
FPGA-SPICE: A Simulation-based Power Estimation
Framework for FPGAs

Xifan Tang, Pierre-Emmanuel Gaillardon and Giovanni De Micheli
Integrated Systems Laboratory (LSI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland

Email: xifan.tang@epfl.ch

Abstract—Mainstream Field Programmable Gate Array
(FPGA) power estimation tools are based on probabilistic activity
estimation and analytical power models. The power consumption
of the programmable resources of FPGAs is highly sensitive
to their configurations. Due to their highly flexible nature,
the configurations of FPGAs routing multiplexers or Look Up
Tables (LUTs) are really different from a design to another
but current analytical power models cannot accurately capture
the associated power differences. In this paper, we introduce a
simulation-based power estimation framework for FPGAs, called
FPGA-SPICE, which supports any FPGA architecture that can
be described with an architectural description language. Our
power estimation engine automatically generates accurate SPICE
netlists according to the FPGA configurations and enables precise
power analysis of FPGA architectures. SPICE testbenches can
be generated at different level of complexity, denoted as full-
chip-level, grid-level and component-level testbenches. Full-chip-
level testbenches dump the netlists associated with the complete
FPGA fabric. To reduce simulation time, FPGA-SPICE can split
the full-chip-level testbenches into grid-level testbenches, each of
which consisting of a complete logic block netlist, or component-
level testbenches, which consider individual circuit elements, i.e.,
multiplexers, LUTs, flip-flops, etc., separately. We show that the
grid/component-level approach can achieve 14× speed-up with
a moderate 14% accuracy loss, compared to the full-chip level.
We also use FPGA-SPICE to study the power characteristics of
a commercial FPGA architecture at different technology nodes.
Experimental results show that the global routing architecture
consumes 50% of the total power, the local routing architecture
claims for 40% of the total power, and the remaining 10% comes
from the LUTs and flip-flops.

I. INTRODUCTION

Very Large Scale Integration (VLSI) power estimation
techniques can be classified into two categories: simulation-
based and probability-based [1]. On the one hand, simulation-
based methods are the most direct way to do accurate power
analysis. They typically rely on SPICE-based simulators to
analyze the power consumption of a given circuit netlist.
However, in the 1990s, SPICE simulations were regarded
to be only applicable for small-scale circuits due to the
low simulation speed and high memory usage [1]. On the
other hand, probability-based methods are based on signal
activity estimation and analytical power models. Analytical
power models estimate the switching power associated with
input signal changes. Average power consumption is calculated
by combining signal switch density and switching power.
Compared to a simulation-based method, a probability-based
method is faster but trades off accuracy due to the approximate
errors in analytical power models and signal activity estima-
tions.

In the specific context of Field Programmable Gate Ar-
rays (FPGAs), the power estimation engines embedded in
academic architecture exploration tools are typically based
on probabilistic activity estimation [2] and analytical power
models [3]–[5]. A probabilistic power estimation tool faces two
challenges. First, the accuracy of these analytical power models
is guaranteed to only few input signal patterns of the different
circuit elements. Unfortunately, the input signal patterns of
FPGAs may significantly differ from a design to another. For
instance, the power differences of a 4-input Look-Up Table
(LUT) can reach 69% under diverse input signal patterns [4].
Therefore, current power estimation tools guarantee accuracy
on very restrictive conditions. Second, academic FPGA archi-
tecture exploration tools [7] employ architecture description
language [8] to model highly flexible FPGA architectures.
The hierarchy and complex interconnects inside modern FPGA
logic block architectures can be precisely described with the
architecture description language. The timing parameters of
logic and routing elements are richly provided for accurate
timing analysis. However, there are very limited transistor-level
modeling parameters in architecture description language, that
can be exploited for power estimations. These two challenges
cause that current power estimation tools relying on analytical
power models cannot capture well the power characteristics
of a wide range of novel FPGA architectures. Fortunately,
during the last decade, we saw significant advances in SPICE
simulators and computing capabilities. Nowadays, SPICE sim-
ulators can handle millions of transistors in a few minutes
[9], motivating us to explore simulation-based approaches to
FPGA.

In this paper, we introduce FPGA-SPICE, a simulation-
based power estimation framework for FPGAs, that is tightly
integrated within the popular academic architecture exploration
tool suite VTR [7]. We extend the generic architecture de-
scription language [8] to consider transistor-level parameters
related to each module inside the FPGA architecture under
evaluation. FPGA-SPICE can output SPICE testbenches at
different level of complexity, namely full-chip-level, grid-
level and component-level. The full-chip level dumps a netlist
of a complete FPGA fabric, including mapping, placement
and routing results as well as technological information. To
reduce simulation time, FPGA-SPICE employs netlist splitting
strategies to slice full-chip-level testbenches into grid-level
testbenches, each of which consisting of a complete logic
block netlist, or component-level testbenches, which consider
individual circuit elements, such as LUTs, flip-flops (FFs)
and multiplexers. We use FPGA-SPICE to study the power
characteristics of a commercial FPGA architecture at 22nm,
45nm and 180nm technology nodes. Experimental results

696978-1-4673-7166-7/15/$31.00 c©2015 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148015227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

show that the grid-level and component-level testbenches can
achieve 14× simulation time reduction with only 14% error
accuracy on average, when compared to the most accurate
power estimation approach, i.e., the full-chip-level testbench.
FPGA-SPICE verifies the conclusion given in literatures [5],
that only 10% of the total power comes from LUTs and FFs
and the rest 90% is consumed by the routing architectures.
FPGA-SPICE reports that the global routing architecture and
local routing architecture consume 50% and 40% of the total
power, respectively. Leveraging on SPICE simulations, FPGA-
SPICE can produce more accurate power analysis than analyt-
ical power models, bringing new opportunities in architecture
explorations.

This paper is organized as follows. In Section II, we report
some brief background on FPGA architectures and academic
architecture exploration tools. In Section III, we introduce
the core engine of FPGA-SPICE. In Section IV, we report
experimental results, while in Section V we conclude the paper.

II. BACKGROUND

In this section, we first introduce the principles of modern
FPGA architectures. Then, we comment on state-of-the-art
academic architecture exploration tools that are compatible
with modern FPGA architectures.

A. Island-style FPGA Fabric

Modern FPGA architectures are based on island-style fab-
rics that are interconnected by rich programmable routing
resources. Fig. 1 describes the principles of modern FPGA
architectures where Configurable Logic Blocks (CLBs), orga-
nized in array, are surrounded by a global routing architecture.
The global routing architecture is built with Connection Blocks
(CBs), which connect CLB pins to routing tracks, and Switch
Boxes (SBs), that interconnects routing tracks. A CLB typically
comprises a number of Basic Logic Elements (BLEs) each
of which consists of a Look Up Table (LUT), a D Flip-flop
(FF), and an output selector (2:1 Multiplexer). A local routing
architecture consists of fully populated crossbars that intercon-
nects BLE pins and CLB pins. Nowadays, commercial FPGAs
[10]–[12] apply architectural enhancements to improve the area
and speed of arithmetic-intensive implementations. Columns of
CLBs are replaced with heterogenous blocks, such as memory
banks and DSP blocks. BLEs comprise of fracturable LUTs
[13] and hard carry chains [14]. Local routing architecture
also interconnects adjacent CLBs to provide highways between
neighbours [15], [16]. High speed transceivers and hard wired
logic blocks are used to implement ultra-high speed I/Os in
addition to the standard I/O blocks.

B. Academic FPGA Architecture Exploration Tools

The performance of an FPGA strongly depends on hard-
ware/software co-optimizations. In order to study various
possible architecture, academic architecture exploration tool
suites are developed. In this paper, we focus on the VTR
tool suite, whose flow is illustrated in Fig. 2. The Logic
synthesis tool ABC [18] optimizes the benchmark circuits and
performs a technology mapping. The activity estimator ACE2
[2] computes the signal activities of all the internal nodes in
the benchmark circuits. Finally, the tool VPR [7] packs, places

... ...

... ...

DFF

BLE

...

SRAM

DFF

BLE

...

CLK

CLK

Local Routing

Track

...

...

MUX

...

Connection Box

... ...
...

Switch Block

Configurable Logic Block

CLB SB CB IO

D
SP B

lock
D

SP B
lock

D
SP B

lock

M
em

ory B
ank

M
em

ory B
ank

Transceivers

Transceivers

Transceivers

Transceivers

L
U
T

L
U
T

M
U
X M

M
U
X

Fig. 1. Modern FPGA architecture

and routes the circuits into a hypothetic FPGA defined with the
architecture description language. In the packing stage, LUTs
and FFs are clustered into CLBs. Placement determines the
physical positions of CLBs in the FPGA fabric. Routing stage
maps the nets of CLBs into routing architectures. After routing,
VersaPower [5] estimates the power consumption with signal
activities and analytical power models. Previous works [3], [4]
were designed exclusively for early VPR versions, whose focus
were limited to restricted FPGA architectures. VersaPower
[5], integrated in the latest VPR, supports the architecture
description language and diverse architectures. In this paper,
we will compare on our power estimation framework to the
analytical power model used in VersaPower.

III. FPGA-SPICE ENGINE

FPGA-SPICE aims at interfacing a SPICE-based electrical
simulator with the VTR tool suite in order to perform accurate
power analysis. As illustrated in Fig. 3, FPGA-SPICE exploits
the description of the architecture provided by the architect to
VTR, the mapped netlists and the estimated signal activities
to dump circuit netlists and the associated testbenches for the
implemented benchmarks. The tool subsequently invokes a

2015 33rd IEEE International Conference on Computer Design (ICCD) 697

Logic Synthesis
(ABC)

Architecture
Description

AA-Pack

Versatile
Placer&Router

VPR
.blif

Area&Delay&Power

*.xml
*.net

Circuit-level
Description

 Technology Library

Activity Estimator 2
(ACE2)

.blif

.act

VersaPower

Fig. 2. Academic FPGA architecture exploration EDA flow.

Logic Synthesis
(ABC)

Architecture
Description (Extended)

AA-Pack

Versatile
Placer&Router

VPR
.blif

Area&Delay

*.xml
*.net

Circuit-level
Description

Technology Library

Activity Estimator 2
(ACE2)

.blif

.act

FPGA-SPICE

User-defined Module
SPICE Netlists

HSPICE Simulator

 Power

Fig. 3. FPGA-SPICE EDA flow.

SPICE simulator to conduct power analysis.

FPGA-SPICE reads transistor-level design parameters from
an extended architecture description XML file and use them
to automatically generate detailed SPICE netlists of the circuit
elements of the FPGA architecture. Section III-A is devoted
to introducing the proposed extension of the VTR architecture
description language.

Alternatively, FPGA-SPICE can use a user-defined SPICE
netlists rather than automatically generating them. This is an
interesting feature to model fine-grain FPGA components, such
as SRAMs, whose performances are highly dependent on the
technology and the circuit structure. This brings the capabil-
ity to study the system-level impact of the circuit elemen-
tary blocks, thereby enabling interesting circuit/architecture
co-optimization opportunities. Details about transistor-level
SPICE netlists generation are introduced in Section III-B.

FPGA-SPICE can generate its netlists at three lev-

els of complexity, which are full-chip-level, grid-level and
component-level. Fig. 4 illustrates the granularity of each level.
In a full-chip-level testbench, all the components, such as
CLBs, SBs and CBs, are simulated within a unique SPICE
netlist, leading to very accurate simulation. Nevertheless, a
full-chip-level testbench simulation may require long runtime
and large memory usage because of the exponential complexity
of Electrical Design Automation (EDA) algorithms. To reduce
both runtime and memory usage, FPGA-SPICE can split
the evaluation of a full-chip-level testbench into grid-level
and component-level testbenches. The grid-level testbenches
consider separately each individual CLBs, memory banks,
DSP blocks, SB multiplexers and CB multiplexers. In the
component-level testbenches, the CLBs are further sliced into
individual modules, such as LUTs, FFs and local routing
multiplexers, for each of which an associated testbench is
created. Section III-D focus on the splitting strategies in
grid/component-level testbenches.

FPGA-SPICE is available at [17].

A. Extended Architecture Description Language

FPGA-SPICE extends the architecture description language
of [8]. This architecture description language can model highly
flexible FPGA architectures at an abstract level. In the ex-
tension, we add transistor-level circuit design parameters for
modelling the circuit components of the FPGA modules.

First, transistor model and basic geometrical properties are
defined in XML nodes tech lib and transistor, as follows:

<tech lib lib path=“45nmHP.pm” nominal vdd=“1.0”/>
<transistors pn ratio=“1.5”>
<nmos chan length=“45e-9” min width=“140e-9”/>
<pmos chan length=“45e-9” min width=“140e-9”/>

</transistors>

The channel length, transistor width and ratio between p-
type and n-type transistors are defined in the XML properties
nmos and pmos, respectively.

Then, transistor-level circuit design parameters of a FPGA
module are defined under a XML property called spice model.
The VTR architecture description language models all logic
blocks with a hierarchy of XML properties, called pb type.
We create a property spice model name under pb type to link
the logic blocks to defined spice models. The following code
shows an example, where a 6-input LUT spice model, lut6, is
defined and linked to a logic block, n lut6:

<spice model type=“lut” name=“lut6” sp netlist=“lut6.sp”>
<port type=“input” prefix=“in” size=“6”/>
<port type=“output” prefix=“out” size=“1”/>
<port type=“sram” prefix=“sram” size=“64”/>

</spice model>
<pb type name=“n lut6” spice model name=“lut6”>
</pb type>

Under the XML property spice model, the ports of a
LUT should be defined by providing the size, port type and
port name. Since the circuit designs of some of the FPGA
modules are highly dependent on the technology nodes, such
as SRAMs, hard logic blocks or FFs, FPGA-SPICE allows
user-customized SPICE netlists for each defined spice model.
In the above example of lut6, a user-customized SPICE netlist
is defined in the XML properties, sp netlist.

698 2015 33rd IEEE International Conference on Computer Design (ICCD)

(a)

(b)

M
em

ory B
ank

~

~

...

~

~

...

~

D
SP B

locks

~

~

...

...

... ...

~

~

...
L
U
T ~

FF

...

CLB~

~

...

CLB~

~

...

CLB~

~

...

Hetergenonous Blocks and CLBs
SB

MUXes
CB

MUXes

(c)

~

~

...

M
U
X

...

Hetergenonous Blocks
CLB

MUXes
LUTs FFs

~

~

...
L
U
T ~

FF

... ...

SB
MUXes

CB
MUXes

...

...

~

~

...

M
U
X

~

~

...

M
U
X

D
SP B

locks

~

~

...

M
em

ory B
ank

~

~

...

~

~

...

M
U
X

~

~

...

M
U
X

~

~

...

M
U
X

~

~

...

M
U
X

~

~

...

M
U
X

~

~

...

M
U
X

~

~

...

M
U
X

~

~

...

M
U
X

~

~

...

M
U
X

~

~

...

M
U
X

~

~

...

M
U
X

Fig. 4. Ilustration of the testbenches simularity: (a)
Full-chip-level, (b)grid-level and (c) component-level

testbenches.

B. Transistor-level Circuit Netlist Generation

In an FPGA, the circuit-level implementations for the dif-
ferent blocks, such as channel wires, multiplexers and LUTs,

are highly dependent on the architectural choices. FPGA-
SPICE can automatically determine their design parameters
and generate their SPICE netlists. In this section, we will
discuss the details of the circuit netlist generation engine.

1) Multiplexers: The multiplexers in FPGAs have diverse
sizes and fan-outs, depending on their locations, i.e., in local
routing or global routing.

input_buffer:
exist="on"

type="inverter"
size="1"

in0

in(N-1)

out

SRAM

…
M

U
X

 T
ree

…

SRAM0

SRAM0

SRAM0

SRAM1

SRAM1

SRAM1

…

in0

in1
…

SRAMn

SRAMn

SRAMn

in0

in(N-1)

SRAM

1×…

M
U

X
 T

ree

1×

1×

1×

1×

1× 4× 16×

out

output_buffer:
exist="on"

type="inverter"
size="1"

output_buffer:
exist="on"

type="inverter"
size=“1”

tapered="on"
tap_buf_level="3"
f_per_stage="4"

(a)

(b)

(c)

pass_gate_logic:
type="transmission_gate"

nmos_size="1"
pmos_size="1.5"

Fig. 5. Transistor-level circuit design of (a) a global routing
multiplexer, (b) a local routing multiplexer, and (c) the

internal tree-like structure.

In this context, different circuit-level optimization, such as
transistor sizing and the use of tapered buffer, may apply.
The transistor sizes and buffer allocation can be specified
in the SPICE model definitions. The presence or absence of
input/output inverters/buffers can be declared by setting the
XML properties exist and type. Additionally, the size and
design topology can be customized by properly setting the
XML properties tapered, tap buf level and f per stage. The
use of a pass gate logic or a transmission gate logic design
style can be specified in the XML property pass gate logic.
The sizes of the transistors used in the pass gate or transmission
gate logic can be specified in the XML properties nmos size
and pmos size.

2015 33rd IEEE International Conference on Computer Design (ICCD) 699

Transistor-level circuit design examples of global routing
multiplexers and local routing multiplexers are shown in Fig.
5(a) and Fig. 5(b), respectively. The tree-like structure of
multiplexers is depicted in Fig. 5(c). The transistor-level circuit
design of a global routing multiplexer in Fig. 5(a) can modelled
by the following code:

<spice model type=“mux” name=“sb mux”/>
<input buffer exist=“on” type=“inverter” size=“1”/>
<output buffer exist=“on” type=“inverter” tapered=“on”

tap buf level=“3” f per stage=“4”/>
<pass gate logic type=“transmission gate”
nmos size=“1” pmos size=“1.5”/>

</spice model>

Global routing multiplexers require an output tapered
buffer [21], in order to drive the long routing metal wires as
well as downstream loads due to the SB and CB multiplexers
[19]. The output tapered buffer in Fig. 5(a) consists of three
stages and the logical effort between stages is four. Input
buffers are added to restore the input signals and drive the
tree-like internal structure of the multiplexer. Fig. 5(b) depicts
the circuit design of a local routing multiplexer which intercon-
nects CLB input pins to BLE input pins. Because the fanout of
the multiplexer is typically small (one or two inverters), there
is only a minimum-size output inverter.

FPGA-SPICE translates the architectural needs and design
topologies into multiplexer SPICE netlists and initializes the
SRAM configurations according to VPR routing results.

2) Look-Up Tables: LUTs are crucial components in FP-
GAs as they serve as combinational function generators. Fig.
6 illustrates the transistor-level circuit design of a LUT con-
sidered in this paper, including SRAMs, decoded multiplexers,
and buffers [20].

out

SRAM

…

…

in0

…

in(K-1)

SRAM

in1

…
pass_gate_logic

type="transmission_gate"
nmos_size="1"
pmos_size=“1.5”

input_buffer
exist="on"

type="inverter"
size="1"

lut_input_buffer
exist="on"

type="inverter"
size="1"

f_per_stage="2"

output_buffer
exist="on"

type="inverter"
size="1"

1×

1×

1×

1× 1×

2×

1× 1×

2×

1× 1×

2×

Fig. 6. An example of the transistor-level design of a LUT

The following XML properties are used to describe the
circuit characteristics of the implementation in Fig. 6. The
input buffer properties model the buffers between the inputs of
internal multiplexer and SRAM outputs. The lut input buffer

properties describe the buffers at LUT inputs, where f stage
denotes the logic efforts of the input buffers. FPGA-SPICE
decodes technology mapping results of LUTs to properly
initialize the SRAM bits.

<spice model type=“lut” name=“lut6”>
<lut input buffer exist=“on” type=“inverter”

size=“1” f stage=“2”/>
<input buffer exist=“on” type=“inverter” size=“1”/>
<output buffer exist=“on” type=“inverter” size=“1”/>
<pass gate logic type=“transmission gate”

nmos size=“1” pmos size=“1.5”/>
</spice model>

C. Channel Wire

In modern FPGAs, channel wires are non-negligible mod-
ules owing to the facts that CLB area increases to contain
heterogeneous blocks and difficulties in scaling down intercon-
necting metal wires. A length-L channel wire is abstracted as
L cascaded segments, each of which spans a unique CLB. Fig.
7(a) depicts a length-2 channel wire in unidirectional routing
architecture [6]. The channel wire is divided into two segments,
namely Segment0 and Segment1.

CLB0 CLB1

SB0

CB0

4.6fF

52Ω

CB1

SB1

CLB2

CB0 CB1

(a)

(b)

SB0

SB2

SB3

SB2 SB3

SB1

Segment 0

Segment 0 Segment 1

Segment 1

wire_param
model_type=“pi”
res_val=“103.84”

cap_val=“13.80e-15”
level=“1”

52Ω

4.6fF 4.6fF

52Ω52Ω

4.6fF 4.6fF4.6fF

Fig. 7. (a) A length-2 unidirectional wire (highlighted in red)
within FPGA routing architecture; (b) Corresponding RC

modelling of segments

We assume that the inputs of CBs are connected to the
middle of segments, breaking segments into two parts. We
model each part of segments with distributed RC lines. The
type of RC lines, i.e., either π-type or T -type, is specified
in the XML property model type. The number of levels of
a RC line can be customized by setting the XML property
level. The total resistances and capacitance of a segment can be
defined in XML properties res val and cap val, respectively.
The following example describes the RC models of segments
in Fig 7(b), corresponding to the segments in Fig 7(a).

<spice model type=“chan wire” name=“chan segment”>

700 2015 33rd IEEE International Conference on Computer Design (ICCD)

<wire param model type=“pi” res val=“103.84”
cap val=“13.80e-15” level=“1”/>

</spice model>

D. Netlist Splitting Strategies

Full-chip-level netlists, that consider the full FPGA fabric
in unique SPICE testbenches, produce accurate analysis but at
the cost of large simulation time and memory usage. FPGA-
SPICE can distribute the individual elements of a full-chip-
level testbench into separate grid/component-level testbenches,
significantly reducing the simulation time and memory usage
at the cost of a lower accuracy. In this section, we introduce the
two techniques used in FPGA-SPICE to split a full-chip netlist,
namely voltage stimuli/load extraction and parasitic activity
estimation.

1) Voltage Stimuli and Loads Extraction: FPGA-SPICE
generates its individual testbenches by including voltage stim-
uli and downstream loads. To illustrate the technique, Fig. 8
shows a BLE multiplexer (in blue) that is driven by signals
A and B, and that fanouts to local routing and global routing
architectures.

First, voltage stimuli are added to model the signal ac-
tivities of A and B. Their frequencies and pulse widths are
derived from signal density and activities. The signal density
defines the number of switching events of a signal in one clock
cycle while the probability represents the proportion that the
signal is in logic 1 during one system clock cycle. To relate
these activity information, we set the frequency of the voltage
stimuli to:

freq =
clock period

density(Signal)
. (1)

The pulse width of a voltage stimuli is set to:

pulse width = freq · probability(Signal). (2)

Then, FPGA-SPICE adds the loads of the block by extract-
ing the downstream elements in the architecture (highlighted
in red in Fig. 8(a)). The downstream loads of a grid/component
should be included in the testbench for two reasons: (1) these
loads are charged/discharged by the element and (2) the power
consumption is sensitive to voltage slews, which are highly
dependent on the downstream loads [3]. Note that, if the
downstream loads include channel wires, the channel wires
should be extracted and included to the testbench.

2) Parasitic Activity Estimation: Input signals in
grid/component-level netlists should accurately model
the internal signal activities of FPGA modules. In an FPGA,
the signals of the used nets may be parasitically propagated
to unused nets, depending on the topology of the routing
architecture. ACE2 estimates the signal activities of the used
nets but cannot foresee the parasitically propagated activities
because they are only predictable after the routing pass
finishes. Fig. 9 illustrates the parasitic net signals sourcing
from a used net, called net0. Assume net0 is only used by
the CLB through local routing (green path) and not routed
to the global routing architecture. VPR assumes that all
the downstream components driven by net0 are idle and
configures them to propagate their first inputs. However, in
such condition, net0 will be propagated through the routing
structure (red path). These parasitic activities will cause

L
U
T FF

BLE

...

... ...

... ...

Local Routing

...

CLB

...

SBs

...

BLE

L
U
T

...

FF

(a)

~

~

Inv. loads
from local

routing
Inv. loads
from SBs

(b)

 A

 B

 A

 B

f =
clock _ freq

density(B)

PWH =
prob(B)

f

f =
clock _ freq

density(A)

PWH =
prob(A)

f

M
U
X

MUX

MUX

Fig. 8. Ilustration of the voltage stimuli generation and load
extraction techniques. (a) BLE multiplexer with its

architectural context; (b) extracted testbench.

extra power consumption and should be taken into account.
FPGA-SPICE performs parasitic activity estimation for all the
unused nets after routing stage.

BLE

M
U
X

...

Local routing

CLB

SBs

...

CBs
net0

net0
net0

Fig. 9. An example for parasitic nets estimation.

IV. EXPERIMENTAL RESULTS

In this section, we study the runtime, memory usage
and accuracy of the different levels of FPGA-SPICE. Then,
we use FPGA-SPICE to study the power breakdown of a
modern FPGA architecture under different technology nodes
and compare the results to standard analytical models, i.e.,
VersaPower.

A. Methodology

We use the FPGA-SPICE EDA flow in Fig. 3. MCNC
big20 benchmarks [23] are selected as the EDA flow in-
puts. First, ABC synthesizes the benchmarks and ACE2
estimates the signal activities. Then, VPR packs, places
and routes. Afterwards, the FPGA-SPICE generates the full-
chip/grid/component-level testbenches with the architecture
XML files. In the last step, we run SPICE simulators to analyze
power. The experiments are run on a 64-bit RedHat Linux
server with 32 AMD Opteron Processors and 128Gb memory.

2015 33rd IEEE International Conference on Computer Design (ICCD) 701

In this paper, we resemble the architecture of an Altera
Stratix IV FPGA, where each CLB contains I = 33 inputs pins
and N = 10 fracturable 6-input LUTs (K = 6). Length-4 uni-
directional routing architectures are employed to interconnects
Wilton’s Switch Blocks, where Fs = 3. We set Fc,in = 0.15
and Fc,out = 0.10. The channel width, W , is set to 120 by
adding 20% margin to the minimum channel width that VPR
can route the biggest tested benchmark. All the architecture
description files used in this paper are available at [17]. We
investigate three technology nodes, 22nm, 45nm and 180nm
using the PTM model [24]. The transistor-level circuit designs
of SRAMs, FFs and multiplexers are derived from [20]. We
model routing wire segments with a one-level π-type RC
models and the wire parameters are derived from ITRS [22].
We determine the simulation clock period by adding 20% slack
to the VPR critical path delay, in order to consider errors
between the timing analysis engine and SPICE simulations
[6]. The time period of simulations should be a full operating
cycle by considering the least active signal, as follows:

sim time period =
clock period

min{density(Signal)} . (3)

However, the density of the least active signal is typically
very low, which leads to long time period and large simulation
time. Instead, we replace the min{density(Signal)} with the
average density of signals to reduce the the simulation time.
The time step of SPICE simulator is set to 0.1ps and fast
simulation algorithm is turned on.

B. Studies on Runtime, Memory Usage and Accuracy

Simulating full-chip-level testbenches is the most accurate
approach to power analysis at the cost of runtime and memory
usage. Table I compares the runtime, memory usage and
power results of full-chip/grid/component-level testbenches at
different technology nodes, obtained for the MCNC big20
benchmark s298. Compared to the full-chip-level testbench,
the grid-level testbenches achieve 12× speed-up in runtime
with a moderate 14.5% error on average over the different
technology nodes. Compared to the full-chip-level testbench,
the component-level testbenches accelerate 14× in runtime
with a 13.6% error on average over the different technology
nodes. Component-level testbenches lead to the best trade-off
in runtime and accuracy loss thanks to the efficient netlist
splitting strategies discussed in Section III-D. Therefore, in
the following, we use component-level power results to study
power breakdowns. We also examine the effects of the parasitic
activity estimation on the accuracy. Without the parasitic
activity estimation, on average, the accuracy of the grid-level
and the component-level testbenches degrades by 16%, while
the runtime is reduced by 18%. Especially, the power of CBs
and SBs gets under-estimated by 37%.

C. Power Breakdowns

In this part, we use FPGA-SPICE to study the power
breakdowns of the considered FPGA architecture. Fig. 10
shows the power repartition by components for the three
considered technology nodes. These breakdowns are obtained
by averaging the results over the complete MCNC big20 suite.
In general, the routing architecture consumes 90% of the total
power with the global routing architecture takeing 60% of the
overall power. When the technology scales down from 180nm

to 22nm, the power share of the global routing architecture
increases, resulting from the fact that interconnect does not
scale down as the same ratio as transistors do. Indeed, the
parasitic transistor capacitance decreases by 90% from 180nm
to 22nm technology node but the interconnect capacitance per
length is reduced by only 70% [5]. Consequently, at 22nm
and 45nm technology, the number of stages in the SB tapered
buffers in typically larger in order to drive the interconnect
wires. Therefore, the power share of SBs grows from 180nm
to 22nm technology. The obtained results are in accordance
with literature [5].

D. Accuracy Examination on VersaPower

We compare the power breakdown results between FPGA-
SPICE and VersaPower, as shown in Fig. 10. FPGA-SPICE
predicts that the local routing architecture occupies as large
power share as the global routing architecture, which is differ-
ent from the VersaPower. It can be explained in the following
reasons. First, FPGA-SPICE takes the parasitic net activities in
account which leads to additional power consumption in rout-
ing architectures. VersaPower assumes that unused resources in
FPGAs can be regionally powered-off and therefore parasitic
net activities can be neglected. Second, FPGA-SPICE uses
electrical simulations and real configuration information from
VTR, i.e., SRAM configurations in LUTs, used and unused
routing multiplexer configurations, to accurately analyze the
power of the architectures, while VersaPower only considers
worst-case scenario and basic scaling strategies [5]. Due to
the large runtime cost, we only compare the power results of
the s298 benchmark between VersaPower and FPGA-SPICE.
VersaPower over-estimates the total power by at least 24%,
when compared to the full-chip-level results.

V. CONCLUSION

This paper introduces a simulation-based power estima-
tion framework for FPGAs, called FPGA-SPICE. This tool
extends the VTR architecture description language to include
transistor-level modeling parameters of FPGA components.
Tightly embedded in academic architecture exploration tool
suites, FPGA-SPICE generates SPICE netlists at different
levels of complexity, considering precise technology mapping,
placement and routing information as well as technological
data. It subsequently uses SPICE simulators to perform accu-
rate power analysis, leading to better accuracy compared to an-
alytical power models. As a general-purpose power estimation
framework, FPGA-SPICE can support more transistor-level
circuit design topologies, such as one-level/two-level multi-
plexers as well as emerging technologies, such as Resistive
Random Access Memories (RRAMs).

ACKNOWLEDGMENTS

This work was supported by the Swiss National Science
Foundation under the project number 200021-146600.

REFERENCES

[1] F.N. Njam, A Survey of Power Estimation Techniques in VLSI Circuits ,
IEEE TVLSI, Vol. 2, No. 4, pp. 446-455, 1994.

[2] J. Lamoureux et al., Activity Estimation for Field-Programmable Gate
Arrays, IEEE FPL, pp. 87-94, 2006.

[3] K. K. Poon et al., A Detailed Power Model for Field-Programmable Gate
Arrays, ACM TODAES, Vol. 10, No. 2, pp. 279-302, 2005.

702 2015 33rd IEEE International Conference on Computer Design (ICCD)

TABLE I. Comparison of runtime, memory usage and total power of full-chip/grid/component-level testbenches for 22nm,
45nm and 180nm technology nodes in the case of the MCNC big20 benchmark s298.

Benchmark: s298 Runtime (No. of minutes) Peak Used Memory (Mb.) Total Power (mW)
Testbench/Tech. 22nm 45nm 180nm 22nm 45nm 180nm 22nm 45nm 180nm
Full-chip-level 129.48 106.15 102.56 4780 4827 4306 1.56 4.13 15.63

Grid-level 10.27(-92%1) 9.82(-91%1) 8.25(-92%1) 768(-84%1) 768(-84%1) 825(-81%1) 1.41(-9%2) 3.37(-18%2) 18.03(+15%2)

Component-level 7.42(-94%3) 6.97(-93%3) 6.23(-94%3) 589(-88%3) 584(-88%3) 621(-86%3) 1.45(-7%4) 3.21(-21%4) 17.57(+12%4)
1Gain(%) = (Grid-level/Full-chip-level-1)×100% 2Error(%) = (Component-level/Full-chip-level-1)×100%
3Gain(%) = (Grid-level/Full-chip-level-1)×100% 4Error(%) = (Component-level/Full-chip-level-1)×100%

TABLE II. Comparison of accuracy by modules in full-chip/grid/component-level testbenches for 22nm, 45nm and 180nm
technology nodes in the case of the MCNC benchmark big20 s298.

Benchmark: s298 CLB Power (mW) CBs Power (mW) SBs Power (mW)
Testbench/Tech. 22nm 45nm 180nm 22nm 45nm 180nm 22nm 45nm 180nm
Full-chip-level 0.42 1.06 7.85 0.12 0.23 2.53 1.02 2.82 5.26

Grid-level 0.44(+5%1) 1.17(+10%1) 10.00(+27%1) 0.11(-8%1) 0.22(-5%1) 2.67(-5%1) 0.86(-15%1) 1.99(-29%1) 5.37(+2%1)

Component-level 0.47(+12%2) 1.01(-5%2) 9.54(+22%2) 0.11(-8%2) 0.22(-5%2) 2.67(-5%2) 0.86(-15%2) 1.99(-29%2) 5.37(+2%2)
1Error(%) = (Grid-level/Full-chip-level-1)×100% 2Error(%) = (Component-level/Full-chip-level-1)×100%

4.36%

34.99%

13.15%

37.39%

14.17%

46.00%

9.13%

14.44%

7.97%

6.64%

11.27%

10.64%

1.01%

0.69%

2.69%

1.04%

5.07%

1.01%

8.92%

17.32%

18.43%

21.23%

13.03%

27.00%

75.25%

32.57%

66.46%

33.70%

55.43%

15.35%

VersaPower FPGA-SPICE VersaPower FPGA-SPICE VersaPower FPGA-SPICE
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CLB MUX LUT DFF CB MUX SB MUX

22nm Technology 45nm Technology 180nm Technology

Fig. 10. Power breakdown results of the considered FPGA architecture between FPGA-SPICE and VersaPower averaged over
the MCNC big20 benchmark suite for 22nm, 45nm and 180nm technology nodes.

[4] F. Li et al., Power Modeling and Characteristics of Field Programmable
Gate Arrays, IEEE TCAD, Vol. 24, No. 11, pp. 1712-1724, 2005.

[5] J. B. Goeders et al., VersaPower: Power Estimation for Diverse FPGA
Architectures, IEEE ICFPT, pp. 229 - 234 , 2012.

[6] V. Betz et al., Architecture and CAD for Deep-Submicron FPGAs,
Kluwer Academic Publishers, 1998.

[7] J. Rose et al., The VTR Project: Architecture and CAD for FPGAs from
Verilog to Routing, FPGA, 2012, pp. 77-86.

[8] J. Luu et al., Architecture Description and Packing for Logic Blocks with
Hierarchy, Modes and Complex Interconnect, FPGA, pp. 227-236 ,
2011.

[9] A. Vladimirescu, The Spice Book, John Wiley & Sons Publishers, 2012.

[10] D. Lewis et al., The Stratix II Logic and Routing Architecture, FPGA,
2005, pp.14-20.

[11] Altera Corporation, Stratix IV device handbook version SIV5V1-
1.1, July 2008. http://www.altera.com/literature/hb/stratix-iv/stratix4
handbook.pdf

[12] Xilinx, Virtex-5 User Guide UG190 (v4.0), March 2008. http://www.
xilinx.com/support/documentation/user guides/ug190.pdf

[13] M. Hutton et al., Improving FPGA Performance and Area Using an
Adaptive Logic Module, FPL, 2004, pp. 135-144.

[14] J. Luu et al., On Hard Adders and Carry Chains in FPGAs, FCCM,
2014, pp. 52-59.

[15] G. Lemieux, et al., Generating Highly-Routable Sparse Crossbars for
PLDs, FPGA, 2000, pp. 155-164.

[16] G. Lemieux et al., Using Sparse Crossbars within LUT Clusters,
FPGA, 2001, pp. 59-68.

[17] http:// lsi.epfl.ch/downloads
[18] University of California in Berkeley, ABC: A System for Squential

Synthesis and Verification, Available online. http://www.eecs.berkeley.
edu/∼alanmi/abc/

[19] E. Lee et al., Interconnect Driver Design for Long Wires in Field-
Programmable Gate Arrays, ICFPT, 2006, pp. 86-96.

[20] C. Chiasson et al., Should FPGAs Abandon the Pass-gate?, FPL,
2013, pp. 1-8.

[21] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated
Circuits, Second Edition, Prentice-Hall Publisher, 2002.

[22] ITRS, Interconnect Chapter, 2011.

[23] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0, MCNC, Jan. 1991.

[24] Predictive Technology Model, Available on http://ptm.asu.edu/.

2015 33rd IEEE International Conference on Computer Design (ICCD) 703

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

