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Abstract—Despite many years of research, alignment of busi-

ness and IT services remains a challenge. In this paper we

show how to verify the quantitative properties of a service

against stakeholder requirements during service design. We

model the service with the Systemic Enterprise Architecture

Method (SEAM). This allows us to specify the service alignment

constraints with what we call a feasibility constraint. We translate

the SEAM model into Scala code, where the feasibility constraint

is mapped to a constraint of a Scala function. We then check the

Scala function’s verification condition with the Leon verification

tool. An alignment is achieved if no counterexample is found. If a

counterexample exists, it allows to detect which service component

is at the source of the misalignment.
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I. INTRODUCTION

Service design is the activity in which stakeholder require-
ments are transformed into specifications that define a set
of service design constraints [1]. One of the challenges in
service design, more precisely the service specification phase,
is to make sure that the service constraints are aligned among
themselves and with the requirements. We see these constraints
as properties of the service. To simplify this challenge, we
use the Systemic Enterprise Architecture Method (SEAM) [2]
to model service hierarchies with service properties and their
relationships. We call these hierarchies:

level 1 specification of the service offering showing the
relationship between a service provider and a
customer;

level 2 specification of the service implementation show-
ing the relationships between the components
responsible for delivering the service.

This simplifies the alignment into verifying that:

1) the properties of the service offering meets the cus-
tomer requirements, and

2) the relationships between the specified service imple-
mentation components satisfy the constraints set by
each individual component.

We define the verification at each level as the feasibility at
that level, and the conjunction of feasibilities from both levels,
as the alignment of the service.

To prove the feasibility, we translate the SEAM model into
Scala code [3]. More precisely, for each level we represent the
relationships between the components as a Scala function. The

feasibility is asserted by the verification of a constraint on that
function. This code is passed to a Scala verification tool called
Leon [4]. If all the functions constraints hold, we say that the
translated SEAM service model is aligned. Otherwise, Leon
returns a counter-example that violates a constraint, and with
this counter-example we can detect which component is the
cause for misalignment.

In this paper we explore the refinement and verification of
the properties that must hold at any time during the execution
of the service (invariant properties), whereas Rychkova [5]
proposed mechanisms for alignment in SEAM based on the
refinement of pre and post conditions, i.e. properties that
hold only before and after a service was executed. Many of
these invariant properties, such as performance characteristics
(response time, throughput), capacity, power consumption,
number of users, financial characteristics (budget, cost), are
quantified. We do not distinguish between functional and non-
functional because in SEAM there is no such classification. We
propose to quantify the service properties at the beginning of
the design process because the quantities have a direct impact
on design choices. As a result, a limitation of our approach is
the inability to consider properties that cannot be quantified.

The paper is structured as follows: in Section II we discuss
the related work on approaches that validate the alignment
between the service offering and the service implementation. In
Section III we present the example, and then in Section IV we
describe the way to model, define and formalize quantitative
properties in SEAM. In Section V we map the SEAM graphical
model to Leon code and show the output of the verification,
and in Section VI and VII we present the future work and
conclusions.

II. RELATED WORK

Our approach verifies the alignment between stakeholders
expectations and the service implementation, so we therefore
see our work related to requirements tracing, alignment, and
verification of specifications (constraints) in models that de-
scribe the service architecture in a company. Another related
work is the verification of behavioral business and IT align-
ment with SEAM. We therefore split the related work in:

A. Requirements traceability and verification

Plataniotis et al. [6] present the EA Anamnesis metamodel
that enables traceability of requirements and design decisions.
The traceability gives the capability to check the alignment
between the architectural decisions taken and the requirements.
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The metamodel presented includes a problem and a solution
space, both of them bridged with the Functional and Non-
functional sub-classes. Unlike our approach, authors make the
classification of functional and non-functional requirements,
and their scope does not include verification of requirements.

An ArchiMate extension is described in white paper from
The Open Group [7]. This extension deals with requirements
management in the context of enterprise architecture. The
white paper describes a combination of existing requirements
engineering techniques within the TOGAF ADM phases. It
emphasizes the importance of the alignment and traceability
between requirements and the architectural elements of a
solution because they shape the overall architectural design,
but it does not provide an example of requirements alignment
verification.

Ramesh and Jarke [8] present an analysis of requirements
traceability tools and establish reference models for traceabil-
ity, a low-end and a high-end model. The first one targets users
that care about a concrete relationship between a requirement
and a system component, whereas the second one targets users
that care about the full life-cycle traceability of a requirement.
We can relate the low-end traceability model to the SEAM
hierarchy level showing the relationships between components
responsible for delivering the service, and the high-end model
to both SEAM hierarchies.

Hallerstede et al. [9] describe an approach, based on the
reference model for requirements and specifications’ by Gunter
et al.[10] for requirements modeling and validation for a target
system description complemented by “traces”. The system
description is defined as a description of the system and
the environment it interacts with. The model for tracing re-
quirements is based on WRSPM. Authors also include formal
specifications based on Event-B, that incorporates formal and
informal reasoning. The target system description incorporates
the conclusions about the achieving the requirements and the
correctness of the specification. If we consider that the system
offers a service, we can see the environment of the system as
the first level of our SEAM service hierarchy, and the system
itself as the second level.

In [11], Almeida et al. provide a methodological framework
for requirements tracing in model-driven development process.
The model-driven design process can have different levels of
abstraction, so authors simplify the problem of tracing with
introducing notion of conformance between models of different
levels of abstraction. In our approach we see this conformance
as alignment between the models.

In this paper, we provide another way to “trace” require-
ments between levels. Requirements are sometimes considered
as part from the business domain, and specification as part from
the IT domain. Since our method shows both, we use the term
properties to denote the requirements and the specifications.

B. Modeling and verifying specifications

UMLtoCSP [12] is a fully automated tool used for formal
verification of UML/OCL class-diagram models. The tool first
translates the model into a Constraint Satisfaction Problem
(CSP), and then tries to find a solution where all constraints are
satisfied. In our method we map the constraints to a constraints

of a Scala function, and then for the verification we use Leon,
that generates a verification condition for that function. The
difference in the verification approach is that UMLtoCSP tries
to at least one solution where all constraints are satisfied,
whereas Leon, the verification tool we use, tries to prove the
verification condition, and if this condition is true, the model
is correct for all constraints.

In [13], requirements verification is done with XSLT over
requirements managed in an XML based RE tool. The tool and
the verification proposed are lightweight, but the approach is
not described on a visual model example. Our SEAM visual
models are saved in an XML format, so [13] gives us a new
perspective for doing alignment verification directly on the
model, without using additional tools.

C. Alignment with the Systemic Enterprise Architecture
Method

Wegmann et al. use SEAM to present a behavioral business
and IT alignment between the different views of a same
system [14]. Rychkova et al. use the same method to align
the applications to be developed with the business require-
ments [15]. The SEAM modeling technique is also presented
in [5], where Rychkova et al. verify the alignment using the
Alloy tool [16] in terms of properties that describe a Service
Level Agreement (SLA) and Operational Level Agreements
(OLA). Our approach is mostly inspired by the work of
Rychkova, and can be seen as complementary to it [17].

The novelties presented here come from the evolution of
the SEAM method. The verification in [17] is done with
behavior properties conditions of the hierarchical systems, split
in preconditions and postconditions, whereas in this paper we
extend the properties scope to quantitative properties, which
hold at any time, i.e. invariant properties. We additionally use
Scala, a recently developed programming language, and we
use the Leon verification tool.

III. EXAMPLE: EPFL STORAGE SERVICE FOR STUDENTS

A. Description of EPFL Storage Service for Students

The example we use to illustrate our method is based on
a concrete project done at the Ecole Polytechnique Fédérale
de Lausanne (EPFL). The goal of the project is to replace
the technical solution for an existing central storage service

provided by the EPFL storage organization.
The actors involved in the storage service are:

• EPFL students – customers of the storage service.
They need a way to store their documents while
studying at EPFL, so EPFL wants to give them an
alternative service to Dropbox or Google Drive.

• Storage service steering committee – a governance
body that makes decisions concerning the storage
service. The people in this committee set the annual
global budget for the operation of the central storage
service. For simplicity, we don’t consider the budget
needed for the development of the service. This com-
mittee also knows the strategic directions of EPFL, the
current number of students and the expected growth
of this number.
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• EPFL IT infrastructure department – an EPFL de-
partment that offers all IT services necessary for the
everyday work at EPFL, including the storage service.
The steering committee allocates the budget to this de-
partment for the operation of the storage infrastructure.
This budget constrains the storage capacity provided
by this department.

• The EPFL help desk – the single point of contact for
all IT services provided at EPFL including the storage
service. The help desk has its own running budget
for the storage service assistance set by the steering
committee.

B. Quantitative Properties of EPFL Storage Service for Stu-
dents

We take into account the following properties: number of
students, storage capacity and amount of budget. The values
and ranges given for these properties serve only as illustration:

• An EPFL student expects to get and use between 25
and 40 GB of storage provided by the EPFL storage
organization.

• The storage project steering committee considers al-
locating between 150’000 and 200’000 Swiss Francs,
for the central storage service. The committee also
specifies that this storage service has to be available
for 9500 to 10500 students.

• The EPFL IT infrastructure department should pro-
vide storage infrastructure with capacity between
400TB and 500TB, for a total cost of ownership
between 120’000 and 150’000 Swiss Francs per year
(approximately 300 Swiss Francs per TB per year).

• The EPFL help desk needs up to 10’000 Swiss Francs
per year for the operation of their help and assistance
service for storage.

The storage service has the following constraints:

1) The total capacity provided by the IT infrastructure
department, is evenly distributed to the number of
students.

2) The storage capacity per student has to be greater
than what each student requirements.

3) The total budget allocated to the IT infrastructure
department and the help desk can not exceed the
budget decided by the steering committee.

There exists a counter-example for these chosen values and
constraints for the presented service. This is not obvious from
the textual representation of the properties. In the following
sections we show how to model, formalize and automatically
verify these properties.

IV. MODELING QUANTITATIVE PROPERTIES IN SEAM

With SEAM we conceptualize an organization as a hier-

archy of systems

1 that provide services (from business down
to IT, also known as organizational level hierarchy).

1To clarify, we use system to refer to an observed entity: an organization,
an employee, an IT system, or an application [18].

In this hierarchy, we conceptualize a system as a whole,
denoted as [w] or as a composite, denoted as [c]. In a system as
a whole, we ignore the system’s components and represent the
service provided. In a system as a composite, the components
and their relationships are visible, together with the process
that combines the services provided by each component. The
process represents a service implemented by that system. Sys-
tems that represent a business entity (company, organization,
department, etc.) are modeled with block arrows, whereas
people are modeled with a rectangle and a stickman (see
Fig. 1). Concerning links, the whole and composite view of a

Fig. 1. A SEAM example of a Market segment X[c] system modeled as
a composite, including Company A[w] and an End user[w] systems as a
whole. Company A[w] is furthermore refined to Company A[c], a system
as a composite, composed of three systems as a whole: Department B[w],
Department C[w] and Department D[w], and Process A[w]. Service A[w]
and End user service[w] are services needed to perform Process X[w], which
combines them. The same holds for Service B, C and D[w] connected to
Process A[w], where Process A[w] implements Service A[w].

system are connected with a refinement (decomposition) link.
For example, the link between Company A[w] and Company
A[c] in Fig. 1. We use a plain link for connecting services to
a process. This link means that the process combines (uses)
that service. For example, in Fig. 1, the links between Process
A[w] and Service B, C and D[w] are of this kind. Plain link is
also used for connecting properties to a service and a process.

SEAM behavior properties specifications and the verifi-
cation of their alignment within different hierarchical levels
is introduced in [17]. Here we extend the SEAM notation
with quantitative properties and the ⌧feasibility� boolean
expression property. We say that the specification of the
quantitative properties in the model is correct if and only if
the ⌧feasibility� expression is true.

In SEAM, services and processes have properties, which
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Fig. 2. SEAM model for the EPFL storage service example, showing the storage service offering in the first level, and the storage service implementation in
the second. The components in each level have properties that describe the constraints of the level.

are modeled with rectangles linked to the service or a process.
The quantitative properties we introduce have a stereotype,
written on top of the rectangle between ⌧...�, to denote the
type of property. There are four types of properties, two types
for a service, and two types for a process.

Service property types:

• ⌧final� - A property that gives a set of values
independent of other properties in the model. It is
usually a range, or even one value.

• ⌧computed� - A property whose values are
computed by the service implementation process
⌧refinement relation� properties, and then trans-
ferred to the service level.

Process property types: The process is connected to several
services, so the logic of the model execution is in the following
two types of properties:

• ⌧refinement relation� - A property that computes
the quantity (value) by using the properties values of
services connected with the process. The computed
value is then transferred to the ⌧computed� property
of the service being implemented.

• ⌧feasibility� - A property, containing a boolean ex-
pression, which by definition is present in a composite
system, in the level where a service is implemented. It
defines the verification of that level, which is usually
a comparison constraint. We define the alignment of
a service as conjunction of two feasibilities: (1) from
the level where the service is used, and (2) from the
level where the service is implemented.

Following, we describe the SEAM model for the example
in Section III and we go in detail about SEAM properties
computations and their relationships.

A. Service Implementation Level

In Fig. 2 level 2 we model the EPFL storage organi-
zation[c] as a composite system. This system contains the
Storage process[w] that implements the Storage service[w]
offering from level 1. The EPFL storage organization[c]
contains the following systems as a whole:

• EPFL IT infrastructure department[w] with the Pro-
vide storage infrastructure[w] service,

• EPFL help desk[w] with the Help and assistance[w]
service, and

• Storage project steering committee[w] with the Gov-
ernance[w] and Budget decisions[w] services.

These services are needed to perform the Storage process[w],
so we model a link between them and the Storage process[w].
All ⌧final� and ⌧computed� properties in Fig. 2 refer to
capacity, money and number of students, and there is one
⌧feasibility� and three ⌧refinement relation� properties
connected to the Storage process[w].

The ⌧final� properties of the services in EPFL storage
organization[c] are specified with a range or a value (e.g. the
capacity property within ⌧infra�Provide storage infrastruc-
ture[w] is set to be between 400TB and 500TB).

The ⌧refinement relation� properties of a process de-
pend on the service properties of services connected with
the process (e.g. the value of the capacity property within
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Fig. 3. Compute the ⌧refinement relation� capacity property in the ⌧store�Storage process[w] in level 2 and passing this value to the ⌧store�Storage
service[w] ⌧computed� capacity property in level 1, which is then used to verify the Student storage process[w] ⌧feasibility�.

⌧store�Storage process[w] is computed by dividing the
capacity provided by Provide storage infrastructure[w] with
the number of students set in the Governance[w] service,
storage infra.capacity/govern.students).

The ⌧feasibility� property is a boolean expression that
depends on the service properties of services connected with
the process (e.g. the Storage process[w] ⌧feasibility� expres-
sion is money>0 chf, where store.money = budget.money�
(storage infra.money + help.money), as defined in a
⌧refinement relation�).

The properties of a process compute values that:

1) together with the properties of the services are veri-
fied with the boolean expression in ⌧feasibility�,

2) are transferred to the Storage service[w]
⌧computed� properties, in level 1, implemented
by the Storage process[w], in level 2 of Fig. 2, only
if ⌧feasibility� holds.

We say that the model system as a composite is correct and
passes the computed property values to the EPFL storage or-
ganization[w] seen as a whole if and only if the ⌧feasibility�
expression is true.

B. Service Offering Level

In Fig. 2, the first level of the organizational hierarchy is
the EPFL teaching segment [c], seen as a composite. It is
composed of the EPFL storage organization [w], seen as a
whole, and the customer - Student[w], also seen as a whole.
The EPFL storage organization [w] has the Storage service[w]
and the Student[w] has the Use storage[w] service.

The Storage service[w] ⌧computed� properties
values are transferred from the Storage process[w]
⌧refinement relation� from the service implementation
level explained in the previous subsection.

Similar to the Storage process[w], the Student storage
process[w] has an ⌧feasibility� property boolean expression
and ⌧refinement relation� properties that compute values.

The Use storage[w] service present in Student[w] is spec-
ified with capacity >= 25GB && capacity <= 40GB for
the ⌧final� property.

C. Computing and Transferring SEAM Quantitative Properties

As already seen, ⌧refinement relation� properties of a
process compute the quantity (value) by using the properties
values of services connected with the process (the computed
values are then transferred to the upper level, to the service
being implemented by the process, as shown in Fig. 3).
The ⌧feasibility� property boolean expression checks the
correctness of the final or computed values connected to the
process within one level (if the evaluation of the ⌧feasibility�
is false, then we say that the model is wrong).

The definition for the quantitative properties is inspired
by [17].

D. Extraction of Properties From SEAM Models

In order to introduce formal semantics for SEAM proper-
ties, we follow these two steps:

1) Identify all quantitative properties by looking at ser-
vices and processes in each system of the model.
This gives the tuple P = (p1, p2, . . . , pn). The tuple
containing all the properties for our example in Fig. 2
is P = (capacity,money, students).

2) For each service:
• For a ⌧final� property, find the specifi-

cation formula F

S

describing the service.
The formula can be a constant value, a
range, or a set (e.g. F

use

= capacity �
25GB && capacity  40GB, seen in Fig. 2
level 1 and Fig. 4).
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• For a ⌧computed� property, the process
of the lower level is the one that computes
and transfers the values to the properties of
the service (e.g. the Storage service[w] with
the ⌧computed� capacity property depicted
in Fig. 2 level 1, is implemented in level
2 with the Storage process[w], where one
⌧refinement relation� computes the capac-
ity value).

3) For a process:
• Find all services connected to the process

(e.g. in level 1 of Fig. 2, Student storage
process[w] is connected to Storage service[w]
and Use storage[w] service).

• Find the ⌧feasibility� boolean expression
F

f

(e.g. in level 1 of Fig. 2, ⌧feasibility� is
store.capacity >= use.capacity).

• Find the ⌧refinement relation� properties
for the process F

PS

. This property is a for-
mula that computes process properties val-
ues and it depends on the properties of the
services connected to it. If F

f

evaluates to
true, the computed values are transferred to
the upper level as properties of the service
being implemented (e.g. this formula transfers
values from Storage process[w] in level 2 to
Storage service[w] in level 1 of Fig. 2).

E. Formal Semantics for SEAM Quantitative Properties

We define the formal semantic for a service and a process
in relation to the quantitative properties:

• We define a service S, with S = (F
S

, P

S

) = F

S

(P
S

),
where:

– F

S

is a specification formula describing the
constraints of the service.

– P

S

is a properties tuple that satisfies the F

S

given as an output of the service.

Fig. 4. Use storage[w] localized action, as depicted in Fig. 2 level 1

Our SEAM model example in Fig. 2 has
three properties: capacity, money and students,
so we define the tuple for properties as:
P

S

= (capacity,money, students). The tuple
for the Use storage[w] service in level 1 is
P

use

= (capacity, 0, 0)2, and

S

use

= F

use

(P
use

)

where F

use

(P
use

) is the following expression:

P

use

.capacity � 25GB ^ P

use

.capacity  40GB

2Certain services are independent of some properties in the model, so any
value can be used. In our example, we assign 0 to such properties.

The resulting value of the ⌧final� capacity property
for the student is any value between 25 and 40 GB.

• We define a process PS with:
– P

Sset = {P
S1 , PS2 , . . . , PSn} - a set of prop-

erties tuples from the services it uses.
– P

PS

- a properties tuple given as an out-
put of the process, transferred to the corre-
sponding service in the upper level with the
⌧computed� stereotype.

– F

rr

- a formula, from all the
⌧refinement relation� process properties,
dependent on P

Sset , that returns the output
tuple P

PS

. It expresses the specification
and the logic of execution of all services in
connected to the process.

– F

f

- a boolean expression depending on
P

Sset and P

PS

corresponding to the process
⌧feasibility� property.

Fig. 5. Student storage process[w], as depicted in Fig. 2 level 1

The process from Fig. 5 is formalized with PS

ssp

,
and we extract3:

– Properties used by the process: P

Sssp =
{P

store

, P

use

}
– Output properties tuple:

P

ssp

= (capacity,money, students)
– Refinement relationship formula with the com-

putation of the output properties:
F

rrssp = ((P
ssp

.capacity = P

store

.capacity)
^(P

ssp

.money = P

store

.money)
^(P

ssp

.students = P

store

.students)).
This formula uses the values of ⌧computed�
properties only from the Storage service[w].

– The ⌧feasibility� constraint:
F

fssp = (P
store

.p

capacity

� P

use

.capacity).

V. AUTOMATED VERIFICATION OF QUANTITATIVE
PROPERTIES IN SEAM

Our goal is to verify the specified service and process prop-
erties specification formulas against the boolean expression in
the ⌧feasibility� property that describes the alignment. As
previously mentioned, the verification tool we use is Leon [4],
[19].

A. Leon

Leon is a verification system for a purely functional subset
of the Scala [3] programming language [4], [19], [20], called

3For readability, we use ssp to denote the Student storage process[w].
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Pure Scala. For each function written in Pure Scala, Leon
generates a verification condition and tries to prove it [19]. The
verification condition states that when the given precondition
holds, after executing the function, the postcondition will
hold as well. In Scala, the pre and postconditions are written
with the require and ensuring methods respectively. Leon
uses external automated theorem proving tools (SMT solvers:
Z3 [21] and CVC4 [22]), and combines them with an internal
algorithm to prove the generated verification condition. After
running Leon, for each function the output can be:

• valid - Leon has proved that for any input for which
the precondition is true, the postcondition will always
hold.

• invalid - there is at least one counter-example, and
Leon returns one, that violates the postcondition, but
satisfies the precondition.

• unknown - usually returned after a timeout or an
internal error.

For constraint solving, Leon implements the epsilon oper-
ator - ✏, with the choose function. Choose is mainly used to
find a contradiction in an interpretation of a formula [23], and
we use it to specify constraints. For a given formula F and a
variable x, then ✏x.F returns a value that can be assigned to
x such that F becomes true. If F is not realizable, then ✏x.F

can return any value [20]. With using choose in a function,
Leon finds a counter-example that can be taken by epsilon
to make the function’s verification condition false. This helps
in tracking the specification that gives a counter-example, and
improve it.

B. Transformation of SEAM Models to Leon (Scala) Code

We first define the tuple for our example properties
P = (capacity,money, students) with a case class [3]:
case class P(capacity:Int, money:Int, students:Int)

We use this class to store, compute, compare and pass values
for the properties in the model. Services and processes are
treated differently:

• Every SEAM service that contains a property is
mapped to a Scala val variable4.
For a service with a ⌧final� property, the val calls
the Leon choose function5 with the F

S

service spec-
ification formula, and returns the P

S

service output
properties tuple.
This listing shows how the Use storage[w] service
with a ⌧final� property from Fig. 4 and from level 1
in Fig. 2 is translated to Leon code:
val s_use: P = P(choose((i: Int)

=> i >= 25 && i <= 40), 0, 0)

For a service with a ⌧computed� property, this val is
set to the output of the Scala function with which we
define the process. This function is described in the
next bullet point, and the following listing shows the

4“Scala has two kinds of variables, vals and vars. A val is similar to a final
variable in Java. Once initialized, a val can never be reassigned.”[3]

5As mentioned, choose is the Leon implementation of the ✏ operator.

we assign a value to the ⌧store� Storage service[w],
where this value is computed by the ⌧store� Storage
process[w]:

val s_store: P = ps_store(s_budget, s_govern,

s_help, s_infra)

• Each process is mapped to a Scala function. The
properties from all services connected to the process in
the P

Sset are input parameters for this function. Since
all the values of these P

Sset properties come from
other already specified services written as a Scala val,
we need to write a precondition in the Scala require
statement to match the values of the input P

Sset

with the values specified in the val variable for the
corresponding services. Then, the output is computed
based on the formulas from ⌧refinement relation�
properties, as defined in the F

rr

and are used in
the Scala function’s body for the computation of the
output P

PS

.
Every property in the model is an invariant property,
and every Scala function can be have both a precondi-
tion (with the Scala require statement), or a postcon-
dition (with the Scala ensuring statement). Our choice
is to use the ensuring statement for checking the F

f

constraint written in the ⌧feasibility� property.
The following listing shows how the Student storage
process[w] from Fig. 5 and level 2 in Fig. 2 is
translated to Leon code:

def ps_ssp(use: P, store: P):P = {

require(use == s_use && store == s_store)

P(store.capacity, store.money, store.

students)

} ensuring(store.capacity >= use.capacity)

C. Leon Output

We develop an algorithm that transforms SEAM model’s
actions to Scala code according the mapping rules described
here. This algorithm is not yet implemented, so the transition
from the SEAM model to the Scala code is not automatic.
In Fig. 6, the output of running the code for our example is
shown, where Leon finds a counter-example.

Leon finds that ps ssp and ps sp processes are invalid,
giving counter examples with the values for the properties of
the services involved.

Fig. 6. Leon output giving a counter-example for not having enough storage
capacity in the Student storage process[w] - ps ssp from the service offering
(level 1) in Fig. 2, when the 39 GB capacity offered by the ⌧store�Storage
service[w] is smaller than the 40 GB capacity required by a student.
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ps ssp – The specification is invalid (see Fig. 6) when the
EPFL storage organization serves 10’097 students, with 39GB
capacity per student (store := P (39, 30960, 10097)), when
the student requires 40GB (use := P (40, 0, 0)).

Fig. 7. Leon output giving a counter-example for not having enough money
in the Storage process[w] - ps sp from the service implementation (level 2)
in Fig. 2, when the money allocated for the Provide storage infrastructure[w]
service - infra is 147’456 Swiss Francs, for the Help and assistance[w]
service - help is 10’000 Swiss Francs, and the global budget that should
cover these two services from the Budget decisions[w] service - budget is
157’452 Swiss Francs.

ps sp – The specification is invalid (see Fig. 7) when the
steering committee sets the annual budget to 157’452 Swiss
Francs (budget := P (0, 157452, 0)), but assigns 147’456
Swiss Francs to EPFL IT infrastructure department for the
operation of 458’724MB (infra := P (458724, 147456, 0)),
and 10’000 Swiss Francs to EPFL help desk for the storage
service support throughout an year (help := P (0, 10000, 0)).

The properties values for these two invalid functions are
unrelated. In Fig. 7, the ps sp postcondition does not hold
for the properties values listed, they are a counter-example, so
ps sp can not be executed. The values in Fig. 6 for storage

depend on a valid ps sp execution, so they are unrelated with
the values from Fig. 7.

VI. FUTURE WORK

One part of the future work is the formalization and
translation of functional properties and their behavior to Leon
code. We also wish to automatically verify SEAM models built
with the SeamCAD tool [24]. This tool saves SEAM models
in XML format. The automatic generation of Leon code from
XML (model to text) is another part of our future work.

The presented approach is applicable to qualitative prop-
erties by enumerating or refining them to a set of quantitative
properties. For example, we can consider reliability as a
quantitative property when we see a constraint that a system
cannot be down for more than 15 hours per year. This part
of the research is at a very early stage, and remains in future
work.

The most important part of the future work is validating
the application of our approach in practice.

Following, we propose improvements for modeling with
SEAM and the Leon verification tool:

A. Modeling Improvements

SEAM uses the same link notation for connecting a service
to a process, and a property to a service or a property to a
process. Having different lines would reflect the semantics of
the properties presented in this paper. The different notation
would make the future automatic translation of SEAM model
to Scala code easier.

In this paper we also use Scala syntax for the graph-
ical notation for a SEAM property value computation and
properties comparison. This reduces the effort to translate the
model to Leon code, but requires basic knowledge of Scala
programming while building the SEAM model.

B. Leon Improvements

Leon’s support for only Pure Scala programs limits the
expressiveness of service specifications. Pure Scala supports
arithmetic operations over integer numbers only. The division
operator / and the modulo operator % should only be invoked
with positive arguments, and they return integer values.

In our example we used integer division, which might
lead to a confusion in the interpretation of the counter-
example. In Fig. 6, the counter-example for the ps ssp is
store := P (39, 30960, 10097), where 10’097 students with
39GB capacity per student make a total of 393’783 GB
provided by the IT infrastructure department. This value does
not satisfy the defined range in the ⌧final� capacity property
(see Fig. 2), but any value above 39.616GB for the Storage
service[w] would fall in the allowed range.

The integer division can be improved by defining a new
division operator that uses / and %.

VII. CONCLUSIONS

In this paper we presented an approach to verify the align-
ment of quantitative invariant service specification properties
in SEAM models. This alignment verification is simplified
by modeling two levels of the service specification: a service
offering and a service implementation, and checking the cor-
rectness of each level’s feasibility boolean expression property.
The SEAM model is then translated into Scala code and
verified with a tool called Leon.

One limitation of our approach is the possible timeout
before Leon finds a counter-example. Also, in some functions
with a valid verification condition, Leon is not able to prove
the correctness [19].

In [5] the authors verify the alignment based on formal
refinement of pre and post conditions of a service. In this
paper we focus on the alignment of the invariant properties of
a service specification that at the same time can be quantified.
These quantitative service properties influence the service
design decisions, so the outcome of their verification helps
the service designers.
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