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Abstract— We consider the problem of solving a sequence
of distributed optimization problems with time-varying param-
eters and communication constraints, i.e. only neighbour-to-
neighbour communication and a limited amount of information
exchanged. By extending previous results and employing a
warm-starting strategy, we propose a on-line algorithm to solve
the optimization problems under the given constraints and show
that there exists a trade-off between the number of iterations
for solving each problem in the sequence and the accuracy
achieved by the algorithm. For a given accuracy ε, we can
find a number of iterations K, which guarantees that for each
step of the sequence the sub-optimal solution given by the
algorithm satisfies the accuracy. We apply the method to solve a
distributed model predictive control problem by considering the
state measurement at each sampling time as the time-varying
parameter and show that the simulation supports the theoretical
results.

I. INTRODUCTION

The problem of solving a sequence of distributed opti-
mization problems with slowly varying parameters is central
to many engineering problems, e.g. on-line resource alloca-
tion, distributed estimation and distributed optimal control
problems. The main challenge for the distributed algorithms
is how to solve a global optimization problem in a dis-
tributed fashion subject to communication constraints, i.e.
only neighbour-to-neighbour communication and a limited
amount of information exchanged, while providing high
efficiency and using less computation and communication
to achieve a given accuracy.

Inexact distributed optimization methods are attracting
increasing attention, since these techniques have the potential
to deal with errors, for instance the inexact solution of
local problems, as well as noise caused by unreliable or
limited communication such as transmission failures and
quantization errors. Previous work has aimed at addressing
the questions of how such errors affect the algorithm and
under what conditions the convergence of the distributed
algorithms can be guaranteed. In [5], an inexact decomposi-
tion algorithm for solving distributed optimization problems
was proposed, which employs smoothing techniques and an
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excessive gap condition. In our previous work [10], we have
proposed an inexact splitting method, named the inexact fast
alternating minimization algorithm, and have applied it to
distributed optimization problems, where local computation
errors as well as errors resulting from limited communication
were allowed, and convergence conditions on the errors were
derived based on a complexity upper-bound. Some other
related references for inexact optimization algorithms include
[4], [7] and [12].

In this paper, we consider a sequence of distributed
optimization problems parameterized by a slowly varying
parameter. For each distributed problem, there are M sub-
problems with local cost functions that involves local and
neighbouring variables, local varying parameters, and local
constraints. We consider the following two challenges: 1. to
solve each problem in a distributed manner with only lo-
cal communication, i.e. between neighbouring sub-systems,
and with limited communication bandwidth, where at each
iteration only a limited number of bits can be transmitted;
2. to optimize the problems within some particular accuracy
requirement sequentially and efficiently, i.e. to use less com-
putation and communication to achieve the given accuracy.
In order to meet the limited communication bandwidth,
the information exchanged between the neighbouring sub-
systems is quantized. The quantization process results in
inexact iterations throughout the distributed optimization
algorithm, which effects its convergence. Related work in-
cludes [1], [6], [13] and [8], which study the effects of
quantization on the performance of averaging or distributed
optimization algorithms. Regarding the second challenge,
previous work has shown that for on-line parameterized
optimization there exists a trade-off between the solution
accuracy and the complexity, i.e. the cost of computation
and communication, represented by the the number of iter-
ations K of the algorithms. The related work includes [14],
where the authors considered a framework for sequentially
solving stochastic optimization problems and presented the
relationship between the accuracy and the complexity of the
algorithm.

We propose an optimization method with a progressive
quantization scheme to solve the distributed optimization
problems sequentially. The idea is to extend the algorithm
in [11] and [9] to a quantization design for parametric
distributed optimization. By employing a warm-starting strat-
egy, we improve the performance of the algorithm and show
that there exists a trade-off between the accuracy and the
number of iterations K. In particular, the paper makes the
following main contributions:
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• We extend the progressive quantization design for dis-
tributed optimization in [11] and [9] to the problem
of optimizing a sequence of distributed problems with
time-varying parameters and present the conditions on
the quantizers, which guarantee that for all steps the
values exchanged in the network always fall inside
the quantization intervals and the quantization errors
decrease linearly.

• By employing a warm-starting strategy, we improve
the convergence speed of the algorithm and present
a relationship between the solution accuracy and the
cost of computation and communication represented by
the number of iterations K. We show that for a given
accuracy ε, there always exists a K guaranteeing that
the sub-optimality of each solution in the sequence is
upper-bounded by ε.

• We demonstrate the proposed method for solving a dis-
tributed model predictive control problem by consider-
ing the initial state measurement at each sampling time
as the varying parameters and compare the simulation
results with the theoretical bound.

II. PRELIMINARIES

A. Notation

Let v ∈ Rnv be a vector. ‖v‖ denotes the l2. Let C be
a subset of Rnv . The projection of any point v ∈ Rnv onto
the set C is denoted by ProjC(v) := argminµ∈C ‖µ−v‖. Let
f : Θ → Ω be a strongly convex function; σf denotes the
convexity modulus f(v) ≥ f(µ) + 〈∂f(µ), v − µ〉+ σf

2 ‖v−
µ‖2 for any v, µ ∈ Θ, where ∂f(·) denotes the set of sub-
gradients of the function f at a given point. L(f) denotes a
Lipschitz constant of the function f , i.e. ‖f(v) − f(µ)‖ ≤
L(f)‖v − µ‖, ∀v, µ ∈ Θ.

B. Uniform quantizer

Let x be a real number. A uniform quantizer with a quan-
tization step-size ∆ and the mid-value x̄ can be expressed
as

Q(x) = x̄+ sgn(x− x̄) ·∆ ·
⌊
‖x− x̄‖

∆
+

1

2

⌋
, (1)

where sgn(·) is the sign function. The parameter ∆ is equal
to ∆ = l

2n , where l represents the size of the quantization
interval and n is the number of bits sent by the quantizer. In
this paper, we assume that n is a fixed number, which means
that the quantization interval is set to be [x̄− l

2 , x̄+ l
2 ]. The

quantization error is upper-bounded by

x−Q(x) ≤ ∆

2
=

l

2n+1
. (2)

For the case that the input of the quantizer and the mid-
value are not real numbers, but vectors of dimension nx, the
quantizer Q is composed of nx independent scalar quantizers
in (1) with the same quantization interval l and corresponding
mid-value. In this paper, we design a uniform quantizer
denoted as Qk(·) with changing quantization interval lk

and mid-value x̄k at every iteration k of the optimization
algorithm.

C. Parametric distributed optimization problem

In this paper, we consider a parametric distributed opti-
mization problem on a network of M sub-systems (nodes).
The sub-systems communicate according to a fixed undi-
rected graph G = (V, E). The vertex set V = {1, 2, · · · ,M}
represents the sub-systems and the edge set E ⊆ V×V speci-
fies pairs of sub-systems that can communicate. If (i, j) ∈ E ,
we say that sub-systems i and j are neighbours, and we
denote by Ni = {j|(i, j) ∈ E} the set of the neighbours of
sub-system i. Note that Ni includes i. We denote d as the de-
gree of G. The optimization variable of sub-system i and the
global variable are denoted by xi and x = [xT1 , · · · , xTM ]T ,
respectively. For each sub-system i, the local variable has
a local constraint xi ∈ Ci ⊆ Rnmi . The constraint on
the global variable x is denoted by C =

∏
1≤i≤M Ci. The

dimension of the local variable xi is denoted by mi and the
maximum dimension of the local variables is denoted by m̄,
i.e. m̄ := max1≤i≤M mi. The concatenation of the variable
of sub-system i and the variables of its neighbours is denoted
by xNi , and the corresponding constraint on xNi is denoted
by CNi =

∏
j∈Ni Cj . With the selecting matrices Ei and

Fji, they can be represented as xNi = Eix and xi = FjixNj ,
j ∈ Ni, which implies the relation between the local variable
xi and the global variable x, i.e. xi = FjiEjx, j ∈ Ni.
Note that Ei and Fji are selecting matrices, and therefore
‖Ei‖ = ‖Fji‖ = 1. The parametric distributed optimization
problem is given in Problem II.1.

Problem II.1.

min
x, xNi

f(x, ηt) =

M∑
i=1

fi(xNi , η
t
i)

s.t. xi ∈ Ci , xi = FjixNj , j ∈ Ni ,
xNi = Eix , i = 1, 2, · · · ,M .

The vector ηti ∈ Ξi ⊆ Rnηi is a time-dependent parameter,
for i = 1, 2, · · · ,M . We denote ηt = [ηt

T

1 , · · · , ηtTM ].

Assumption II.2. We assume that for all ηti ∈ Ξi the global
cost function f(·) is strongly convex with a convexity mod-
ulus σf and Lipschitz continuous gradient with a Lipschitz
constant L, i.e. ‖∇f(x1)−∇f(x2)‖ ≤ L‖x1− x2‖ for any
x1 and x2.

Assumption II.3. We assume that for all t ≤ 0 every local
cost function fi(·) has Lipschitz continuous gradient with a
Lipschitz constant Li, and denote Lmax as the maximum
Lipschitz constant of the local functions, i.e. Lmax :=
max1≤i≤M Li.

Assumption II.4. The local constraint Ci is a convex set,
for i = 1, · · · ,M .

Model predictive control is one application resulting in a
parametric optimization problem, which generally satisfies
Assumption II.2, Assumption II.3 and Assumption II.4. This
will be discussed in more detail in the example in Section IV.



D. Distributed optimization with limited communication
In [11] and [9], a distributed optimization algorithms

with progressive quantization design based on the inexact
proximal gradient method in [12] has been proposed. The
results address the challenge that the communication in the
distributed optimization algorithms is limited and the infor-
mation exchanged in the network needs to be quantized. The
proposed progressive quantizer with changing parameters
satisfies the communication limitations, while ensuring that
the errors induced by quantization satisfy the conditions for
convergence.

Algorithm 1 presents the distributed algorithm with the
progressive quantization design for Problem II.1 with a
fixed parameter ηt. For every sub-system i, there are two
uniform quantizers Qt,kα,i and Qt,kβ,i using the formulation
introduced in (1) with a fixed number of bits n, changing
quantization intervals lt,kα,i and lt,kβ,i and changing mid-values
x̄t,kα,i and ∇̄fkβ,i for transmitting xt,ki , and ∇fki at every
iteration k. At iteration k, the quantization intervals are set
to be lt,kα,i = Ctακ

k and lt,kβ,i = Ctβκ
k, and the mid-values

are set to be the previous quantized values x̄t,kα,i = x̂t,k−1
i

and ∇̄fkβ,i = ∇̂fk−1
i . The two parameters Ctα = lt,0α,i and

Ctβ = lt,0β,i denote the initial quantization intervals.
In this paper, ·̂ is used to denote a quantized value, e.g.

x̂t,ki = Qt,kα,i(x
t,k
i ) and ·̃ is used to denote a re-projected

value, e.g. x̃t,kNi = ProjCNi
(x̂t,kNi). The quantization errors are

denoted by αt,ki = x̂t,ki − x
t,k
i and βt,ki = ∇̂fki −∇fki .

Algorithm 1 Distributed algorithm with quantization refine-
ment

Require: Initialize x̂t,−1
i = x0

i (η
t), ∇̂f−1

i =
∇fi(ProjCNi

(x0
Ni(η

t))), (1 − γ) < κ < 1, τ < 1
L ,

the initial quantization intervals Ctα and Ctβ and the
number of iterations K.
for k = 0, 1, 2, · · · ,K do

For sub-system i, i = 1, 2, · · · ,M :
1: Update the parameters of quantizer Qt,kα,i: l

t,k
α,i =

Ctακ
k and x̄t,kα,i = x̂t,k−1

i

2: Quantize the state: x̂t,ki = Qt,kα,i(x
t,k
i ) = xt,ki + αt,ki .

3: Send x̂t,ki to all the neighbours of sub-system i
4: Compute the projection of x̂t,kNi : x̃

t,k
Ni = ProjCNi

(x̂t,kNi)

5: Compute ∇fki = ∇fi(x̃t,kNi)
6: Update the parameters of quantizer Qt,kβ,i: l

t,k
β,i =

Ctβκ
k and ∇̄fkβ,i = ∇̂fk−1

i

7: Quantize the gradient: ∇̂fki = Qt,kβ,i(∇fki ) = ∇fki +

βt,ki .
8: Send ∇̂fki to all the neighbours of sub-system i
9: Update the state:xt,k+1

i = ProjCi(x
t,k
i −

τ
∑
j∈Ni Fji∇̂f

k
j )

end for

In [11], we consider an unconstrained optimization prob-
lem, and Theorem 3.10 in [11] states the convergence results
for the unconstrained case, whereas [9] provides an extension

to the constrained case. The following result can be found
in [9].

Assumption II.5. Consider the quantizers Qt,kα,i and Qt,kβ,i in
Algorithm 1. We assume that the parameters of the quan-
tizers, i.e. the number of bits n and the initial quantization
intervals Ctα and Ctβ satisfy

a1 · ‖x0(ηt)− x?(ηt)‖+ a2
Ctα

2n+1
+ a3

Ctβ
2n+1

≤ Ctα
2

(3)

b1 · ‖x0(ηt)− x?(ηt)‖+ b2
Ctα

2n+1
+ b3

Ctβ
2n+1

≤
Ctβ
2

. (4)

Remark II.6. The parameters of the quantizers n, Ctα and
Ctβ are all positive constants. Assumption II.5 can always be
satisfied by increasing n, Ctα and Ctβ .

Theorem II.7. For any t ≥ 0, if Assumptions II.2, II.3 and
II.5 hold and (1 − γ) < κ < 1, then for 0 ≤ k ≤ K the
sequence {xt,k+1} generated by Algorithm 1 converges to
the optimum linearly with the constant κ and satisfies

‖xt,k+1 − x?(ηt)‖ ≤ κk+1
[
‖x0(ηt)− x?(ηt)‖

+
(Ct1 +

√
2LCt2)κ

L(κ+ γ − 1)(1− γ)

]
.

with Ct1 =
M
√
m̄(LmaxdC

t
α+
√
dCtβ)

2n+1 and Ct2 =
√

2
2 ·

M
√
m̄Ctα

2n+1 .

Theorem II.7 states that with the proposed quantization
design, the linear convergence of the algorithm is preserved,
but the constant of the convergence rate has to be enlarged
from 1− γ to κ in order to compensate for the deficiencies
arising from limited communication.

III. PARAMETRIC DISTRIBUTED OPTIMIZATION WITH
LIMITED COMMUNICATION

We extend Algorithm 1 and the results in [11] to solve
the parametric distributed optimization Problem II.1. By
employing a warm-starting strategy to initialize the starting
sequence for t, i.e. x0(ηt) = xK(ηt−1), we show that there
exists a relationship between the number of iterations K
and the accuracy ε. For a given ε, we can always find a
K guaranteeing that for all t ≥ 0 the sub-optimal solution
xK(ηt) satisfies the accuracy ε, i.e. ‖xK(ηt) − x?(ηt)‖ ≤
ε. The distributed optimization algorithm with quantization
refinement for the parametric optimization problem is pre-
sented in Algorithm 2.

Assumption III.1. We assume that the optimal solution sat-
isfies

‖x?(ηt)− x?(ηt+1)‖ ≤ ρ (5)

for all t ≥ 0.

Assumption III.2. We assume that at the first step t = 0
the initial solution of the algorithm is a sub-optimal solution
satisfying

‖x0(η0)− x?(η0)‖ ≤ ε . (6)

Remark III.3. A sub-optimal solution x0(η0) satisfying As-
sumption III.2 can be computed off-line.



a1 =
(κ+ 1)

κ
, a2 =

M
√
m̄κ(κ+ 1)(dLmax +

√
L) +M

√
m̄L(κ+ γ − 1)(1− γ)

Lκ(κ+ γ − 1)(1− γ)
,

a3 =
M
√
dm̄(κ+ 1)

L(κ+ γ − 1)(1− γ)
, b3 =

LmaxM
√
dm̄κ(κ+ 1) + L

√
dm̄(κ+ γ − 1)(1− γ)

Lκ(κ+ γ − 1)(1− γ)
,

b1 =
Lmax(κ+ 1)

κ
, b2 =

LmaxM
√
m̄κ(κ+ 1)(dLmax +

√
L) + Lmaxd

√
m̄L(κ+ 1)(κ+ γ − 1)(1− γ)

Lκ(κ+ γ − 1)(1− γ)
.

Assumption III.4. We assume that the two parameters Cα
and Cβ in Algorithms 2 satisfy

a1 · (ε+ ρ) + a2
Cα

2n+1
+ a3

Cβ
2n+1

≤ Cα
2

(7)

b1 · (ε+ ρ) + b2
Cα

2n+1
+ b3

Cβ
2n+1

≤ Cβ
2

. (8)

Remark III.5. We want to point out that the two conditions
on the initial quantization intervals Ctα and Ctβ in Assump-
tion III.4 do not vary with t, i.e. they are independent from
the parameters ηt. Therefore, we can compute the initial
intervals Cα and Cβ satisfying (7) and (8) off-line and set
Ctα and Ctβ to the same values for all t ≥ 0.

Algorithm 2 Parametric distributed algorithm with quanti-
zation refinement
Require: An initial solution x0(η0) and the number of

iterations K
for t = 0, 1, 2, · · · do

1: Initialize quantization intervals Ctα = Cα and Ctβ =
Cβ .
2: Solve Problem II.1 with the parameter ηt by Algo-
rithm 1 with the initial solution x0(ηt) and the number
of iterations K.
3: x0(ηt+1)← xK+1(ηt)

end for

Remark III.6. In Algorithm 2, we use a warm-starting
strategy to solve the optimization problem at each step t ≥ 1,
i.e. in Step 3 we initialize the solution with x0(ηt+1) ←
xK+1(ηt).

Theorem III.7. For a given ε > 0, if Assumptions II.2, II.3,
III.1, III.2 and III.4 hold, (1− γ) < κ < 1 and the number
of iterations K satisfies

K ≥
⌈

logκ
ε(1− κ)

ρ+ δ + (1− κ)(ε+ δ)

⌉
− 1 , (9)

with δ = κ(C1+
√

2LC2)
L(κ+γ−1)(1−γ) , C1 =

M
√
m̄(LmaxdCα+

√
dCβ)

2n+1 and

C2 =
√

2
2 ·

M
√
m̄Cα

2n+1 . Then the sub-optimality of the solution
xK+1(ηt) satisfies:

‖xK+1(ηt)− x?(ηt)‖ ≤ ε , (10)

for all t ≥ 0.

Proof: We will prove Theorem III.7 by induction.

• Base case: At t = 0, Assumption III.2 and Assump-
tion III.4 imply that Assumption II.5 holds. Then all
assumptions required by Theorem II.7 are satisfied and
it follows that ‖xK+1(η0)−x?(η0)‖ ≤ κK+1(‖x0(η0)−
x?(η0)‖ + δ) ≤ κK+1(ε + δ). Using the condition in
(9), we get κK+1(ε + δ) ≤ ε. Hence, it holds that
‖xK+1(η0)− x?(η0)‖ ≤ ε.

• Induction step: Let g ≥ 0 be given and suppose that
‖xK+1(ηt)−x?(ηt)‖ ≤ ε for t ≤ g. We will prove that
‖xK+1(ηg+1) − x?(ηg+1)‖ ≤ ε. By the warm-starting
step in Step 3 in Algorithm 2, we know

‖x0(ηg+1)− x?(ηg+1)‖ =‖xK+1(ηg)− x?(ηg+1)‖
≤‖xK+1(ηg)− x?(ηg)‖

+ ‖x?(ηg)− x?(ηg+1)‖ .

By the assumption of induction and Assumption III.1 ,
we obtain

‖x0(ηg+1)− x?(ηg+1)‖ ≤ ε+ ρ .

Then Assumption III.4 implies that Assumption II.5
holds for g + 1. It follows from Theorem II.7 that

‖xK+1(ηg+1)− x?(ηg+1)‖
≤ κK+1(‖x0(ηg+1)− x?(ηg+1)‖+ δ) .

By the warm-starting step in Step 3 in Algorithm 2, the
above is upper-bounded by

≤κK+1(‖xK+1(ηg)− x?(ηg+1)‖+ δ)

≤κK+1(‖xK+1(ηg)− x?(ηg)‖
+ ‖x?(ηg)− x?(ηg+1)‖+ δ) ,

Assumption III.1 implies

≤ κK+1(‖xK+1(ηg)− x?(ηg)‖+ ρ+ δ) .

Again by the warm-starting step, Assumption III.4 im-
plies Assumption II.5. It follows from Theorem II.7 that
the above is upper-bounded by

≤κK+1(ρ+ δ) + (κK+1)2 · (‖x0(ηg)− x?(ηg)‖+ δ)

≤κK+1(ρ+ δ)

+ (κK+1)2 · (‖xK+1(ηg−1)− x?(ηg−1)‖+ ρ+ δ) .

Sequentially, we get that the above is upper-bounded by

≤
g+1∑
p=1

(κK+1)p · (ρ+ δ) + (κK+1)g+2 · (ε+ δ) .



By Assumption III.2 and the property of geometric
series, we have

≤(ρ+ δ) · κK+1 · 1− (κK+1)g+1

1− κK+1

+ (ε+ δ) · (κK+1)g+2 .

Using the fact that 0 < κ < 1, we get

‖xK+1(ηg+1)− x?(ηg+1)‖ ≤ ρ+ δ

1− κ
· κK+1

+ (ε+ δ) · κK+1 .

Note that the inequality above holds for all t ≥ 0. By
the condition in (9), we conclude that

‖xK+1(ηg+1)− x?(ηg+1)‖ ≤ ε .

We conclude that by the principle of induction for all t ≥ 0
the solution xK+1(ηt) satisfies ‖xK+1(ηt) − x?(ηt)‖ ≤ ε.

IV. NUMERICAL EXAMPLE

This section illustrates the theoretical findings of the
paper and demonstrates the performance of Algorithm 2.
We consider a parametric distributed quadratic programming
(QP) problem originating from the problem of regulating
constrained distributed linear systems by model predictive
control (MPC) in the form of Problem IV.1, where the initial
state z̄ti is the time-varying parameter. For more information
about distributed MPC, see e.g. [3], [2] and [10].

Problem IV.1.

min
z,u

M∑
i=1

N−1∑
g=0

li(zi(g), ui(g)) +

M∑
i=1

lfi (zi(N))

s.t. zi(g + 1) = Aiizi(g) +
∑
j∈Ni

Bijuj(g)

ui(g) ∈ Ui , zi(0) = z̄ti , i = 1, 2, · · · ,M ,

where M and N denote the number of subsystems and
the horizon of the MPC problem, respectively. Ni denotes
the set of the neighbours of subsystem i. The state and
input sequences along the horizon of subsystem i are de-
noted by zi = [zTi (0), zTi (1), · · · , zTi (N)]T and ui =
[uTi (0), uTi (1), · · · , uTi (N − 1)]T . The discrete-time linear
dynamics of subsystem i are given by zi(g+1) = Aiizi(g)+∑
j∈Ni Bijuj(g), where Aii and Bij are the dynamic matri-

ces. The initial state is a time-varying parameter denoted by
z̄t = [z̄t

T

1 , z̄t
T

2 , · · · , z̄tTM ]t. The control inputs of subsystem i
are subject to local convex constraints ui(t) ∈ Ui. li(·, ·)
and lfi (·) are strictly convex stage cost functions. From
Problem IV.1, we can see that subsystem i is coupled with
its neighbours in the linear dynamics zi(g+1) = Aiizi(g)+∑
j∈Ni Bijuj(g).
We randomly generate a distributed MPC problem in Prob-

lem IV.1. We first randomly generate a connected network
with M = 40 sub-systems. Each sub-system has three states
and two inputs. The dynamical matrices Aii and Bij are ran-
domly generated, i.e. generally dense, and the local systems

are controllable and unstable. The input constraint Ui for
sub-system i is set to Ui = {ui|−0.4 ·1 ≤ ui(g) ≤ 0.3 ·1},
where 1 denotes the all-ones vector with the same dimension
as ui. The horizon of the MPC problem is set to N =
11. The local stage cost functions are chosen as quadratic
functions li(zi(g), ui(g)) = zTi (g)Qizi(g) + uTi (g)Riui(g)
and lfi (zi(N)) = zTi (N)Pizi(N), where Qi, Ri and Pi are
identity matrices.

By eliminating all state variables, distributed MPC prob-
lems of this class can be reformulated as a parametric
distributed QP of the form in Problem IV.2 xi = ui, xNi ,
and the parameter z̄ti . The matrix Hi is a dense and positive
definite matrix and the constraint Ci = UNi is a polytopic
set.

Problem IV.2.

min
x∈Rnx

f(x, z̄t) =

M∑
i=1

fi(xNi)

=

M∑
i=1

xTNiHixNi + z̄t
T

NihixNi

s.t. xi ∈ Ci .

Note that the matrix Hi does not vary for different t, and
the parameter appears in the linear term z̄t

T

NihixNi .
For Problem IV.2, the constants in Algorithm 2 are γ =

σf
L = 0.1027, the decrease rates of the quantization intervals

1 − γ ≤ κ = 0.9692, and the minimum number of bits
required for convergence nmin = 13.

In the simulation of Fig. 1, we set the number of steps
to t = 50 and the number of iterations K to 2, 10 and
30. The parameter z̄t is randomly generated and satisfies
‖z̄t − z̄t+1‖ ≤ 3. Fig. 1 shows the accuracy achieved by
Algorithm 2 and Algorithm 2 without warm-starting strategy,
i.e. setting x0(ηt+1) = 0 (cold-starting) in Algorithm 2 for
all t ≥ 0. The curves show that warm-starting achieves sig-
nificantly better accuracy for the same number of iterations.

In Fig. 2, we compute the average accuracy achieved by
Algorithm 2 over all steps t = 50 in Fig. 1 and calculate
the corresponding number of iterations K satisfying the
bound in Theorem III.7 for the average accuracy. Note
that the parameter ρ in Assumption 5 is approximated
by randomly sampling 500 initial states satisfying ‖z̄p −
z̄p+1‖ ≤ 3, for 1 ≤ p ≤ 500, and compute the largest
ρ = max1≤p≤500{‖x?(z̄p) − x?(z̄p+1)‖}. We see that the
bound gets tighter as the accuracy ε decreases.
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