuq) are, and hence the closer the
quantities Hq), and Hg, + Hyq are. Moreover, in a typical mobility graph, the probability

P (Tsu & 7;%) should be very low because going through the final location d in order
to reach an intermediate location u is very unlikely. If we use this approximation, the
pre-computation, which is performed once, has a complexity O (N 3), and the expected
time complexity of segmenting a trajectory of length I becomes O (llogl). For future
work, we plan to work on this approximation and provide bounds for the difference
between the H,g, by the sum of entropies Hgy, + Huyg-

7.4.4 Experimental evaluation

In this section, we apply the entropy-based segmentation to the GPS trajectories of
the Geolife project and show that it is able to accurately uncover waypoints along a
trajectory, without having access to time information.

Detecting waypoints As we do not have data that classifies intermediate locations
along a trajectory as waypoints, we use the available time information in order to detect
potential waypoints. This bears similarity with the approach taken by Zheng et al. [74]
who analyze the same dataset and classify a location as a stay point if an individual stays
within an area around it for more than 20 minutes. We take this idea further and improve
it by comparing the individual behavior to the collective behavior: We assume that a
location visited by a user along his trajectory is likely to be a waypoint if this user spends
significantly more time at this location than the other users typically do. More formally,
we associate with each location z a Gaussian distribution of residence time N (piz, 04),
whose parameters are learnt from behavior of the whole observed population. For a user
moving along a given trajectory tsgq, an intermediate location u is considered to be an
intermediate destination if the time this user spends at w is classified as an outlier by the
Chauvenet’s criterion [72] applied on the distribution N (uy, 0,). This criterion states
that, given a dataset of n observations produced by a Gaussian distribution, we consider
a data point as an outlier only if the probability of observing its deviation from the mean
is less than ﬁ In order to check whether our results are consistent independently of
the choice of outlier detection method, we tested different outlier detection methods and
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obtained consistent results. We denote by W(ts4) the set of waypoints associated with
the trajectory tsq.

We apply this waypoint-detection procedure to the Geolife GPS trajectories and observe
that the majority (more than 87%) of the trajectories has an empty waypoints set.
Among the trajectories that admit at least one waypoint, the clear majority (around
90%) has only one waypoint. We will therefore focus on assessing the performance of
different segmentation methods on finding, for a given trajectory tsq (a) whether the
trajectory admits waypoints, and (b) if yes, finding the waypoint where the user spends
most of her time

w = argmax r(tsq, u).
uEW(tsd)

Baseline methods In order to assess the performance of our approach at trajectory
segmentation, we consider different baseline methods that rely on different heuristics for
trajectory segmentation. As the challenge is to uncover waypoints with no information
about time, all the methods presented here share the fact that their heuristics are based
on the structure of the trajectory only. Each method first constructs a set of candidate
waypoints W(tsd), and then chooses the waypoint @ that maximizes a given heuristic
(e.g., the conditional entropy in line 21 of our segmentation algorithm). The baseline
methods are as follows:

Random (R) This method assumes that each trajectory admits waypoints and selects
uniformly at random one of the points of the trajectory tsq.

Geo Stretch (GS) The set of candidate waypoints W(t.q) is composed of the interme-
diates locations that are not along the direct line from s to d. The waypoint is the
intermediate location that is the furthest from the segment with s and d as end
points. This simple yet strong baseline is used in the very popular Ramer-Douglas-
Peuker algorithm [57] to select the point on a trajectory that is the furthest from
the approximating line segment between s and d.

Path Stretch (PS) We consider the weighted mobility graph introduced in Section 7.4.1.
The weight associated with an edge (i,7) is equal to —log(P;;) where P;; is the
probability of visiting location j given that we are at location i. These weights
favor the transitions that are the most frequently observed. A simple computation
gives that the cost of a trajectory tyq is equal to —logp (tsq), which implies that
the more probable a path is, the less costly it is. The set of candidate waypoints
Wi(tsq) is composed of the intermediate locations that are not along the shortest
path from s to d. The waypoint is the candidate location w that maximizes the
path cost.

Entropy (E) The set of candidate waypoints W(tyq) is composed of the intermediate
locations whose conditional entropy Hg,, is larger than the trajectory entropy Hq.
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The waypoint w is the candidate location u that maximizes conditional entropy

W = arg max Hgjy-
uGW(tsd)

Empirical evaluation In order to evaluate the performance of the different segmenta-
tion methods, we repeat the following process 100 times: we divide randomly the dataset
of trajectories in a training set (90 % of the data) and a test set (10 % of the data). Then,
we train a Markovian mobility model based on the trajectories of the training set, and we
apply the different segmentation methods to the trajectories of the test set. As we do not
have access to a ground truth about waypoints, we consider the results produced by the
time-based classification procedure, introduced in the beginning of Section 7.4.4, as target
values. We assess the performance of each segmentation method by measuring (a) its
average classification accuracy and the average Fj-score (harmonic mean of precision
and recall), (b) the average residence time r(tsq, W) at the location classified as waypoint,
and (c) the average distance (number of hops) between the waypoint guess w and the

actual waypoint w.

‘ Residence time (std) [s] ‘ Distance (std) [hops]

R 209 (73) 6.1 (1.2)
GS 570 (121) 2.5 (0.6)
PS 700 (114) 1.76 (0.27)

E | 1151 (150) 1.41 (0.28)

Table 7.1 — The average performance of the entropy based segmentation compared to
baseline methods.

‘ Accuracy | F} score

R 0.1 0.16
GS 0.12 0.18
PS 0.47 0.25

E 0.7 0.60

Table 7.2 — Average classification accuracy and average Fj score of the entropy based
segmentation compared to baseline methods.

We report the results, obtained by averaging the results of the process presented above,
in Tables 7.1 and 7.2. The methods whose heuristics are based on the statistics related to
the population mobility (PS and E) perform better than purely geographical heuristics
(GS). This is not surprising as heuristics that are based on geographical distances fail
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to capture paths that are geographically costly but very popular (i.e., a long route that
includes many points of interests is more popular than a short route that has none).

Among the methods that are based on the mobility graph, the entropy-based segmentation
is clearly the best: It takes advantage of the entropy-based heuristic that describes the
evolution of whole the distribution of trajectories, as opposed to PS that is based on the
evolution of path probability only. This also confirms that trajectory entropy captures
much more than simply the evolution of the cost of the shortest path.

By looking at Table 7.1, we see that the average residence time at the locations classified
as way-points by our method is larger than the residence time at the locations classified as
such by the baseline methods (102% larger than GS, 64% larger than PS). This indicates
clearly that the entropy based segmentation is the best at retrieving locations where users
spend a significant amount of time. More importantly, the average distance between our
method’s guess and the actual waypoint is 1.4 on average, which is a 43% improvement
over the GS segmentation and a 20% improvement over the PS segmentation. We can
see this average distance as a measure of the waypoints privacy [62], which implies that
the privacy of waypoints is the lowest when the adversary’s estimate of the waypoint is
based on trajectory entropy.

Table 7.2 shows the average accuracy and Fj score of each method. The fact that R and
GS perform poorly is not surprising if we know that the majority of the trajectories in our
dataset admits no waypoints: the random segmentation method declares systematically
that a trajectory admits a waypoint, and GS declares the same as soon as the trajectory
tsq deviates from the direct line from s to d. Our method is the most accurate —48%
more accurate than PS —and is able to classify correctly an important proportion (75%)
of the trajectories that have a waypoint. Moreover, it offers the best trade-off between
precision and recall, with a Fj score equal to 0.60. Note that, for all methods, the
precision is lower than the recall: an intermediate location that deviates significantly
from the most probable path, or increases trajectory entropy does not always imply, with
certainty, that this location is a waypoint.

Taken together, these results strongly support the possibility of uncovering waypoints
of a trajectory without having access to time information: computing the conditional
trajectory entropy associated with a parsimonious mobility model enables us to detect
structural outliers that are very likely to be waypoints and not simple intermediate
locations.

7.5 Conclusion

In this chapter, we present two mobility-related applications for which we use tools
borrowed from the trajectory entropy framework. First, we quantify mobility uncertainty

101



Chapter 7. Applying Trajectory Entropy to Mobility

and its evolution with location updates and link the evolution of conditional entropy
to the nature of the intermediate locations revealed. Second, we propose a trajectory
segmentation method based on the computation of the entropy of conditional Markov
trajectories. We showed empirically that the entropy of a trajectory conditioned on
a particular location is a powerful metric to estimate whether this location is likely
to be a waypoint or not, and more generally to reveal whether knowing this location
makes the trajectory more or less predictable. Based on this observation, we develop an
algorithm that is able to efficiently segment trajectories: we take advantage of a model of
population mobility and quantify to which extent this individual trajectory deviates from
the plausible behaviors. The advantage of our approach is that little information about
the individual trajectory is needed. In particular, no timestamps nor absolute geographic
locations are used. More generally, we believe the entropy of conditional trajectories is a
powerful tool to study dynamics on graphs because it is able to capture the evolution of
the distribution of trajectories as intermediate locations are revealed.
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Introduction

In the first and second parts of this thesis, we considered mobility as a simple time-
stamped sequence of locations visited. However, mobility, as experienced by an individual,
is a much more than this; it is an experience that is influenced by both personal (e.g.,
interests, mood, environment perception) and environmental factors (e.g., roads, noise,
aestheticism). For example, visiting a city cannot be reduced to visiting some particular
venues within it, but includes the atmosphere and ambiance of the streets, the interactions
with people and the architecture of the buildings.

With the democratization of GPS-enabled smartphones and the rapid development of
location-based services, we have witnessed an increasing availability of geo-tagged digital
traces that describe the user experience as she moves. These digital breadcrumbs take
different forms (e.g., phone calls, status updates, geo-tagged photos or check-ins), thus
capturing different facets of the user’s experience: Photo-sharing websites, such as Flickr
and Instagram, contain photos that link geographical locations with user-generated
annotations; and social networks, such as Facebook and Yelp, associate check-ins with
crowd-sourced reviews that describe the local experience. In Figure 7.9, we show an
example that illustrates the abundance of geo-tagged data: We obtain a sketch of the
world map by simply plotting the locations of geo-tagged tweets of a subset of Twitter
users over a four-month period only.

With this abundance of geo-tagged data comes the promise of a better understanding of
users’ experiences and of an increased ability to describe the environment where they
take place. In this chapter, we study human mobility from the data-mining perspective
and postulate that mining geo-tagged data enables us to gain more insight into the
experience that surrounds mobility. We illustrate this with our work about characterizing
geographical regions: We show how mining millions of geo-tagged photos enables us to
uncover terms that are specifically descriptive of region within a geographical hierarchy.
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Figure 7.9 — We plot 22, 506, 721 geo-tagged tweets posted on Twitter by 225, 098
users over a four-month period. The fact that the location cloud draws the world map
silhouette is a good illustration of the abundance of geo-tagged data
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Describing the Characteristics of
Geographical Regions

8.1 Introduction

Finding characteristics that are specific to a geographic region is challenging because it
requires local knowledge to identify what is particularly salient in that area. Knowledge
of regional characteristics becomes critical when communicating about or describing
regions, for instance in the context of a mobile travel application that provides country,
city and neighborhood summaries. This knowledge is especially useful when comparing
regions to make geo-based recommendations: tourists visiting Singapore, for example,
might be interested in exploring the Tiong Bharu neighborhood if they are aware that it
is known for its coffee in the same way the San Francisco Mission district is.

Photo-sharing websites, such as Instagram and Flickr, contain photos that connect
geographical locations with user-generated annotations. We postulate that local knowl-
edge can be gleaned from these geo-tagged photos, enabling us to discriminate between
annotations (i.e., tags) that specifically characterize a region (e.g., neighborhood) and
those that characterize surrounding areas or more general themes. This is, however, chal-
lenging because much of the data produced within a region is not necessarily specifically
descriptive for that area. Is the word “desert” specifically descriptive of Las Vegas, or
)

rather of the surrounding area? Can we quantify to what extent the word “skyscraper’
is descriptive of Midtown, Manhattan, New York City or the United States as a whole?

In this chapter, we propose the geographical hierarchy model (GHM), a probabilistic
hierarchical model that enables us to find terms that are specifically descriptive of a
region within a given hierarchy. The model is based on the assumption that the data
observed in a region is a random mixture of terms generated by different levels of the
hierarchy. Our model further gives insight into the diversity of local content, for example
by allowing for identification of the most unique or most generic regions amongst all
regions in the hierarchy.
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To investigate how well the descriptive terms surfaced by our model for a given region
correspond with human descriptions, we focus on annotations of photos taken in neigh-
borhoods of San Francisco and New York City. We apply our method to a dataset of 8
million geo-tagged photos described by approximately 20 million tags. We are able to
associate each neighborhood with the tags that describe it specifically, and coefficients
that quantify its uniqueness. This enables us to find the most unique neighborhoods in a
city and to find mappings between similar neighborhoods in both cities.

We contrast the neighborhood characteristics uncovered by our model with their human
descriptions by conducting a survey and a user study. This allows us not only to assess the
quality of the results found by the GHM, but mainly to understand the human reasoning
about what makes a feature distinctive (or not) for a region. Beyond highlighting
individual differences in people’s local experiences and perceptions, we touch topics such
as the importance of supporting feature understanding, and consideration of adjacency
and topography through porous boundaries.

8.2 Related Work

Human activities shape the perception of coherent neighborhoods, cities and regions;
and vice versa. As Hillier and Vaughan [35] pointed out, urban spatial patterns shape
social patterns and activity, but in turn can also reflect them. Classic studies such as
those by Milgram and Lynch [52] on mental maps of cities and neighborhoods reflect
that people’s perceptions go well beyond spatial qualities. They illustrate individual
differences between people, but also the effects of social processes affecting individual
descriptions. People’s conceptualization of region boundaries are fuzzy and can differ
between individuals, even while they are still willing to make a judgement call on what
does or does not belong to a geographic region [55]. Urban design is argued to affect the
imageability of locales, with some points of interests for example may be well known,
whereas other areas in a city provide less imageability and are not even recalled by local
residents [52]. The perceived identity of a neighborhood differs between individuals, but
can relate to their social identity and can influence behavior [66]. Various qualitative
and quantitative methods, from surveys of the public to trained observation, have been
employed over the years to gain such insights [25,55,66], with the fairly recent addition
of much larger datasets of volunteered geographic information [27] and other community-
generated content to benefit our understanding of human behavior and environment in

specific regions.

We differentiate our approach from those aiming to discover new regions [69] or redefine
neighborhood boundaries [22] using geo-tagged data. Backstrom et al. [12] presented
a model to estimate the geographical center of a search engine query and its spatial
dispersion, where the dispersion measure was used to distinguish between local and
global queries. Ahern et al. [9] used k-means clustering to separate geo-tagged photos
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into geographic regions, where each region was described by the most representative
tags. This work was followed up by Rattenbury and Naaman [58], in which the authors
proposed new methods for extracting place semantics for tags. While these prior works
principally attempted to identify new regions or arbitrary spaces, we instead aim to find
the unique characteristics of regions in a known hierarchy. For each region at each level
in the hierarchy we aim to find a specifically descriptive set of tags, drawn from the
unstructured vocabulary of community-generated annotations.

Hollenstein and Purves [36] examined Flickr images to explore the terms used to describe
city core areas. For example, they found that terms such as downtown are prominent in
North America, cbd (central business district) is popular in Australia and citycenter is
typical for Europe. The authors further manually categorized tags in the city of Ziirich
according to a geographical hierarchy; even with local knowledge they found that doing
so was tedious because of tag idiosyncrasies and the diversity of languages. In contrast,
our method enables us to automatically obtain such classifications. Moreover, we are not
just able to distinguish between local and global content, but can classify a tag according
to a geographical hierarchy with an arbitrary number of levels.

Hierarchical mixture models can be used for building complex probability distributions.
The underlying hierarchy, that encodes the specificity or generality of the data, might
be known a priori [53] or may be inferred from data by assuming a specific generative
process, such as the Chinese restaurant process [14] for Latent Dirichlet Allocation [10,15],
where the regions and their hierarchy are learned from data. We emphasize that, in this
chapter, we do not try to learn latent geographical regions, but rather aim to describe
regions that are known a priori. Moreover, these regions are structured according to a
known hierarchy.

8.3 Geographical Hierarchy Model

Finding terms that are specifically descriptive of a region is a challenging task. For
example, the tag paname (nickname for Paris) is frequent across many neighborhoods
of Paris but is specific to the city, rather than to any of the neighborhoods in which
the photos labeled with this tag were taken. The tag blackandwhite is also a frequent
tag, which describes a photography style rather than any particular region in the world
where the tag was used. The main challenge we face is to discriminate between terms
that (i) specifically describe a region, (ii) those that specifically describe a sibling, parent
or child region, and (iii) those that are not descriptive for any particular region. To solve
this problem, we introduce a hierarchical model that is able to isolate the terms that are
specifically descriptive of a given region by considering not only the terms used within the
region, but also those used elsewhere. Our model goes beyond the distinction between
only global and local content [56] by probabilistically assigning terms to a particular level
in the hierarchy. In this chapter we present our model from a geographic perspective,
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Country

City A City B

Nbrho‘od Al Nbrho‘od A2 Nbrhood B.1

|
Tags Tags Tags

Figure 8.1 — We represent the geographical hierarchy Country — City — Neighborhood
as a geo-tree. Each node v of the geo-tree is associated with a multinomial distribution
over tags 6,.

even though it is generic in nature: in principle any kind of hierarchy can be used where
labeled instances are initially assigned to the leaf nodes.

8.3.1 Definitions

tag is the basic semantic unit and represents a term from a vocabulary indexed by
ted{l,...,T}.

neighborhood is the basic spatial unit. The semantic representation of a neighborhood
is based on the collection of tags associated with the geo-tagged photos taken
within the neighborhood. Consequently, we associate with each neighborhood
n € {1,...,N}, where N is the number of neighborhoods, the vector x, € N,
where x,,; is the number of times tag t is observed in neighborhood n.

geo-tree is the tree that represents the geographical hierarchy. Each node v of the
geo-tree is associated with a multinomial distribution 6, such that 6,(t) is the
probability to sample the tag ¢t from node v. We designate the set of nodes along
the path from the leaf n to the root of the geo-tree as R,,, whose cardinality is | Ry |.
We use the hierarchy Country — City — Neighborhood, illustrated in Figure 8.1,
as the leading example throughout this chapter.

8.3.2 Model

The principle behind our model is that the tags observed in a given node are a mixture
of tags specific to the node and of tags coming from different levels in the geographic
hierarchy. We represent the tags as multinomial distributions associated with nodes that
are along the path from leaf to root. This model enables us to determine the tags that
are specifically descriptive of a given node, as well as to quantify their level of specificity
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or generality. The higher a node in the tree, the more generic its associated tags, whereas
the lower a node, the more specific its tags. The tags associated with a node are shared by
all its descendants. We can formulate the random mixture of multinomial distributions

Q

1
7
o)

N

. J

Figure 8.2 — Graphical model of the GHM. The outer plate represents the leaves (neigh-
borhoods) of the geo-tree while the inner plates represent words (tags)

with respect to a latent (hidden) variable z € {1,...,|R,|} that indicates for each tag
the level in the geo-tree from which it was sampled. For a tag ¢ observed in neighborhood
n, z = 1 means that this tag ¢ was sampled from the root node corresponding to the
most general distribution 6,00, whereas z = |R,,| implies that the tag ¢ was sampled
from the most specific neighborhood distribution 6,,. This is equivalent to the following
generative process for the tags of neighborhood n: (i) randomly select a node v from
the path R, with probability p(v|n), and (ii) randomly select a tag t with probability
p(tlv). We suppose that tags in different neighborhoods are independent of each other,
given the neighborhood in which they were observed. Consequently, we can write the
probability of the tags x1,...,x, observed in the N different neighborhoods as

p(x1,...,x,) =p(x1) ...p(N). (8.1)
We further assume tags are independent of each other given their neighborhood, so that

we can write the probability of the vector of tags x,, as:

T

plan) = [T p(tln)™. (8.2)

t=1

111



Chapter 8. Describing the Characteristics of Geographical Regions

The probability of observing tag t in neighborhood n is then:

ptln) = Y p(tlv) p(vln) = ) 0.(t) p(vin), (8.3)

vER, vERy,

which expresses the fact that the distribution of tags in neighborhood n is a random
mixture over the multinomial distributions 6,, associated with the nodes along the path
from the leaf n up to the root of the geo-tree. The random mixture coefficients are the
probabilities p(v|n). By combining (8.1), (8.2) and (8.3) we obtain the log-likelihood of
the data:

=
=

logp(x1, ..., 2N) = log p(t[n)*r

Il
—
o~
Il

n 1

1= 11
M= 1

M=

Tt log p(t|n)

Tt log Z 0, (t) p(vin). (8.4)

vER,

3
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_
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_

Classification For a tag ¢ observed in neighborhood n, we can compute the posterior
probability that it was generated from a given level z of the geo-tree: we apply Bayes’
rule to compute the posterior probability of the latent variable z

p(tn, z)p(z|n)

z|t,n) = . 8.5
PRI = STl i, 2 p(eln) (5

Since we assume that the distribution of tags in neighborhood n is a random mixture
over the distributions 6, associated with nodes that forms the path R, from leaf n up to
the root of the geo-tree, the probability (8.5) is equal to

O (t) p(v'|n)
vERy, 0y (t) p(v\n)’

p(v']t,n) = >

where v’ is the node in R, that is at level z. Classifying a tag ¢ observed in leaf n amounts
to choosing the node v € R,, that maximizes the posterior probability p(v'|t, n).

8.3.3 Learning

The parameters of our model are the multinomial distributions 6, associated with each
node v of our geo-tree and the mixture coefficients p(v|n). In order to learn the model
parameters that maximize the likelihood of data, given by (8.4), we use the Expectation-
Maximization algorithm. This iterative algorithm increases the likelihood of the data by
updating the model parameters in two steps: The E-steps and the M-steps. The algorithm
converges to a solution as soon as the change in likelihood between two consecutive
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iterations is smaller than a given threshold.
For the E-step, we evaluate, for each tag ¢ and neighborhood n, the posterior probability

p(v|n) p(t[v)
wer, P(V'[n) p(t')’

plvlt,n) = 5

The probability p(v|t,n) = 0 for all v € R,, because we assume that the tags observed in
neighborhood n are generated from the nodes that form the path R, in the geo-tree.

For the M-step, we re-estimate the parameters of the model using the posterior probabil-
ities computed in the E-step. We update the multinomial distributions as follows:

27]:[:1 I{’UGRn} Lt p(v|t, n)
ZtT':1 25:1 Itver,} Tnt p(v[t’',n) 7

where Iy 4} is the indicator function that takes values 1 if event A is true and 0 otherwise.

gv(t) = p(t‘?)) =

The numerator is the expected number of tags t generated by node v, and the denominator
is the expected number of total tags generated by the same node. Both expectations are
computed with respect to the posterior distribution of the latent variable p(vl|t,n).

We also update the mixture coefficients

Z?:l Tnt p(v|t,n) _ Z?:l xntp(v|t7n)

T T
D1 Zv’eRn T p(V'[t, n) D t—1Tnt

pvln) =

The numerator is the expected number of tags generated by node v in neighborhood n,
and the denominator is the total number of tags generated in neighborhood n.

If a node in the geo-tree contains a tag that was not observed in the training set,
maximum likelihood estimates of the multinomial parameters would assign a probability
of zero to such a tag. In order to assign a non-zero probability to every tag, we “smooth”
the multinomial parameters: we assume that the distributions 6, are drawn from a
Dirichlet distribution. The Dirichlet distribution is a distribution of 7T-dimensional
discrete distributions parameterized by a vector a of positive reals. Its support is the
closed standard (7' — 1) simplex, and it has the advantage of being the conjugate prior
of the multinomial distribution. In other words, if the prior of a multinomial distribution
is the Dirichlet distribution, the inferred distribution is a random variable distributed
also as a Dirichlet conditioned on the observed tags. In order to avoid favoring one
component over the others, we choose the symmetric Dirichlet distribution as a prior.
We also assume a symmetric Dirichlet prior for the mixture coefficients p(v|n).
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Complexity Learning the parameters of our model using EM algorithm has, for each
iteration, a worst case running-time complexity of O(NTD), where N is the number
of leaves of the tree, T' the vocabulary cardinality and D the tree depth. GHM has
therefore an important strength, as the time-complexity of training GHM scales linearly
with respect to the number of leaves of the tree and the number of unique tags rather
than the number of tag instances. Furthermore, the number of iterations needed for EM
to converge, when trained on the Flickr dataset introduced in Section 8.4.1, is typically
around 10.

8.3.4 Geographical hierarchy model with adjacency

Geographical hierarchy model with adjacency (GHMA) is an extension of GHM that
takes into account the porosity of the frontiers that separates adjacent neighborhoods.
In fact, neighborhood boundaries are not set in stone thus we can observe tags that
are specific to neighborhood n in a adjacent neighborhood n’ (e.g., photo of a POI
in neighborhood n’ taken from a distant location in neighborhood n). Moreover, this
addresses that there is not necessarily a long-term consensus about the exact boundaries
of a neighborhood, as illustrated by the findings of our user study.

Let A, be the set of neighborhoods adjacent to neighborhood n. With GHMA, the
probability of observing tag ¢ in neighborhood n is

pltln) = > 0u(t)p(vln)

veER,UA,
= > Ou(t)p(vin) + Y 0u(t) pluln). (8.6)
vER, vEA,

Note that the term Y-, 4 6,(t)p(v|n) in (8.6) is not present in the sum (8.3), and
accounts for the possibility of sampling tags from nodes v € A,, representing adjacent
neighborhoods. Using GHMA, we are able to quantify the porosity of the frontier between
neighborhoods n’ and n: We simply compute the probability p(n’|n) of sampling tags
from the local distribution of neighborhood n’ given that we are at neighborhood n.
A high probability p(n/|n) indicates that neighborhood n’ has a strong influence on
neighborhood n because it is very likely to observe tags that are specific to neighborhood
n’ in neighborhood n.

8.4 Uncovering the Characteristics of Geographical Regions

In this section, we apply our model to a large collection of geo-tagged Flickr photos taken
in neighborhoods of San Francisco and New York City. The quality of the descriptive
tags found by the GHM strongly supports the validity of our approach, which we further
confirm using the results of the user study in Section 8.5: we approximate the probability

114



8.4. Uncovering the Characteristics of Geographical Regions

that GHM classifies a tag “correctly” by the average number of times its classification
matches the experts’ classification. Moreover, the GHM allows us to quantify the
uniqueness of these neighborhoods and to obtain a mapping between neighborhoods in
different cities (Section 8.4.1), enabling us to answer questions such as “How unique is
the Presidio neighborhood in San Francisco?” or “How similar is the Mission in San
Francisco to East Village in New York City?”. Finally, we compare the performance of
our model with the performance of other methods in classifying data generated according
to a given hierarchy (Section 8.4.2).

8.4.1 Dataset and classification

We now apply our model to a large dataset of user-generated content to surface those
terms considered to be descriptive for different regions as seen through the eyes of the
public.

Flickr dataset

Describing geographical areas necessitates a dataset that associates rich descriptors with
locations. Flickr provides an ample collection of geo-tagged photos and their associated
user-generated tags. We couple geo-tagged photos with neighborhood data from the
city planning departments of San Francisco! and New York City?, and focus on the
neighborhoods of San Francisco (37 neighborhoods) and Manhattan (28 neighborhoods).
Flickr associates an accuracy level with each geo-tagged photo that ranges from 1 (world
level) to 16 (street level). In order to correctly map photos to neighborhoods, we only
focus on photos whose accuracy level exceeds neighborhood level. We acquired a large
sample of geo-tagged photos taken in San Francisco (4.4 million photos) and Manhattan
(3.7 million photos) from the period 2006 to 2013. We preprocessed the tags associated
with these photos by first filtering them using a basic stoplist of numbers, camera
brands (e.g., Nikon, Canon), and application names (e.g Flickr, Instagram), and then by
stemming them using the Lancaster® method. We further removed esoteric tags that were
only used by a very small subset of people (less than 10). To limit the influence of prolific
users we finally ensured no user can contribute the same tag to a neighborhood more
than once a day. The resulting dataset contains around 20 million tags, of which 7,936
unique tags, where each tag instance is assigned to a neighborhood. These tags form the
vocabulary we use for describing and comparing different regions. The geo-tree we build
from this dataset has 3 levels: level one with a single root node that corresponds to the
United States, level two composed of two nodes that correspond to San Francisco and
Manhattan, and level three composed of 65 leaves that correspond to the neighborhoods
of these cities.

"https://data.sfgov.org (Accessed 04/2015)
*http://nyc.gov (Accessed 04/2015)
3http://comp.lancs.ac.uk/computing/research/stemming/(Accessed 04/2015)
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Number
Geo-tagged photos 430,329,461
Geo-tagged photos in the US 128,238,326
Photos in Manhattan 4,477,655
Photos in San Francisco 3,711,194
Tags in San Francisco and Manhattan 16,892,259
Unique tags 7936
Neighborhoods in Manhattan 28
Neighborhoods in San Francisco 37

Table 8.1 — Flickr dataset statistics. The number of unique tags, after filtering and
stemming, is 7963.

Mission GG Park

Battery Park Midtown

california § california newyork I newyork
mission flower manhattan I manhattan I
sf 1 park usa T usa T

usa T sf I wtc midtown
graffiti usa T brooklyn skyscraper
art museum downtown timessquare
mural tree bridge light 1
valencia ggpark gotham § moma

food deyoung memorial broadway
car I architecture § | light T rockefeller

Table 8.2 — For each neighborhood, we show the 10 most likely tags ranked according to
their probability p(t|n). We use the posterior probability p(z|t,n) in order to assign each
tag to the distribution that maximizes this posterior probability: country (1), city () or
neighborhood (bold).

Classifying tags

We applied our model to the Flickr dataset in order to find tags that are specifically
descriptive of a region. We show the results for two neighborhoods in San Francisco—
Mission and Golden Gate Park— and two neighborhoods in Manhattan—Battery Park
and Midtown—in particular. In Table 8.2 we show the top 10 most likely tags for each of
these four neighborhoods, where each tag is further classified to the most likely level that
have generated it. Effectively, each tag observed in a neighborhood is ranked according
to the probability p(t|n). Then, we apply (8.5) to compute the posterior probability of
the latent variable p(z|t,n) and classify the tag accordingly. Recall that the value of
the latent variable z represents the level of the geo-tree from which it was sampled. For
example, a tag observed in neighborhood n is assigned to the neighborhood level if the
most likely distribution from which it was sampled is the neighborhood distribution 6,,.
We consider such a tag as being specifically descriptive of neighborhood n.
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Despite the fact that the tag california is the most likely (frequent) tag in both
Mission and Golden Gate Park, it is not assigned to the neighborhood distribution but
rather to the city distribution (we presume, if we were to add a new State level to the
geo-tree, that the tag california would most likely be assigned to it). This confirms
the notion that the most frequent tag in a neighborhood does not necessarily describe
it specifically. We see that architecture is applicable not only to the buildings in
Golden Gate Park—mnotably the De Young—but that it is also is a descriptor for San
Francisco in general. Our method is able to discriminate between frequent and specifically
descriptive tags, whereas a naive approach would still consider a very frequent tag in a
neighborhood as being descriptive. The same observation is valid for the tags usa and
light, which are tags that are too general and therefore not specifically descriptive of a
neighborhood. The tag car may seem misclassified at the city level in San Francisco,
until one realizes the city is well known for its iconic cable cars. Considering that the
tags art, mural and graffiti are classified as being specific to Mission is not surprising,
because this neighborhood is famous for its street art scene. The most probable tags
that are specifically descriptive of Midtown in Manhattan include popular commercial
zones, such as Rockefeller Center, Times Square and Broadway, as well as the museum
of modern art (MoMa). The tag gotham, one of the most observed tags in Battery Park,
is assigned to city level, which is not unexpected given that Gotham is one of New York
City’s nicknames.

Neighborhood uniqueness

If you are interested in visiting the most unique neighborhoods in San Francisco, which ones
would you choose? With our framework, we can quantify the uniqueness of neighborhood
n by using the probability p(z|n) of sampling local tags, where z = |R,,|. In fact, a high
probability indicates that we sample often from the distribution of local tags 6,, and
can therefore be interpreted as an indicator of a more unique local character. We show
a map of the city of San Francisco in Figure 8.3, where each neighborhood is colored
proportionally to its local-mixture coefficient. The darker the color , the more unique the
personality of the neighborhood. The four most unique neighborhoods in San Francisco
are Golden Gate Park (0.70), Presidio (0.67), Lakeshore (0.65) and Mission (0.60), which
is not surprising if you know these neighborhoods. The Golden Gate park is the largest
urban park in San Francisco, famous for its museums, gardens, lakes, windmills and
beaches. The Presidio is a national park and former military base known for its forests,
scenic points overlooking the Golden Gate Bridge and the San Francisco Bay. Lakeshore
is known for its beaches, the San Francisco zoo and also for San Francisco State University.
The Mission is famous for its food, arts, graffiti, and festivals.
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Figure 8.3 — Neighborhoods of San Francisco colored according to their local mixture
coefficient p(z|n), where z = |R,|. A darker color indicates a larger local mixture
coefficient (‘uniqueness’).

Mapping neighborhoods between cities

Given a neighborhood in San Francisco, what is the most similar neighborhood in Man-
hattan? To answer such a question, we can use our framework to find a mapping between
similar neighborhoods that are in different cities and even different countries. Recall that
each neighborhood n is described by its local distribution #,,. In order to compare two
neighborhoods n and n/, we compute the cosine similarity between their respective local
distributions #,, and 6,,/, given by:

sim (6, 0,,) = iz (1) b (1) . (8.7)

VELL 020X 00%(1)
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The similarity range is [0, 1], with sim(6,,6,,) = 1 if and only if 6,, = 6/,. Table 8.3 shows
the mapping from six San Francisco neighborhoods to the most similar neighborhoods in
Manhattan respectively. We also include the second most similar neighborhood when the
similarities are very close. In order to give some intuition about the mapping obtained,
we also show the top five common local tags obtained by ranking the tags t according
to the product of tag probabilities 6,,(t) 6, (t). For example, East Village in Manhattan
is mapped to Mission in San Francisco; the strongest characteristics they share are
graffiti/murals, food, restaurants and bars. Moreover, despite the major differences
between San Francisco and Manhattan, their Chinatowns are mapped to each other and
exhibit a highly similar distribution of local tags (cosine similarity of 0.85). Finally, it is
not surprising that Treasure Island for San Francisco and Roosevelt Island for Manhattan
are mapped to each other, since both are small islands located close to each city. We
however emphasize that the top common local tags between neighborhoods are not
necessarily the most descriptive for the individual neighborhoods. The top tags may
rather provide a shallow description (e.g., dragons in Chinatown, boats for island) and
are useful to gain some insight into the mapping obtained, but we are aware that every
Chinatown is unique and not interchangeable with another one.
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8.4.2 Experimental evaluation

Evaluating models such as the GHM on user-generated content is hard because of the
absence of ground truth. There is no dataset that associates, with objectivity, regions
with specifically descriptive terms, or assigns terms to levels in a geographic hierarchy.
This is due to the intrinsic subjectivity and vagueness of the human conception of regions
and their descriptions [36]. In the absence of ground truth, a classic approach is to
generate a dataset with known ground truth, and then use it to evaluate the performance
of different classifiers. We follow the generative process presented in Algorithm 4 using
the geo-tree (3 levels, 68 nodes) built from the dataset presented in Section 8.4.1. For
each node v in our geo-tree, we sample the distribution of tags 6, from the symmetric
Dirichlet distribution Dir(«). We set a = 0.1 to favor sparse distributions 6,,. If the node
is a leaf, i.e., it represents a neighborhood, we also sample the mixture coefficient p(z|v)
from a symmetric Dirichlet distribution Dir(/3). We set 5 = 1.0 to sample the mixture
coefficients uniformly over the simplex and have well-balanced distributions. Now that
we have the different distributions that describe the geo-tree, we can start generating the
tags in each neighborhood. We vary the number of samples per neighborhood in order
to reproduce a realistic dataset that might be very unbalanced: data is sparse for some
neighborhoods while very dense for some others. For each neighborhood n, we sample
uniformly the continuous random variable +, which represents the order of the number
of tags in neighborhood n, from the interval [3,6]. The endpoints of the support of v are
based on the the minimum and maximum values observed in the Flickr dataset presented
in Section 8.4.1, such that an expected number of 18.8 x 10° tags will be generated,
similar to the quantity of tags available in the Flickr dataset. Once the number of tags v
to be generated is fixed, we sample, for each iteration, a level of the geo-tree and then a
tag from the distribution associated with the corresponding node.

We can now assess the performance of a model by quantifying its ability to correctly
predict the level in the geo-tree from which a tag observed in a neighborhood was sampled.
In addition to our model, we consider the following methods:

Naive Bayes (INB) is a simple yet core technique in information retrieval [50]. Under
this model, we assume that the tags observed in a class (node) are sampled
independently from a multinomial distribution. Each class is therefore described by
a multinomial distribution learnt from the count of tags that are observed in that
class. However, since we do not use the class membership to train our methods, we
assign a tag t, observed in neighborhood n, to all the classes (nodes) along the the
path R,, which amounts to having a uniform prior over the classes.

Hierarchical TF-IDF (HT) is a variant of TF-IDF that incorporates the knowledge
of the geographical hierarchy. This variant was used in the TagMaps method [59]
to find tags that are specific to a region at a given geographical level. The method
assigns a higher weight to tags that are frequent within a region (node) compared
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Chapter 8. Describing the Characteristics of Geographical Regions

Algorithm 4: Generating tags in neighborhoods
Input: Geo-tree V, neighborhoods n € {1,..., N}, tagst € {1,...,T},
hyper-parameters «, 5.
Output: Tags observed in each neighborhood x1,...,xxN.
forveV do
Sample distribution 6, ~ Dir(«);
if v is a leaf then
L Sample mixture coefficients p(z|v) ~ Dir(8);

forne{l,...,N} do

Initialize x,, = 0;

Sample order v ~ U [3, 6];

Set v = |2 x 107];

while >, z,; <v do
Sample tree level z ~ p(v|n);
Sample tag t ~ p(t|z,n);
Increment tag count .y < xp + 15

Sample tree level z ~ p(v|n);

Sample tag t ~ p(t|z,n);

Increment tag count x,; < x,: + 1;

to the other regions at the same level in the hierarchy. We are able to represent
each node with a normalized vector in which each tag ¢ has a weight that encodes
its descriptiveness.

For the classification, we map a tag t observed in the leaf n to the level Z that maximizes
the probability p(z|t,n) (NB and GHM), or the tag weight (HT). Using our ground
truth, we can then approximate the probability of correct classification p(Z = z) by
the proportion of tags that were correctly classified. In our evaluation, we repeat the
following process 1000 times: we first generate a dataset, hold out 10% of the data for test
purposes and train the model on the remaining 90%. For fair comparison, we initialize
and smooth the parameters of each method similarly. Then, we measure the classification
performance of each method. The final results, shown in Table 8.5, are therefore obtained
by averaging the performance of each method over 1000 different datasets.

Our GHM model is the most accurate at classifying the tags to the correct level, greatly
outperforming NB by 47% and HT by 27%. Even though both GHM and HT take
advantage of the geographical hierarchy in order to classify the tags, the probabilistic
nature of GHM enables a more resilient hierarchical clustering of the data, while the
heuristic approach of HT suffers from overfitting. For example, if the number of samples
available for a neighborhood is low, HT might overfit the training data by declaring
a frequent tag as being characteristic, although not enough samples are available to
conclude this. This is not case for GHM, because the assumptions of random mixture
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‘ Classification Accuracy (std)

Random 0.33 (0.00)
NB 0.51 (0.02)

HT 0.59 (0.02)
GHM | 0.75 (0.01)

Table 8.5 — The average classification accuracy is computed, for each method, over
1000 generated datasets. We also indicate this accuracy if we classify tags uniformly at
random.

enable us to obtain a resilient estimate of the distributions, which declare a tag as
characteristic of a given level only if it has enough evidence for it. This observation is
strengthened if we choose the maximum order ~ of the number of tags per node to be 4
instead of 6: the classification accuracy of GHM decreases by 5% only (0.71), whereas
the performance of HT decreases by 13% (0.51). Taken all together, these results suggest
that, if the data observed in a neighborhood is a mixture of data generated from different
levels of a hierarchy that encodes the specificity /generality of the data, our method
will be successfully able to accurately associate a tag with the level from which it was
generated.

8.5 Perception Focused User Study

The results of our model might not necessarily be intuitive given people’s differing
individual geographic perspectives [25]. Trying to objectively evaluate these, without
taking into account human subjectivity and prior knowledge, could be misleading. For
the Castro neighborhood in San Francisco, for example, the GHM classified the tag milk
as specifically descriptive. Someone who is not familiar with Harvey Milk, the first openly
gay person to be elected to public office in California and who used to live in the Castro
district, would most probably not relate this tag to the neighborhood. It is therefore
important to understand the correspondences and gaps between the results of our model
and human reasoning about regions.

We conduct a user-focused study to explore the premise that the posterior probability of
a tag being sampled from the distribution associated with a region is indicative of the
canonical descriptiveness of this region. We further aim to identify potential challenges in
user-facing applications of the model, and to uncover potential extensions to our model.
We held ten interviews and conducted a survey with local residents of the San Francisco
Bay Area focusing on their reactions to the tags that our model surfaced. To assess the
performance of our model while reducing the bias of subjectivity, we used the results
of our user survey to obtain the human classification of tags to nodes in the hierarchy,
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allowing us to approximate the probability that our model classified a tag correctly by
the average number of times it corresponded with human classification. We use the
interviews to understand the reasons behind matches and mismatches.

8.5.1 Interview and survey methodology

Interviewees and survey respondents reacted to a collection of 32 tags per neighborhood.
To ensure a certain diversity among the tags presented to the users, we selected randomly
a subset of tags that are classified by the GHM as being descriptive of (i) neighborhood
level (e.g., graffiti), (ii) city level (e.g., nyc), (iii) country level (e.g., usa), or (iv)
another neighborhood (e.g., mission for the Castro neighborhood). We selected these tags
randomly, with the probability of choosing a given tag ¢ proportional to the probability
p(t|n). This survey highlights to which extent the locals’ perspectives match the results
produced by our model, while the interviews enable us to better understand the human

perception of descriptiveness.

Interview procedure Our semi-structured interviews focused on how people describe
neighborhoods. We investigated their reasoning behind the level of specificity they
associate with a tag in a given neighborhood. Each one-on-one interview lasted 25-45
minutes. To have the perspectives of (former) locals to newcomers, we interviewed 10
people (5F, 5M; ages 2662, pn = 37, 0 = 12) who (had) lived in the San Francisco Bay
Area from 2 months to 62 years. Three of the participants worked in the technology
industry. There was also two students, one real-estate agent, one building manager and
one photographer. Each interview covered three different neighborhoods chosen by the
participant out of 11 well-known San Francisco neighborhoods. However, one participant
described only one neighborhood (due to time constraints), and another participant
described four of them. Our interviews addressed the following points:

1. The participants’ characterization of the neighborhoods using their own words, to
get an understanding of the factors that are important to them.

2. Their considerations about whether a tag is perceived as specifically descriptive or
not. Interviewees were first asked to classify the 32 tags presented to them as (not)
specifically descriptive for the neighborhood and to explain the reasons. Then,
they were shown the subset of tags that were classified by our model as specifically
descriptive.

We emphasize the fact that the participants were not told about our model, nor that the
terms presented to them were actually Flickr tags. This helps us identify the factors that
led them to classify terms as (not) specifically descriptive of a neighborhood, and enables
us to identify the factors not yet addressed by our model, without biasing their judgment
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‘ Mission ‘ Castro ‘ North Beach
Neighborhood-level tag count 17 17 17
Neighborhood-level tag classifications 287  (100%) | 201  (100%) | 185  (100%)
Tags not understood 22 (8%) 3 (1%) 0 (0%)
Tags seen as non-descriptive for any level | 116  (40%) | 50  (25%) | 62 (33%)
(Part of) neighborhood 109  (39%) | 67  (33%) | 37 (20%)
Higher-level node (CA/USA) 24 (8%) | 38  (19%) 7 (4%)
Other neighborhood 16 (5%) | 43  (22%) | 79 (43%)

Table 8.6 — The distribution of answers given by survey participants. The (rounded)
percentages are computed with respect to the total number of answers given.

towards our assumptions (e.g., hierarchy of tags). The interviews were recorded and the
transcriptions were iteratively analyzed, with a focus on the identification of themes in
the reasoning behind interviewees’ classifications of tags.

Survey procedure A total of 22 San Francisco Bay Area residents (5F, 17M; ages
22-39, p = 33, 0 = 4.8), who had lived there for an average of 5.6 years (o = 4.2),
participated in our survey about San Francisco and three of its neighborhoods (Mission,
Castro and North Beach). Of these 22 respondents, 18 provided tag classifications for
the Mission neighborhood, 12 for the Castro and 11 for North Beach. This resulted
in 1291 tag classifications, of which 561 were for the Mission, 381 for the Castro and
349 for North Beach. The survey asked the participants to describe each neighborhood
with their own words using open text fields and then to classify the 32 tags presented to
them as descriptive for a given neighborhood, for a higher geographical level (the city or
country), or for another neighborhood. They have also the possibility to indicate if they
did not find the tag descriptive for any level, or did not understand its meaning.

8.5.2 Results

In this section, we present the results of the survey and provide examples from the
interviews to understand the reasoning processes about whether a tag is descriptive
for a specific region. We compare the tag classifications provided by the GHM with
those supplied by the participants, and we specifically focus on disagreements between
neighborhood-level tag classifications in order to identify the difficulties people have
interpreting modeling results and potential extensions to our model.

Participant and model congruency

The model’s premise that locally frequent content is not necessarily specific to a locale
was strongly supported by the interviews and the survey. For the tags that occurred
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frequently in a given neighborhood, none of the participants classified all of them as
specifically descriptive of this neighborhood. This supports the results of the GHM in
classifications of very frequent but wide-spread tags as not being specifically descriptive
of the neighborhood. Without prompting, interviewees mentioned terms as being too
generic or specific for a given neighborhood. For example, one interviewee (F 28), when
describing the Western Addition neighborhood, picked haight as a descriptive tag,
“because there’s Haight Street in this neighborhood”, but not the tag streets, as “there’s
[sic| streets everywhere”. Similar interview examples included: “california or usa is a
generic, or general term” (F 28), “I don’t think of ever describing Golden Gate Park as
in the USA. Unless I'm somewhere far away, but then I wouldn’t even say USA, I would
say California or San Francisco" (F 41). This result implies that participants tend to
classify tags according to a geographical hierarchy, which supports the validity of the
assumptions we make about the hierarchy of tags: tag specificity /generality depends on
the hierarchical level from which it was sampled.

We are aware that people will not agree with every classification made by our model. Tags
classified by the GHM as specifically descriptive of a neighborhood, were not necessarily
perceived as such by all respondents; variations occurred between neighborhoods and
between participants. As a consequence, evaluating the results of an aggregate model
‘objectively’, as if there were only a single correct representation of a neighborhood,
is difficult. However, to place the GHM classification into a context with human
classification, we use the results of our survey to reduce subjective biases: we obtain a
majority-vote human classification by assigning each tag to the class that users have
chosen most often. We then approximate the probability that the GHM classifies a tag
‘correctly’ by the average number of times its classification matches this human majority
classification. For most tags the majority assignment is aligned with the assessment of
the model (Table 8.4). We obtained an average classification correspondence of 0.77, with
a highest classification accuracy of 0.84 for the Mission neighborhood. The alignment
between the model and human classification for the Castro neighborhood was 0.81.
Alignment was lowest for the North Beach neighborhood, with a correspondence of
0.66 mainly caused by tag classifications as ‘another neighborhood’ (Table 8.6). Such
mismatches occur for a multitude of reasons. First of all, as a very basic requirement,
participants have to understand what a tag refers to, before they can assign it to a specific
level. For example, in the survey, 8% of the answers given for the Mission neighborhood
were “I don’t know what this is” (Table 8.6). This issue occurred less for the selection of
tags for the Castro (1%) and North Beach (0%). The terms that users understood were
necessarily perceived as either descriptive (i.e., assignable to a level in the geographical
hierarchy) or non-descriptive (i.e., not belonging to any level in the hierarchy). The
proportion of individual answers that are “non-descriptive" is around 34%, which included
answers to tags such as cat, sticker and wall for the Mission. The fact that these tags
indeed describe content that occurs frequently in the Mission does not imply that they
are perceived by all users as descriptive.
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People’s local experiences shape and differentiate their perceptions. The interviews
illustrated how tags were interpreted in multiple ways; church was taken to refer to a
church building, or to the streetcars servicing the J-Church light-rail line, and it was not
seen as descriptive by the majority of participants (see Castro in Table 8.4). Local terms
surfaced by our model, such as walls in the Mission, represented the neighborhood’s
characteristic murals to a long-time local interviewee (M 49), whereas this term was a
meaningless for others. Although the majority of survey respondents classified night
and coffee as unspecific for the Mission, the same interviewee (M 49) for example saw
night as descriptive for its bars, restaurants and clubs and thought coffee referred to
the copious amounts of coffee shops. Similarly, one interviewee described North Beach as
“party land” (M 46), but another claimed “I don’t believe there’s much of a nightlife there”
(F 26). These results highlight an opportunity for discovery and recommendation of local
content that users might not be aware of but also means that a careful explanation might
be necessary.

Model extensions

Beyond misunderstanding tags or finding them not specifically descriptive of a certain
neighborhood, the interviews provided additional clues about the mismatches identified
in our survey, as well as individual differences. These findings are organized below as
potential opportunities for extensions of the GHM model.

Sub-region detection According to the majority of our survey participants, 11 tags
classified by the GHM as specifically descriptive of North Beach were actually descriptive
of another neighborhood. From our interviews, we learned that the terms surfaced by
our model for the North Beach neighborhood included references to the Bay’s waterside
and to the tourist attraction Fisherman’s Wharf (see for example wharf, seal, crab,
bay, pier in Table 8.4). The locals that responded to our survey (see Table 8.6) and the
interviewees clearly made a distinction between Fisherman’s Wharf and North Beach,
whereas the set of administrative regions we used for our model did not: According
to the data from the city planning department of San Francisco, Fisherman’s Wharf
is not a neighborhood in itself but simply a sub-region of North Beach. Clarifications
about region borders and the detection of emerging sub-neighborhoods (e.g., “as you go
further down south it’s a totally different neighborhood”) would improve the quality of
the neighborhood tags presented to the user. From the modeling perspective, the GHM
already allows for considering predefined sub-regions in certain neighborhood, as the
geo-tree can be unbalanced and have a different depth for certain sub-trees.

Permeable adjacency and topography The GHMA model, introduced in Sec-
tion 8.3, is an extension of GHM that takes into account the porosity of the frontiers that
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separate adjacent neighborhoods. Using permeable adjacency by considering adjacent
neighborhoods appears promising. For example, the mismatching tag dolorespark (see
Table 8.4) refers to the park right on the edge of the Mission and Castro, but it was
placed outside the Castro neighborhood by the majority of our survey respondents.
Interviewees defined neighborhood boundaries differently and sometimes indicated they
did not know neighborhoods well “It’s a little difficult because it’s right next to the
Presidio. I kind of, maybe confuse them from each other” (F 26). Interviewees extended
their reasoning about activities or points of interest that could spill over into adjacent
neighborhoods. For example, the Golden Gate Bridge, officially part of the Presidio
neighborhood, but photographed from a wide range of other neighborhoods was men-

¢

tioned as a distant-but-characteristic feature: “you can see the Bay Bridge from there”

(M 46).

Temporality Time of day, shifting character of neighborhoods, events, long-term
history, and even change itself were referenced by interviewees: “I think of night, ... there’s
a lot of activity during night time with the bars and the clubs. . . but before. . . you wouldn’t
be caught there at nighttime. . .20 years ago it was a different neighborhood.” (M 49).
Because the Flickr tag collection we used spanned multiple years, some aspects of
neighborhoods that were characteristic at one time but no longer as prominent at present
(such as the Halloween celebrations in the Castro neighborhood), were considered out
of place (M 32). Yet other interviewees still found such tags characteristic and freely
associated: “I think of outrageous costumes, and also the costumes that people see when
it’s not Halloween" (F 26). We can enhance our model by including a time dependent
component that captures the time evolution of the neighborhoods character. However,
we must be aware that this necessitates a dataset that is much more prolific than the
current one: we need to have a sufficient number of geo-tagged samples per time period.

8.6 Conclusion

With this abundance of geo-tagged data comes the promise of a better understanding of
users’ experiences and an increased ability to describe the environment where they take
place. We illustrated this by mining millions of geo-tagged photos in order to construct
a specific description of neighborhoods in different cities. We proposed a probabilistic
model that enables for uncovering terms that are specifically descriptive of a region
within a given geographical hierarchy. By applying our model to a large-scale dataset
of 20 million tags associated with approximately 8 million geo-tagged Flickr photos
taken in San Francisco and Manhattan, we were able to associate each node in the
hierarchy to the tags that specifically describe it. Moreover, we used these descriptions
to quantify the uniqueness of neighborhoods, and find a mapping between similar but
geographically distant neighborhoods. We further conducted interviews and a survey
with local residents in order to evaluate the quality of the results given by the GHM and
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its ability to surface neighborhood-characteristic terms, which span both terms known
and unknown to locals. The classification accuracy of GHM, measured with respect
to the classification of tags made by locals, provides strong support for the validity of
our approach. However, the results of the interviews also highlighted the difference
between the performance of a model at classifying community-generated data, and its
performance as judged subjectively by an individual. This highlights the importance of
taking the subjectivity of the user experience into account, and the need for explanation
and framing. As a consequence, the traditional evaluation of modeling approaches that
are fed with user-generated data faces the challenge of both the representation and the
subjectivity inherent to vernacular geography.
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Conclusion

In this thesis, we studied mobility from different perspectives and explored three funda-
mental points (¢) How can we learn accurate mobility models?, (b) How can we rigorously
quantify mobility uncertainty and its evolution with location updates?, and (¢) How
can we take advantage of geo-tagged data in order to characterize the whole experience
surrounding mobility?

In the first part of this thesis, we studied mobility from the modeling perspective and
formalized the individual and collective dimensions in mobility models. Ideally, we should
take advantage of both dimensions in order to learn accurate mobility models, but the
nature of mobility data might limit us. We took a data-driven approach to study three
scenarios, which differ on the nature of the mobility data to analyze, and developed
mobility models that are suitable for each scenario. We showed empirically that (a) we are
able to learn accurate individual-specific models given enough data, (b) the performance
of individual-specific diminishes if individual traces are sparse, and (¢) we can overcome
sparsity by taking advantage of the collective dimension.

In the second part of this thesis, we proposed an information-theoretic approach to
rigorously quantify mobility uncertainty and its evolution with location updates. We
formalize the problem of mobility uncertainty as follows (a) a user moves stochastically
on a mobility graph whose vertices represent branch points, and edges represent the link
between these points, (b) the entropy of the distribution over all possible trajectories
quantify mobility uncertainty, and (¢) location updates amount to condition the trajectory
on going through a set of vertices. In order to quantify the evolution of mobility
uncertainty with location updates, we need to compute the entropy of Markov trajectories
conditional on a set of intermediate states. We developed a method to compute the
entropy of conditional Markov trajectories through a transformation of the original
Markov chain into a Markov chain that exhibits the desired conditional distribution of
trajectories. Moreover, we expressed the entropy of Markov trajectories as a function of
the expected number of visits to each state and the local entropy associated with each
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one of them. We used the trajectory entropy framework to quantify mobility uncertainty
and its evolution with location updates, and to develop a segmentation algorithm that
infers the likely intermediate destinations along a trajectory, based on the conditional
trajectory entropy.

With the increasing availability of geo-tagged data, generated by online social medias,
comes the promise of a better understanding of users experiences as they move. In
the third part of this thesis, we studied mobility from the data mining perspective and
showed how mining geo-tagged data enables us to gain more insight into the environment
where users move. We illustrated this with a hierarchical probabilistic model that enables
us to obtain a specific description of a region within a geographical hierarchy. This
model, applied to a dataset of millions of geo-tagged photos, uncovers the terms that are
specifically descriptive of the neighborhoods of San Francisco and New York.

9.1 Future Research and Challenges

Trajectory entropy and dynamics on graphs The entropy of conditional Markov
trajectories quantifies the uncertainty about the trajectory followed by a random walk
conditioned on going through a given vertex. We can think of trajectory entropy
conditional on a given vertex as a measure of centrality that quantifies the importance of
this vertex. This centrality is not only defined with respect to the structure of the graph
but also with respect to the transition probabilities of the random walk. We believe that
it interesting to explore the usage of conditional trajectory entropy as a measure of vertex
centrality and to compare it to other classic measures of centrality such as random-walk
based centrality or betweenness centrality. This would have applications in scenarios
that study dynamics on graphs such as information propagation on social networks.

Approximating trajectory conditional entropy We showed in Chapter 6 that
computing the conditional trajectory entropy H,q, is costly because it requires the
inversion of a (N — 1) x (N — 1) matrix, where N is the number of states of the Markov
chain. To reduce this complexity, an interesting direction to explore is the approximation
of the conditional H,g|, by the sum of entropies Hsg, + Hyq. We showed that the equality
Hggy = Hgy + Hyq holds if p(Tsy ¢ T2) = 1, but we are still not able to compute
or bound the difference H,q), — (Hsu + Hyg). Being able to do so would enable us to
approximate conditional trajectory entropy by a quantity that is much less costly to
compute. In fact, we would be able to pre-compute once the matrix of trajectories
entropies H, and then compute the approximation of the conditional entropy Hg, by
adding two elements of matrix H.
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9.1. Future Research and Challenges

The data divide In the introduction, we mentioned that we are witnessing the data
revolution that is characterized by a deluge of data, or what is commonly called “Big
data”. However, only the Internet companies, such as Google or Facebook, have access to
really large datasets. A sociologist working for Facebook will have access to data that the
rest of the research community will not, and a multimedia researcher working for Yahoo
will have access to all photos on Flickr. Even the largest dataset presented in this thesis
(Flickr photos in Chapter 8) was analyzed during an internship within Yahoo labs. We
can naturally sample from this data by using the public APIs provided by social media
companies, but this does not provide us with all the data these companies are collecting.
This created data inequality between researchers that collaborate with Internet companies
and the rest of the scholarly community, which is detrimental to research. It contradicts
the principle of reproducible research because the research community is not able to
verify the claims made by the researchers with exclusive access to the data of Internet
companies.
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