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ABSTRACT

Biotechnology promises the biologically and ecologically sustainable production of
commodity chemicals, biofuels, pharmaceuticals and other high-value products using
industrial platform microorganisms. Metabolic engineering plays a key role in this
process, providing the tools for targeted modifications of microbial metabolism to
create efficient microbial cell factories that convert low value substrates to value-added
chemicals. Engineering microbes for the bioproduction of chemicals has been practiced
through three different approaches: (i) optimization of native pathways of a host
organism; (ii) incorporation of heterologous pathways in an amenable organism; and
finally (iii) design and introduction of synthetic pathways in an organism. So far, the
progress that has been made in the biosynthesis of chemicals was mostly achieved using
the first two approaches. Nevertheless, many novel biosynthetic pathways for the
production of native and non-native compounds that have potential to provide near-
theoretical yields and high specific production rates of chemicals remain yet to be
discovered. Therefore, the third approach is crucial for the advancement of bio-based
production of value-added chemicals.

We need to fully comprehend and analyze the existing knowledge of metabolism in
order to generate new hypotheses and design de novo pathways. Current knowledge
about the metabolism is incomplete even for well-studied microorganism such as E. coli
and S. cerevisiae, and researchers keep discovering and characterizing new
biochemistry, genes, enzymes and reaction mechanisms. The complexity of metabolic
networks cannot be understood and analyzed intuitively; thus, computational methods
are indispensable to explore and expand the present knowledge of metabolism in order
to unravel the full enzymatic potential of microorganisms.

In this thesis, through development and application of efficient computational methods,
we took the research path to expand our understanding of cell metabolism with the aim
to discover novel knowledge about metabolic networks. We analyze different aspects of
metabolism through five distinct studies.

In the first study, we begin with a holistic view of the enzymatic reactions across all the
species, and we propose a computational approach for identifying all the theoretically
possible enzymatic reactions based on the known biochemistry. We organize our
results in a web-based database called “Atlas of biochemistry”.

In the second study, we focus on one of the most structurally diverse and ubiquitous
constituents of metabolism, the lipid metabolism. Here we propose a computational
framework for integrating lipid species with unknown metabolic/catabolic pathways



into metabolic networks. In our next study, we investigate the full metabolic capacity of
E. coli. We explore computationally all enzymatic potentials of this organism, and we
introduce the “Super E. coli”, a new and advanced chassis for metabolic engineering
studies.

Our next contribution concentrates on the development of a new method for the atom-
level description of metabolic networks. We demonstrate the significance of our
approach through the reconstruction of atom-level map of the E. coli central metabolism
and we show how a comprehensive atom-level metabolic analysis can guide the
experimental design to obtain more precise biological information.

In the last study, we turn our focus on studying the thermodynamics of metabolism and
we present our original approach for estimating the thermodynamic properties of an
important class of metabolites. So far, the available thermodynamic properties either
from experiments or the computational methods are estimated with respect to the
standard conditions, which are different from typical biological conditions. Our
proposed workflow paves the way for reliable computing of thermochemical properties
of biomolecules at biological conditions of temperature and pressure.

Finally, in the conclusion chapter, we discuss the outlook of this work and the potential
further applications of the computational methods that were developed in this thesis.

Keywords: Metabolism, metabolic networks, systems biology, metabolic engineering,
computational biochemistry, computational biology, de novo pathway design,
thermodynamics



RESUME

Les biotechnologies portent la promesse d’une production biologiquement durable et
responsable de composés chimiques de base, biocarburants, médicaments ou autres
produits a haute valeur ajoutée, grace a l'utilisation de micro-organismes comme
plateforme industrielle. L’'ingénierie métabolique joue un role clef dans ce schéma,
puisqu’elle fournit les outils nécessaires a une modification ciblée du métabolisme des
micro-organismes afin de créer des usines microbiennes capables de convertir un
substrat primaire en un produit chimique a haute valeur ajoutée. Actuellement, on
observe l'utilisation de trois approches pour modifier un micro-organisme et lui faire
produire une molécule d’'intérét: (i) L’optimisation des voies métaboliques
préexistantes chez I'hote, (ii) I'incorporation de voies métaboliques appartenant a un
autre organisme, (iii) la construction et lintroduction de voies métaboliques
synthétiques dans ledit organisme. Jusqu'a maintenant, les deux premieres méthodes
ont été les plus explorées et utilisées. Toutefois, il existe encore de nombreux composés
pour lesquels il n'y a pas de voie métabolique connue présentant hauts rendement et
productivité. C’est pourquoi la troisieme approche, la construction de voies
synthétiques, reste primordiale afin d’assurer le développement de la bio-production de
produits chimiques a haute valeur ajoutée.

Afin de créer et construire de nouvelles voies métaboliques, il est nécessaire d’avoir une
compréhension exhaustive du métabolisme. Pour le moment, méme des organismes
pourtant tres étudiés comme Saccharomyces Cerevisiae ou Escherichia Coli présentent
des lacunes dans leurs modéles métaboliques, et les chercheurs continuent encore de
découvrir et caractériser de nouveaux genes, enzymes, interactions biochimiques et
mécanismes réactionnels. La complexité des réseaux métaboliques n’est pas intuitive, et
c’est pourquoi des méthodes computationnelles sont indispensables pour I'explorer et
améliorer la connaissance actuelle du métabolisme en général, afin d’étre en mesure de
maximiser 'impact du potentiel enzymatique des micro-organismes.

Dans cette these, a l'aide du développement et de l'application de méthodes
computationnelles de pointe, j'ai oriente ma recherche vers la compréhension du
meétabolisme cellulaire, dans le but d’en découvrir plus sur les réseaux métaboliques.
J'analyse différents aspects du métabolisme via cinq études distinctes.

La premiere adopte un point de vue holistique, et s’intéresse a I'ensemble des réactions
enzymatiques connues. J'y propose une approche computationnelle permettant
d’identifier toutes les réactions enzymatiques théoriquement possibles, a partir des



interactions biochimiques déja connues. Les résultats sont organisés dans une base de
donnée appelée Atlas de la biochimie.

La seconde étude s’intéresse a un des systeémes les plus structurellement versatiles, et
néanmoins indispensables, du métabolisme : le métabolisme des lipides. |'y propose une
meéthodologie computationnelle permettant d’intégrer dans un réseau métabolique des
lipides n’ayant pas de voie métabolique ou catabolique connue.

Le chapitre suivant porte sur I'exploration de la totalité de la capacité métabolique de
Escherichia Coli. 'y recense tout le potentiel enzymatique de cet organisme, et y
introduis « Super E. Coli », un nouveau chassis servant de cadre d’étude pour l'ingénierie
meétabolique de cet organisme.

La pénultieme contribution s’attache au développement d’'une méthode de description
atomique des réseaux métaboliques. J'y démontre la pertinence de mon approche en
reconstruisant une carte métabolique a I'échelle atomique du métabolisme central du
carbone chez Escherichia Coli, et explique comment une analyse métabolique exhaustive
a cette échelle peut guider la conception de nouveaux protocoles expérimentaux visant
a obtenir des données biologiques plus détaillées

Enfin, La derniere étude s’'intéresse a I'étude thermodynamique du métabolisme, et j'y
présente une approche originale estimant les propriétés thermodynamiques d'un grand
nombre de métabolites. Jusqu'a présent, les données thermodynamiques provenant
d’expériences ou bien de méthodes computationnelles sont estimées dans I'état
thermodynamique standard, qui est typiquement différent des conditions cellulaires. La
méthodologie présentée établit les bases d'un calcul précis des propriétés
thermochimiques des métabolites, dans des conditions de pression et température
physiologiques.

En conclusion, je récapitule les implications de ces différents projets, et élabore sur les
applications potentielles des méthodes computationnelles développées dans cette
these.

Mots-clefs: Métabolisme, réseaux métaboliques, biologie des systemes, ingénierie
meétabolique, biochimie computationnelle, biologie computationnelle, conception de
voies métaboliques de novo, Thermodynamique.
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INTRODUCTION

Motivation

For the first time ever, half of the people living on earth are urban residents and by
2050, it is expected that 70% of the global population will live in the cities [1]. Rural to
urban migration brings forward new challenges relevant to the urban population
growth in the future. Urban communities are facing two big challenges: (i) limited
energy and food resources and (ii) unsustainable consumption of these resources,
which result in increasing waste streams production and CO; emissions. These are two
of the most critical issues for the next generations and are tightly linked to the fact that
the world’s population is extremely fossil fuel dependent [2].

The creation of sustainable “white” cities would be the ultimate solution and is pictured
as: cities that exploit the benefits of white biotechnology.

We can imagine future urban habitations where the city powers itself with renewable
sources of energy, recycles material at various levels (food, clothing, objects of daily use,
etc.), converts non-recyclable waste to energy, and thereby reduces the ecological
footprint.

White biotechnology promises the biologically and ecologically sustainable production
of valuable chemicals, fuels and other high value products using “modified”
microorganisms known as Synthetic Microbial Cell Factories (SMCFs), which serve as a
substitution to the unsustainable petrochemical-based processes [3,4]. These robust
biological machines are designed as revolutionary platforms to produce valuable
chemicals and biofuels (to address the limited sources of fossil fuels) using sustainable
resources and waste biomass (to address environmental concerns). Therefore, SMCFs
are the ideal means for building and supporting white cities through closing the loop
cycle of waste being turned into valuable products and sustainable energy sources.
However, most of natural organisms cannot directly serve as MCF to produce desired

compounds or to decompose man-made material used in modern lifestyle. Therefore,
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prior to their application as MCFs, the platform microorganisms need to be adapted and
genetically modified through retrofitting and optimization processes introduced in
synthetic biology and metabolic engineering disciplines. The very important question is
how to manipulate and harness the metabolic capabilities of organisms.

To do such modifications through metabolic engineering, one should have a complete
understanding of metabolism across different organisms and how metabolic processes
determine and regulate the physiological and biochemical properties of a cell.
Metabolism comprises all the biochemical transformations that occur in living
organisms, and is organized through interconnected metabolic and regulatory
networks.

Metabolism is extremely complex and requests a systems approach towards
understanding the involved metabolic processes for delivering solutions for metabolic
engineering applications. With the emergence and current progress made in high
throughput technologies, great quantities of biochemical and biological data are
generated in genomics, metabolomics and proteomics studies that help elucidate the
constituents of metabolic and regulatory networks and their interactions.

Mathematical approaches are proven to be imperative for organizing and integrating
the generated “omics” data into metabolic models and to enhance our understanding of
metabolism and uncovering its complexity. Mathematical descriptions of metabolism
(metabolic models) allow a systematic compilation of the generated omics data of an
organism and their analysis allows acquiring significant knowledge about the entire
metabolic network. Understanding the metabolism is not only crucial for the success of
metabolic engineering through design and delivering microbial platforms for white
biotechnology, but also has important implications for discovering novel therapeutic
approaches by unraveling the complicated mechanisms leading to diseases where
metabolism plays a critical role.

The aim of this thesis is the development of a suite of computational methods to
investigate metabolic networks and to gain novel biological perceptions of metabolism.
We apply our methods in a diverse range of problems in systems biology. Doing so, we
demonstrate how computational approaches coupled with the engineering
fundamentals of process design can explore and expand the potential of metabolism. As
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such, the outcome of this thesis highlights the importance of computational approaches
in accelerating metabolic engineering studies and in providing guidance for designing

therapeutic interventions.

Thesis Structure

This thesis is organized into nine chapters. Following the current introduction, in the
following chapters, we describe and discuss our approaches for addressing these
challenges. We provide a graphical description of the thesis structure that gives an
overview of the different chapters of this dissertation and it lists different tools and
design elements we developed during this PhD work, together with the chapters that

they have been applied.

In Chapter 1, we introduce the definitions and the necessary background for the
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essential notions in this thesis. We further briefly discuss the progress made so far and
the challenges remained to be addressed in the fields of systems biology and metabolic
engineering. Chapter 2 describes and explains the technical background and the main
methodologies underlying the research in this thesis. We comprehensively review and
explain various existing computational methods for the analysis of metabolic networks

and compare them with our proposed methods.

In the next five chapters, we address five research problems using extensions of our
developed methods. These works were published or submitted as research articles and
focus on a specific aspect of metabolism. Each chapter starts with a research question
that we wanted to answer in that study, and a short summary followed by an
introduction of the specific aspects discussed in that work, the findings and results of

the work and the concluding remarks of the study.

In Chapter 3 we present the application of our developed methods for exploring the
KEGG reaction database. Chapter 4 represents the computational studies of lipid
metabolism. In Chapter 5 we incorporate several methods for the development of a
comprehensive metabolic network for E. coli. In Chapter 6 we extend one of our
developed methods for the atom-mapped reconstruction of metabolic networks with a
demonstrative example of E. coli core metabolic network. In Chapter 7 we introduce
our pipeline to study the thermodynamics of metabolism.

Finally, Chapter 8 concludes this thesis and gives some perspectives for future

researches based on the findings of this work.
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Chapter 1
BACKGROUND

In this chapter we review essential biological and chemical notions and definitions
important for this thesis including metabolism and its relevant subjects such as
metabolic pathways, metabolic network and metabolic models. We further focus our
attention on the lipid metabolism and its significant roles in most of the biological
systems and its association with several diseases. An introduction to atom transition in
metabolism and the bioenergetics of metabolism are followed.

We also briefly present the emerging research fields of systems biology, synthetic
biology and metabolic engineering that rely on the understanding of metabolism and for
which the outcome of this thesis would have several applications. Finally we introduce
and explain the importance of available biological and chemical databases and their

organizations.

1.1 Metabolism, from metabolic pathways to metabolic networks

Metabolism is the ensemble of biological reactions that consecutively interconvert
metabolites in the living cells to sustain life. These biochemical reactions are catalyzed
by specialized proteins, called enzymes, which convert nutrient molecules to biomass
building blocks and release energy to power different biochemical processes in the cell
needed for growth [5]. Metabolism is one of the most complex cellular processes and
understanding it is crucial to many disciplines such as systems biology, biotechnology,
medicine and pharmaceutical research for designing new drugs [6].

For facilitating the study of metabolism, researchers usually divide it into two
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categories: catabolism and anabolism. They further categorize it into smaller subunits
called metabolic pathways [7].

Metabolic pathways are a series of enzyme-catalyzed reaction steps which convert one
compound into another through catabolic or anabolic ways. In the case of breaking
down and oxidizing the large molecules (nutrient and etc.) into small substrates, this
process is called catabolism. Catabolic pathways deliver the energy and substrates
needed for anabolism. Anabolic pathways make use of the released energy and small
molecules from catabolic reactions to produce molecules that construct the cell
components such as proteins, lipids and amino acids [8].

Traditionally, biologist studied metabolism by focusing on a specific metabolic pathway
and investigated the different involved reaction steps and enzymes, using different
approaches such as tracer experiments [9]. These analyses provided significant insights
into metabolism and brought a clear understanding of the structure and the function of
canonical metabolic pathways, such as glycolysis (the first discovered metabolic
pathway), pentose phosphate pathway, citric acid cycle, etc.

However, it is now believed that the metabolic pathways do not function as individual
isolated constituents and that their simultaneous function and interactions result in an
extremely connected complex network [10]. Hence, the historical reductionist and
simplified approaches cannot address numerous questions arising from the study of the
whole cell where the interactions of different parts create the emergent properties and
behaviors. The plethora of all compounds, reactions, enzymes and metabolic pathways
data along with their regulatory interactions which would determine the physiological
and biochemical properties of a cell are integrated into metabolic networks. Metabolic
networks are the backbone of metabolic models and are fundamental for metabolism
modeling and simulations [11].

Following the advances in genome sequencing techniques, the complete genome
sequence is becoming available for numerous organisms, and thus the genomic data can
be integrated in the metabolic models. Such assimilation results in the generation of
more comprehensive metabolic models that not only explain the physiological
properties of cell, but also can predict their behaviors. We elaborate more on the
different modeling approaches for the metabolic network analysis and their significance
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in Chapter 2.

1.2  Lipid metabolism

Lipids are hydrophobic organic molecules that include some common compounds such
as fats, oils, waxes, phospholipids and steroids (e.g., cholesterol). In addition, they
include a large range of compounds with special structures and functions. Lipids have
several key biological functions in living cells such as participating in signaling
pathways, acting as energy storage sources and being the structural components of cell
membrane. Moreover, they play an important role in various diseases such as obesity,
diabetes and cancer [12]. Lipid-associated disorders are metabolic disorders and their
characteristic is the accumulation of intolerable amounts of lipids in some of the body’s
cells as a reason of defects in the biosynthesis or biodegradations of simple lipids
[13,14].

The term lipidome refers to the full lipid complement of cells, tissues and organisms.
Lipidomics - the large-scale study of pathways and networks of cellular lipids in
biological systems - aims to elucidate and characterize the lipidome [15,16]. Mass
spectrometry (MS) is the most commonly used analytical method in lipidomics research
[17-19]. With the rapid growth in analytical technologies, in particular MS, vast amount
of data is being generated for lipid structures [20]. Therefore, there is a need for
developing comprehensive computational tools for data mining and system level
identification of lipid species and organizing them into databases [21].

Although there are a number of ongoing discoveries in lipidomics, assisted by functional
genomics and biophysical studies, still a large number of structures and functions need
to be discovered or clarified in lipid metabolism [22,23]. Due to the diversity of possible
chemical structures in lipids, bioinformatics is indispensable for accelerating the
discovery of novel structures and their corresponding biosynthetic and catabolic
pathways. In Chapter 5, we present our computational approach for the analysis of
glycerophospholipids metabolism, a diverse and ubiquitous class of lipids and the

results of a case study to show the applicability of our methods for lipid research.
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1.3 Atom transition in metabolism

Biological pathways have been extensively analyzed with respect to overall conversions
of substrates to products. However, information on atom transitions in metabolic
pathways is not widely available in the literature [24]. Reaction atom mappings track
the positional changes of all the atoms between the substrates and the products as they
undergo the chemical transformation and elucidate the mass flow in a biochemical
reaction network [25]. The understanding of metabolic reactions at the atomic level is
of great importance as it can deconvolute the overlapping catabolic/anabolic pathways
resulting in the observed metabolite [26]. This has widespread impact on applications
of systems biology such as isotope labelling experiments, pathway inference in genome
reconstructions, flux quantification for metabolic engineering and strain development,
and in the studies of metabolic diseases [27,28].

There are two main approaches to study the atom transition through a reaction:
experimental approach versus in silico approach.

Determining the atom map of a reaction experimentally means to replace one or several
atoms with radio-isotopes or, more recently, stable-isotopes. Due to the difference in
the mass of isotopes, the labeling pattern of the product can be determined by mass
spectrometry. In contrast, in silico atom mappings require no isotopes. Instead, they
require chemical/biochemical knowledge about the reaction mechanism. In silico, or
computational, methods have been developed to automatically generate atom maps for
large sets of reactions. Still, isotope-labeled metabolites are the standard approach to
elucidate reaction mechanisms. The computational determination of reaction
mechanisms, however, would be more efficient and would help to reduce the amount of
experimental work.

13C Metabolic Flux Analysis (13C-MFA) [29-31] is the standard approach to elucidate the
reaction mechanisms as well as the particular distribution of fluxes in an organism.
However, isotopic labelling experiments are costly and time-consuming. The
computational determination of reaction mechanisms is more efficient and can guide
experimental design. 13C-MFA techniques require a description of atom transitions from
substrates to products for each reaction in order to make predictions [32]. The ability to

track atoms through reaction pathways is inevitable in 13C-MFA studies[29,33] in order
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to: (i) find the appropriate position of 13C in the tracer metabolite; and (ii) choose the
best metabolites or biomass components to be measured in order to maximize the
information content of flux observations in the metabolic network [34].

In a comprehensive in silico atom-level reconstruction of a metabolic network, the atom
mappings need to be: (i) correctly created at the level of individual reactions, and (ii)
connected in a network and conserved through all reactions steps from the input
compound to the final products, enabling one to trace back the exact metabolic path of
every single atom.

More discussions about the computational methods for atom mapping and our
contribution to the field are provided in Chapter 2 and we further demonstrate the

results of our automated atom mapping method in Chapter 6.

1.4 Bioenergetics of metabolism

Bioenergetics is the crucial aspect of the metabolic processes as it concerns the energy
production and transformations in biological systems [35].

Bioenergetics is involved with any bonds that are broken or made in the molecules,
which are part of the cellular processes. As already mentioned, metabolism is divided
into two categories, and in catabolism, the breaking of nutrients into smaller
components leads to the production of energy in different forms such as adenosine
triphosphate (ATP) molecules. The released energy powers anabolism to construct
complex molecules that serve as biomass building blocks needed for growth. Life
depends on this energy flow and understanding the detailed mechanisms involved in
the energy transformation in living organisms is a big challenge [36].

The laws of thermodynamics hold true in the metabolism of a cell. Biological
thermodynamics concerns the chemical thermodynamics in biological and biochemical
systems. In thermodynamics, the energy required or released in the course of a
chemical reaction is measured quantitatively by the change in the Gibbs free energy
(ArG). A:G determines the degree of thermodynamic favorability of a reaction, ie, a
negative A;G indicates that the reaction can occur spontaneously, and if A;G is positive,

the reaction is nonspontaneous in the designated direction [37].
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Thermodynamics has been applied in the context of biological systems to improve our
understanding of the metabolism. It has been used to quantify the feasible ranges for
the Gibbs free energy change of a reaction [38-40] and to systematically assess the
degree of reversibility of metabolic reactions [41]. Such analysis requires a sufficiently
accurate knowledge of the thermochemical quantities of involved substrates and
metabolites [42]. The number of molecules involved in the biochemical reactions is
huge and the experimental available Gibbs free energies of formation cover only a small
fraction of them [43,44]. Hence, due to the scarce amount of available experimental data
for the biological systems, experimental-based thermodynamics analysis of metabolism
would be limited to small subsections of metabolism. Therefore, methods for the
efficient use of this minimal information and the development of reliable predictive
schemes of the thermochemical quantities are compulsory to fill in the gaps in the
experimental data [45-47].

Group-Contribution method (GCM), a particularly useful tool for metabolic pathway
analysis, is developed in Hatzimanikatis lab in 2008 to address the issues of the limited
experimental information for the thermodynamics of biological systems.

In this method, a molecule is decomposed into their constituent groups of atoms and the
Gibbs energy of formation of the compound can be estimated as the summation of the
properties of groups [48].

Using GCM, the standard Gibbs free energy of formation (and thus, the corresponding
free energy change of their reactions) can be estimated with sufficient accuracy for a
large percentage of dilute aqueous solutions [48]. GCMs are indispensable tools for the
high throughput feasibility analysis of metabolites and pathways. However, since they
are empirical methods, they do have their limitations. The coverage and the quality of
functional group contributions heavily depend on the existence of relevant
experimental data and on the quality of the data used for their determination. Thus, the
development of alternative non-empirical approaches, which could substitute
experiments, are crucial not only for the practical calculations but also for the insight
they provide. Such developments can also be used to enrich and improve GCMs or to
help with consistency tests. With today’s advances in ab initio and density functional
theory (dft) calculations and the availability of computational resources with ever
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increasing speed, the development of the above mentioned alternative non-empirical
approaches through quantum chemical calculations appear feasible.

Another consideration about the experimental approaches and consequently GCM is
that data - either obtained experimentally or estimated through GCM - are for standard
conditions (298.15 K, 101 kPa), which is not the case in most biological systems.
Adjusting the obtained data from GCM to the cellular conditions is therefore an essential
step for the improvement of the results obtained through this method. Knowledge
about the thermodynamics properties at non-standard conditions is of a great interest
for many applications in biology, biotechnology and medicine such as the following.

1. The temperature of human body could change from 37°C in a healthy condition
to 40°C in a sick condition. For understanding and exploring the biochemistry and
molecular biology of human metabolic networks in both healthy and especially sick
conditions, one needs to have the thermodynamic properties at biological conditions
rather than standard.

2. There is evidence that the metabolic activity of gut microbiota has a direct effect
on human health. The rate of microbial activity strongly depends on the temperature,
and it has been shown that different microbial communities are adapted to operate
under different optimal temperature regimes. The availability of thermodynamic
properties under relevant temperature for bacterial communities would be essential to
understand the underlying mechanisms of microbiota and host interactions.

3. Ancient deep-sea hydrothermal systems provide an environment conducive to
the abiotic synthesis of biomolecules that are essential for the emergence of life. The
enormous biotechnological potential in harnessing the metabolic capabilities of these
extremophiles can only be used with a better understanding of the metabolic
requirements and energetics of microbial life at the edges of survivability [49]. In this
respect, reliable calculations of thermochemical properties of metabolites and
biomolecules at high temperatures and/or high pressures are of primordial importance.
To overcome the limitation of experimental-based thermodynamics and the GCM, one
needs to improve the GCM method to obtain thermodynamic predictions that are
adjustable to any temperature and pressure based on the nature of the study. In
Chapter 2, we discuss the available methodologies and our recently introduced
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framework for estimating the thermodynamic properties for a broader range of
metabolites in biological systems, respecting the biological conditions of temperature
and pressure. Our introduced pipeline takes four main steps to do such estimations, and
the results of the first step of the project are provided in Chapter 7. The three other

steps are ongoing projects and their results are not included in this thesis.

1.5 Systems biology

The inter-disciplinary research field of systems biology aims at the systematic study of
metabolic networks through integrating high-throughput ‘omics’ experimental data into
predictive mathematical models to provide holistic views of metabolism [50].

Hence, the pillars of systems biology are the experimental techniques and
computational methods to assess the perspective of the entire metabolic network [51].
Opposing to the reductionist approach that study the snapshots of metabolism through
single biological pathways analysis, systems biology, owing to its network-based
intrinsic, takes a systematic holistic approach to study instantaneously all the
constituents of complex biological systems along with their interactions.

The considerable advances already made in field of systems biology are due to the fast
development and growth of high-throughput measuring technologies such as
metabolomics, transcriptomics and proteomics along with the emergence and advances

of bioinformatics and computational biology [52].

1.6  Synthetic biology and metabolic engineering

The origins of two emerging fields of synthetic biology and metabolic engineering, their
overlaps and their distinctional disciplines and approaches have been clarified in a
recent review by G. Stephanopoulos [53].

While metabolic engineering seeks to customize the cell and pathway performance for
the production of desired compounds, synthetic biology pursues this aim through
designing and constructing the synthetic genetic circuits that regulate the performance
of the cells [53,54]. The new generations of microbial strains, called Synthetic Microbial
Cell Factories, enable the sustainable production of a wide range of chemicals and fuels.
This demonstrates the achievements being made in the last 20 years by the emergence
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and collaboration of multidisciplinary fields of metabolic engineering, systems biology,
systems biotechnology and synthetic biology [55,56].

In order to create efficient microbial factories and broaden the range of biosynthetic
pathways for the production of both natural and non-natural compounds, it is necessary
to go beyond natural pathways by exploring the chemistry and synthetic capability of
biological systems [55,56].

Designing an SMCF has several steps, starting with the choice of the target desired
compounds and a particular chassis organism. It follows with the further analysis of the
biochemistry of the chosen organism to see whether the desired compound is native to
the metabolism or not. In case of a non-native compound, metabolic engineering
strategies are required to design pathways for the production of the desired compound
[57]. After considering several criteria, the best candidate pathways are then
engineered in the metabolic network of microorganisms that serve as synthetic
platforms in synthetic biology.

The complexity of biological chemistry and metabolism requires computational
approaches that explore the full possibility of synthetic pathways towards target
compounds. The de novo design of pathways is the key to exploit the incredible natural
diversity of enzymatic transformations. Detailed discussions about the available
methods for pathway design and our contributions to the field are provided in Chapter

2.

1.7 Data organization in biological and chemical databases

In order to take the full benefit from the wealth of extensive and rapidly growing
amount of information produced through high-throughput technologies and
computational methods, it is crucial to systematically organize and catalogue the
generated data into shared central resources to enable storing, searching and retrieving
from the data. Last decade has been the successful era of such organized and field
specific public data sources. Within the field of systems biology, several specific
databases have been developed with different scopes, coverages and prioritizations,
and one could broadly classify them to the repository of protein sequences [58,59] or
metabolic pathway databases [60,61]. A major challenge is to provide globally
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established nomenclatures and representative identities for chemical and biological
structures. This would allow connecting different databases in order to compare and
browse the data. Lots of efforts have been made to establish such connections between
online databases, which make it possible to gather different levels of information based
on different needs. In the following chapters we describe the scope and characteristics
of the major sources of information available for genes, enzymes, reactions and
pathways crucial for metabolic network analysis and reconstruction. These sources

have been extensively used in the different research projects throughout this thesis.
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Chapter 2
METHODOLOGY & THEORY

In this chapter we review the theory and the technical aspects underlying the research
of this thesis. We emphasize on the “technical design elements” that were needed to
carry out this research and on the methods that have been developed and applied to
address several biochemical and biological questions in the context of this thesis. We
begin with the computational methods for the metabolic network analysis and our
contributions for the design of de novo pathways. We further introduce the methods we
developed for the automated atom mapping of the biological reactions. In the last
section, we describe a new pipeline for the improvement of the estimation of the
thermodynamic properties. More details about methodologies are covered in the
following chapters. After introducing each design element, we point to the chapter in

which it is more elaborated later in the thesis.

2.1 Computational methods for metabolic network analysis

Metabolic systems are complex interconnected networks that include genes, proteins,
enzymes, metabolites and reactions. By the ever-increasing availability of “omics” data,
the size and the complexity of metabolic networks are growing [10]. Such complex and
large networks cannot be understood and analyzed intuitively; thus, computational
methods and strategies for the reconstruction and analysis of metabolic networks are
indispensable [10,62]. Computational metabolic network reconstruction is a well-
established discipline in which we systematically collect the available data to form a
knowledge-based mathematical model of the metabolic network for managing the

complexity of the biological systems. Metabolic network reconstructions are mostly
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organism specific and depend on the quality of the sequenced genome, thus differing in
size and quality. If the metabolic network reconstruction is based on the full genome
annotation of an organism, we use the term genome-scale metabolic networks [63].
These reconstructions collect all the relevant metabolic knowledge of the organisms
and capture their metabolic capabilities and provide an in-depth insight into their

metabolism.

2.1.1 Genome-scale metabolic models

Genome-scale metabolic models (GEMs) are one of the most important computational
resources for the investigation of metabolism and have been constructed and
experimentally verified for several organisms. The reconstruction process starts with
collecting the relevant knowledge about the given organism from genome analysis, the
databases of metabolic information, and its known biochemistry. This process is
followed by assembling the collected information into a mathematical model which
represents the metabolic network of the organism. This allows us to perform
simulations and optimizations by using mathematical methods in order to make in silico
predictions of metabolic states and generate hypotheses.

Creating a GEM is a time-consuming process. No procedure is yet available for the fully
automated reconstruction of GEMs and still a lot of manual curations are required.
However, numerous computational methods and protocols have been proposed to
make this process semi-automatic and to generate high-quality genome-scale models
[64,65]. Furthermore, there are repositories of publicly available reconstructed
genome-scale models for several organisms such as BIGG [66] and SEED [67] databases.
GEMs are proven to be valuable in many applications in basic biological studies,
metabolic engineering, biotechnology and pharmaceutical researches for drug design.
However, since they are derived from genome annotations that are themselves
incomplete, they may not fully capture the metabolic and enzymatic capacity of the
organisms. Consequently, several metabolic pathways remain unknown, and many
reactions are still missing even in known pathways and well-studied organisms [68].

This necessitates the development of higher-level computational tools beyond those
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depending on the genome sequencing and annotations, in order to fill in the metabolic

knowledge gaps by de novo prediction and the reconstruction of metabolic pathways.

2.1.2 Insilico pathway design

Several computational frameworks have been developed for the in silico pathway
design in metabolic networks. The most commonly in silico pathway design tools offer
the enumeration of pathways in two ways: (i) either they effectively combine known
reactions from databases that lead to the production of a given desired compound from
different organisms (heterologous pathways) [69-71] or (ii) they construct the de novo
pathways which include not only the known reactions but also the hypothetical steps
whose corresponding enzymes might not actually exist in nature [6,72-79].

The algorithms in the first approach are based on the graph representation of
metabolic networks. Using this graph, one can search for all the possible pathways
between known input and output compounds. The source graph for the pathway
searching can be either limited to the metabolic network of an organism, or extend
beyond a specific organism and include all available known reactions. One of the best
examples of such tools is FMM (From Metabolite to Metabolite), a computational tool
for the reconstruction of metabolic pathways form one source metabolite to another
target metabolite among different organisms [69]. FMM and other similar methods
[28,69-71,80] enable the identification and the design of new metabolic pathways based
on known reactions previously existing in the databases. Although there are numerous
achievements in the metabolic engineering research through discovering heterologous
pathways using the aforementioned tools, such reconstructed metabolic pathways are
based on existing metabolic maps. Therefore, such methods are limited when there is
no known enzymatic step for a desired compound and one has to design a de novo
pathway for its biosynthesis [72]. This scenario is usually the case when the target
compound is a non-native compound for the known chassis organisms.

Algorithms of the second approach enable postulating putative metabolic pathways
that are of great interest in synthetic biology. A comprehensive algorithm for the in
silico prediction and design and further feasibility evaluations of de novo pathways is a

significant driver for the success of metabolic engineering and various such tools have
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been developed in the past decade (Table 2.1). We will elaborate more on the technical

aspects of such algorithms in the next section.

Table 2-1: Available de novo pathway reconstruction tools and their availability

Name Tool development and
applications

BNICE.ch [6,72,81-84]

DESHARKY [75,85]

ReBiT [78]

http://www.retro-biosynthesis.com
Method developed with Cho et al. [73]
RetroPath [74,86-90]

http://www.issb.genopole.fr/~faulon/retropath.php
SimPheny [76]
GEM-Path [77]

2.1.3 Retrobiosynthesis for de novo pathways design

Retrobiosynthesis, a promising approach for the de novo pathway design, is inspired
from the retro-evolution hypothesis proposed in 1945 by Norman Horowitz [91,92] and
has its origins in retrosynthetic organic chemistry. Retrosynthetic analysis starts by
defining a target molecule that we are interested to produce and walks backward
through the known chemical transformation rules to modify the target molecule and
identify the possible precursors and reactions [93,94]. This basic concept of walking
backwards from a molecule and using the biotransformation rules to reconstruct
biochemical pathways is also used: (i) to find novel pathways for the biodegradation of
pollutants [79,95] and (ii) in generating hypothetical pathways for the metabolites and
lipids that are found in metabolomics and lipidomics studies but their metabolism is
unknown [84].

In retrobiosynthesis, the goal is the production of a target molecule through the

enzymatic biotransformation steps occurring in the metabolic network of
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microorganisms. This analysis results in finding de novo pathways that connect the
target molecule to either a cellular metabolite or to a biochemical feedstock by using
natural or engineered enzymes.

Before a de novo pathway could be built in the laboratory and integrated in a
microorganism, it should first be designed and evaluated. While intuition and manual
design can assist in postulating novel pathways, it is not sufficient to guarantee the
generation of all the potentials and the selection of the most efficient ones
[55,72,73,89,96-99]. Hence, the computational prediction tools are indispensable for
retrobiosynthesis analysis, not only for assisting with generating novel hypotheses, but
also for screening for the most efficient pathways. Computational frameworks result on
the extensive generation of all possible de novo biosynthetic pathways that allows for
the exploration of the entire space of feasible biotransformations in a given cell [6,72-
79,81].

The combinatorial explosion is the most important risk associated with these
approaches, since they generate compounds and reactions which may or may not
actually take place in nature. Therefore, the next crucial step is to screen the generated
biosynthetic pathways through feasibility studies.

Following the increasing demand for designing de novo pathways in the metabolic
engineering research, computational tools for the retrobiosynthetic analysis attracts
more attention. These tools are becoming one of the most important steps for a reliable
metabolic engineering strategy.

BNICE.ch (Biochemical Network Integrated Computational Explorer) which has been
developed by Hatzimanikatis et al. in 2005 [72], is a pioneer computational framework
for the de novo pathway design and evaluation.

One of the important modules of BNICE.ch is the retrobiosynthesis analysis. From our
experience in developing the retrobiosynthesis framework of BNICE.ch and the analysis
of other available tools, we propose a retrobiosynthetic workflow composed of three
main steps, where each step requires certain technical design elements to be

implemented (Figure 2.1).
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Figure 2-1: Our proposed workflow for a retrobiosynthesis framework start with the selection of a
target molecule and results on top-ranked synthetic pathways for implementation in a chosen
organism for the biosynthesis of the target molecule.

In the next section, we introduce BNICE.ch, and we describe further developments and
extensions to this framework that have been made during this thesis. The applications

of the developed methods are demonstrated in chapters 3 to 7.

2.2 BNICE.ch framework

BNICE was initially developed in 2005 for the exploration of metabolic networks
[72,81]. In the course of this PhD project, several modules and methods have been
integrated in BNICE.ch for enhancing its capabilities and extending its applications.
Furthermore, we have applied BNICE.ch in several research and industrial projects. The
achievements of these research projects will be discussed in the following chapters.
Furthermore, we have applied the retrobiosynthetic module of BNICE.ch in several
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industrial projects, the results of which are cataloged in a web-based database and
cannot be discussed here due to confidentiality agreements. However a representative
example of such analysis is available on the website (Icsb.epfl.ch/database).

In the following sections, we present BNICE.ch, an established computational
framework to design, evaluate, rank and visualize promising de novo pathways for
several applications ranging from metabolic engineering to drug design. Below, we list

and describe the technical design elements of BNICE.ch (Figure 2.2).

2.2.1 Internal and external databases

2.2.1.1 Generalized enzymatic reaction rules

One of the key design elements of BNICE.ch is a database of “biochemical
transformation rules”. These rules mimic the function of enzymes and serve as in silico
enzymatic actions. As there are a large number of characterized enzymes, one can
organize those that perform similar reaction mechanisms into “generalized enzymatic
reaction rules” [72,81]. After their introduction in BNICE.ch in 2005, the concept of
generalized reaction rules has been adopted by several other similar methods
[73,74,76-78].

BNICE.ch has an in-house made database of 582 manually curated generalized reaction
rules that translate the biochemical knowledge of enzymatic reaction mechanisms into
a generalized mathematical format. Around 90 percent of known enzyme-catalyzed
reactions can be represented by a set of 291 manually curated, bidirectional reaction
rules that can be considered as “in silico enzymes”. Each of the 291 forward reaction
rules comes with a reverse reaction rule catalyzing the opposite direction of the
reaction. Thus, the whole set of reaction rules contains 582 forward and reverse rules.
The generalized reactions rules are developed based on the Enzyme Commission (EC)
classification of known biochemical reactions in enzyme reaction databases [100]. The
Enzyme Commission classification is a numerical classification scheme for enzymes. It
uses a four-digit number (EC number) that represents a progressively finer
classification of the enzyme. If different enzymes (for instance from different

organisms) catalyze the same reaction, they are assigned the same EC number.
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Figure 2-2: Workflow of the BNICE.ch framework is categorized into four main steps and each step
may include more than one design elements.

We have developed a procedure for extracting the generalized reaction rules from
known enzyme reactions. Since the generalized enzyme reaction rules are not substrate
specific, we formulate a new rule based on all existing specific (4t level) reactions in the
corresponding 34 level class: (1) we find repeated patterns for the reactive sites of the
substrates in the 4t level enzymes, then (2) we represent these repeated patterns using
bond-electron matrix (BEM) [101], and finally (3) we define a generalized reaction rule
consistent with the structural similarity (exact match) of the reactive sites of substrates

as derived by repeated patterns.
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Each generalized reaction rule has three representative matrices (Figure 2.3): the first
one is the BEM representation of the reactive site of substrates for a class of enzymes

that follow a unique reaction mechanism.
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Figure 2-3: Example of the action of a generalized reaction rule on the substrate of a reaction and
the formation of products. The reaction rule matrix is added to the BEM of the reactants to produce
the BEM of the products.

The second is the reaction matrix that determines the change in the bonds during the
overall reaction and is used to apply the reaction through matrix addition to the BEM of
the reactant molecules. Negative numbers in the reaction matrix correspond to the
cleavage of bonds and positive numbers correspond to the formation of bonds. Finally
the third matrix is the BEM of the products that are formed when the matrix
representing the enzyme catalyzed reaction is added to the BEM for the substrates
(details and examples can be found in [6,72,82,95,102,103]). During my thesis, we
systematically revised and expanded the generalized reaction rules. Until this work on
the revision of the rules, not every rule had the corresponding reversible action and
most of existent reveres rules had not been properly curated. We systematically curated
also the reverse rules and now for every “generalized enzyme reaction” we have two
rules, one for each direction. Prior to the work in this thesis, BNICE.ch had a set of 86

rules and during the work of this thesis this number increased to 582 that accounts for
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291 rules in each direction. More details about the new set of generated reaction rules

will be discussed in Chapter 3.

2.2.1.2 Biological and chemical databases integrated in BNICE.ch

A very important aspect of BNICE.ch is the information from available databases
integrated into the framework, which allows us to screen our results against all known
biological compounds and reactions. If a specific reaction of the database can be
replicated using a generalized reaction rule, we denote the reaction as being "covered"
by BNICE.ch. The percentage of reactions in a database that can be replicated with our
reaction rules is called “coverage”, which is an important indicator for the performance
of BNICE.ch and makes it distinguishable from other similar tools.

One has to notice that the “coverage” is a moving target; since it depends on the actual
number of “known reactions” which is not fixed and is increasing over years. During this
thesis, by curating several new reaction rules, the coverage of BNICE.ch increased from
48 % of KEGG 2008 (~6000 reactions) to ~90% of the KEGG 2014 (more than 9000
reactions).

The most important biological databases as sources for metabolic data are the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [60], SEED [67,104] , MetaCyc [61], and
ChEBI [105] databases and their information is integrated in BNICE.ch. KEGG is a
manually curated, reliable source of information that is used in this work as the gold
standard for assessing the performance of our method as well as for the validation of
reaction mechanisms through KEGG RPAIR database. KEGG RPAIR contains reaction
mechanisms as well as information about atom-atom correspondence [106].

In addition to biological databases, we have integrated the enormous amount of
information of PubChem database [107,108] (~2 million unique entry for chemical
structures)- the biggest available database for compound structures- in BNICE.ch.

In Section 2.2.4 we elaborate more on how we match the generated compounds and

reactions against the mentioned databases.

2.2.2 Metabolic network generation in BNICE.ch
BNICE employs an automated network generation algorithm, which works in an

iterative fashion. We use “generation” and “iteration” interchangeably in this work.
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Starting with a set of input molecules, the algorithm works as follows:

1)

2)

3)

4)

5)

6)

Every molecule is checked for reactivity, i.e., it is evaluated to find if it has the
appropriate reactive sites (functionalities) to wundergo the reactions
corresponding to the specified list of reaction rules.

Upon acting on a molecule, the generalized reaction rules recognize the
biological reactive sides of molecule and apply the biotransformation by which
the atoms and bonds rearrange to form the product.

Next, all reactants are placed in a “reacted” list, and all products from these
reactants will be placed in an “unreacted” list if they are molecules that have not
been specified or generated before. This completes the first step and is defined
as ‘generation 1".

Each molecule in the “unreacted” list will be checked for its reactivity, the
reaction rules will be applied, and new “reacted” and “unreacted” lists will be
created for the ‘generation 2’.

The procedure is repeated iteratively and an iteration count is maintained as
new molecules are created, keeping track of the generation number of each
species, which corresponds to the number of steps required to create a given
product from the original reactant(s).

A maximum generation number can be specified, and thus the generation
number can be used to determine if a given molecule from the “unreacted” list
may react in the next generation. Once the generation number reaches the
specified maximum, the newly created molecules are placed in the “reacted” list,

which marks the terminal point of the reaction network.

Being designed as “general”, the reaction rules are capable of acting upon a wide range

of substrates in addition to the specific native ones. Therefore, repeating this process

iteratively results in the generation of a biochemical network of all theoretically

possible compounds and reactions, including those that have no known experimental

counterpart (de novo compounds and reactions).

Aside from the “number of iterations”, the number of generated compounds and

reactions and consequently the size of the generated metabolic network depends on

several other adjustable parameters that are defined in BNICE.ch and will be further
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discussed.

2.2.2.1 ‘Forward’ vs. ‘retrobiosynthesis’ network generation modes

BNICE.ch has two different running modes, “forward” versus “retrobiosynthesis”, which
allow us to reconstruct a metabolic network in two different approaches based on the
nature of the study. The forward algorithm explores all the possibilities between the
compounds in the “unreacted” list to generate all possible reactions between them. This
running mode has been applied to reconstruct several metabolic networks, starting
from a set of substrates along with the generalized reaction rules. We demonstrate the
results of the forward running mode in Chapter 4 for the reconstruction of part of the
lipid metabolism and in Chapter 5 where we reconstruct the E.coli core metabolic
network.

In the retrobiosynthetic algorithm, we take a slightly different approach based on the
concept of retrosynthesis. A retrosynthetic analysis starts from a desired target
compounds with the goal being to find all possible reactions steps (pathways) from this
compound to potential substrates. The aim at each further iteration is to generate a
reaction step that brings us closer to the potential substrates. We match the generated
compounds in a network against the metabolites of the chosen organism and we define
the potential substrate as any metabolite that is native metabolite for the organism and
exits in the generated network of the target compound.

Therefore, in the retrosynthetic mode, we allow the set of metabolites in the
“unreacted” list in each generation to only react with other starting compounds (a.k.a.
reactive starting compounds) but not with each other. After each generation, the new
set of generated compounds is allowed to react with only the set of reactive compounds
of previous generations in order to generate all possible biochemical reactions. This
feature would allow us to always stay connected to the target compound through linear
pathways of enzymatic reactions, and in addition, it helps us to explore more
generations as it reduces the number of generated compounds and reactions.

We have applied the retrobiosynthetic approach of BNICE.ch to analyze the lipid
metabolism and to integrate the lipid structures from lipidomics data into metabolic

pathways [84], which will be covered in Chapter 4.
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Furthermore, we have successfully applied the retrobiosynthesis feature of BNICE.ch in
several industrial projects for finding de novo pathways for the biosynthesis of
chemicals with no known biosynthetic routes, an example of such analysis is provided

on our website (lcsb.epfl.ch/database).

2.2.3 Pathway enumeration algorithm

We analyze in further details the identified compounds and reactions in order to
determine the architecture of their synthesis and degradation pathways. We use a
“pathway reconstruction algorithm” that constructs all possible pathways from a given
substrate to the target molecule in the generated network of compounds and reactions.
In general, the pathway reconstruction algorithms perform either a graph-based search
in the network or use optimization-based methods to identify possible pathways from
potential substrates for the synthesis of the target compound in the generated
metabolic network [82,109,110]. We implemented both features in our pathway search

algorithm.

2.2.4 Pruning the generated data

The in silico design of the de novo pathway risks a combinatorial explosion in two
aspects. First, in the network generation process, the action of the generalized reaction
rules on the compounds results in the generation of all possible compounds and
reactions which may or may not actually take place in nature. The number of such
compounds and reactions increases exponentially at every iteration of the network
generation algorithm. Second, due to the combinatorial nature of the pathway
enumeration step, an enormous number of pathways from a substrate to the same
target compound are generated. Thus, the very important next step is the evaluation of
proposed compounds, reactions and pathways and the selection of the most feasible
enzymes, reactions and pathways to be tested in laboratory. In BNICE.ch we perform
the pruning analysis by two strategies:

(1) Qualitative pruning of generated data

(2) Quantitative pruning of generated pathways
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2.2.4.1 Qualitative pruning of generated results

Qualitative pruning of the generated data is the process of surveying which portion of
the obtained information is already known, which portion is novel, and how similar is
the novel information compared to the known data, i.e., the metabolites, reactions and
pathways existing in the databases. These databases are biological, such as KEGG [60]
and Metacyc [61], and chemical such as PubChem [111]and ChEBI [112]. Qualitative
pruning is in general independent of the organism of choice.

By screening through existing databases, in addition to differentiating between known
and novel knowledge, we also directly capture available biochemical properties for the

compounds and reactions.

2.24.1.1 ‘Supervised’ vs. ‘unsupervised’ approaches
The size of the reaction network that BNICE.ch generates depends on different
constraints predefined in our algorithm. The most important factors that have a major
effect on the size of the generated network of reactions are:

(i) the number of generalized reaction rules and

(ii)  the allowable “search space” for the generated compounds and reactions.
These are both introduced, as an input parameter for the algorithm and the
consideration of these two parameters would result in a “supervised network
generation” approach as opposed to the “unsupervised network generation” approach.
In a supervised network generation mode, based on the question we address, we allow
specific generalized reaction rules as opposed to all the reaction rules. An example of
such approach is discussed in Chapter 5 where we investigate the biochemistry of E.coli
core metabolic network. In this study, we only apply those reaction rules that have
relevant enzymatic reactions in the core metabolic network of this organism.
In addition to the selection of the generalized reaction rules, during this thesis, we have
introduced the notion of supervised network generation through the adaptable search
space in the network generation process. The adaptable search space allows searching
within a domain of metabolites and reactions that is predefined as a parameter. The
supervision can be applied for the generated compounds or reactions or both leading

to:
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 The selection of the compound search space, i.e., at each iteration, we keep only
the compounds that are part of a biological or chemical database or both (versus
keeping all known and novel compounds at each iteration).
e The selection of the reaction search space, i.e., at each iteration, we allow only
known reactions of KEGG or the reactions that are part of a specific database
(versus keeping all known and novel reactions at each iteration).
Therefore, at each generation we retain in the ‘unreacted’ (product) list only the
compounds and reactions that exist in the indicated reference databases.
By introducing these three types of constraints (for the selection of the reaction rules,
compounds and reactions), we can create different project-specific supervision modes.
The level of supervision is defined for each of the three input constraints, and the
different levels range from all possible reactions and compounds (known and novel)
down to pathway-specific compounds and reactions only.
In the case of unsupervised network generation, we apply all generalized reaction rules
for the network generation and do not screen the results until the end of the job where
we crosscheck against databases to differentiate the known and novel knowledge.
Figure 2.4 is an example of three different BNICE.ch studies on glucose that
demonstrates how the choice of the constraints would dramatically affect the size of the

network.
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Figure 2-4: Forward network generation with BNICE.ch at three different supervision modes to
investigate the impact of the supervision level on the size of the generated network. The level of
supervision for the generalized reaction rules and compounds are the same in the three cases, the
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level of supervision of reactions changes from only E. coli reactions in A, to KEGG reactions in B and
finally to unsupervised reaction generation in C. The inner circle shows the results of the first
iteration and the outer circle shows the generated compounds in the second iteration. Green
connections represent KEGG reactions, red are novel reactions and blue are E. coli reactions.

In all the three examples, we used glucose as the substrate along with the set of 12
cofactors (NADH, NAD+, H*, Bicarbonate, CO2, Oz, Water, ATP, ADP, Phosphate, Acyl-CoA
and ammonia) and the whole set of 582 generalized reaction rules. We ran the
algorithm for two iterations. The supervision level for the generalized reaction rules
and compounds is the same for the three examples.

The smallest network (2.4 A) shows the results of the reaction supervision level to only
E. coli reactions (5 compounds and 14 reactions).

Figure 2.4 B shows all KEGG reactions that are generated by BNICE.ch in two
generations and contains 20 compounds and 77 reactions. The network size increases if
we allow all the KEGG reactions (2.4 B). In the last example (2.4 C), all possible BNICE.ch
reactions, starting from glucose and between the known KEGG compounds are
explored. This reaction network includes 161 compounds and 808 reactions and shows
the significant increase in the size of the network when we do not constraint the
reaction level.

Table 2.2 summarizes different levels of supervision with their corresponding actual
statistics. For instance, if we want to work with a network of the E. coli core metabolism,
we would run BNICE.ch on the supervision level “Network”, meaning that we only
include specific reaction rules (i.e., 45) and we allow the native E. coli compounds (i.e.,
67) and reactions (i.e., 76) to be produced. Such constrained level of supervision is
especially important for the atom-level reconstruction of metabolic network that will be
discussed in Chapter 6.

Depending on the application, we may want to adapt the levels of supervision
independently. These features allow the efficient arrangement of the results based on
the knowledge that exists in databases and address the risk of combinatorial explosion.

Table 2-2: We defined 5 levels of supervision in BNICE.ch. The supervision level can be chosen for

each input constraint .The darker the color of the cell, the smaller the number of generalized

reaction rules and the search space for the generated compounds and reactions. The less

constrained possible case is to consider the search space of a database such as KEGG for the
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reconstructed metabolic networks. In this case, all the generated compounds and reactions will be
checked against KEGG, and if they exist in KEGG, we keep them with the corresponding KEGG
identification numbers (Ids). The most restricted constraint is to limit the choice of the generalized
reaction rules and the search space to a pathway, e.g. Glycolysis, and to only keep the generated
compounds and reactions that belong to this pathway at each iteration. We used the KEGG 2014 for
the database level of supervision and the information from the genome scale reconstruction of E.
coli, iJ01366 [113] for the organism level. In the chapters 3 to 7, for all the applications of BNICE.ch,
we present this table and we highlight the level of supervision that is used in each study.

Supervision level Input constraint
Example Reaction rules Compounds Reactions
Unsupervised - 291*2 Unlimited Unlimited
Database KEGG 291%*2 17,343 9972
Organism E. coli 150*2 1'039 1'387
Network Core metabolism 45*2 67 76
Pathway Glycolysis 10 12 16

The qualitative pruning can be also applied in the pathway enumeration step. During
this thesis we have also implemented the notion of supervised pathway enumeration
that allows enumerating “a set of viable pathways” rather than all possible pathways.
Applying this new feature, we evaluate pathways based on the knowledge of
compounds and reactions in databases. For instance, we can enumerate only the
pathways with a pre-specified percentage of their steps existing in biological databases

as known enzymatic reactions.

2.2.4.2 Quantitative pruning of generated pathways

Once we reconstruct a metabolic network of compounds and reactions and further
enumerate de novo pathways of interest and screen them against databases, the next
step is to perform the feasibility analysis. Such analysis is performed in order to
determine the suitability and the performance of individual pathways and to
quantitatively prune the proposed pathways to a set of most biologically feasible ones.

Quantitative pruning is generally context dependent on the chassis organism. Different
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metrics can be applied to evaluate the likelihood of in silico-designed pathways to be
proficiently implemented in an organism.

One very important metric is the thermodynamics of the reaction steps and
consequently the synthetic pathway which allows us to discard the pathways that are
energetically unfavorable in the first place. To do such thermodynamics analysis, we
used a Group Contribution Method to estimate the Gibbs free energy for metabolites
and consequently the reactions [114]. This method has been developed in
Hatzimanikatis lab and is used in several other computational frameworks for
estimating the thermodynamics feasibility of the synthetic pathways [73,76,77].
Furthermore, in BNICE.ch, we apply constraint based modeling by incorporating the
synthetic pathways one at the time into the genome scale model of the chosen organism
and performing Thermodynamics based Flux Balance Analysis (TFBA) [47,115]. This
further step allows us to adjust the estimated Gibbs free energy with respect to the
metabolite concentration, ionic strength and pH to get closer to in vivo conditions. By
performing a TFBA analysis, we guarantee that the obtained pathways are feasible with
respect to mass balance (stoichiometrically), we assess the network thermodynamic
feasibility of generated pathways, and we thus quantify their overall effects on the
metabolic profile of the organism by calculating the energetic cost and the change in the
biomass yield for each molecule of the generated product [116,117]. Furthermore, one
of the most important outcomes of TFBA for biotechnological applications is the
pruning and ranking of pathways based on the maximum production yield of the target
molecule from each individual synthetic pathway. In Chapter 5 we elaborate more on
the importance of TFBA analysis as a further step to quantitatively prune the wealth of

information generated with BNICE.ch.

2.2.5 Bridglt analysis

Another compelling aspect of the interactive analysis with databases is the structural
similarity comparison of the substrates and products of the generated de novo reactions
to the substrates and products of the known reactions. We can quantify the results of

such a comparison by using different chemoinformatics metrics such as “compounds
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fingerprints comparison” using “Tanimoto distance” [118], and assign to novel reactions
a similarity score with respect to the existing reactions.

Using such a metric, one can propose potential enzymes for the de novo steps of a
pathway based on their structural similarities to the known reactions. Through this
reaction structural similarity assessment, we can further assign to novel reactions gene
and protein sequences that could be used in evolutionary protein engineering and
computational protein design for the experimental implementation of the novel
pathways.

Bridglt has been recently developed in our lab as a complementary tool to BNICE.ch for
assessing the structural similarity of the reactions. Bridglt is based on the hypothesis
that chemically similar reactions share similar sequences, based on the “lock and key”
principle, which is also used in the protein docking methods. The enzyme is considered
as the “lock” and the ligand (molecule) as a “key”. If a molecule has the same reactive
sites as the native substrate for a given enzyme, and similar surrounding structure, it is
expected that the enzyme would catalyze or could evolve to catalyze the same
transformation on this molecule. Based on this hypothesis, if two metabolic reactions
have the same reactive site and similar surrounding atoms and bonds around the
reactive site, it is highly plausible that these metabolic reactions are catalyzed by the
same enzyme(s), or the corresponding enzymes share the same E.C. classification (up to
the third class). Also, it is highly probable that the genes functions responsible for these
reactions (biotransformation) share sequence similarity.

The initial idea behind Bridglt development is to use the reactions’ structural
similarities as a measure for assigning genes to the hypothetical reactions generated in
BNICE.ch. This method is further applied for finding and assigning protein sequence for
the orphan reactions. Orphan reactions are enzymatic reactions that lack an associated
protein sequence [119]. Due to the lack of reliable annotations and the drawbacks of
homology-based predictions, a large part of known enzyme activities is still missing an
associated gene sequence. Since Bridglt is not functioning based on the sequence
similarity, and instead, takes into account the structural similarity of the reaction, it is a
promising tool to complement the existing methods for assigning protein sequences to
orphan reactions.
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Bridglt translates the structural definition of a reaction to a mathematical form, so-
called a vector, and compares these vectors using “Tanimoto distance”. It has an
integrated reference database which accounts for all KEGG non-orphan reactions.

It compares any given reaction (for instance an orphan reaction) with all the reactions
in the reference database and assigns a Tanimoto similarity score for all the
comparisons it does. The Tanimoto score indicates how similar the given reaction is to
each of the reference reactions. It varies between 0 and 1, where 1 is considered as a

high similarity and 0 indicates no similarity.

2.2.5.1 New features of Bridglt

During this thesis, we applied Bridglt in several projects for the further analysis of the
hypothetical reactions generated in BNICE.ch. If we consider the de novo reactions
generated with BNICE.ch as “theoretical orphan reactions”, by applying Bridglt we can
find the most structurally similar known reaction along with its similarity score to the
de novo reaction. Consequently, we can propose gene sequences for their further
practical implementation in metabolic engineering studies.

In the course of my thesis, we made comprehensive case studies using Bridglt. After the
analysis of the generated similarity scores, we came up with two different strategies to
be incorporated in the Bridglt algorithm to improve its predictions. The first method is
applicable for both orphan and theoretical orphan reactions, and the second approach is
oriented for the novel reactions (theoretical orphan) that are generated with BNICE.ch
and are associated with a third-level EC number.

In the first method we first exclude the cofactors from the generated reaction vectors
to make a cofactor-free reference database. Bridglt initially considered all the
compounds in the reactions as “substrates”, and in the reactions in which pairs of
cofactors with big molecular structures participate, for instance NAD/NAD*, the results
were not accurate. Consider two reactions that both have NAD/NAD* in their
mechanism: they would be scored as “very similar” since they share a big portion of
their vector which is NAD/NAD+*, and therefore the biotransformation that happens in

the course of the reaction usually becomes negligible.
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Therefore, we extracted from databases a list of molecules that are frequently
considered as biological cofactors, and we incorporated a new feature to Bridglt, in
order to exclude these cofactors from the reactions before constructing the reaction
vectors. Therefore, the new feature of Bridglt compares only the biotransformations
that happen in the course of the biochemical reaction.

We incorporated the second feature for the further analysis of the novel reactions
generated by BNICE.ch in order to obtain a more precise similarity score, by employing
the wealth of information provided for the de novo generated reactions that is a third-
level EC number.

Our new algorithm first looks at the known digits of the EC number of a novel reaction.
It then extracts the reactions in the reference database that share a similar third-level
EC and compares the novel reactions only with them.

It is also possible to set a predefined parameter to compare the novel reaction with all
the known reactions that share the same second level EC, or with those reactions that
share the same first level EC. One of the advantages of this new feature is its time
efficiency.

The comparison that Bridglt does for each reaction against all stored reactions in the
reference database is intensively time consuming, and with BNICE.ch project that
generates thousands of reactions, it appears as a limitation. With the new method
(second feature), since fewer comparisons have to be performed, Bridglt will run much
faster than with the original method. The new method excludes false positive
comparisons by filtering out the reference reactions that have no similarity with the
novel reaction due to the different enzyme class that they belong to.

We have also investigated the performance of Bridglt, when we introduce these two
features simultaneously. This new feature first filters the cofactors from the reactions
and makes the comparison of the novel reactions with only the reactions that have
similar corresponding EC classification.

In Chapter 3, we perform Bridglt analysis for a large list of novel reactions generated by
BNICE.ch and we demonstrate how incorporating these two features improved Bridglt

predictions.
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Ultimately, the result of Bridglt is a proposed known reaction along with a similarity
score that can be used as scoring and ranking criteria for the evaluation of de novo

pathways.

2.2.6 Scoring and ranking the biosynthetic pathways

Reconciling the metrics obtained in the qualitative and quantitative pruning strategies
together with the results of Bridglt analysis, one can define a scoring and ranking
feature which combines and scales different factors and assigns an overall score for the
prioritization of in silico generated pathways. Using such a score, the collection of
generated pathways can be filtered on the basis of biochemical knowledge and available
experimental data.

For instance, in a retrobiosynthetic approach that the goal is to find promising
pathways for the production of a desired chemical, such a score gives the capability to
pinpoint the best candidate synthetic pathways that are most likely to produce the
desired target molecule and that can be implemented in the metabolic network of the
chassis organism.

In BNICE.ch we rank the pathways based on the following individual scoring metrics

(max score of 1 per criterion) to determine the overall pathway score (full score = 5):

[.  Thermodynamic feasibility: 1 for pathways that are thermodynamically feasible
and 0 otherwise (a pathway is thermodynamically feasible if all reactions in the
overall pathway is thermodynamically feasible in the direction that maximizes
product formation, we obtained this score by performing TFBA analysis).

[I.  Pathway length score = (1 / number of reactions in pathway).
For practical reasons, when it comes to the implementation of de novo pathways,
shorter pathways are preferred to longer ones since fewer steps need to be
engineered and protein costs would be minimized.
[II. ~ KEGG reaction score = (number of known (KEGG) reactions in pathway)/ (length
of the pathway). The fewer novel steps, the less enzyme engineering for the
pathway.

[V.  Network feasibility analysis: maximum product yield.
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By embedding the novel pathways into the genome scale model of the organism,
we can investigate the effect of the pathway on the original network. In the case
of the retrobiosynthetic analysis, we can calculate the maximum yield for the
production of the desired compound.

V.  Reaction similarity score (BridgIT score) for novel reactions, in order to evaluate

the likelihood of the hypothetical generated reactions.

Instead of calculating the overall score, one can also do the ranking of the score of a
certain criterion as the primary ranking, and then perform a secondary ranking based
on another criterion, and so forth. For instance, one approach can be choosing the
pathways with maximum (or economically feasible) yield, and among them the ones
with the minimum number of novel reactions as their implementation will involve a
smaller number of engineering enzyme steps.

One should be careful when applying certain criteria used for pruning the obtained data
that it is a multi-objective problem and different applications might give different
weights to different criteria. Moreover, some of these criteria depend on the current
technologies and although some of the pathways can be ruled currently as infeasible,

new technologies can enable their realization in the future.

2.3  Insilico atom mapped network integrated computational explorer

So far we discussed different computational methods for the analysis of the metabolic
reactions at the “metabolite” level, since the mathematical (graph) representations of
metabolic networks are traditionally done on the metabolite level [27]. Nevertheless,
knowledge about the atom transition in the metabolic network is crucial for elucidating
the mechanism of enzymatic reactions and calculating the reaction fluxes. During this
thesis, we developed a computational method to introduce an additional level of detail
by considering the track of individual atoms through metabolic reactions [27].

Several algorithms have been developed to address the automated atom-mapping
problem. As comprehensively reviewed in [120], these algorithms can be classified into

two main classes based on: (i) finding the maximum common substructures (MCS)
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between substrates and products of the reactions (common subtracted-based methods)
[25,121-126]; and (ii) optimization methods [30,126-133].
Both approaches rely on the graph representation of reactions along with the graph-
based pattern recognition. In the optimization-based methods that were extensively
practiced recently, one has to define a relevant objective function to be optimized for
the atom-mapping solution. The most common objective functions in automated atom
mappings include:

i.  Maximizing the size of common subgraphs between substrates and products

[25,122].

ii.  Minimizing the graph edge edit distance[129].

ili. ~ Minimizing the number of bonds broken and formed [30,125,128,130,131,133].
However, even if we assume that the aforementioned algorithms do find an optimal
solution, there is no guaranty that all enzymatic reactions follow the optimal way for
relocating atoms from substrates to products and that the objective functions lead to
biochemically relevant atom mappings. Furthermore, most of these algorithms result in
a big dataset of mapped reactions since they output multiple possible atom mappings
for each reaction. Therefore, manual evaluation is required for accounting the reaction
mechanism in case there is more than one atom map reported. Besides, the existing
algorithms provide atom mappings for a single reaction and it would be difficult to
extend these mappings for every pathway and in every metabolic network of a given
organism without extensive manual work.

To the best of our knowledge, there is no published algorithm for the automatic
reconstruction of the atom-mapped metabolic network without constraints on the size of
the network. Such an algorithm would be very useful in many studies, such as drug
design, where knowing the fate of each atom of the candidate drug through the
transformation pathways in human body would help to understand the mechanism of
drug metabolism. The ability to trace the fate of individual atoms through the metabolic
pathways is also useful in many applications of metabolic engineering [125,131,134]
such as for the identification and the engineering of novel biosynthetic routes for the

microbial production of desired compounds [28,133,135].
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During the course of this PhD thesis, we developed the “IAM.NICE” (in silico Atom
Mapped Network Integrated Computational Explorer) framework for addressing the
atom-mapping problem. Our method has the capability to create in silico labelled
metabolites as substrates, and to transfer the labels to the products according to known
reaction mechanisms.
We implemented the concept of formulating generalized enzymatic reaction rules
developed in BNICE.ch [72,81] for transferring the in silico labelled atom in a substrate
to a specific position of one of the reaction products. In “IAM.NICE”, we automatically
generate in silico labelled substrates and we apply the enzymatic rules on the labelled
substrates, which results in the generation of in silico labelled products (atom-mapped
reaction). KEGG RPAIR [136] is a manually curated database that contains knowledge
on atom mapping stored in the “reactant pairs” to elucidate the reaction mechanism. In
KEGG RPAIR, reactions are decomposed into reactant pairs (RPAIRs) which formulate a
pairwise association between one or several groups of atoms from substrate to one or
several groups of atoms in products, by taking into account the contribution of these
atoms (main reactant, cofactor, etc.) in the reaction. Most of the automated atom
mapping methods cross checked their atom mapping predictions with KEGG RPAIR to
evaluate the performance and accuracy of their algorithm [26,122,125,129-132,137].
Interestingly, in our framework, the wealth of information of KEGG REACTION along
with KEGG RPAIR is implemented for formulating the generalized reaction rules.
Therefore, the performance of “AM.NICE” for predicting the atom-atom
correspondences in the biological reactions and consequently metabolic networks is
intrinsically validated.
We further define an atom-mapped metabolic network as a network that contains atom
correspondence for each single reaction and for the network as a whole, meaning that
an atom in the initial substrate and in its final product carries the same label.
In Chapter 6 we describe details of our methodology and we discuss the important steps
“IAM.NICE” takes to:

* Automatically map atoms from substrate to product in a single reaction

* Connect these atom-mapped reactions into atom-mapped metabolic pathways

* Integrate the atom-mapped pathway in metabolic networks
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Moreover, we provide the atom-mapped representation of all the reactions in KEGG
database as well as an atom-level representation of the core E-coli metabolic network.
Our results can be used for a large range of applications, starting from the identification
of new metabolic routes for the microbial production of desired compounds to the
design of the optimum labelled patterns of substrates, which can be a great benefit for

the simulation of tracer experiments.

2.4 Biothermochemical computations for studies of metabolism

Thermodynamics plays a critical role in studying the metabolic networks. Particularly in
the field of de novo pathway design, it is necessary to evaluate the generated de novo
data on the basis of thermodynamic feasibilities. In this section we review the exiting
computational methods for estimating the thermodynamics properties and we
introduce our novel approach for obtaining such estimations.

As mentioned in Chapter 1, the group contribution method (GCM) plays a central role in
the thermodynamics study of the metabolism. However, being based on experimental
data, this method faces limitations in two respects. First of all, experimental data are
limited for biological compounds, especially for heavy metabolites such as aminoacids
and oligopeptides, saccharides, nucleosides and their derivatives. Second, since the
experimental data are obtained on ambient conditions, the GCM calculations and
estimations based on these data hold true for the ambient condition as well. As
described in Chapterl, for many applications and especially the biological applications,
it is important to calculate the thermodynamic properties at biologically relevant
conditions of temperature and pressure, for example at T=37-40 for the studies of
human metabolism under healthy and disease conditions.

To overcome the limitations of existing methods, one needs to improve the GCM method
for obtaining predictions beyond the metabolites that have available experimental data
and also to adjust the estimated thermodynamic properties to any temperature and
pressure based on the nature of the study. To address both issues, we designed a
pipeline for the thermodynamics analysis of metabolism, which combines GCM and
quantum chemical calculations to compute the thermodynamics properties for a wide
range of biological compounds in adjustable conditions of temperature and pressure.
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2.4.1 Overview of high-level quantum chemical calculations

There are fundamental reasons for the increased use of quantum chemical calculations
among chemists [138]. The theories underlying calculations have now evolved to a
stage where a variety of thermodynamic properties can be predicted.

However, there is no available ab initio method for the estimation of thermodynamic
properties at aqueous phase that corresponds to the biological systems.

Current advances in quantum chemical calculations and the unprecedented and ever
increasing computational speed of computers has made the quantum chemical methods
the most reliable approach for calculation of thermochemical quantities in the ideal gas
state. In addition, there are already significant advances for the calculation/prediction
of the corresponding hydration free energies and enthalpies in quantum calculation
methods [139-141]. The latter feature would allow bringing the generated data in the
gas phase to aqueous phase and eventually it would allow studying the thermodynamics
of biological systems. Therefore, the first step is to estimate the thermodynamic
properties at the gas phase.

In a recent thorough review [142], the state-of-the-art in quantum thermochemical
calculations is compared with the corresponding group-contribution method (GCM)
approach. Under certain conditions, the level of accuracy of current quantum
thermochemical predictions in the ideal gas state compares with or overpasses the
thermochemical accuracy of 1 kcal/mol [143,144] for small to moderate sized
molecules with 2 to 10 non-hydrogen atoms.

The Gaussian - n (Gn) family of quantum chemical procedures [144,145] achieves the
above level of accuracy for moderate sized molecules but the accuracy decreases
sharply for heavier molecules. This holds true for the predictions of absolute
thermochemical quantities via the atomization energy differences.

Under certain conditions, accurate predictions can be made through designing
appropriate isodesmic reactions even without using high levels of theory and
computation [143,144]. In isodesmic reactions, bond types and groups are kept the
same on the two reaction sides; therefore, any flaws in theory and systematic errors will

be mutually compensated. This makes the isodesmic reaction approach a
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computationally efficient way to calculate the enthalpies and Gibbs free energies of
formation for relatively large molecules with tens or more heavy atoms [145,146].

The key prerequisite in an isodesmic reaction approach is the availability of accurate
thermochemical information on all other reactants and products beside the studied
molecule. A lot of work has been done in this respect for the development of extensive
thermochemical databases [147-149].

Metabolic reactions take place in aqueous environments where metabolites often exist
as ions. Significant advances have been made in the field of gas-phase ion
thermochemistry, both experimentally and computationally [150-157]. In a recent
review[158], standard values for gas-phase basicities and proton affinities were
recommended for the 20 (protein) aminoacids. Gas phase acidities for these aminoacids
were also reported in recent studies [157,159]. Yet, heats and free energies of formation
of ionic forms are rarely reported.

There have also been some studies on the gas-phase quantum thermochemistry of
saccharides and nucleosides, but not as extensive as for aminoacids. Reliable
experimental thermochemical data for these classes of metabolites, especially

nucleosides, are rare.

2.4.2 Computational tools used for high-level quantum calculations

Hereby we describe the computational tools we used for the calculation of heat and
Gibbs free energy of aforementioned heavy metabolites in the gas phase. The heavy
metabolites of interest in this work are fairly flexible and exist in a vast
conformational /isomerization space, which makes their detailed theoretical
computations a challenging task [160].

For the conformer search, we used the COSMOconfX suite (Cosmologic GmbH,
Germany) and the Conformer Analysis application of Spartan 14 suite (Wavefunction,
USA) - a Monte Carlo / Molecular Mechanics algorithm. The first gross selection of the
prevailing conformers was screened further down to a few conformers by performing
energy calculations with progressively increasing basis set. We reinserted some
conformers with extensive intramolecular hydrogen bonding, which were rejected by

the above search algorithm into the pool for further calculations at a higher level.
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Whenever available, we inserted optimal geometries from literature into the pool at this
stage. The prevailing conformers were subject to further geometry optimization at
progressively higher levels until the most stable conformer was identified. We
performed further calculations for the isodesmic reactions with the most stable
conformer or with the few (less than five) prevailing conformers.

We did Quantum chemical calculations at the DFT-D3 level with Grimme’s dispersion
correction (D3 London dispersion correction) with Becke-Johnson damping [161] as
implemented in TURBOMOLE suite[162] with the resolution of the identity RI-]
approximation[163]. Geometry optimization and vibrational frequency analysis were
done with the Becke-3-Lee-Yang-Parr (B-3LYP) 3- parameter hybrid functional with
Becke’s popular nonlocal exchange functional and Lee/Yang/Parr nonlocal correlation
functional [164,165] with the def2-TZVP (Karlsruhe segmented contracted triple-z
valence quality plus polarization) basis set [162]. All geometry-optimization /
frequency calculations were performed with TURBOMOLE v. 6.5 suites (Cosmologic
GmbH, Germany). Using this geometry, we conducted single point energy (SPE)
calculations at a higher level in two alternative ways: First, the generalized gradient
approximation (GGA) B97-D density functional [166,167] was used with the quadruple
z-valence quality def2-QZVPD basis set as implemented in TURBOMOLE suite with the
above Grimme’s D3 dispersion correction. We did the SPE calculations for all
compounds considered, neutral or ionic. Second, we used the Chai and Head-Gordon
wB97X-D long-range corrected hybrid density functional [168] with the 6-
311++G(2df,2p) basis set, as implemented in Gaussian 09 and in Spartan 14 suites of
programs. Calculations at the second level were done on selected metabolites.

We performed vibrational frequency calculations in order to verify that the structures
were minima and, also, to obtain the zero point vibrational energy (ZPE) and the
thermal corrections to the enthalpy, Hy, and free energy, Gv. We calculated the latter
quantity from the entropy change through the classical equation:

A¢G = AH - TA(S
The entropy term in the heavy metabolites is dominated by their many low frequencies

[169], which are usually poorly approximated in the quantum thermochemical
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calculations, therefore the “normal-mode” approximation may not be valid for heavy
and flexible molecules.

More details of the methods we applied and the isoseismic reactions we design to
calculate the thermodynamics properties for the heavy metabolites along with our

results will be comprehensively discussed in Chapter 7.
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Chapter 3
ATLAS of BIOCHEMISTRY

How the known biochemistry evolves if we apply the generalized enzyme reaction

rules against all the currently known compounds?

SUMMARY

In this chapter we introduce the most comprehensive database of all the biochemically plausible
reactions that can be generated using BNICE.ch based on the known biochemistry introduced in
the KEGG database. This extension of KEGG reaction database includes ~128000 reactions that
can connect two or more KEGG metabolites, Approximately 5300 reactions out of ~128000 are
the KEGG reactions whereas the rest are hypothetical novel reactions that have never been
reported to occur in nature. We applied the Bridglt method, an extension to BNICE.ch, to
evaluate the structural similarity of the hypothetical proposed reactions to the known KEGG
reactions.

Furthermore, to validate the consistency of our results with the known biochemistry, we
compared the 2 versions of KEGG database, KEGG2012, and KEGG2014. Interestingly, 81 novel
reactions that BNICE.ch discovered based on the KEGG2012 database appeared as known
reactions in the 2014 version. This finding validates the consistency of the BNICE.ch generalized

reaction rules with the enzymatic reaction rules that nature follows.
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3.1 Introduction

Our knowledge about the metabolism, even for the most studied model organisms such
as E. coli and S. cerevisiae is not complete, and none of the available metabolic network
reconstructions for any organism is considered complete and without knowledge gaps
[170]. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database [60], known as
the most complete source of metabolic data, increases its size and number of enzymatic
reactions in each yearly updated release, which demonstrates that numerous not yet
characterized enzymatic reactions are still to be found in nature.

To the best of our knowledge, there is no available database that accounts for all the
theoretically possible enzymatic reactions, which are connecting known compounds and
that are based on the known biochemistry. Such information would be of great interest
not only for filling the knowledge gaps in metabolic networks, but also for metabolic
engineering studies where the discovery of novel reactions is an important mission. The
question that arises is: how the known biochemistry evolves if we apply the generalized
enzyme reaction rules against all the currently known compounds?

We address this question by applying the concept of generalized reaction rules within
the computational framework BNICE.ch. Since the BNICE.ch reaction rules are based on
the Enzymatic Commission (EC) classification system, every novel reaction generated
with BNICE.ch was associated to a third-level EC number, which defines a biochemically
relevant reaction mechanism for novel reactions. With BNICE.ch we reconstructed
~90% of known reproducible KEGG reactions, and discovered more than 123’000 de
novo reactions involving two or more known KEGG compounds. We organized these
results in a database, named “ATLAS of biochemistry” that comprises all the
hypothetically possible enzymatic reactions between any two KEGG compounds, or
more if required by the reaction mechanism.

Since de novo reactions are theoretical orphan reactions, we applied Bridglt (Chapter 2)
for each of these reactions to find candidate genetic sequences that code for an enzyme
that is potentially capable to catalyze the novel reaction. We applied different running
modes of Bridglt and we extensively compared the results of different approaches.

We analyzed our results with respect to two different versions of the KEGG database,

KEGG 2012 and KEGG 2014 and we investigated if any of our predicted hypothetical
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reactions in KEGG 2012 became known in KEGG 2014. Remarkably, we found 81 novel
reactions that BNICE.ch predicts based on KEGG 2012 are reported as known enzymatic
reactions in KEGG. This finding validated the consistency of our generalized reaction
rules with the acknowledged biochemistry, and demonstrated that our proposed
hypothetical enzymatic reactions are an important complement of the known cataloged

biochemistry.

3.2 Methods

The modules and methodologies of BNICE.ch have been extensively discussed in
Chapter 2. As described previously, BNICE.ch performance depends on a set of
parameters that we predefine for each study. Here we list the input parameters that we
used in this Chapter, and we also describe the procedural steps we took to build the

“Atlas of Biochemistry”.

3.2.1 Preprocessing of KEGG compounds and reactions
The KEGG database keeps growing in size: In 1999, it accounted for 5’207 reactions and
5’645 compounds. In 2004, there were 5799 reactions and 10’739 compounds. In
December 2014, KEGG stored 9°972 reactions and 17'343 chemical compounds, and
both categories keep growing with every new release. The continuous discovery of new
biochemistry indicates that our knowledge about metabolism is far from being complete,
and that there is a remarkable potential for the discovery of new metabolic
functionalities.
For a reaction to be reconstructed in BNICE.ch we require a defined molecular structure
for each of involved compounds. A structural definition of compounds is needed to
create the corresponding bond electron matrices (BEM) as discussed in Chapter 2. On
the other hand, polymers being a repetition of monomers that already exist in the
database do not add any useful information to our study. Therefore, we preprocessed
the KEGG compounds and excluded from our input data all compounds that:

i. Do not have a structural definition

ii.  Describe the polymer structures

Similarly, we parsed all the KEGG reactions and excluded:
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i.  Reactions with uncompleted molecular description of the reactants and products
ii.  Reactions that involve polymers
iii.  Reactions that are stoichiometric unbalanced
After we removed the compounds and reactions that did not meet the above mentioned
criteria, we ended up with a parsed KEGG database that consists of 14’549 compounds

and 5914 reactions.

3.2.2 Reconstructing KEGG reactions and predicting de novo reactions
In this section, we present a pipeline for reconstructing the latest coverage of KEGG
reaction database. We used the following two approaches to perform the
reconstruction:
In the first approach, we applied all the generalized reaction rules one at a time,
to all KEGG compounds. We used the supervision level that allowed all possible
reactions (known and novel) but only KEGG compounds (Table 3.1). The
procedure was as follows:
1. Apply areaction rule to all KEGG compounds and for only one iteration.
2. Screen the output against the KEGG database and save the results
3. Switch to the next rule and go to Step 1.
4. Stop when all 582 reaction rules are covered.
As a result of this procedure we got two lists of reactions: KEGG covered
(reconstructed) reactions and de novo reactions.
In the second approach, we identified those KEGG reactions that were not
reconstructed after 1st iteration of BNICE.ch, and we performed further analysis
with these reactions (~12 % of the reconstructable KEGG reactions). In our
pipeline, we read these reactions one by one, extracted the involved substrates
and cofactors and put them in the list of “starting compounds”. We then applied
all the generalized reaction rules simultaneously for three iterations to
investigate can BNICE.ch replicate these reaction mechanisms in several steps.
These identified steps represent a “multi-step reaction mechanism”. The level of

supervision in this approach was the same as described in Table 3.1.
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The results of these two studies allowed us to explore all possible enzymatic

reactions (known and novel) between KEGG compounds.

Table 3-1: The level of supervisions that is applied in this study for the generalized reaction rules,
compounds and reactions.

Supervision level Input constraint
Reaction

Example rules Compounds Reactions
Unsupervised - Unlimited Unlimited
Database KEGG 291%*2 14'549
Organism
Network
Pathway

3.2.3 Bridglt Analysis
The concept behind the development of Bridglt framework is thoroughly discussed in
Chapter 2. In this section, we applied the Bridglt method to assess the chemical
similarity of the hypothetical generated reactions to the known KEGG reactions and to
propose candidate genetic sequences for them.
Based on the assumption that enzymes with similar structure catalyze similar reactions,
the Bridglt algorithm proposes a genetic sequence for the novel reactions, together with
a score that indicates the similarity of the novel reaction to the known reaction. Bridglt
also indicates in which organism the similar enzyme can be found, which is important in
metabolic engineering studies.
We applied the four different modes of Bridglt as discussed in Chapter 2:
i.  Bridglt_Cofactors

ii.  Bridglt_EC

iii.  Bridglt_CO_EC

iv.  Bridglt_original
And we investigated the impact of the introduced features on the performance of

Bridglt and its predictions.
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3.3 Results and discussions

We generated a repository of all possible enzymatic reactions between KEGG
compounds. This collection is a valuable source of information for the biochemical and
biological studies and its characteristics and significance will be presented and

discussed in the following sections.

3.3.1 KEGG reactions covered by BNICE

~ 90% of all KEGG reactions were reconstructed using the generalized reaction rules of
BNICE.ch. There are 1’261 reactions in KEGG database that have no assigned EC
number, which means that there is no known reaction mechanism for these reactions.
Since BNICE reports the EC number up to the third level, we can propose EC
classification and therefore reaction mechanisms for some of the reactions missing the
EC number. We could identify the first three EC identifiers for 178 KEGG reactions. For
134 reactions the classification was unambiguous, meaning that there was only one
suggested EC classification. For remaining 44 reactions two or more EC suggestions
were reported. In most of the cases the suggestions were similar, i.e. out of the 46
ambiguous classifications only 10 reported different classifiers for the first EC level.
Table 3.2 shows an example of KEGG reactions without corresponding EC number

together with the third level EC number that BNICE.ch proposes for these reactions.

KEGG ID |Equation Reaction rules Suggested EC classification
RO0091 |[C00003+(2)C00010<=>C00004+C00080+C02015 ||1.8.1B1(rev)|1.8.1B1 1.8.1.-
R00270 |C00014+C00026<=>C00001+C05572 |3.5.1A1(rev)|3.5.1A1|6.3.1A1(rev)|6.3.1A1 (3.5.1.- | 6.3.1.-

Table 3-2: Two examples of KEGG reactions without a corresponding EC numbers and the suggested
EC number by BNICE.ch. An unambiguous EC suggestion is in white, whereas reactions with two or
more suggested EC numbers are highlighted in red.

The entire list of KEGG reactions with EC suggestions can be found in the Appendix,
Table Al.
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3.3.2 Multi-step reactions

An example of a multi-step reaction that is reconstructed with BNICE.ch is shown in
Figure 3.1. Part A shows the description of a KEGG reaction with unidentified enzyme
and mechanism. In Part B, using BNICE.ch, we propose a two-step reaction mechanism
to carry out the biotransformation. The first step is a known KEGG reaction, but in the
reverse direction and the second step is a novel reaction. Interestingly, for the first step
we propose two reaction mechanism, one is the same as the known reaction on the
reverse direction (3.5.1A1(rev)) and the other one is a class 6 enzyme that BNICE.ch

proposes for this reaction (6.3.1.A1).

K[ ,
66 REACTION: R00917 —

A Entry R00917 Reaction

Name beta-aminopropionitrile aminohydrolase
Definition|beta-Alanine + Ammonia <=> 3-Aminopropiononitrile + 2 H20
Equation [C00099 + C00014 <=> C05670 + 2 C00001

0 N
N
S
HOJ\/\NHZ = 7 \/\NHa
\\ C05670

N e
C00099 R I/ AW
N%
H
|

\Y,
H
N, z o
H” "H C00001
C00014

Comment two-step reaction

enzyme not yet characterized (nitrilase or nitrile hydratase +
amidase)

RPair RP05730 (€00001_C00099 leave

RP13444 C00099_C05670 main [RC:RC00315]

RP13445 C00014_C05670 leave

3.5.1A1(rev)|6.3.1A1
B Stepl: NH,+ beta-Alanine <=============>H,0 + beta-Alaninamide

Step2: beta-Alaninamide <=============>H,0 + 3-Aminopropiononitrile

Figure 3-1: A two-step reaction of KEGG database that do not have a corresponding enzyme for
catalyzing it (A) and using BNICE.ch, in (B) we proposed a two-steps reactions that has one known
KEGG reactions (step 1) and one novel reaction (step 2) to describe the biotransformation.

3.3.3 Exploring the potential enzymatic capacity of biological compounds

Besides reconstructing ~90% of the KEGG reactions, BNICE.ch have also generated
~123,000 theoretical enzymatic reactions. This collection of novel reactions was
generated by applying the whole set of 582 forward and reverse reaction rules against

14’549 KEGG compounds. This result indicated that there is a huge potential for
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biological compounds to be interconverted by a relatively small number of reaction

mechanisms.

3.3.4 Validating the action of generalized reaction rules

To validate the consistency of mechanisms of the generated hypothetical reactions with
the known biochemistry, we investigated if any of the novel reactions that BNICE.ch
generated on the basis of KEGG 2012 became known in the more recent versions of the
KEGG database and we used KEGG 2014 for this comparison.

Between the two releases KEGG 2012 and KEGG 2014, 691 reactions were added to
KEGG reaction database. From this set of added reactions we removed all incomplete or
unbalanced reactions, as well as the reactions that contained compounds with
undefined structure. We also removed reactions that could not possibly be
reconstructed by BNICE because they involved new compounds that were not present
in KEGG 2012, but were added later to KEGG 2014. After this preprocessing, the
remaining data set of new entries of KEGG 2014 contained 236 reactions.

We then generated the set of novel reactions on the basis of KEGG 2012 reaction and
compound databases and compared it with the 236 new entries of KEGG 2014.
Interestingly, we predicted 81 of these 236 reactions. Even more strikingly, for 67
reactions the EC numbers that have been assigned by BNICE.ch matched the EC
numbers in KEGG 2014. For 8 reactions BNICE.ch proposed an alternative classification,
whereas for the remaining 6 reactions KEGG 2014 was lacking an EC identifier and
BNICE.ch proposed an EC number up to the 3rd level for these reactions. The list of 81

reactions with their EC numbers is presented in Appendix Table A2.

3.3.5 BridgIT analysis of novel reactions
We performed 4 studies using 4 different methods of Bridglt to analyze the structural
similarity of ~123,000 novel reactions predicted by BNICE.ch to the known KEGG
reactions. We compared Bridglt performance for two criteria:
i.  The distribution of the highest similarity score that each method predicts
(Figure 3.2)
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ii.  The closest KEGG reaction that the 4 methods assign to the novel reactions. For
this criterion, we compared combinations of pairs of the 4 methods across six
different EC classes. (Figure 3.3)

The distribution of the highest score was quite different across 4 methods (Figure 3.2).
As we applied 4 methods in the order of increasing constraints (i.e. from
Bridglt_original to Bridglt CO_EC) the number of high scores (close to 1) gradually
decreased. The Bridglt_original method predicted high scores (close to 1) for the largest
number of the novel reactions, whereas BridgIT_CO_EC predicted the smallest number
of high scores. The accuracy of these methods can be tested against the BLAST similarity
scores of these reactions. However, the preliminary results and verifications of the

individual examples suggested that BridgIT_CO_EC had the higher accuracy.

Bridglt_CO_EC Bridglt_EC Bridglt_CO Bridglt_original
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Figure 3-2: the distribution of the highest similarity score that different methods of Bridglt assign to
the 123,000 novel reactions.

We compared combinations by pairs of 4 Bridgelt methods across six different EC
classes to gain more insight about their performance (Figure 3.3). For example, the
comparison of BridgIT_EC_CO and Bridglt EC methods indicated that for the EC class 1,
their predictions were ~30% similar, whereas for the EC class 4 their predictions

coincided in more than 70% (Figure 3.3).
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Figure 3-3: Comparing the similarity of the closet KEGG reaction that each method predicts for novel
reactions. The first comparison is between BridglT_EC_CO and Bridglt_EC methods (EC/CO_VS_EC).
The color coding of the bars is according to the EC level 1 number.

3.4 Conclusions

We proposed a large collection of novel reactions along with their EC identifiers up to
the 3rd level and candidate enzymes that may catalyze these novel reactions.

This high number of possible reactions connecting KEGG compounds is a very
important finding, especially if we consider that BNICE.ch truly predicts biologically
important reactions as witnessed by a correct prediction of 81 new reactions of the
KEGG 2014 database. This study also illustrated that the current knowledge about
metabolic reactions is far from being complete: to our best knowledge there is no
database that accounts for such theoretically possible reactions, and we are first to
propose a data collection of systematically generated novel reactions. “Atlas of
Biochemistry” provides a valuable source of information for those who build and
analyze metabolic models as well as for metabolic engineers searching for new
biosynthesis or biodegradation pathways. “Atlas of Biochemistry” can be consulted at

the following website: Icsb.epfl.ch/database
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Chapter 4
NICELips

How to bridge the gap between the enoous available knowledge from lipidomics studies

and the limited knowledge on lipid metabolism?

SUMMARY

In this chapter, we introduce a computational approach, called NICELips (Network Integrated
Computational Explorer for Lipidomics), based on the formulation of generalized enzymatic
reaction rules for lipid metabolism. Our approach employs the generalized rules to postulate
novel pathways of lipid metabolism. It further integrates all discovered lipids in biological
networks of enzymatic reactions that consist their biosynthesis and biodegradation pathways.
We illustrate the utility of our approach through a case study of
bis(monoacylglycero)phosphate (BMP), a biologically important glycerophospholipid with
immature synthesis and catabolic route(s). Using NICELips, we were able to propose various
synthesis and degradation pathways for this compound and several other lipids with unknown
metabolism like BMP, and in addition several alternative novel biosynthesis and biodegradation
pathways for lipids with known metabolism. NICELips has potential applications in designing
therapeutic interventions for lipid-associated disorders and in the metabolic engineering of

model organisms for improving the bio-based production of lipid-derived fuels and chemicals.
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4.1 Introduction

One of the most functionally and structurally important classes of lipids is
glycerophospholipids. They constitute the majority of the common lipid class called
phospholipids and can be found in almost all organisms as they are the building blocks
of cell membranes [171,172]. Glycerophospholipids contain a polar head and a glycerol
core with fatty acids attached to the glycerol moiety [173]. They are subdivided into
distinct subclasses, based on the nature of the polar head group at the sn-3 position of

the glycerol backbone [174] (Figure 4.1).

Figure 4-1: General structure of glycerophospholipids. In most glycerophospholipids the phosphate
(on sn-3 position) is one of the following polar head groups: serine, choline, ethanolamine, glycerol,
or inositol (designated X at right). The Acyl chains are shown with “R” in the n-2 and sn-1 positions
and can have different length and degrees of saturation.

One of the major limitations in lipidomics and more generally in metabolomics
experiments is the identification of unknown compounds due to the lack of
comprehensive integrated reference databases [21,175,176].

Until recently, there were few specialized databases focusing on lipids analysis and
classifications. In 2007, LIPID MAPS Structure Database (LMSD) became available [175].
LMSD is a comprehensive database for lipid structures that currently contains over
40,000 different classified structures and their corresponding physicochemical
information. However, a comprehensive database of lipid structure is not enough to
fully understand their multiple biological roles in cell biology and pathology. To further
clarify their functions and the enzymes related to their metabolism, it is essential to

organize them in the context of biological pathways and derive their associations and
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interactions with enzymes and other lipids.

For the representation of lipids pathways, KEGG (Kyoto Encyclopedia of Genes and
Genomes) [60] is the most comprehensive database available for small molecules and
contains biological pathway maps for different parts of lipid metabolism. However, lipid
biological pathways in KEGG are limited to general lipid species and do not include all
the lipid structures available through LMSD. Therefore, the growth rate of these two
databases is different and this results in the creation of a big knowledge gap between
them.

The aforementioned needs and limitations in lipids bioinformatics motivated us to
develop a computational framework, NICELips (Network Integrated Computational
Explorer for Lipidomics), to generate associations between KEGG and LMSD databases
and to enrich our knowledge of lipid metabolism. NICELips consists of several
components integrated into a workflow and it is the first tool to provide an efficient and
consistent procedure for linking lipid compound databases, such as LMSD, with
pathway databases, such as KEGG. The central component involves the generation and
reconstruction of lipid structures integrated in metabolic reactions. Within this
component we identify all the known enzymatic reactions of lipid metabolism in KEGG
database, and we formulate the generalized reaction rules for lipid reactions based on
the molecular signatures of known enzymatic reactions. We then use BNICE.ch
framework to apply the generalized reaction rules through three different schemes that
differ on the level of supervision procedure (detailed description of the method is
discussed in Chapter 2).

In this work we focused on the “Glycerophospholipid metabolism”. In each of the three
different schemes, we investigated a specific research question about the
glycerophospholipid structures and metabolism.

In the first scheme, we reconstructed a comprehensive network of glycerophospholipid
metabolism that includes all the known reported structures and reactions in their
corresponding KEGG map. In addition we incorporated many novel compounds and
reactions that have not been previously reported in databases. In order to facilitate the
identification of novel compounds and assess the biochemical similarity between the
novel and known compounds, we adapted and implemented a subgraph isomorphism
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classification algorithm to classify these compounds based on the existing classification
scheme for glycerophospholipids. The structural similarity among the members
provides an insight on the functions of the novel compounds and enzyme specificity
involved in their biosynthetic and catabolic pathways. Our classification method is also
coupled with a scoring algorithm in order to assess the similarity of compounds in each
group with the introduced general substructural pattern. The scoring algorithm assigns
a value between 0 and 1 to each compound, and helps us to assign priority in the study
of novel compounds. If we allow all the novel compounds to be kept in the generated
reactions network, it limits the number of iterations that we can run BNICE.ch since it
generates too many compounds and causes the combinatorial explosion.

In the second scheme, we repeated the same procedure as in the first scheme, but we
constrained the “level of compound supervision” to only the KEGG compounds, in order
to explore all the possible reactions between only the known lipid structures.

In the third mode, we applied the retrobiosynthesis algorithm of BNICE.ch that uses the
reaction rules against LMSD structures to identify their metabolic and catabolic reaction
pathways. We illustrate the efficacy and usefulness of our approach in the study of
bis(monoacylglycero)phosphate (BMP) metabolism. BMP has two glycerol subunits
linked by a phosphodiester group and it is a structural isomer of phosphatidylglycerol
(PG). The endosomes are highly enriched in BMP, where it can amount up to 70% of the
total phospholipids of the endosomal membrane [177]. BMP is important for the
structural and functional integrity of the late endosomes. Interestingly, BMP is also a
unique lipid due to its stereochemical configuration different from that of other animal
glycerophospholipids. Despite numerous studies, we still miss essential knowledge
concerning its properties, and biosynthetic and catabolic pathways. Based on the
experimental evidence, BMP is synthesized from its structural isomer, (PG). After the
removal of one fatty acid from the sn-2 position, lysophosphatidylglycerol is produced
as next intermediate that then undergoes a transacylation reaction [178]. The results of
the retrosynthesis experiment suggest various synthesis and degradation pathways for
this compound.

Our studies here demonstrate how NICELips can provide a full overview of all lipid
species in the cell, and particularly in the context of metabolic pathways that comprise
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all the chemical interactions and transformations between lipid compounds and
enzymes. The results of this work have important implications for discovering novel
therapeutic approaches for lipid-associated disorders, through proposing novel
biosynthetic and biodegradation pathways to alternate the metabolism of genetically
defective lipids. On the other hand, exploring the entire space of feasible reactions in
lipid metabolism will open up opportunities for generating de novo reactions to design
and engineer new strains for the bio-based production of lipids-derived fuels and

chemicals.

4.2 Methods

The development of the NICELips framework is an extension of BNICE.ch [72] tailored
for lipid metabolism. NICELips specifically consists of two main algorithms of BNICE.ch
and several auxiliary functions for further analysis of the obtained results. BNICE.ch
methodologies are extensively discussed in Chapter 2.
The two main algorithms of BNICE.ch are applied in this study:
(i) Forward network reconstruction algorithm
To reconstruct the KEGG glycerophospholipid metabolism using specific
generalized reaction rules relevant to this pathway
(ii)  Retrobiosynthesis algorithm
To integrate the lipid structures from LMSD database into metabolic
pathways and link them through known and hypothetical reactions by using
the reaction rules.
A flowchart of the different steps of the NICELips framework is illustrated in Figure 4.2

and will be discussed in the following sections.

4.2.1 Generalized reaction rules in glycerophospholipid metabolism
The KEGG pathway of glycerophospholipid metabolism was used as a reference to

develop the generalized enzymatic reaction rules for this study.
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Figure 4-2: The NICELips framework for investigating lipid metabolism using three different schemes.
All the three schemes start with a KEGG pathway that we want to study (glycerophospholipid
metabolism in this study). We extract the generalized enzyme reaction rules relevant for the
pathway under study and we reconstruct different levels of reactions networks based on the
parameter we chose. Scheme 1 is highlighted in red, scheme 2 in green and scheme 3 in orange.

To clarify the process of developing the generalized reaction rules and their
characteristics, we describe here an example of the process of formulating a reaction
rule for the enzymes of the class EC 2.7.8 that are present in the KEGG pathway of
glycerophospholipid metabolism.
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Table 4-1: The set of enzyme rules involved in known glycerophospholipid pathways, in the
parenthesis the specific reaction rules used in this study are shown. The alphanumeric classification
of the rules corresponds to differences in cofactors and substrate structure (e.g., linear vs. cyclical
structures). For each rule an example reaction with associated EC nomenclature and the required
cofactors are given.

Enzyme rule Reaction name EC Required cofactor
1.1.1 (1.1.1A1) | Oxidoreductases with NAD* or NADP"as | 1.1.1.8 | H*, NAD" or NADP"
acceptor
2.1.1(2.1.1A1) | Methyltransferases 2.1.1.10 | S-Adenosyl-L-methionine
2
2.3.1(2.3.1F1) | Transferring groups other than 2.3.1.15 | Acyl-CoA
aminoacyl groups
2.7.1(2.7.1A1) | Phosphotransferases with an alcohol 2.7.1.32 | ATP
group as acceptor
2.7.7 (2.7.7A1) | Nucleotidyltransferases 2.7.7.41 | Cytidine triphosphate
2.7.8 (2.7.8A1) | Transferases for other substituted 2.7.8.5 .
phosphate groups
3.1.1(3.1.1A1) | Carboxylic-ester hydrolases 3.1.1.52 | Water, O,
3.1.3(3.1.3A2) | Phosphoric-monoester hydrolases 3.1.3.27 | Phosphate
3.1.4 (3.1.4A1) | Phosphoric-diester hydrolases 3.1.4.3 Water
3.6.1(3.6.1A1) | In phosphorus-containing anhydrides 3.6.1.26 | Water
4.1.1 (4.1.1A3) | Carboxy-lyases 4.1.1.65 | CO,
4.3.1 (4.3.1A3) | Ammonia-lyases 4.3.1.7 Ammonia

In developing the rule 2.7.8, we studied all the 4t level reactions in EC 2.7.8 class
(designated as: “Transferases for other substituted phosphate groups”) in which there
are 37, 4t level reactions (numbered from 2.7.8.1 to 2.7.8.37). The 37 4t level EC
numbers correspond to 51 specific KEGG reaction IDs. By carefully investigating their
mechanism, we found out that in 24 out of 51 reactions, the reactive sites of the
substrates share common structures. Consequently, we developed the general reaction
rule 2.7.8A1 for replicating the 24 reactions having exact match of reactive sites of their
substrates.
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Out of these 24 KEGG reactions, 11 reactions belong to the glycerophospholipid
metabolism. For the remaining 27 reactions we further developed 2 additional rules
(2.7.8A2 and 2.7.8B1), which do not appear in the glycerophospholid metabolism. The
joined set of the 2.7.8 rules is able to reproduce all the currently known reactions that
could be classified as members of the EC 2.7.8 class. Many rules require specific co-
factors or other small molecules for their function (Table 4.1).

In order to reproduce all the reactions involved in the KEGG pathway of
glycerophospholipid metabolism, we found that at least 12 generalized enzyme reaction

rules were required (Table 4.1).

4.2.2 Forward network generation within NICELips

We employ the forward network generation algorithm to replicate the known pathway
of glycerophospholipid metabolism as found in KEGG. Next, we apply an automatic
search into KEGG database to identify which of the generated compounds and reactions
are novel and which already exist in KEGG.

The initial set of starting compounds consisted of 4 core compounds (sn-glycerol-3-
phosphate, serine, choline, and inositol) and 12 cofactors (NADH, NAD*, H*, Bicarbonate,
CO2, 0z Water, Cytidine triphosphate (CTP), Phosphate, Acyl-CoA, S-
Adenosylmethionine and ammonia), and the set of the 12 generalized reaction rules
(Table 4.1).

We ran the algorithm with two different levels of supervisions. In the first approach
we investigated the glycerophospholipid metabolism with supervision only on the
generalized enzyme rules that describe the known glycerophospholipid pathway in
KEGG. As for the search space of compounds and reactions, we didn’t apply any
constraint (Table 4.2). We wanted to understand after how many number of iterations
the combinatorial explosion occurs for the compounds (known and novel) and for the

reactions (known and novel).

76



Table 4-2: Applied levels of supervision for the analysis of the Scheme 1.

Supervision level Input constraint
Example Reaction rules ‘ Compounds Reactions
Unsupervised - Unlimited Unlimited
Database
Organism
Network
Pathway Glycerophosphplipid 12%2 33 69

Since one of the main objectives of NICELips is to make associations between LMSD
compounds and known metabolites found in KEGG database, we do not include novel
compounds in the second approach. We investigated how the reaction network of
glycerophospholipid will evolve if we explored all the possible reactions between
known compounds of KEGG. Will it converge after a certain point?

To answer this question, we applied, the supervision on the level of compounds rather
than the supervision of the generalized reaction rules. As for the search space of the
compounds, we only allowed the KEGG compounds to be included in our network

(Table 4.3).

Table 4-3: Applied levels of supervision for the analysis of the Scheme 2&3.

Supervision level Input constraint
Example Reaction rules ‘ Compounds Reactions
Unsupervised | - Unlimited Unlimited
Database KEGG 14'549 5914
Organism
Network
Pathway Glycerophosphplipid 12%*2 33 69

4.2.2.1 Automatic classification and scoring

For the rapid and automatic classification of the compounds dataset generated by
NICELips, we established a subgraph isomorphism algorithm, coupled with a scoring
algorithm. Exploiting the fact that NICELips uses a graph representation of the
compound structures, we used a chemistry-based approach by introducing a
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classification algorithm based on subgraph isomorphism, in which the novel
compounds are classified through comparison with characteristic substructures of
these subclasses. More precisely, we used the existing classification scheme for
glycerophospholipids in which seven main classes are distinguished by a base structure
in each class. Identifying the key features of the base structures, we generated template
(sub)graphs (substructures) for different classes and used them to classify thousands of
novel compounds predicted with NICELips, using our proposed algorithm.

Several methods for (sub)graph matching are found in literature [179-181]. We adapted
and used the efficient VF2 (sub)graph matching algorithm introduced in [182]. In
(sub)graph isomorphism literature, the VF2 algorithm [183] is known to be one of the
fastest and most accurate algorithms proposed so far. Its effectiveness is shown
especially when applied to large graphs, and it is well established that this algorithm
outperforms other existing subgraph isomorphism algorithms such as Ullmann, SD,
Nauty and VF algorithms. Basically, a subgraph-matching algorithm is provided with a
subgraph Gy of base structure y (i.e., any of the substructures depicted in Table 3), and a

graph Gx of the compound X found using NICELips. The VF2 algorithm searches the

structure of Gx, and if GyCGx (i.e., if graph Gx contains the subgraph Gy), places the

compound X in the class defined by the substructure Y.

Using this method, based on the structural similarity, all novel compounds can be
classified into the glycerophospholipid subclasses.

The analysis of the large number of novel compounds was facilitated by the application
of a scoring algorithm. In this algorithm, for each class we introduced the key feature of
the class (characteristic substructures) as the reference structure and the other
members of the class were ranked according to their similarity to the reference
structure of the class. The scoring is based on 2D similarity measures. Each compound is
coded in a vector, called fingerprint, which codes the characteristic of the structure of a
compound. Then, based on the comparison between two fingerprints, a similarity
coefficient is computed, which gives us a similarity score. Different methods exist for
creating fingerprints and calculating the similarity coefficient. We hereby elaborate on
our choice of the two methods. For the similarity coefficient, the choice of the Tanimoto

coefficient (also called Jaccard statistic) is a recommended choice in chemical
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information by various studies. Therefore, we used this measure of similarity in our
work.

The choice of the fingerprint method has to be deduced depending on its suitability to
represent structural information for a set of compounds of interest. The Wild and
Blankey [184] study evaluated the suitability of different 2D fingerprints to represent
structural information. They conclude that fingerprints that use a predefined dictionary
of structural features outperform fingerprints derived from structural paths in
compounds when comparison is done to larger data sets with less well-defined clusters.
However, fingerprints that encode structures obtain better results to discriminate the
differences between closely related series. After performing tests on different molecules
insight classes and across classes, we use for the scoring MACCS fingerprint. These well-
established structural keys are encoded using a set of 166 public keys defined in the
MDL documentation, implemented in OpenBabel [185]. The MACCS method is a
valuable tool in the selection and prioritization of compounds from large compound

collections.

4.2.3 Retrobiosynthesis algorithm within NICELips

In the third approach, we applied the retrobiosynthesis algorithm for LMSD
glycerophospholipids. We validated the efficiency of our approach for linking KEGG and
LMSD databases through the study of a biologically important lipid compound,
bis(monoacylglycero)phosphate (BMP), which does not exist in KEGG database but
exists in LMSD. The level of supervision applied in this study is exactly as Table 4.3

shows.

4.2.4 Pathway enumeration algorithm

To take full advantage of the wealth of information generated in both approaches, we
apply our pathway reconstruction algorithm to analyze and evaluate the generated
compounds and pathways. The pathway search algorithm identifies all linear pathways
between a defined starting compound and target compound, and provides insight for

the pathways required for the synthesis and catabolism of different lipid compounds.
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4.2.5 Thermodynamic studies of the generated pathway

In order to prune the set of novel synthesis and catabolic pathways and to evaluate their
relative feasibility, we performed a thermodynamic feasibility analysis based on the
thermodynamics-based metabolic flux analysis (TMFA/TFBA) [47,186,187]. The
standard Gibbs free energy of reactions is estimated using the group contribution

method for biological compounds [48,188].

4.3 Results and discussion

We used NICELips to study the important class of lipids associated with the
glycerophospholipid metabolism. One of the main challenges is the construction of a full
comprehensive database of compounds, reactions and pathways for lipid metabolism.
The huge gap between the two most commonly used databases for lipids, KEGG and
LMSD, is growing rapidly due to advancement of mass spectrometry methods. The
ability of our approach to generate and assemble a complete virtual database of lipid
compounds and pathways, allows the concurrent filling of the gap between the two
databases.

We applied NICELips framework to:

(i) explore the diversity of structures in glycerophospholipids and classify the novel
generated compounds, (ii) generate a reaction network for glycerophospholipid
metabolism to Expand KEGG metabolic pathway and (iii) link KEGG and LMSD
databases through the study of a biologically important lipid compound,
bis(monoacylglycero)phosphate (BMP), which doesn’t exist in KEGG database but
exists in LMSD. In the following paragraphs we explore the insight that we gained from

NICELips in each of these applications.

4.3.1 Exploring glycerophospholipid metabolism

We explored the diversity of structures and reactions in glycerophospholipid
metabolism by applying NICELips without any constraints on the search space for
compounds and reactions. This resulted in the generation of a network of all possible
compounds and reactions based on the enzymatic rules of glycerophospholipids. After

nine iterations the produced network includes 4,497 compounds and 20,874 reactions

80



4.3.1.1 NICELips vs. KEGG and LMSD
We compared the generated results (compounds and reactions) with KEGG database in
which there are nomenclatures for both compounds in the form of their chemical
formulas and structures and reactions. The KEGG glycerophospholipid pathway
includes 33 compounds and 69 reactions. In our generated dataset, there are 74
compounds and 68 reactions which fully cover the 33 compounds and 69 reactions of
the KEGG glycerophospholipid pathway (Table 4.4). There exist also other KEGG
compounds and reactions not assigned in the glycerophospholipid map (specifically 25
compounds and 13 reactions), some of which are assigned to other metabolic maps,
while few of them are not assigned to any metabolic map of the KEGG database. This
result highlights an important utility of our framework, which is the postulation of
enzyme-based hypothetical reactions that can link compounds to reactions and
integrate them into existing metabolic maps.
In LMSD database, several fatty acid compositions have been described for lipids. The
huge diversity in the LMSD database comes mainly from the variation of attached acyl
chains “fatty acids” in terms of length, number and position of double bonds.
In our framework and in consistency with KEGG database, fatty acid substructures are
all represented with a common group name (called “R”); thus we assume a unified
substructure and do not consider the different modifications of the acyl chains in lipid
structures. If one ignores the acyl chain variations, then LMSD contains a limited
number of distinguishable structures of glycerophospholipids. More precisely, we could
identify 62 unique structures in this database. We then compared our generated dataset
with LMSD and we observed that our dataset includes 51 structures (82% out of the
total unique structures in LMSD). The remaining structures that NICELips were not able
to generate were due to the following reasons:

(i) The molecule contained head groups that required other starting

compounds, such as sugars, not in the KEGG map, and
(i)  The reactions involved biotransformations that were not captured by our

current set of generalized reaction rules.
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Table 4-4: Statistics of compounds and reactions generated in the first scheme, after 9 iterations of
NICELips algorithm.

[teration | Reactions Of which in KEGG | Compounds Of which in KEGG
predicted predicted
(cumulative) (cumulative)
1 3 3 21 20
2 15 8 36 30
3 62 18 62 41
4 141 26 88 44
5 247 32 123 50
6 446 42 186 58
7 949 49 329 65
8 3,054 57 889 70
9 20874 68 4497 74
Total 20,874 68 4,497 74

Given that the rules we used in this study are based on the enzyme reactions in known
glycerophospholipid pathways, this finding suggests a broader class of enzymes are
involved in glycerophospholipid metabolism. This is an observation that has not been
acknowledged before in the classification of glycerophospholipid metabolism. Overall,

these results demonstrate the very good match of our dataset with the data in LMSD.

4.3.1.2 Classification and scoring of the compound dataset

Unlike other classes of biomolecules that can be considered as mere permutations on a
common and finite set of monomers (e.g., proteins and oligonucleotides), complex
lipids, such as glycerophospholipids, are composites of a wide range of building blocks
that can give rise to a huge array of combination. These combinations cannot be
predicted by simple inspection of the precursor molecules because they are the product
of a large number of biochemical transformations. The diversity in molecular structure
was extremely higher in our datasets, since we explored computationally the diversity
of glycerophospholipid structures using all the possible enzyme-reaction rules involved
in the synthesis of these groups. Common glycerophospholipids of mammalian tissues
can be classified according to the following head group components: 1) phosphate in
Glyceropyrophosphates (PPA); 2) glycerol unit in Glycerophosphoglycerols (PG); 3)
serine group in Glycerophosphoserines (PS); 4) choline in Glycerophosphocholines
(PC); 5) ethanolamine in Glycerophosphoethanolamines (PE); 6) six-carbon sugar
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inositol in Glycerophosphoinositol (PI); 7) Cytidine 5'-diphosphate in CDP-Glycerols
(CDP-Glycerol).

Table 4-5: Results of the classification of the novel compounds in 7 classes based on their structural
similarities to the known lipid structures.

# compounds
Class Subgraph structure generjated (in
KEGG, in LMSD)
PPA o
wf fa A 302 (5,5)
YAl .S
) o
PG o
O/Y\O)\("\)\/“ 402 (6,11)
I o
PS oo
D\\I,/"\IM 124 (3,5)
no/\‘/\ e \w &
PC 0
N
P, ‘N
o ot % = 280 (4,4)
/T\ o
PE o o .
o.Mt
o~ Tl 692 (4,13)
PI 5 =
\Q\ 845 (4,6)
° q_\;! o
o\)\/ L . °
CDP- "
Glycerol \“:):O 1086 (1,2)
o L O\P//o o\\‘/o\j\/o
Others 766 (6,5)

In order to tackle the diversity of the generated molecular structures, we first
constructed a classifier to classify 4,497 compounds belonging to seven different
structural classes, based on the chemical structures of the known compounds using the

subgraph isomorphism technique described in section 5.2.2.1.
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Table 4-6: A closer look the compounds of the PG class shows that two different stereoisomers of
bis(monoacylglycero)phosphate is generated as a novel compound in this study and is correctly
classified in the PG class, with a high similarity score of 0.84 .

Introduced pattern for scoring in PG class

/\/\ 0\\"/0\)\/0
o o7 \0
Results
Name of compound Structure Similarity score

Phosphatidylglycerol g 0.90

ae 0.84

BMP 2,2 o
BMP 3,3' Agaendirtip 0.84
j]\ o/\\:/o\)\ﬂ/ok
Phosphatidylserine /\/\\n/ e ° 0.69

We next compared the compounds in the generated datasets with those in KEGG and
LMSD. In order to organize the groups in a controlled manner that will facilitate the
comparison, we merged 13 classes of LMSD with the same head groups and came up
with 7 different structural-based classes, plus one containing “other structures”, similar
to LMSD. The inspection of the summary of classification results (Table 4.5) suggests
that there are many structures in different classes not existing in KEGG, which either
exist in other databases such as LMSD, or do not exist in any current lipid database.

In our method of classification we have devised for each compound a scoring value
between 0 and 1. This scoring value shows the structural similarity between all the
members of the group and the general pattern used for classification, while helping us

to assign priority in the study of novel compounds. In other words, for each novel
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compound, a score closer to 1 accounts for higher similarity to known compounds and
higher likelihood for its existence. One can arbitrarily define threshold values for the
score and select all compounds from a class, with a score beyond a particular threshold,
for more analysis. Selecting compounds according to the scores provides us with a
manageable number of novel compounds for further studies on biosynthesis and
catabolic pathway association with these novel compounds. Hereby we show the results
of our case study for a lipid compound that does not exist in KEGG:
bis(monoacylglycero)phosphate (BMP) found in the PG class with the similarity score of

0.848. Examples of our scoring results are shown in Table 4.6.

4.3.2 Expansion of the glycerophospholipid KEGG pathway

The KEGG pathway map of glycerophospholipid includes 33 compounds and 69
reactions. After 20 iterations of our algorithm, the number of generated compounds
converged to 383 (all KEGG compounds) and the number of generated reactions
converged to 3787. Out of the 3787 generated reactions, 251 reactions corresponded to
KEGG reactions as shown in Figure 4.3. Within the generated results, we recovered all
the 33 compounds and 69 reactions as reported in the KEGG glycerophospholipids
pathways. We believe that the fact that NICELips finds all the previously curated
compounds and reactions in KEGG is an implicit validation of the NICELips framework
for the study of lipid metabolism.

Interestingly, many of these KEGG compounds and reactions have not been previously
associated with the glycerophospholipids pathway in KEGG database. This observation
demonstrates how our method can now link the KEGG pathway of glycerophospholipids
with the other KEGG pathways and also propose metabolic pathways for reactions that
are not associated with any metabolic pathways in KEGG database.

Our results also proposed several shorter alternative pathways including novel steps

for the synthesis of biologically important lipids in glycerophospholipid metabolism.
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Figure 4-3: (a) Compounds generated through the reconstruction of glycerophospholipid pathway
using NICELips. The number of compounds increases in each iteration. (b) Total number of reactions

and KEGG reactions generated in each iteration.

4.3.2.1 Reconstruction and enumeration of novel pathways

We applied the pathway search algorithm to find alternative pathways for the synthesis
and biodegradation of known lipids. We started with a defined substrate and a target
lipid, and we applied the algorithm to reconstruct all linear connections between them.
The starting compound we used in this study is sn-glycerol-3-phosphate, which is the
substrate we also used for the reconstruction of the KEGG map of glycerophospholipids
(see above). We chose as target compound the phosphatidylglycerol (PG), which is
known to be the substrate of bis(monoacylglycero)phosphate (BMP) biosynthesis.
There is only one known de novo pathway for PG biosynthesis which is a 4-step
pathway starting from sn-glycerol-3-phosphate (Figure 4.4). Interestingly, we find
hundreds of novel pathways, which are even shorter than the native pathway in KEGG

database (representative shorter pathways are shown in Figure 4.4).

4.3.3 Retrobiosynthesis of bis(monoacylglycero)phosphate (BMP)

We aimed to find hypothetical metabolic pathways for lipids with unknown metabolism,
such as BMP. Starting with a set of LMSD lipid compounds and our reaction rules
curated based on KEGG reactions we applied the retrobiosynthesis algorithm in order
to identify the pathways that link lipids in LMSD back to metabolic intermediates. We

hereby show our results of the retrosynthesis approach for BMP.
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Figure 4-4: The native de novo pathway for PG biosynthesis as is found in KEGG is shown in black
arrows. Based on our results we propose several alternative shorter pathways with length 1 (in red
arrows), length 2 (in blue arrows) and length 3 (in green arrows). The pathways presented here are
chosen based on the thermodynamics feasibility results and we present the most feasible pathways

for each length.

BMP, the structural isomer of phosphatidylglycerol (PG) is one of the most intriguing
structures of phospholipids discovered to date [189]. It exhibits an unusual sn-1:sn-1’
stereo configuration, based on the position of the phosphate moiety in its two glycerol
units. Based on the positions of fatty acids on the glycerol molecule, two different
isomers have been reported for BMP, the 2,2’-dioleoyl form and the 3,3’-isomer.

We carried out 24 iterations of the retrosynthesis algorithm using the set of 12 reaction
rules, starting compounds and cofactors (mentioned in section 2.2), plus BMP. After 24
iterations the number of compounds (all KEGG compounds) converged to 208 and the
number of reactions converged to 505 (out of which 101 reactions are KEGG reactions)

as shown in Figure 4.5. We found that the minimum number of steps for the synthesis of
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Figure 4-5: The results of the retrosynthesis algorithm applied for BMP. (a) shows the iterative
generation of compounds and (b) shows the total number and KEGG reactions generated for each
iteration.

BMP from PG is 4, and it involves 7 lipid compounds (Figure 4.6). Moreover, we found
shorter pathways from other known lipid compounds that could lead to BMP. As shown
in Figure 4.6, BMP is one step away from the known compounds reported in KEGG
database. After a one-step reaction with water as a cofactor (a novel reaction that does
not exist in KEGG), BMP is degraded to “2-Acyl-sn-glycerol 3-phosphate” and “2-
Acylglycerol”. “2-Acyl-sn-glycerol 3-phosphate” is a lipid compound associated with
glycerophospholipid pathway in KEGG database. “2-Acylglycerol” is a KEGG compound

which is not associated with any reported metabolic pathway.
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Figure 4-6: Out of hundreds of generated reactions for BMP metabolic network, hereby we present
couples of thermodynamically feasible pathways. In the set of required generalized reaction rules for
reconstruction of the KEGG pathway of glycerophospholipids, “3.1.4A1"” is the only enzyme rule that
can react with BMP (first iteration showed in black arrow in the figure). In the second iteration
(showed in red arrows), sn-Glycerol 3-phosphate which is the substrate for PG biosynthesis in
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glycerophospholipid metabolism is generated. In the third iteration (showed in green arrow), sn-
Glycerol 3-phosphate is generated through another reaction. And finally, in the fifth iteration
(showed in purple arrow), phosphatidylglycerol (PG), which is supposed to be the substrate for BMP
biosynthesis is produced.

Interestingly our results propose a possible integration of this lipid to
glycerophospholipid pathway. Thus, based on the results obtained, we are able to
propose alternate candidate synthesis and degradation pathways for BMP with
different lengths and biophysical properties.

We observed that not all of the LMSD compounds are one step away from KEGG
compounds. As mentioned in section 4.2, we can exclude novel compounds from the
generated network, and this results in smaller network that includes only the KEGG
compounds. For the LMSD compounds that are not one step away from the KEGG
compounds, we allow all novel and known compounds in each generation, and we
obtain networks that have both novel and KEGG compounds. The novel compounds
serve as intermediates to connect the LMSD compounds to the KEGG metabolic

pathways.

4.3.4 Thermodynamic feasibility studies

We employed the group contribution method to estimate the standard Gibbs free
energy (A°G;) for all the reactions generated using the NICELips framework (Table 2).
A°G; is estimated in the range of +28.49 K] to -35.64 K] for 93% of 3497 reactions in the
reconstructed networks of glycerophospholipid metabolism. The A°G; for 64% of 505
reactions in the networks of the retrosynthesis of BMP is estimated in the range of
+13.37 K] to -35.64 K]. We were not able to estimate the energies for some of the
reactions due to groups in the substrates or products for which thermodynamic
information was not available.

To further analyze the predicted alternative pathways, we performed thermodynamics
analysis for the results of the pathway search algorithm. A°G; of the overall pathway can
be computed by the sum of A°G; of the individual reactions in the pathway. If A°G; of the
overall pathway is negative we consider it as a thermodynamically feasible pathway.
According to this calculation, all the representative pathways in this study (Figure 4.4 &
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Figure 4.6) were found to be thermodynamically feasible.

Table 4-7: A summary of results of thermoynamics feasibility studies for reconstructed network of
glycerophospholipids and the analysis of the reaction network of retrosynthesis of BMP.

Reconstructed network of glycerophospholipid | Reaction network of retrosynthesis of BMP
Range of AG, # of reactions | % in KEGG Range of AG, | #of reactions | % in KEGG
AG, <0 664 44.6% AG, <0 154 43%

AG, =0 2231 5.4% AG, =0 36 2%

AG, >0 601 45.3% AG, >0 129 53%

AG, is not | 291 4.7% AG, is not| 186 2%
estimated estimated

We also observed that the standard Gibbs free energy for almost 50% of the KEGG
reactions is positive (Table 4.7). This indicates that the concentrations of the substrates
and products in the system play a critical role in determining the feasibility in vivo as
the Gibbs free energy of reaction has to be negative in order for the reactions to operate
in the direction of the synthesis of important compounds. However, this entails
knowledge of in vivo concentration ranges and network thermodynamic feasibility
analysis. Therefore, having positive values for the standard Gibbs energy of reactions of
the network is not enough for discarding them as thermodynamically infeasible

reactions and there are other parameters that should be taken into account.

4.4 Conclusions

Due to the importance of lipids in cellular physiology and pathology as well as to the
recent interest of the biotechnology community for understanding their role as
resources for alternative fuels and chemicals, the study of lipids has emerged as a major
research area. A computational framework, NICELips, was developed to investigate lipid
metabolism. In this work, we demonstrated the utility of NICELips for studying
glycerophospholipid metabolism. Our results emphasize the wealth of novel lipid
structures and biosynthesis and the abundance of catabolic reactions that are yet to be
discovered. We demonstrated our approach by reporting an interesting lipid compound

that does not appear in KEGG: the bis(monoacylglycero)phosphate (BMP).
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By reconstructing the KEGG pathways of lipid metabolism, our results indicated several
shorter alternative pathways for lipids synthesis than those found in KEGG. The
significant advantage of NICELips is that all the generated compounds are automatically
organized into pathways of reactions, i.e., we can easily identify the reactions in which
the compounds have participated. This is a unique property that enables us to search
for pathways based on the desired compounds, as a result of the generation of a
network of all compounds and reactions.

The retrosynthesis analysis using NICELips links all the reported structures for lipids in
LMSD to the metabolic pathways in KEGG, and thus offers a great potential for
proposing synthesis and catabolic pathways for many lipids in LMSD.

Due to the large number of novel pathways discovered for different compounds, we
should next develop criteria for identifying and ranking of pathways that are more
feasible in vivo. Such ranking will further guide the research in targeted lipidomics for
the experimental identification of pathways around lipids of interest, for which

information about their synthesis and catabolic routes is still missing.
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Chapter 5
SUPER E. coli

How to discover and assess the full enzymatic and metabolic capabilities of an

organism?

SUMMARY

In this chapter, we used BNICE.ch for the first time in an organism specific study to search for
novel reactions that could potentially exist in the metabolic network of E. coli. Using a given set
of E. coli core metabolites and a set of known biotransformation rules that exist in E. Coli as
inputs for BNICE.ch we generated Super E. coli, which is an extended metabolic network with
full metabolic capabilities that E. coli can potentially provide. Super E. coli captures all the
known E. coli reactions as well as novel pathways that can serve as de novo biosynthesis

pathways towards valuable chemicals.
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5.1 Introduction

Genome-scale metabolic (GEM) reconstructions capture the known metabolic
capabilities of organisms, and they have been used in many metabolic engineering
studies that have provided important insights into complex biochemical networks.
However, these studies rely on known biochemical reactions, and they may fail to
exploit full metabolic potential of studied and engineered microorganisms as they
neglect novel metabolic reactions, i.e. the reactions that are currently unknown to exist
in the studied microorganisms.

The metabolic network of Escherichia coli is one of the best-characterized reaction
networks in biology and several GEMs for different strains with different sizes have
been developed for this microorganism since 2000 [190]. Nevertheless, even for well-
studied organisms such as E. coli, there are still significant knowledge gaps and missing
biotransformation steps to be characterized [170].

In the last decade, tremendous efforts were invested on developing systematic methods
for the prediction and de novo design of novel pathways [99]. Most of the studies have
focused on retrobiosynthesis tools to identify de novo pathways for the production of
target molecules in a specific organism [74-77,82,191]. However, these strategies
explore novel pathways only around the chemistry of the target structure and they
neglect the potential evolution of metabolism.

However, applying these methods with a new perspective can help us to investigate a
more fundamental questions: what is the utmost metabolic capacity of an organism
such as E. coli,, and what are the metabolic functionalities that allow us achieving this?
The answer to this question will provide a full list of all possible metabolites and
metabolic reactions in the organism.

In this study, we introduce a systematic computational workflow for exploring the
metabolic capacity of a given microorganism. Our approach combines the knowledge
from genome scale models with a rule-based network reconstruction algorithm and
results in a new generation of model organisms, so called “super organisms” with

expanded metabolic capabilities.

The workflow has three main components (Figure 5.1):
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(i) We employ the BNICE.ch framework, which is able to generate every possible
biochemical reaction from a given set of generalized enzyme reaction rules
and a set of starting compounds; BNICE generates a super metabolic network
that explores the metabolic capability of the organism by introducing many
novel reactions.

(ii)  In order to identify the functionality of these novel reactions and to examine
their feasibility for implementation purposes, we embed the novel reactions
into the genome scale model of E. coli and we use a computational pipeline
(composed of FBA, TFBA, and MILP optimization) to identify sets of reactions
that can increase a desired metabolic property such as the biomass yield on
glucose.

(iii) We further investigate the structural similarity of the novel reactions to the
known enzymatic reactions. We used this similarity metric for the

identification of candidate gene sequences for the novel reactions.

Starting from the known biochemistry of E. coli metabolism, we investigated how many
novel reactions can be identified and if these reactions can give extra metabolic
potential to this organism for industrial application in the production of fuels and
chemicals. Interestingly, we found that there exist reactions in the generated super
metabolic network that can increase the maximum theoretical biomass yield on glucose.
This work allows for the first time the full exploration of theoretical metabolic

capabilities of an organism through the addition of metabolic functionalities.

5.2 Methods

The proposed workflow consists of several computational steps (Figure 5.1), and the
details of each step will be discussed in the following sections. Though we apply the
workflow to construct the expanded metabolic network of E. colj, it can be used for any

other organism.

95



5.2.1 Construction of a “super” metabolic network
The reconstruction of a “super” metabolic network of E. coli is accomplished using

BNICE.ch computational framework [72].

n
Biochemistry of the organism under study
| | Input preparation
Extracting enzymatic reactions included in for E. coli as a
converting glucose to biomass building blocks » chosen organism
| |
Required BNICE generalized reaction rules to
reconstruct all extracted enzymatic reactions ? )
| | N
Glucose + set of 14 Cofactors Super E. coli metabolic network
+ (45*2) generalized reaction rules reconstruction through applying
BNICE.ch BNICE.ch in forward mode and
u > supervised (only KEGG compounds/all
Setting parameter possible reactions) network
(i) Forward vs. retrosynthesis mode generation
(i) Supervised (which level) vs. unsupervised mode
R . n
* Anetwork of all possible reactions (known and Converting the reaction network generated with
. zzzsle)rii:d ;oNl]r(]:FI;ocL;nr(jesst(Jll('czz\(l)vg)MATLAB model BNICE.ch to a MATLAB model and merging it
e with /01366 to Perform :
iJ01366 + BNICE.ch results -FBA to investigate the impact of the novel
FBA, FVA % generated reactions on the native metabolic
and dead-end analysis network of E. Coli
| -FVA to identify if a reaction or sets of reactions
MILP formulation cause the changes on the native network
Identifying sets of rxns that increase -Dead end analysis
biomass yield p
[ S
( TFBA: sets of.rxns + /01366 ) For those set of the reactions that increase the
. biomass yield, we performed
( Bridglt score for ) -TFBA to investigate their thermodynamic
accepted sets of rxns feasibilities
> -Bridglt to access the structural similarity of the
R . novel steps to the known reactions
eporting top And we reported the top ranked sets of
ranked :sets of reactions
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P

Figure 5-1 : The workflow for generating the “super E. coli” metabolic network that contains
thousands of non-native enzymatic reactions (known and novel) and evaluating the impact of the

novel steps to the enzymatic profile and metabolic capacity of this organism.

Different modules and methodologies of BNICE.ch has been discussed in Chapter 2, here

we summarize the operating mode and the parameters that we chose in this study.
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We focused on the central carbon metabolism since the breakdown of nutrients and the
major part of carbon modification and energy metabolism is carried out in the core
carbon metabolism. In addition, most of the metabolite targets for the metabolic
engineering studies belong to the core carbon metabolism. Therefore, in our analysis we
considered 5 central metabolism subsystems glycolysis, pentose phosphate pathway,
citric acid cycle, glyoxylate cycle and pyruvate metabolism, together with the
biosynthesis pathways for glycerol and the amino acids close the central carbon

metabolism: glutamate, glutamine, aspartate, asparagine, alanine and serine.

Glucose
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Figure 5-2 : The core metabolic network of E. coli contains 67 compounds including 14 cofactors. The

compounds are connected by 76 enzymatic reactions which are attributed to one of the subsystems:
Glycolysis (blue), Pyruvate pathway (green), TCA cycle (red), Pentose phosphate pathway (orange),

Glyoxylate pathway (violet), or additional pathways accounting for the biosynthesis of some amino

acids or glycerol (light blue).

We used the latest genome-scale metabolic model /01366 [170,192] for E. coli K-12 as a
reference for extraction of known core enzymatic reactions discovered so far for this

organism. The resulting network included 67 compounds (including 14 cofactors) and

76 reactions (Figure 5.2).

We needed 45 generalized reaction rules to reproduce these 76 known enzymatic
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reactions using BNICE.ch. Since the directional feasibility of the reactions is further
assessed through the TFBA analysis, we included the enzymatic reaction rules for both
reaction directionalities (forward and reverse). Therefore, we applied 90 (45*2)
reaction rules to reconstruct the core carbon metabolism of E. coli.

We used the “forward network reconstruction mode” of BNICE.ch, we left unconstrained
the “number of iteration” for the system, and we allowed the network generation
algorithm to run till the number of compounds and reactions converge, i.e. till no more
compounds and reactions could be generated.

We were interested to investigate how many hypothetical reactions could evolve from
the known biochemistry of E. coli. Therefore, we allowed only biologically known
compounds to be selected as a part of the network, and we did not put any constraint on
the reactions, which resulted on the generation of thousands of novel reactions in the
reconstructed metabolic network of this organism. Table 5.1 shows the level of

supervision we applied in this study.

Table 5-1: The supervision level for the reactions rules is on the network level, for the compounds
on the database (KEGG) level and there was no constraint for the reactions and all the possible
reactions (known and novel) are allowed in the network generation process

Supervision level Input constraint
Reaction

Example rules Compounds Reactions
Unsupervised - Unlimited Unlimited
Database KEGG 14549
Organism
Network Core metabolic network of E. coli 45*2 67 76
Pathway

5.2.2 Integration of novel reactions in genome scale model

To further analyze the thousands of hypothetical enzymatic reactions generated by
BNICE.ch, we developed tools and frameworks to study their impact on the metabolism
of E. coli. The genome scale metabolic reconstruction of E. coli ij01366 [192] was
utilized as the reference model for integrating the novel generated reactions in the

context of metabolic model, and further for performing in silico analyses such as Flux
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Balance Analysis (FBA), yield calculations and gap filling.

E. coli genome scale network includes 2585 reactions and 1807 metabolites across
cytoplasm, periplasmic space and growth media, and can grow on different carbon
sources under aerobic and anaerobic conditions [192]. Since all the generated novel
reactions are around the central carbon metabolism, we integrated them into the E. coli
metabolic network as cytoplasmic enzymatic reactions. We call the genome scale model
with the integrated new reactions the “de novo E. coli metabolic network” and we will

use this term in the next sections.

5.2.3 Identifying sets of reactions that increase the biomass yield in E. coli network

We performed Flux Balance Analysis (FBA) to investigate if the novel proposed
reactions increase the yield of biomass production. By performing a Flux Variability
Analysis (FVA) on the extended metabolic network with the integrated de novo
reactions, we observed that there was not a unique set of reactions that would increase
the biomass yield. Hence, we developed an iterative method for identifying sets of
reaction(s) that increase the yield, and we have determined all possible combinations of

novel reactions responsible for this increase. We outline the developed method as

follows:
i) Split the reactions in de novo network into forward and reverse reactions
ii) Add binary use variables for each of the novel reactions

iii) Formulate the problem as:

Max Y z;
s.t.
Sv=0

Umin < Ui =< Umax
VetV +Kz; <K
z; - binary variable associated with the reaction i
S - stoichiometric matrix of the network
v - flux vector and v,,;,, , lower and v,,,,, upper bound for the reaction fluxes

K - large arbitrary constant to enforce the thermodynamic constraint
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We have also included constraints to prevent the simultaneous usage of forward and
reverse reactions; hence either forward or reverse direction can be active.

iv) However, this formulation will generate only one solution, and we have
already determined there is more than 1 set of reactions that increases the
yield. To enumerate all possible sets, we have created a constraint that
prevents the solver from choosing the same solution, and we have

exhaustively enumerated all possible sets.

5.2.4 Thermodynamic-Based Flux Balance Analysis (TFBA)

We did not have any experimental evidence about the kinetic (ir)reversibility of the
possible biotransformations, and thus we integrated novel reactions into the native E.
coli network as bidirectional reactions. Since thermodynamic properties of reactions
affect their directionalities, we tested the feasibility of the sets of reactions integrated in
the E. coli genome scale network under thermodynamic constraints. For this purpose,
we utilized the formulation of Thermodynamics-based Metabolic Flux Analysis
(TMFA/TFBA) [47], which uses Group Contribution Method (GCM) [27] to estimate the
standard Gibbs free energy of formation of metabolites, and builds a Mixed Integer
Linear Programming (MILP) problem to incorporate the thermodynamic constraints in
metabolic networks. We applied these constraints [48,193,194], and we verified the
thermodynamic feasibility of the proposed novel reaction sets and their impact on the

yield of biomass accumulation.

5.2.5 Gap-filling analysis by using novel reactions in E. coli network

There are knowledge gaps in the latest proposed genome scale reconstruction (GEM) of
E. coli [170]. This is due to the missing enzymatic functions, which were not captured
during gene to reaction association (GPRs) and the gap filling analysis. We have utilized
BNICE.ch generated reactions to identify possible gap filling reactions for the dead-end
(blocked) metabolites in E. coli metabolic network. We performed the dead-end analysis
of the de novo generated metabolic network, and we reported the metabolites that were
dead-ends in the native network but connected to the metabolism in the enlarged

network.
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5.2.6 Bridglt analysis
In Chapter 2 we described the methodologies behind the Bridglt framework and in
Chapter 3 we demonstrated its efficiency on finding the structurally similar known

reactions to the hypothetical generated reactions of BNICE.ch.

5.3 Results and discussions

We explored how the metabolic network of E.coli evolves within the known
biochemistry if we apply the aforementioned 90 generalized enzymatic reaction rules to
glucose as a starting substrate along with the set of relevant cofactors. We also analyzed
how the generated hypothetical reactions affect the known metabolic network of E. coli

and how these reactions are changing the enzymatic profile of this network.

5.3.1 E. coli super metabolic network reconstruction

The network generation algorithm converged after 16 iterations resulting in a network
of 565 compounds and 7804 reactions. 975 out of 7804 generated reactions were
already reported in KEGG database (Figures 5.3 & 5.4). The algorithm reconstructed
successfully 67 compounds and 76 reactions that exist in the core metabolic network of
E. coli (see Section 5.2.1), and even more striking was that we obtained additional native
E. coli compounds and reactions (Figures 5.3 & 5.4). This demonstrated that the utilized
generalized reaction rules could be used to explain the biochemistry of the other parts

of E. coli metabolism.
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Figure 5-3: Total number of generated compounds (all KEGG compounds) after 16 iterations along
with the numbers of generated native E.coli compounds. After 16 iterations, the number of
compounds converged to 565.
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Figure 5-4: Total number of reactions, KEGG reactions and E.coli native reactions generated in each
iteration through the reconstruction of core metabolism of E.coli. The total number of reactions
converged to 7804 after 16 iterations.

5.3.2 Characteristics of de novo metabolic network of E. coli
After integrating the generated compounds and reactions into the genome scale model

of E. coli, the overall number of metabolites in the extended network increased by
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20.4% to 2176 compounds, whereas the number of reactions (7804) almost tripled
compared to the native model. 362 out of 565 generated metabolites and 470 out of the
7804 generated reactions were already native for E. coli.

Since reactions in the metabolic models are considered as bidirectional unless the
kinetic irreversibility is observed experimentally, we added to the expanded model the
forward and reverse reactions of the same BNICE.ch biotransformation as one
bidirectional reaction. We ended up with the expanded model with 6454 reactions and
2176 metabolites.

One of our main goals in this study was to investigate the possible contributions of the
proposed novel reactions to the E. coli metabolism and to determine if these reactions
could be used to fill in some missing functions in the current functional annotation.
Firstly, we tested the de novo metabolic network for its capacity to accumulate biomass
precursors. Wild type E. coli grows with a specific growth rate of 0.99 1/hr with a
glucose uptake of 10mmol/gDWhr under aerobic conditions.

To assess the impact of the novel introduced hypothetical reactions to the metabolic
network of E. coli, we performed Flux balance Analysis (FBA) on the de novo E. coli
network and we obtained a specific growth rate of 1.46 1/hr under the same media
composition, which corresponds to 46% increase in the biomass yield compared to the

wild type E. coli.

5.3.3 Sets of reactions that increase the biomass yield

We performed a Flux Variability analysis (FVA) on the de novo metabolic network, and
we found out that there were no individual novel reaction(s) whose addition to the E.
coli network would increase the biomass yield on glucose. This implied that there were
alternative set(s) of reactions that were responsible for this increase in the yield. In
order to determine these different sets of reactions, we applied our framework (See
Section 2.2.1), and we identified all possible sets that increase the yield in the de novo

network (Table 5.2).
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Table 5-2: Total number of generated sets of reactions that increase the yield in FBA, and the
number of those that are network thermodynamically feasible and that increase the yield in the
TFBA analysis as well.

Length # of generated sets # of TFBA feasible
2 136 7
3 6705 1075
4 4200 1677
5 7 4
Total 11048 2763

We found that 11048 different sets of reactions with lengths 2, 3, 4 and 5 could increase
the yield to at least 90% of the theoretical optimum yield (1.3 1/hr specific growth rate
with 10 mmol/gDWhr glucose uptake rate). These 11046 sets were composed of only
1140 reactions (~15 percent of the total), and 135 of them were known KEGG reactions

whereas the others were novel reactions proposed by BNICE.ch.

5.3.4 TFBA of E. coli metabolic network along with different sets of reactions

After populating all possible combinations of the novel reactions that increase the yield,
we have tested them under thermodynamic constraints to investigate if the
bioenergetics would allow those biotransformations to operate in the favorable
direction.

We integrated the identified sets one at a time into the E. coli native metabolic network,
and we have performed the TFBA analysis of so obtained extended metabolic networks.
The highest specific growth we obtained with these extended networks was 1.39 1/hr
under aerobic conditions, with 10 mmol/gDWhr glucose uptake. The first obvious result
was that due to the thermodynamic constraints the highest specific growth rate
decreased from 1.46 1/hr to 1.39 1/hr. Even though some identified sets of reactions
were thermodynamically feasible, some reactions that belonged to the native
metabolism were not thermodynamically feasible in the direction that was imposed by
the integrated sets of novel reactions. As a result, we observed a drop in the yield
compared to FBA results. On the other hand, 8285 identified sets were

thermodynamically infeasible in the increasing yield direction (Table 5.2)..
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During the analysis of some sets, we could not conclude the main reason for the biomass
yield increase at a first glance, and we performed further analysis to understand the
behavior of the de novo network.

We built de novo models with the sets that increase the yield to the highest with
thermodynamic constraints, and performed TFBA simulations to observe the behavior
of the de novo network. By analyzing these models, we concluded that the yield increase
is mostly related to ATP, which states that the limiting metabolite for the biomass yield
is ATP, rather than any other biomass building block. The detailed study of these sets is

an ongoing project and it is subject to further analysis.

5.3.5 Analysis of dead-end metabolites

In the de novo metabolic network of E.coli, we had a closer look to the metabolites that
are “dead end metabolites” in the native model of E. coli and we investigated their
connectivity in the new generated network in attempt to identify the new reaction steps
that connect them to the other metabolites in the network.

In total, there were 208 dead-end metabolites in iJO1366 which represent the
knowledge gaps in this model reconstruction [170]. Nine metabolites that were dead-
end in the native model got connected with the other metabolites of the de novo

metabolic network through the novel reactions of BNICE.ch (Table 5.3).

Table 5-3: List of metabolites that were dead-end metabolites in the native E. coli and are not dead-
end in the de novo metabolic network. The reaction steps that could connect these metabolites to
the native metabolites are novel hypothetical reactions generated by BNICE.ch.

Metabolites that are not dead-end in | # of reactions could connect the # of Novel
the de novo metabolic network metabolites to the native metabolites | reactions
2,3-dioxo-l-gulonate 3 3
2,5-diketo-d-gluconate 2 2
2-phosphoglycolate 2 2
4-hydroxy-I-threonine 5 5
p1,p5-bis(5-adenosyl) pentaphosphate 11 11
1-aminopropan-2-ol 72 72
1-deoxy-d-xylulose 10 10
gamma-hydroxybutyrate 15 15
oxalate 17 17
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5.3.6 Bridglt analysis

Since in this analysis we explored all the possible enzymatic reactions of E. coli on the
basis of its known biochemistry (the network includes only known compounds), the set
of generated novel reactions were a subset of the hypothetical reactions we reported in
Chapter 3. Therefore their detailed analysis is discussed in Chapter 3. Hereby, in order
to compare different sets of reactions and to rank them based on their structural
similarities to the known reactions, we reported an “average Bridglt score” for the

reactions in each set.

5.4 Conclusions

E. coli is one of the most studied organism in the metabolic engineering field and many
research works have proven its capacity for the biosynthesis of high value chemicals
and its flexibility to metabolic modifications.

In order to make use of the full production potential of E. coli, in this study we
attempted to reveal its full enzymatic capability based on the generalized enzymatic
reaction rules of BNICE.ch. We used our method to generate a “super” metabolic
network that included: (i) all the metabolites and reactions of the native core
metabolism of E. coli; (ii) several known but non-native metabolites and reactions (iii)
and hundreds of novel reactions that linked known and non-native metabolites. The
network was further evaluated with respect to the thermodynamic feasibility of the

novel generated reactions in the context of the genome scale model of E. coli ij01366.

We identified several sets of reactions that increase the yield through biomass
production, and that could also be implemented as de novo pathways for the

biosynthesis of several heterologous compounds.
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Chapter 6
IAM.NICE!

What is the fate of each atom from nutrients into metabolic universe?

SUMMARY

In this chapter, we introduce a computational framework, ““lAM.NICE” (in silico Atom Mapped
Network Integrated Computational Explorer), for the atom-level reconstruction of metabolic
networks from the in silico labeled substrates, which allows tracking the fate of atoms through
the reconstructed metabolic network. The originality of ““lAM.NICE” is twofold. First, it is to our
knowledge the first automated atom-mapping algorithm that is derived from the underlying
enzymatic biotransformation mechanism; and second, its application is not limited to individual
reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We
illustrate the effectiveness of our method through the reconstruction of atom-mapped reactions
of KEGG database. Furthermore, we provide an example of an atom-level representation of core
metabolic network of E. coli to show how a comprehensive atom level metabolic analysis can

guide the experimental design to obtain more precise biological information.
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6.1 Introduction

The automated identification of atom transitions within a reaction pathway is a very
challenging task since the degree of complexity of metabolic networks dramatically
increases when we transit from metabolite-level studies to atom-level studies. Despite
being studied extensively in various approaches, the field of atom mapping of metabolic
networks is lacking an automated approach, which accounts for the information of
reaction mechanism for atom mapping and is extendable from atom-mapped reactions to
atom-mapped reaction networks.

In a reliable in silico atom-level reconstruction of a metabolic network the atom
mappings need to be: (i) correctly created at the level of individual reactions, and (ii)
connected in a network and conserved through all reactions steps from the input
compound to the final products, enabling one to trace back the exact metabolic path of
every single atom. To do so, we developed the “IAM.NICE” framework for addressing the
atom-mapping problem.

In this study, we provide the atom-mapped representation of all the reactions in KEGG
database as well as an atom-level representation of core E-coli metabolic network. Our
results can be used for a large range of applications, starting from the identification of
new metabolic routes for the microbial production of desired compounds to the
interpretation of the optimum labelled patterns of substrates, which can be a great

benefit for the simulation of tracer experiments.

6.2 Methods

6.2.1 Insilico atom labelling

In the “IAM.NICE” framework, molecules are represented in the form of a Bond-
Electron-Matrix (BEM) that describes the electron bonds between the atoms [101] and
we store this information as a molfile [195]. Our method allows us to automatically
label all the atoms of a molecule, with the exception of hydrogen atoms. In our in silico
labelling studies we adopted the annotation used in stable isotope 13C labelling
experiments. For the cases where we needed to trace the fate of more than one labelled

atom, we used 14C, 15C, etc. Though all the examples shown in this work represent
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carbon labelling, the same principle can be applied for the annotation of other atom
types.

Within the “IAM.NICE” framework, we can label substrate molecules in many distinctive
ways by altering the number of labelled atoms and their positions. However, in this
study we will focus on the following cases:

1) Fully labelled molecules: fully labelled molecule means that all labelled atoms in
a molecule have distinct labels, whereas in stable isotope 13C labelling
experiments all labelled atoms have the same label. We use such labelled
molecules to construct atom-maps of individual reactions; here, the atoms of the
starting compound(s) are labelled, with the exception of hydrogen atoms, and
the result of their transition through a biochemical transformation can be
observed in the atom-mapped reaction product.

2) Single atom labelled molecules: we use these molecules to construct atom-
mapped pathways and metabolic reaction networks; here, a single atom of the
starting compound is labelled, and the fate of this atom can be observed through
a sequence of reactions.

Figure 6.1 shows an example of in silico carbon-labelled glucose and the comparison
between different isotopomers of glucose. The term isotopomer comes from isotope
isomers, and it describes different isotopic compositions of the same compound. An
important characteristic of “/AM.NICE” is that it considers different isotopomers as
different compounds, enabling the differentiation between isotopomers and hence the
reconstruction of atom-mapped networks.

Depending on the purpose of the in silico labeling study, we choose a different
isotopomer as starting compound. Unlabeled glucose is compared with fully carbon
labeled and different C-labeled glucose based on the position of the labeled carbon. If
we want to follow a specific atom of the starting compound through the network, we
choose 13C-single labeled glucose. C1 to C6 specify the position of the labeled atom in
the molecule.

Note that we can also use a fully labelled molecule in sequences of reactions. However,
with all the atoms being labelled, as the size of metabolic network increases the
generated atom-mapped network becomes prohibitively complex for any practical
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purpose. Thus, we use the single atom labelled molecules to study the metabolic

networks.
Unlabeled glucose Fully carbon labeled glucose
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Figure 6-1: Depending on the purpose of the in silico labeling study, we choose a different
isotopomer as starting compound. Unlabeled glucose is compared with fully carbon labeled and
different C-labeled glucose based on the position of the labeled carbon. If we want to follow a
specific atom of the starting compound through the network, we choose *C-single labeled glucose.
C1 to C6 specify the position of the labeled atom in the molecule.

6.2.2 Atom-mapped reactions: transferring labelled substrates to labelled products

As already discussed in Chapter 3, the generalized enzymatic reaction rules were initially
developed in BNICE.ch with the aim of discovering de novo alternative biosynthesis and
biodegradation pathways, and their potential has been demonstrated in several studies
[72,82,84].

Contrary to their application in our previous studies, in this study, for the first time we
applied the generalized reaction rules not for generating novel information, but for
introducing another level of information to the existing knowledge of metabolism.
Specifically, we added detailed information about the atom transition to the known
metabolic networks by reconstructing the known enzymatic reactions at the atomic
level. For this purpose, we adjusted the BNICE algorithms, and we also formulated new
algorithms for the atom-mapped reconstruction of enzymatic reactions, pathways and
metabolic network.

Our algorithm read the KEGG reactions, one by one, extracted the substrates and
checked them against a list of cofactors given as a parameter and after identifying the

cofactors, it automatically regenerated the in silico labelled non-cofactors substrate by
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successively labelling their carbon atoms. In case of having more than one substrate, the
successive manner continues after labelling the first substrate (Figure 7.3, EC Class2).

In order to generate atom-mapped reactions, “/AM.NICE” transfers the label(s) from a
substrate to a product by taking into account the information about the rearrangements
of the chemical bonds derived from the generalized reaction rules. This way, we
generate the product structure from the substrate structure by rearranging bonds,
while conserving the information about the positions of atoms. Figure 6.2 shows an
example of atom-mapped reaction along with the BEM of representation of substrate,
products and the matrix representation of the corresponding generalize reaction rule
for carrying out such an enzymatic reaction. The colour codes help to clarify the
different corresponding parts of BEM and reaction rule matrix. According to the
mechanism predefined in the reaction rule, the 13C-14C bond breaks and two products
form. The cofactor of the reaction (NADPH) rearranges the electrons as described in the
reaction rule to generate a double bond instead of 13C—-0 and >C -0 which results on
the formation of labelled CO; and pyruvate as the products with specified carbon

position being conserved based on the mechanism of the reaction.

6.2.3 Atom-mapped pathways and networks

In our proposed approach, the atom-mapped pathways and networks are reconstructed
in an iterative manner. In the first iteration of the procedure, we apply the generalized
reaction rules on a starting in silico labelled substrate. If one of the generalized reaction
rules recognizes the reactive site in the labelled substrate, the reaction rule rearranges
the bonds according to its distinct reaction mechanism. This way, we obtain a set of
atom-mapped reactions together with their labelled products. The labelled products
obtained in the first iteration are the substrates for the second iteration. As a result, the
labelled products of the second iteration are two steps away from the initial labelled
substrates and they contain the information about the fate of each atom after these two

reaction steps.
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Figure 6-2: BEM representation of an atom-mapped example reaction: The generalized reaction rule
recognizes the reactive site (red) of the substrate. Next, the reaction rule matrix, which stores the
bond changes for every pair of atoms, is added to the substrate matrix (green) at the reactive site.
The resulting product matrix contains the BEM of the products: CO, (light blue) and Pyruvate (dark
blue).

We iterate the steps of the procedure till we reconstruct studied pathways or networks.
This way, we can trace the fate of every single atom from the first substrate to the final
product, i.e. we eventually obtain a comprehensive atom level reconstruction of
metabolic pathways or metabolic networks.

An important feature of “IAM.NICE” is that the existing metabolic data in biological
databases is integrated into our framework and is organized within different categories
and levels such as compounds, reactions, pathways, organisms, etc. This allows us to
screen the obtained results against all known biological knowledge in different levels.

Detailed explanations on the different levels of supervision and their importance for the

“I.AM.NICE” framework are provided in Chapter 2.
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6.3 Results and discussion

In the following we present a proof of concept for the atom mapping of enzymatic
reactions, pathways and metabolic networks using “iIAM.NICE”, we continuously
elaborate on the computational and methodological concepts associated with this
approach, and we illustrate the application of the proposed method for the atom

mapping of the E.coli central carbon metabolism.

6.3.1 Atom mapping for single enzymatic reactions

We used our framework to reconstructed atom-mapped KEGG reactions (version July
2014). We used fully carbon labeled KEGG molecules (Section 6.2.1) as inputs to the
algorithm together with all the generalize reaction rules. Upon acting on a molecule, the
generalized reaction rules automatically identify the biological reactive sides of
molecule and apply the biotransformation by which the atoms and bonds rearrange to
form the product. We show an example of a carbon mapped reaction for every
enzymatic class of the Enzyme Commission (EC) classification system[196] in Figure

6.3.

6.3.2 Atom mapping for metabolic pathways

Biological pathways are a combination of several enzymatic reactions occurring in a
sequence. “IAM.NICE” not only accurately maps atoms for individual reactions, but also
extends these atom-mapped reactions to atom-mapped metabolic pathways and
eventually the metabolic networks. In the following sections we presented the
properties and utility of our approach by studying the central carbon pathways. Central
carbon metabolism takes different enzymatic steps to convert sugars into metabolic
precursors, which are used downstream to form the entire biomass of the cell. While in
this study we focus on mapping carbon atoms, our method can be used to map atoms of

all elements with the exception of Hydrogen.
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Figure 6-3: An example of a carbon atom-mapped reaction is given for each EC class. Carbon atoms
in the substrates are labelled from **C upwards, and every carbon isotope present on the reactant
side reappears on the product side. In the case of more than one substrate, e.g. the example of EC
class 2, the carbon labels are enumerated sequentially for all the substrates. The molecular
structures of cofactors that do not participate in carbon transfer are not shown. We show below the
reaction arrows the KEGG Id and the name of the catalysing reaction rule.

6.3.2.1Atom-mapped Glycolysis

Glycolysis is a metabolic pathway that converts glucose to acetyl-CoA and with a few
variations, occurs in roughly all organisms. To generate the atom-mapped glycolysis, we
constrained the scope of the search space of compounds and reactions to the pathway
level (Section 7.2.3, Table 7.1) and we performed 10 iterations since the glycolysis

pathway is a sequence of 10 enzymatic reaction steps, one should be careful that in

some steps more than one reaction occurs which makes in total 16 reactions in
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glycolysis (Figure 6.4). Since the entry point to glycolysis starts is D-glucose, we used as
inputs for our algorithm the fully carbon-labelled glucose and the set of 9 cofactors that

are required to reconstruct all the reaction steps in glycolysis (Figure 6.4)
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Figure 6-4: Glycolysis pathway reconstructed from a fully carbon-labelled glucose. Reactions are
numbered from 1 to 16, connecting the 22 compounds and isotopomers. Boxes show the atom-
mapped molecular structures of the produced isotopomers for a selection of metabolites.

In the first iteration, we applied the reaction rules on the labelled glucose, and we
looked up in the sets of glycolysis reactions and compounds (predefined search space)
the resulting atom-mapped reactions and labelled products. If both the product
compounds and the reactions were part of the set of glycolysis compounds and the set
of glycolytic reactions, respectively, the reactions were added to the pathway, and the
product metabolites were added to the list of substrates for the following iteration. In
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this example, the first metabolite generated from glucose was glucose-6-phosphate. In
the second iteration, the generalized reaction rules were applied to glucose-6-
phosphate, which resulted in the generation of fructose-6-phosphate. This procedure
was continued until acetyl-CoA and COz were produced and all the reactions in the list of
glycolysis were reconstructed along with their atom maps (Figure 6.4). The resulting
network had 22 compounds (including 9 pairs of isotopomers) connected by 16
reactions.

The isotopomer pairs resulted from the branching that occurred in reaction 5, where
fructose-6-phosphate was split into glycerone-phosphate and glyceraldehyde3-
phosphate, both carrying differently labelled carbon atoms. Glycerone-phosphate was
further transformed into a second isotopomer of glyceraldehyde3-phosphate. The rest
of the labelled pathway contained two parallel sequences of compounds, where each
sequence followed a different labelling pattern.

We ended up with two isotopomers of acetyl-CoA and COz with each molecule
containing a subset of the initial isotope labels of the starting compound. Interestingly,
the two carbon atoms giving CO; were initially present at the 34 and 4t position in
glucose, while the other atoms of glucose ended up in acetyl-CoA. This example
demonstrated how we could trace back the itinerary of each single atom through the
pathway. Other carbon-mapped biological pathways such as citrate cycle, pentose
phosphate and pyruvate pathways can be replicated in the same manner and
encompassed as a central carbon metabolism together and are presented in the next

part.

6.3.3 Atom mapped E. Coli core metabolic network

In order to demonstrate the efficiency of “IAM.NICE” in reconstructing atom level
metabolic networks, we mapped the carbon atoms of a core metabolic network of the
E.coli core metabolism introduced in section 5.2.1, Figure 5.2. The network was a
manually curated subset of the genome-scale metabolic model iJ01366 for E. coli K-12
MG1655 [113], and it covered glycolysis/gluconeogenesis, pentose phosphate pathway,
pyruvate metabolism, Tricarboxylic Citric Acid (TCA) cycle and glyoxylate metabolism,

as well as the biosynthesis pathways for glycerol.
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We constrained the scope of the search space of compounds and reactions to the
network level, i.e. to the core metabolism of E. coli (Table 6.1), we used as inputs 13C-
single labelled glucose together with 14 cofactors involved in core E. coli metabolism,
and we studied the flow of labelled carbon atom through the metabolic network.
Starting from a glucose molecule we performed 16 iteration steps to cover every

reaction by iterative network reconstruction.

Table 6-1: The level of supervision that we applied for the reconstruction of the atom-mapped core
metabolic network of E .coli is at the network level for the generalized reaction rules, compounds
and reactions

Supervision level Input constraint
Reaction
Example rules Compounds Reactions
Unsupervised -
Database
Organism
Network Core metabolic network of E. coli 45*2 67 76
Pathway

We repeated this procedure six times where in each repetition we changed the position
of the labelled carbon atom in the 13C-single labelled glucose molecule, i.e. we used as
inputs carbon-labelled glucose C1, C2, C3, C4, C5 and C6 (Figure 6.1). This way, we
generated six different atom-mapped networks.
We analyzed the 6 resulting atom-mapped metabolic networks, and we observed that
the size of networks (graphs), in terms of number of isotopomers (nodes of the graph)
and number of reactions (edges of the graph), was changing depending on which
labelled glucose molecule, C1 to C6, was used as the input. In fact, the position of the
labelled atom in the labelled glucose molecule affected how the labelled atom was
propagating through the network, and therefore how many isotopomers were
generated. We identified four properties that gave rise to the differences in the size of
the labelled metabolic networks:

[.  Loss of 13C to CO; during the course of a reaction reduces the number of

isotopomers.
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[I.  Production of labelled acetyl-CoA increases the number of isotopomers.

[II. ~ Presence of the label in the glycerol pathway increases the number of
isotopomers.

[V. Labelled pyruvate originating from the pentose-phosphate pathway increases

the number of isotopomers.
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Figure 6-5: Altering the position of the label (from C1 to C6) influences the size of the network. The
barplot in Panel A shows numbers of compounds (blue) and reactions (red) for different positions of
labelled carbon atom. The table in Panel B presents the number of isotopomers and reactions that
are produced over 16 iterations, for each of 6 atom-mapped networks (i.e. for altered inputs from
C1 to C6). Red cells (or alternatively green cells) in Panel B show that the corresponding property if
satisfied reduces (or increases) the network size by promoting (or impeding) the generation of new
isotopomers.

We compared the statistics of generated isotopomers and reactions in 6 generated
networks (Figure 6.5, Panels A and B). Labelling glucose at position 3 resulted in a
relatively small network (151 isotopomers). In contrast, labelling positions 4 and 5
resulted in the generation of 273 and 258 isotopomers, respectively. The network sizes
of the remaining labelling positions lied in between these values. We next analyzed the
occurrence of the above-mentioned properties I-IV (Figure 6.5, Panel B), and we
evaluated whether or not these 4 properties were true for six networks.

We continued our analysis by tracing the flow of labelled carbon atoms through the
resulting atom-mapped networks. For a case study, we focused on the citrate molecule
and we compared different obtained labelled patterns (isotopomers) for this compound
depending on the position of labelled carbon atom in glucose. For six labelled glucose

molecules, C1-C6, there were eight differently labelled and one unlabelled structure of

118




citrate, i.e. in total, there were nine out of 16 possible isotopomers for this compound.
We visualized the flow of the labelled carbon towards citrate for six labelling patterns of
glucose C1 to C6 in Figure 6.6.

The visualisation of atom-mapped networks (Figure 6.6) allowed us to assess how
different parts of metabolic networks such as Glycolysis, TCA cycle, etc. contributed to
the diversity of generated isotopomers. For instance, while the pentose phosphate
pathway did not largely contribute to the scrambling of carbon labels, glycolysis
provided multiple alternative pathways for the carbon atoms, which resulted in a high
number of isotopomers for the compounds at the end of glycolysis.

We further observed that some of the compounds like 2-oxoglutarate, glutamine,
pyruvate and glutamate were highly connected despite a relatively small number of
isotopomers. This was due to the fact that these compounds did not only react as
substrates, but they were involved in some reactions as cofactors. In our visualisation,
we excluded all cofactors that did not participate in carbon transfer (i.e. those that did
not act as both cofactors and substrates) because of their high connectivity the network

analysis became too involved.
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Figure 6-6: Section of the atom-mapped E. coli core metabolism is presented for single in silico
labelled carbon of glucose, changing from C1 to C6. Red dots indicate the positions of **C arising
from the initial labelled glucose and conserved in the pathway. Varying the position of the labelled
carbon atom on glucose results in different citrate isotopomers, which are highlighted for each case.
Dotted lines represent the combination of several reactions steps that do not affect the position of
labelled carbon. The number on the bottom of each compound corresponds to its entry in the
generated network (graph node).

6.4 Conclusions

In this study, we presented a novel, systematic approach capable of reproducing the
known metabolic knowledge with an extra level of information - the atom-mapped data.
We performed the atom mapping of biological reactions, pathways and networks using
enzymatic reaction rules that reflect a biochemical reality, therefore chemical and
biological validity of the reported atom-mapped reactions are guaranteed.

We demonstrated our results through the reconstruction of an atom-level
representation of the E. coli core metabolism and we elucidated the flow of single
carbon atoms through the network starting from glucose as the carbon source.
Furthermore, we analysed the generated atom-mapped networks from different aspects
such as the growth in number of isotopomers or the loss of the isotopic tracer to COx.
This information is very useful for optimizing the design of 13C-MFA experiments. The
result of this study shows precisely which part of metabolism is contributing more for
the production of biomass building blocks.

Our focus in this study was on the analysis of carbon flow through the metabolic
pathways, nevertheless similar studies exploring the metabolic fate of atoms other than
carbon could reveal new insights into the internal organization of metabolism. The
proposed method allows also reconstructing the atom-mapped metabolic networks in
an extended search space. This way, for example, we could consider all KEGG reactions
for a reconstructed E. coli network and study how the integration of reactions non-
native to E.coli, but which exist in other organisms, would affect the carbon flow in the
network. In addition, integrating novel pathways generated by the original BNICE.ch
framework in the search space could further increase the potential of this type of

studies. Such results may subsequently be used: (i) for applications in synthetic biology;
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(ii) for generating hypotheses regarding alternative or missing pathways in metabolism;
and (iii) to make detailed predictions for the simulation of MFA experiments.

The proposed method is capable of handling big metabolic networks containing
hundreds of compounds and reactions. This feature distinguishes the proposed atom
mapping method from other available algorithms as it opens up a possibility for the

reconstruction of genome-scale atom-mapped metabolic networks.
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Chapter 7
THERMODYNAMICS of METABOLISM

How energetics constraint biochemistry?

SUMMARY

In this chapter we present a coherent and unified developed framework for the estimation of
thermodynamics of metabolism and the rationalization of feasibility analysis of metabolic
pathways. This work is the first phase of an on going project on thermodynamics of metabolism
using GCM methods coupled with the quantum thermochemical calculations.

The lack of the available ab initio methods for the direct calculation of thermodynamic
properties at aqueous solutions (which correspond to biological systems) limits their
applications in biological studies. To address this limitation, our proposed pipeline first
calculates the thermodynamic properties in the gas phase and the results of this study coupled
with the corresponding hydration/solvation results (on going project based on this chapter)
would result in the desired thermochemical quantities in aqueous solutions.

In this chapter we introduce our methods and present our results for the estimation of
thermodynamic properties for a wide range of metabolites. Furthermore, we compare our
calculations with reliable experimental measurements and predictive calculations from the

literature, when available.
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7.1 Introduction

Intrinsic properties of metabolites from gas-phase quantum chemical calculations form
the basis for understanding their behaviour in more complex systems such as proteins,
nucleic acids and polysaccharides. Remarkable progress is made for small to moderate-
sized compounds with up to ten non-hydrogen atoms. However, the biochemical
compounds in metabolic pathways such as aminoacids and oligopeptides, saccharides,
nucleosides and their derivatives, often exceed this molecular size limit. For the heavier
metabolites, we further need computational information since reliable experimental
information for them is rather limited and often non-existing. Most of the compounds of
interest in this work are solid / crystalline at ambient conditions with high melting
points and very low vapour pressures and, thus, are elusive to direct gas-phase
measurements.

Most often, the standard heat of formation of these compounds in the gaseous state are
obtained by combining the heats of formation in the pure solid state (typically, from
heats of combustion) and the heat of sublimation (typically, by extrapolation from
values obtained at significantly higher temperatures - if the compounds are not
decomposed). Both of these typical experimental measurements, however, require
extreme care as they are prone to significant experimental errors [197]. Therefore, for
many of the heavy metabolites described above, the basic thermochemical quantities in
the ideal gas state still resist an experimental determination with the acceptable
“chemical accuracy” of 1 kcal/mol. Attempts to develop predictive group contribution
methods based on experimental results for smaller molecules [198,199] are not always
successful for the above types of metabolites and require significant improvements
[200]. Thus, today there is much interest in accurate theoretical calculations of
thermodynamic quantities of these metabolites.

Moreover, most of the thermodynamic studies in the literature are confined to ambient
conditions. Their extension to remote temperatures and pressures requires accurate
knowledge of additional properties relevant to the interaction of the studied
metabolites with their neighbouring molecules. Heat capacities, thermal expansivities
and isothermal compressibilities are among the properties that must be known for such

an extension. In addition, the effect of external conditions on solvation phenomena,
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primarily hydration phenomena, is of key importance in the evolution of biochemical
reactions and processes at remote conditions. This includes metabolite dissociation,
ligand-binding, protein folding, and ion distributions. In this regard, molecular
thermodynamics, which combines quantum chemical calculations with classical mixture
thermodynamics and equation-of-state approaches for extrapolation to high
temperatures and pressures, can be used for understanding the metabolism of
microorganisms, not only at ambient conditions but also at extreme conditions of
temperature and pressure [201-210].

In this chapter, we introduce our cohesive approach for the reliable estimation of the
basic thermochemical quantities of metabolites, biomolecules and associated
biochemical reactions over an extended range of external conditions of temperature
and pressure. As for the results, we focus on quantum chemical calculations of
enthalpies and free energies of formation in gas phase via isodesmic reactions of key
metabolites, such as aminoacids/oligopeptides, oligosaccharides, and nucleotides
/nucleosides, for which experimental information is difficult to obtain. The obtained
quantum chemical calculations complement the available thermochemical compilations

and form the basis for the expansion and testing of subsequent developments.

7.2 Methods

7.2.1 Accounting for conformers, anomers and tautomers

In figure 7.1, we compared the most stable structures obtained for methionine, glutamic
acid and valine with the corresponding structures proposed in [157], and the most
stable structure for open chain glucose with the corresponding structures proposed in
[211]. The differences in the calculations are not significant in the case of aminoacids.
What is worth pointing out is the different stabilizing factors in the two cases. As is clear
from the figure, the second row structures (this work) exhibit intramolecular hydrogen
bonding that includes the relatively strong OH--- NH bond. In contrast, the upper row
structures do not exhibit such intramolecular hydrogen bonds and appear as less
compact structures. Based on these properties we expect that the upper row structures
prevail at higher temperatures while the lower row structures be dominant at lower

temperatures. In the case of glucose chains, we observe that both structures are
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stabilized by four intramolecular hydrogen bonds of the same OH--- O type and the
difference in the calculations is not negligible. The right structure (this work) is more
stable by ca. 9 kJ/mol. The reason for this difference resides on the more cooperative
character of hydrogen bonding in the right structure (four vs. three consecutive

hydrogen bonds)[212] and the relatively open structure (free terminal OH).

A B
Methionine Glutamic acid valine Glucose
@
¢ ¢
)oY

Literature ¢
structures Literature structure This work
This work

Figure 7-1: A: Comparison of most stable structures for methionine, glutamic acid and valine
with the corresponding structures proposed by Stover et al.[157]. B: Comparison of the most
stable structure of glucose chain with the corresponding literature structure[211].

From the thermodynamic point of view, the pertaining value for the metabolite is an
average over the conformer population considered coexisting at equilibrium. This

averaging is done by adopting the classical Boltzmann distribution equation [213]:

exp(—Az;:i)

Xi = Zj exp(—%)

(7.1)

where X; is the mole fraction of conformer i at equilibrium and AfG; is the Gibbs free

energy of formation of conformer i. The summation is over all conformers of the studied
molecule. The contribution of each conformer to the overall heat of formation of the

studied metabolite is just the product of conformer’s heat of formation with its mole
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fraction at equilibrium, and similarly for the Gibbs free energy of formation. Using
equation (8.1), we observe that this contribution falls rapidly as the conformer’s Gibbs
free energy of formation departs from its lowest value in the conformer set, or, as the
relative Gibbs free energy of formation departs from zero (Figure 7.2). Note that the
relative Gibbs free energy corresponds to the difference of Gibbs free energy of
formation of conformer i from the corresponding quantity of the global minimum or

most stable conformer, i.e.

Thus, although the heat of formation of some conformers may depart by as much as 30
k]/mol from the corresponding lowest value, the so-calculated average heat of
formation differs by less than 4.0 k] /mol from the lowest conformer’s value.

The above conformer distribution analysis is valid as long as the conformer population
is known sufficiently well. Omitting conformers near the global minimum may lead to
significant errors. However, omitting all conformers above the usual cut-off of 1
kcal/mol in relative Gibbs free energy may also introduce a non-negligible error since
the omitted conformers may be numerous. Another source of error is the fact that Gibbs
free energies of formation are not usually known with high precision and the above

averaging is then done with the overall energy.

0.2

0.1

0.0

20 30
AAG / kI mol

Figure 7-2: The mole fraction of conformers at equilibrium as a function of the corresponding

relative Gibbs free energy of formation for aspartic acid.
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In the case of conformers with extensive intramolecular hydrogen bonding, which is
often the case with heavy metabolites, this error may not be negligible either.

The situation may be different in the case of tautomers. As figure 7.3 shows, for the
calculation of the thermochemical quantities for inosine, as an example, we need the
corresponding quantities for hypoxanthine. Hypoxanthine may be found in 7 tautomeric

forms including the enol form of 6-hydroxypurine.

NH3

1 (%
(%

NH1 NH2

c
. NH4
©
c

NH6 6-Hydroxypurine

Figure 7-3: The tautomers of hypoxanthine

These structures correspond to a well-known isomer population for which equation (1)
may be applied unequivocally. One may argue that some of these tautomers are not
relevant since the ribose group occupies one site in inosine. However, regarding
hypoxanthine itself, its average thermochemical quantities may still be obtained by
applying equation (1), leading to a value of just 0.4 k]J/mol higher than the heat of
formation of the most stable conformer, NH4. The situation in tautomers of nucleosides
or histidine is different since some of them may be favored (stabilized) by strong
intramolecular hydrogen bonds. The averaging results for guanine and cytosine are
similar. Although one may infer from this discussion that the thermochemical quantities
of the most stable tautomer are good approximations for the corresponding quantities
for the metabolite, the knowledge of these quantities for the less stable tautomers are
also important.

The case of sugar anomers with open and cyclic structures is again different. The results
through detailed sugar puckering analyses[211,214] show that particular puckering

geometries may be favoured in various glycobiology processes over the usual low
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energy equatorial 4C1 conformation and, thus, a detailed knowledge of the puckering
landscape is crucial for understanding these processes.

Thus, it makes more sense to focus on the thermochemical quantities of the global
minimum in each class of structures (open chain, furanoses, pyranoses) and use the
above puckering analyses for the averaging via equation (8.1). However, considering
the reported range and the distribution of enthalpy differences in the above puckering
analyses, it is clear that the thermochemical quantities of sugars do not deviate

significantly from the corresponding quantities of the global minimum in each case.

7.2.2 Selection of isodesmic reactions for calculation of heats and Gibbs free-energies of
formation

Apart from the standard requirement for the preservation of number and type of bonds
on both sides of the isodesmic reaction, heavy metabolites may pose additional
requirements as they may exhibit extensive intramolecular hydrogen bonding. One may
wonder whether the reactants should account for the intramolecular interactions of the
metabolites.

Glycerol is a good example for the case. Glycerol may exhibit two intramolecular
hydrogen bonds, which further stabilize its conformers. Simple conformer search shows
that conformer #1 in figure 7.4 is the most stable glycerol conformer. Two alternative

isodesmic reactions for obtaining glycerol are the followings:

2 ethanol + methanol => glycerol + 2 methane (A)
or
2 ethylene glycol => glycerol + methanol (B)

In reaction B, we also have the option to choose between alternative reactant (ethylene

glycol) conformers, as shown in figure 5.
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C

Glycerol — conformer #1
Glycerol — conformer #2

d C

Ethylene glycol — conformer #1 Ethylene glycol - conformer #2

Figure 7-4: Conformers of glycerol and ethylene glycol with and without intramolecular hydrogen
bonds (shown by dashed lines).

Table 7.1 summarizes the predicted thermochemical quantities with calculations at the
DFT-D3/B3LYP/def2-TZVPD level for the various alternative reactions or reactant
conformer combination schemes. As shown in this table, the isodesmic reaction A could
lead to acceptable predictions. However, the reaction heats (and free energies) are not
negligible. This may entail some error from the inefficient compensation of theory flaws
from both reaction sides. As expected, the use of isodesmic reaction B with ethylene
glycol conformer #2 leads to unacceptable results. In contrast, the intramolecularly
hydrogen-bonded conformer #1 of ethylene glycol is the most appropriate reactant for
isodesmic reaction B as shown by the predicted results in table 1, which also conforms
to experiment. The heat of reaction in this case (-4.9 kJ/mol) is small and is probably
indicative of a further stabilization of glycerol conformer #1 due to cooperativity of its
dual intramolecular hydrogen bonding.

The glycerol example will be used as a guide for the selection of isodesmic reactions and
conformer reactants in this work and especially in the case of saccharides.

The isodesmic reactions that have been considered in the present work are shown in

Table 7.2.
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Table 7-1: The predicted thermochemical quantities for glycerol based on quantum chemical

calculations at the DFT-D3/B3LYP/def2-TZVPD level.

Table 7-2: The isodesmic reactions for neutral metabolites

Metabolite

Isodesmic Reaction

Aminoacids / dipeptides

H2NCHRCOOH

H2NCHRCOOH (Gly) + CH3R => H2NCHRCOOH + CH4

Arginine (Arg)

Gly+guanidine+butylamine => Arg + CH4 + NH3

Histidine (His)

Gly+imidazole+propane => His+2 CH4

Proline (Pro)

pyrrolidine+acetic acid => Pro+ CH4

Tryptophan (Try)

Gly+indol+propane => Try+2 CH4

Alanylalanine (AlaAla)

2Ala +CH3NH2 => AlaAla + CH30OH + NH3

Glycerol Heat of reaction | Heat of formation | Free energy of formation (kJ/mol)
conformer (kJ/mol) (kJ/mol)
Predicted | Experim. Predicted Experim.

Isodesmic reaction A

#1 -62.0 -583.7 -577.9%, - | -445.8 -448°
582.8°

#2 -48.5 -570.0 -435.6

Isodesmic reaction B, ethylene glycol conformer #1

#1 -4.9 -582.6 -577.9%, - | -446.0 -448°
582.8°

#2 +8.7 -569.1 -435.7

Isodesmic reaction B, ethylene glycol conformer #2

#1 -22.9 -617.7 -577.9%, - | -462.3 -448°
582.8°

#2 -9.3 -604.1 -452.0

Alanylglycine (AlaGly)

Ala + Gly + CH3NH2 => AlaGly + CH30H + NH3

Alanylphenylalanine (AlaPhe)

Ala + Phe + CH3NH2 => AlaPhe + CH30OH + NH3

Glycylglycine(GlyGly)

2Gly + CH3NH2 => GlyGly + CH30H + NH3
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Phenylalanylglycine (PheGly)

Gly + Phe + CH3NH2 => PheGly + CH30H + NH3

Glycylvaline (GlyVal)

Gly + Val + CH3NH2 => GlyVal + CH30H + NH3

Leucylglycine (LeuGly)

Leu + Gly + CH3NH2 => LeuGly + CH30H + NH3

Saccharides

aD-Glucose (aDGI)

3HOCH2CH20H+tetrahydropyran(THP) => aDGI + CH30H + 2C2H6

BD-Glucose (BDGI)

3HOCH2CH20H + THP => BDGI + CH30H + 2C2H6

Glucose — chain (GICh)

3HOCH2CH20H + C2H6 + CH3CHO => GICh + CH30H + 3CH4

2-deoxy-D-Glucose (2-deGl)

2HOCH2CH20H + THP => 2-deGl + CH4 + C2H6

BD —Galactose (BDGal)

3HOCH2CH20H + THP => BDGal + CH30H + 2C2H6

BD —Mannose (BDMan)

3HOCH2CH20H + THP => BDMan + CH30H + 2C2H6

BD —Ribose (BDRib)

2HOCH2CH20H + THF => BDRib + CH4 + C2H6

aD-Ribofuranose (aDRib)

2HOCH2CH20H + THF => aDRib + CH4 + C2H6

2—deoxyD-ribose(2-deRib)

2HOCH2CH20H + THF => 2-deRib + CH30H + C2H6

Fructose-chain (FrCh)

3HOCH2CH20H + CH3COCH3 => FrCh + CH30H + 2CH4

BD-Fructopyranose (BDFrp)

3HOCH2CH20H + THP => BDFrp + CH30H + 2C2H6

BD-Fructofuranose (BDFr)

3HOCH2CH20H + THF => BDFr + CH3CH20H + 2CH4

BD—Xylofuranose (BDXyf)

3HOCH2CH20H + THF => BDXyf + CH3CH20H + CH30H + C2H6

BD—Xylopyranose (BDXyp)

2HOCH2CH20H + THP => BDXyp + 2 C2H6

aD—Xylopyranose (aDXyp)

2HOCH2CH20H + THP => aDXyp + 2 C2H6

Sucrose

BDGI + BDFr + CH3COCH3 => Sucrose + 2 CH30H

Maltose

2BDGI + CH3COCH3 => Maltose + 2 CH30H

Nucleobases/Nucleosides

6-Hydroxypurine

Adenine + CH30H => 6-Hydroxypurine + CH3NH2

Adenosine

Adenine + BDRib + CH3NH2 => Adenosine + CH30H + NH3

2-Deoxyadenosine

Adenine + 2-deRib + CH3NH2 => 2-Deoxyadenosine + CH30H +
NH3

2,3-Dideoxyadenosine

Adenosine + 2 CH4 => 2,3-Dideoxyadenosine + 2 CH30H

Inosine Hypoxanthine + BDRib + CH3NH2 => Inosine + CH30H + NH3
Guanosine Guanine + BDRib + CH3NH2 => Guanosine + CH30H + NH3
Cytidine Cytosine + BDRib + CH3NH2 => Cytidine + CH3OH + NH3
Thymidine Thymine + BDRib + CH3NH2+ CH4 => Thymidine + 2CH30H + NH3
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Deoxythymidine

Thymine + THF+ CH3NH2+ CH3CH20H => Deoxythymidine + 2CH4
+ NH3

Uridine

Uracil+ BDRib + CH3NH2 => Uridine + CH30H + NH3
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7.2.3 Thermochemical calculations for neutral metabolites

We calculated the heats and Gibbs free energies of the isodesmic reactions (Table 7.2) at
298.15 K and ambient pressure. We added ZPE (zero point vibrational energy) to SPE
together with the thermal corrections for the enthalpy or the Gibbs free energy for each

reactant or product. This results in their total enthalpy, H% and Gibbs free energy, G°:

HO = SPE + oZPE + Hy (7.3)
and
GO = SPE + oZPE + Gy (7.4)

The scaling factor, «, has values close to 1. In this work it was set equal to 0.975. The
heat of a reaction:

vi R1+v2 Rz =>v3R3+vs Ry
can then be obtained in the usual manner as
AHO = v3 HO3 + v4 HO - vi HO1 + v2 HO; (7.5)
A similar approach can be used for the free energy of the same reaction, A:G% We can
also derive the same result from the heats of formations of reactants and products, or:
AHO = v3 AfHO3  + v4 AfHO% - vi AHO1 + v AfHO, (7.6)
and similarly for A,GP°.
Calculation of the standard heats and free energies of formation of a metabolite requires
accurate knowledge of the corresponding properties for all reactants and products of
the isodesmic reaction. By replacing the known quantities we can use equation (7.6) in
order to obtain the unknown heat of formation (similarly the unknown Gibbs free
energy of formation) of the studied metabolite. The existing compilations[147-149,215]
provide reliable data for these computations, which are summarized in Appendix Table

A3 for the compounds that participate in our isodesmic reactions.

7.2.4 Thermochemical calculations for ionic metabolites
Gas phase acidities, gas phase basicities (GB) and proton affinities (PA) are important

elements for understanding the acid-base behavior of heavy metabolites not only in the
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gas phase but also in aqueous solutions and numerous biological processes [216,217].
The extensive experimental and theoretical research over several decades has led to
reliable compilations of the above properties, especially for aminoacids
[150,152,153,157,158]. For this case, one can use these experimental data to estimate
heats and free energies of formation of protonated and deprotonated aminoacids if the
corresponding quantities for the neutral species are available. On the other hand, one
can perform the same level of quantum thermochemical calculations as described in
section 8.2.1, and use appropriate isodesmic reactions in order to estimate the
thermochemical quantities of the ionic metabolites. We have followed both approaches
and we compare the results in the next section. In order to clarify the computations, we
first recall the definitions of gas phase acidity, GB, and proton affinity, PA.

Let reaction C be the protonation reaction of metabolite M :

M (g) + H* (g) => MH"* (g) @
and reaction D the deprotonation reaction for the same metabolite:
M (g) => [M-H]- (g) + H* (g) (D)

The gas-phase basicity of metabolite M is equal to the negative of the standard Gibbs
free energy change of reaction C, i.e,,

GB (M) = -A:GO¢ (7.7)
and its proton affinity is equal to the negative of the standard enthalpy change of the
same reaction C, i.e.,

PA (M) = -A/HO (7.8)
The standard Gibbs free energy change of the deprotonation reaction D is the gas-phase

acidity of metabolite M, i.e,,

AGacia (M) = ArG% (7.9)
and similarly for the enthalpy:

AHacia (M) = ArH% (7.10)
Calculations of gas phase acidities of aminoacids are typically done via the isodesmic
reaction E

Aminoacid + CH3COO- => [Aminoacid -H]- + CH3COOH (E)
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and by anchoring the calculations to the known gas phase acidity for acetic acid
[152,156,159]. Alternatively, one may use benzoic acid in the isodesmic reaction E or
even glycine as there exist consensus values for it [152], namely AGaciq (Gly) = 1403.5 +
1.5 kJ/mol and AHacia (Gly) = 1433.5 £ 1.5 kJ/mol.
Our calculations for AGacia and AHaciq for glycine (1404.1 and 1434.4, respectively) fall
within the consensus range and were used as a basis for the calculation of heats and
free energies of formation of our deprotonated metabolites. For this purpose, however,
we also need values for the heat and free energy of formation of deprotonated glycine
itself. These quantities require the knowledge of corresponding values for proton (H*)
or any other cation. The adopted standard thermochemical values for proton in this
work, AsG%(g, H*) = 1513 kJ/mol and AfH(g, H*) = 1533 kJ/mol, were recommended by
Truhlar et al [218] and were obtained by using the electron convention and the Fermi-
Dirac statistics (not the Boltzmann statistics). Thus, the heat of formation of
deprotonated glycine (cf. reaction D) is:

AfH (glycine-, g) = AHadia (Gly) - AsHO(g, H+) + A¢H (glycine, g) =-491 kJ/mol
and, similarly, A:G (glycine-, g) = -409 kJ/mol. The thermochemical quantities of all
other aminoacids can be obtained either directly as with glycine or through the
isodesmic reaction
Aminoacid + glycine- => [Aminoacid - H]- + glycine (F)
We further obtain the thermochemical quantities for the protonated metabolites in the

same way.

7.3 Results and discussion

7.3.1 Thermochemical properties of neutral metabolites in ideal gas phase

We calculated the gas-phase standard heats and Gibbs free energies of formation of
neutral metabolites and compared our estimations with available literature data, both,
experimental and computational (Table 7.3). In general, our calculations for aminoacids
fall within the range of literature values. They are also in agreement with the recent

calculations by Stover et al [157]. On average, the discrepancy between the two sets of
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calculations via isodesmic reactions is less than 1 kcal/mol. Our calculations are on
average more negative, most probably due to the fact that our reference value for
glycine (-391.7 k] /mol), which seems to be more widely accepted [148,200,219,220], is
lower than the value adopted by Stover et al [157] by almost 7 k] /mol. Considering this
different reference value, the two sets of calculations are well in accordance. However,
our calculations still remain on average more negative than their G3-MP2 calculations.
Stover et al. do not report Gibbs free energies of formation for comparison. Due to these
discrepancies caused by the differences in the adopted reference values, we also report
in Table 7.3 the heats and free energies of the isodesmic reactions that are not affected
by such reference values.

Table 7-3: Estimated standard thermochemical properties (ideal gas phase) of neutral metabolites
from isodesmic reactions (Table 7.2). Geometry optimization and frequency calculations at DFT-
D3/B3LYP/def2-TZPV(D) level and energy (SPE) calculations at DFT-D3/B97-d/def2-QZPVD level.
Values in parentheses were calculated at the same geometry but with SPEs at the DFT/wB97X-d/6-
311++G(2df,2p) level. All quantities are given in kimol™.

AG ‘ AG ‘ AH ‘ AH
Metabolite estimated | literature
Aminoacids
Alanine -16.4 -298.0 -21.0 -421.9 -415.9° , -421.3* -
(-298.0) (-422.0) 414.78, -435.5°, -
415.9", -419.4°
Arginine -42.0 -129.9 -63.4 -398.9 -389.1° ,-395.8°, -
380.6°
Asparagine -10.8 -411.4 -35.9 -612.0 -591.8%, -610°, -
(-409.0) (-610.0) 593.8° -609.1°, -
590.5"
Aspartic acid -5.5 -621.8 -19.6 -790.2 -786.6° ,-793.3°, -
(-622.7) (-791.1) 804.4°, -786.7", -
787.8°
Cysteine -18.3 -272.8 -33.3 -396.5 -378.2%, -395°, -
378.1", -
382.6", -397.1"
Glutamic acid -21.4 -631.0 -26.1 -819.0 -807°, -815.9°, -
(-633.6) (-821.7) 825.0°, -807.4", -
810.7°
Glutamine -14.1 -395.8 -26.9 -626.0 -629.7%, -621.7° -
611.2" -618.1°
Glycine -300.1° -391.7 -391.7° -392.17, -
390.4*
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Histidine -56.9 -87.6 -75.9 -289.9 -221.8"-271.1% ,
267.6",-289.5'
Isoleucine -16.0 -279.7 -22.8 -493.5 -486.6°, -493.3°,
(-282.5) (-496.3) 487.1°, -499.6°,
486.8"
Leucine -17.0 -280.6 -24.5 -495.2 -486.6 °-494.1°%,
(-282.7) (-497.3) 489.7°, -501.8°,
486.8", -486.8"
487°
Lysine -13.6 -205.9 -28.5 -458.8 -443.5% | -451.5°,
443.4" -444.2°
Methionine -16.2 -248.0 -28.1 -427.8 -412.1°, -428.9°%,
(-246.8) (-426.4) 426.5°, -412.1"
Phenylalanine -23.3 -142.2 -36.3 -323.5 -302.1° ,-322.6°,
(-139.0) (-320.4) 319.6° -312.9"
302", -318.4°
Proline -12.4 -221.8 -29.8 -391.1 -373.2% , -387°,
366.2", -373.3",
385.5™
Serine -16.0 -433.5 -29.5 -581.5 -567.8 °-578.2°%,
(-433.6) (-580.0) 567.8", -578.4°
Threonine -16.5 -439.5 -30.2 -620.0 -603.8° ,-618.8°,
(-439.9) (-620.3) 620.9°, -603.7",
616.0°
Tryptophan -43.6 -29.8" -58.0 -246.9 -217.2° ,-249.4°,
215", -238.1°
Tyrosine -17.2 -288.4 -27.8 -489.0 -482° -490.4°,
(-286.4) (-487.0) -498.5°%, -481.9",
489.2°
Valine -11.9 -282.2 -21.3 -472.6 -466.1°, -472.4°,
(-283.4) (-473.9) -481.2°, -455.2",
466.1", -468.7°,
455.2
Dipeptides
Alanylalanine -15.1 -400.2 -18.4 -635.1 -648.3%,-623.7"
Alanylglycine -10.3 -397.6 -13.9 -600.4 -588.2°
Alanylphenylalanine 3.2 -226.1 4.8 -514.0 -534.9°, -532.4°,
509.7"
Glycylglycine -11.0 -400.4 -15.6 -571.8 -528°, -571.9"
Phenylalanylglycine -15.1 -246.5 -10.0 -498.0 -500.9°
Glycylvaline -9.8 -381.3 -15.0 -652.2 -633.8°,
(-378.4) (-649.3) 647.9"
Leucylglycine -15.5 -385.4 -22.6 -682.4 -652.2°

Nucleobases / Nucleosides
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Hypoxanthine -21.8 172.8 -21.5 38.0

6-Hydroxypurine 19.5 194.6 154 59.5 72.6°

Adenosine -21.2 -123.0 -31.6 -481.6 -472.7°
(-128.7) (-487.4)

2-Deoxyadenosine 29.3 18.2 40.1 -315.2 -288.1°
(20.3) (-313.3)

2,3-Dideoxyadenosine | 60.9 161.6 77.0 -151.9 -139.9°

Inosine -12.0 -310.5 -22.0 -659.7 -646.4°
(-305.8) (-655.1)

Guanosine -12.1 -298.9 -22.5 -682.2 -664.2°

Uridine -5.6 -675.3 -14.2 -991.5 -989.5°

Thymidine 30.2 -521.6 30.6 -856.8
(-523.2) (-858.5)

Deoxythymidine -83.4 -373.8 -111.4 -691.5 -684.2°

Saccharides

Cytidine -12.7 -433.7 -18.9 -764.2 -768.9"

aD-Glucose -74.5 -837.5 -91.2 -1115.0

BD-Glucose -74.6 -836.6 -89.1 -1112.8 -1040.1°

-1113.5°
Glucose — chain -78.0 -836.7 -109.1 -1102.5 -1016.2°
-1095.5°

2-Deoxy-D-Glucose -79.6 -682.7 -97.3 -941.9 -949.6°

BD —Galactose -71.0 -833.0 -87.2 -1110.9 -1111.5°

BD —Mannose -72.2 -834.2 -88.1 -1111.8

BD-Fructopyranose -89.1 -851.1 -106.8 -1130.5 -1139.4°
(-856.3) (-1136.9)

BD-fructose -216.2 -934.8 -146.0 -1112.5 -1039.3°

(BD-fructofuranose)

Fructose-chain -32.8 -828.6 -60.5 -1093.2 -1113.3°
(-829.0) (-1095.3)

BD —Ribose -79.6 -682.1 -100.1 -902.9

aD-Ribofuranose -78.5 -681.0 -102.2 -905.0 -907.9"

2-deoxy-D- -56.9 -547.5 -71.1 -747.6

Ribofuranose

BD-Xylofuranose -59.1 -684.5 -76.6 -907.5 -918.5°
(-572.4) (-911.1)

BD-Xylopyranose -72.0 -693.7 -84.8 -920.1

aD-Xylopyranose -72.6 -694.3 -86.6 -921.9

Sucrose 45.9 -1419.2 33.2 -1985.2

Maltose 3.9 -1459.2 -1.3 -2013.2 -1838.4°

aStover 2012[157] ; PT1 (G3-MP2) (Spartan14, Wavefunction); <Domalski and Hearing
1993[199]; dDorofeeva 2010[221]; ¢Goos database[148]; fPedley 1994[222]; sNgauv
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Sabbah 1977[220]; hSagadeev 2010[223], 'Riffet [213], INIST-JANAF [224], ¥XNgauv
[220], 'Sabbah [225]. mContineanu[226]. "Ribeiro da Silva 2010[227].

Table 7.3 shows some inconsistencies between our calculations and the literature
values. Direct comparison with the GCM predictions[199] cannot be made since they
have used an erroneous value for glycine (-375.3 k]J/mol). The consistency with the
composite T1 method (Spartan 14 database — Wavefunction) is very good in the case of
PheGly but poor in the case of AlaPhe. However, our calculations for this latter dipeptide
are in good agreement with the recent estimation by Sagadeev [200].

The literature on saccharides and nucleosides is not as rich as that of aminoacids. The
focus on saccharides is on the more stable furanose or pyranose closed ring structures
[211,214]. Their capacity to form multiple intramolecular hydrogen bonds, as shown in
the previous section is contributing significantly to their stability and cannot be
overlooked in selecting isodesmic reactions for their formation. There are very few
literature data to compare with our calculations. Our calculations are consistent with
the composite T1 predictions (Spartan14 dbase - Wavefunction) but we see noticeable
differences with the reported ATcT values[148]. However, the discrepancies are too
large (over 70 kJ/mol) to be attributed to erroneous calculations either via isodesmic
reactions (our calculations) or via composite G3-MP2 method (Spartan 14). This is
probably one of the very few cases to be reconsidered in ATcT compilation.

The nucleosides share features from nucleotides, especially tautomerism, and from the
saccharide bD-ribose, especially the flexibility for intramolecular hydrogen bonding. As
shown in figure 5, guanosine can form the strong OH -N hydrogen bonds with the
guanine ring as well as the OH—O hydrogen bonds with ribose.

In uridine, the prevailing hydrogen bond is of the OH—O type with the carbonyl oxygen
of the uracil ring. This hydrogen bonding capacity is a significant stabilizing factor for
the nucleoside conformers and an adequate conformational search cannot overlook
them.

For nucleosides, we made a thorough comparison in Table 4 with composite T1

calculations (Spartan 14 database - Wavefunction). The observed discrepancy between
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Spartan 14 and our estimations for adenosine, guanosine, inosine and derivatives is, in
part, stemming from the fact that for adenine base, Spartan 14 database gives a heat of
formation of 276.3 kJ/mol, which is significantly higher than the ATcT database value of
225.7 k] /mol, while for guanine it gives a value of 44.09 k]/mol, which is again higher
than the ATcT value of 16 kJ/mol. The inconsistencies for the other nucleobases are

significantly smaller as shown in the calculations.

7.3.2 Thermochemical properties of ionized metabolites in ideal gas phase

In the majority of metabolites, the populations of species in the gas phase are
dominated by the neutral as they are much more stable than the ionized structures.
However, we also considered ionized structures, as this will contribute to our
understanding of their hydration that will be important in the next phases of the project
for bringing the gas phase estimation to aqueous phase, which is the case for biological
systems. Our main focus on ionic structures is on aminoacids for which we considered
both protonation and deprotonation reactions. In Table 7.4 we report the gas-phase
acidities (reaction enthalpies and Gibbs free energies) for aminoacids as well as the
standard enthalpies and Gibbs free energies of formation of the deprotonated
aminoacids. The agreement of our calculations with literature data is satisfactory. We
can however observe noticeable differences such as for the case of AGacia for methionine
(18 kJ/mol). The formation quantities are all negative but there are no literature data

for comparison.

Table 7-4: Estimated gas-phase acidities and standard thermochemical properties of ionic
metabolites. Calculations as in Table 8.3. All quantities are given in kimol™.

AG AG AG lit AH AH AH lit
Metabolite (AG,cid) (AH.ciq)
Aminoacids
Alanine -411 1400 14007, -524 1431 1432%°
1398.5¢ 1425+8.8
Arginine -273 1356 1347°, -532 1388 13817, 1387°
1359.5¢ 1389+13
Asparagine -572 1353 13547, -760 1385 13867, 1384°
1359° 1388+13
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Aspartic acid 1 -830 1305 1316° 991 1332 1349°, 1345°
Aspartate” -778 1356 1364° -938 1385 1394°
Cysteine -411 1374 1369° -525 1404 1399°, 1396°
1364° 1393+13
Glutamic acid -812 1332 1324° -997 1355 1347°, 1349°
Glutamate” -795 1349 1357° -979 1373 1384°
Glutamine -558 1351 1347°, 777 1382 1378*°
1359° 1388+13
Glycine -409 1404 14032, -491 1434 1435° 1434°
1402° 1433¢
Histidine -252 1348 1345, -447 1377 1376°, 1374°
1356° 1385+13
Isoleucine -394 1399 13967, -601 1426 1426%°
1388.5° 1418+13
Leucine -395 1398 13957, -602 1427 14247 1428°
1390° 1419+13
Lysine -329 1390 1380° 576 1416 1410°, 1415°
1383° 1412+13
Methionine -356 1403 13857, -534 1427 1418°% 1412°
1376° 1405+13
Phenylalanine -268 1388 1384°, -433 1424 1416°, 1417°
1379° 1408+13
Proline -341 1394 1394° -499 1425 1425° 1430°
1395° 1430+13
Serine -583 1363 1363*¢ 722 1393 1392*°
1392+13
Threonine -592 1360 1359, -763 1390 1390°, 1397°
1360.5° 1390+13
Tryptophan -155 1388 1390°, -358 1422 1423°% 1422°
1380.5° 1410+13
Tyrosine -415 1386 1382° -602 1420 1415° 1419°
1378.5° 1408+13
Valine -398 1391 1394°, 577 1427 1425° 1430°
1391° 1420+13

aStover 2012[157] ; PJones et al 2007[159] ;cO’Hair 1995[150], 4Bouchoux 2011[158].

*Deprotonated side carboxyl.

In Table 7.5 we report the gas-phase basicities and proton affinities for aminoacids,
adenosine and BD-Glucose as well as the standard enthalpies and Gibbs free energies of
formation of the protonated metabolites. The latter quantities were obtained from the
GBs and PAs recommended in the literature and the corresponding quantities for the

neutral metabolites from Table 7.3. We observe that our calculations conform with
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literature data in general. The obtained formation quantities are in most cases positive
but no obvious conclusions can be drawn out of their values.

Table 7-5: Estimated standard thermochemical quantities (ideal gas phase) of ionic metabolites from
corresponding properties for neutral metabolites (Table 7.3) and their recommended basicities (GB)
and proton affinities (PA)a. Values in parenthesis are our GB and PA calculations at the same level of
theory as in Table 4. All quantities are given in kimol™.

Metabolite GB’ AG° PA® AH°

Alanine 868 347.0 902 209.0
(872) (904)

Arginine 1007 389.8 1046 99.7

Arginine 2° (954) 429.6 (985) 149.1

Asparagine 905 196.6 942 -21.0

Aspartic acid 882 9.2 920 -177.2

Cysteine 870 370.2 903 233.5
(874) (905)

Glutamic acid 908 -26.0 947 -233.0

Glutamine 935 182.2 975 -68.0

Glycine 854 358.9 887 254.3
(854) (887)

Histidine 947 475.5 979 264.1

Isoleucine 885 348.3 919 120.5
(884) (921)

Leucine 883 349.4 916 121.8
(885) (920)

Lysine 952 355.1 994 80.2
(948) (990)

Methionine 899 366.2 938 167.5
(910) (945)

Phenylalanine 892 478.9 930 279.5
(896) (929)

Proline 908 383.2 942 200.0

Serine 878 201.5 912 39.5
(876) 205.5 (908)

Threonine 886 187.5 919 -6.0
(885) (917)

Tryptophan 909 574.2 945 341.1

Tyrosine 895 329.6 933 111.0

Valine 881 349.8 915 145.4
(887) (920)

Adenosine 945° 445 979° 72.4

BD-Glucose 786.6° -111.1 810.3° -392.2

aBouchoux 201201581, P Bouchoux 2008(156], cJebber 199612281, *Main chain -NH2
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Appendix Table A4 summarizes the derived formation quantities, together with some
formation quantities from the literature and shows a good consistency between our
calculations and literature values. The formation quantities for all three types of species
(neutral, protonated, deprotonated) follow similar trends. This is better visualized in
figures 7.5 and figure 7.6. Figure 7.5 shows that the free energies of formation of
protonated and deprotonated aminoacids vary linearly with the free energy of
formation of the neutral aminoacids. The parameters of the straight lines are given in
Appendix Table A5. The two lines in figure 7.5 are almost parallel with a slope close to
one. The deviations from the straight line are mainly due to aminoacids having strong
protonation sites other than the common -NH2 group in the main chain. As expected,
the best example is arginine (Argl in figure 7.5) with the strong basic guanidine site. We
also indicate in figure the free energy of formation of arginine protonated on the
common -NH2 group (Arg2 in figure 7.5), which is now closer to the linear
approximation.

Similar comments can be made for the enthalpy of formation of protonated and
deprotonated aminoacids (figure 7.6).

Figures 7.5 and 7.6 are useful for rationalizing acidities and basicities of aminoacids and
their derivatives. It is also worth mentioning that one of the other protonated species
(adenosine) has its formation quantities close to the straight lines in these figures. The
other protonated species (D-glucose), however, deviates from the lines to some extent.
This diverse behavior requires some explanation.

Equation 8.7 may be rewritten as follows:

GB (M) = AGO(M) + AfGO(H*) - AfGO(MH*) (7.7a)
Or
AfGO(MH*) = AfGO(M) + AfG°(H*) - GB (M) (7.11)

If R is the reference compound of the isodesmic reaction, which is often used to replace
for the AfG°(H*), equation (8.11) can be rewritten as:
A:GO(RH*) = AfGO(R) + A:G°(H*) - GB (R) (7.12)
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Figure 7-5: Formation free energy of protonated and deprotonated aminoacids vs. the formation
free energy of their neutral counterparts
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Figure 7-6: Formation enthalpies of protonated and deprotonated aminoacids vs. the formation
enthalpy of their neutral counterparts.
Replacing in equation (7.11), we obtain:

AGO(MH*) = AGO(M) + AGO(RH*) - AGO(R) + GB (R) - GB (M) (7.13)
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A linear relationship (figure 7.5) in the form of

AGO(MH?*) = sAGO(M) + I = sAGO(M) + [A(GO(RH*) - sA(GO(R)]

or

AfGO(MH*) = AfGO(RH*) + s[A:GO(M) - AfG°(R)] (7.14)
implies that:

sAfGO(M) = AfGO(M) + sA:GO(R) - A:GO(R) + GB (R) - GB (M) (7.15)
which can be restated as:

(s-1)AfGO(M) = (s-1)A:G°(R) + GB (R) - GB (M) (7.16)
i.e.,

GB (M) = GB (R) + (s-1)[AfGO(R) - AfGO(M)] (7.17)

Equation 7.14 or equivalently equation 7.17 implies that the constant (intercept) term
of the above linear relationship is dictated by the corresponding thermochemical
quantities of the reference compound. Amines are often used to anchor gas phase
basicities of aminoacids while for saccharides a more appropriate reference compound
would be an alcohol. Proton affinities and gas-phase acidities can be treated in a similar
way.

Figures 7.7 and 7.8 are analogous to figures 7.5 and 7.6 with the difference of enhanced
scales in order to accommodate the reference compounds as well. Parameters and
statistics of the linear fittings are shown in Appendix Table A6. As can be observed,
there is now much better linear fit in all cases. Classes of compounds anchored to a
given reference fall on a straight line passing through reference compounds. Sugars, as
an example, fall on the lines passing through alcohols. Aminoacids, amines, and
nucleobases fall on nearly the same lines. The lines in each graph are almost parallel.
This feature is particularly useful for a quick qualitative estimation of the formation
quantities of ions or, equivalently, the gas-phase acidities and basicities from the
formation quantities of neutral counterparts. We emphasize the point that these lines

are for a qualitative estimation of gas phase acidities and basicities. As pointed out
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above, the very same neutral metabolite may exhibit different acid/base strength
depending on its protonation/deprotonation sites. Thus, the observed scatter in the
figures was expected. Nevertheless, the straight lines of figures 7.7 and 7.8 are useful

tools in discussing gas-phase acidities and basicities.
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Figure 7-7: Formation free energies of protonated and deprotonated compounds (including
aminoacids) vs. the formation enthalpy of their neutral counterparts. The lines are linear fits
(parameters and statistics are shown in Appendix Table A5).
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7.4 Conclusions

The primary objective of the present work was the reliable estimation of the heats and
Gibbs free energies of formation in the ideal gas state for the key metabolites, such as
the aminoacids, oligosaccharides and nucleosides. The adopted route of quantum
chemical calculations was through the study of the appropriate isodesmic reactions of
metabolites. These isodesmic reactions are based on the thermochemical data for the
other reactants and products and therefore, we used the most reliable values for these
thermochemical quantities of the auxiliary reactants and products. This leads to a
sufficiently reliable set of predicted standard thermochemical quantities of the studied
metabolites. Despite the scarcity of available reliable experimental data and the
dispersion of available theoretical calculations, our calculations are consistent with the
more recent and reliable quantum thermochemical calculations in literature. In the case
of aminoacids, thermochemical quantities were also estimated for their protonated and
deprotonated ions. Furthermore, we provided a first comprehensive thermochemical
table together with the accompanying figures encompassing neutral, protonated and
deprotonated aminoacids, BD-glucose, BD-ribose and adenosine including all 20
aminoacids. The observed linear trends may have broader implications that deserve
further systematic studies. Calculations of the present work will be very useful in

subsequent GCM and hydration works.
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Chapter 8
CONCLUSIONS & PRESPECTIVES

Cellular modification for designing reliable synthetic microbial cell factories (SMCFs)
lies at the heart of metabolic engineering. This is a multidiscipline process that entails
numerous challenges and cannot be carried out intuitively, which necessitates the use
of several computational methods and tools.

With the work we put forward in this thesis, we outlined the significance of several
computational disciplines such as computational biochemistry, bioinformatics,
computational biology, cheminformatics, constraint-based modeling, process
engineering, mathematical optimization, databases, etc. for the profitability and the
progress of systems biology and in particular the metabolic engineering studies.

After introducing several principal milestones of computational metabolic engineering
concepts in Chapetr 2, we described the details of our developed methodologies and
their potential biochemical and biomedical applications and they could contribute in
gaining novel biological and biochemical insights.

We presented in Chapter 3 our results from the computational investigation of the
entire space of enzymatic/metabolic possibilities for the design of de novo metabolic
pathways, irrespective of the choice of the organism. We discovered that around
120’000 new biochemical/enzymatic reactions could evolve from the known
biochemistry. We further compared the structural similarities of the hypothetical novel
reactions with those already existing in the metabolic databases and cataloged our

findings in a web-based tool.

In Chapter 4, due to the importance of lipids in cellular physiology and pathology as
well as recent interest for their role as resources for alternative fuels and chemicals, we
had a closer look to lipid metabolism and applied several computational methods to get

new insights about the structural diversities and metabolic functions of this
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metabolism. We introduced the computational pipeline NICELips used for elaborating
our knowledge on lipid metabolism. The results of our case studies prove the
effectiveness of NICELips for integrating the lipid species having unknown metabolism
(obtained in lipidomics studies) into metabolic pathways. Broadening the application of
NICELips to all the subsections of lipid metabolism will result in the establishment of a
new repository of lipid information with potential applications in the design of new
therapeutical approaches for lipid related disorders.

In Chapter 5 we investigated the metabolic network of E.coli one of the most well
studied chassis microorganisms. Enormous effort has been spent to discover all the
metabolic potential of this organism for the microbial production of native and non-
native compounds. While several ongoing research studies focus on all fronts to
discover new insights, a computational strategy to discover the full theoretical
enzymatic potential of this or any given organism was missing.

In addressing so, we developed “super E. coli”, an artificial reconstruction of the E. coli
metabolic network with all possible new functionalities and extra metabolic
capabilities, discovered on the basis of its known biochemistry. The metabolic network
of “super E. coli” fulfills major objectives such as increasing the yield through biomass
production and in addition, encompassing the synthetic capacity for the biosynthesis of
several heterologous compounds. We can envision that our approach will provide the
blueprints of new organisms able to efficiently convert low value compounds into every
possible specialty and commodity chemical.

In Chapter 6 we took one step beyond the conventional analyses of metabolism, in
which the metabolic network is represented as a graph of metabolites interconnected
with biological reactions. We developed the computational framework “IAM.NICE” for
complementing the metabolic networks by accounting for all atom transitions from the
substrates to the products. We demonstrated our results through the reconstruction of
an atom-level representation of the E. coli core metabolism and we elucidated the mass
flow through the network. The results of this study and the further application of
“IAM.NICE” for the atom-level reconstruction of other biological networks rather than
those discussed in this work could provide detailed predictions for guiding the 13C
Metabolic Flux Analysis. We believe that the ability to accurately track the moments of
atoms in the metabolic networks opens up new opportunities for revealing hidden parts

of metabolism and for generating hypotheses regarding the alternative or missing
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pathways in metabolism with high potential applications in metabolic engineering
studies.

Metabolism centers on the bioenergetics of cellular processes, and in our last research
project of this thesis in Chapter 7, we focused on the thermodynamics of metabolism in
order to address the existing constraints and limitations for obtaining/estimating the
thermodynamics properties of metabolite and consequently the metabolic reactions.
We proposed a sound pipeline for the accurate estimation of several thermodynamic
properties for a broad range of metabolites. Furthermore, we proposed a new approach
for adjusting the measured/calculated/estimated thermodynamics properties to any
temperature and pressure, rather than the standard ones which do not hold true
especially in biological systems. In this work, we focused our attention on the
estimation of thermodynamic properties of heavy metabolites in the gas phase. In the
future, applying the concept of the thermodynamic cycles coupled with the data
obtained in this thesis, we can provide estimated thermodynamic values for the
metabolites in aqueous solutions (the same as for biological systems), which are
adjustable to relevant temperature, and pressure conditions based on the nature of the
study.

We close this thesis by highlighting the fundamental position of the computational tools
and approaches in systems biology and in the success of its pioneer research field,
metabolic engineering. During this PhD work, we contributed to the field of
computational systems biology through developing new tools and methods for
enhancing our understanding of metabolic networks. This work can lead to the
discovery of new insights, the generation of new hypotheses and the design of novel
strategies toward the ultimate goal of metabolic engineering: to be able to produce any

molecule from any renewable resource, using SMCFs.
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APPENDIX

Table Al: Proposed EC classification number up to the third level by BNICE.ch for 178 KEGG
reactions that are missing an EC number. The three columns show the KEGG reaction identifier, the
reaction rule(s) catalyzing the reaction and the suggested EC number for each reaction. Reactions for

which two or more EC numbers are suggested are colored in light red.

KEGG ID Reaction rules Suggested EC number

R00091 |1.8.1B1(rev)|1.8.1B1 1.8.1.-

R00270 |3.5.1A1(rev)|3.5.1A1|6.3.1A1(rev) | 6.3.1A1 3.5.1.- | 6.3.1.-

R00598 |2.1.1A5(rev) | 2.1.1A5|2.1.1A1(rev) 2.1.1.-

R00683 |2.1.1A5(rev) | 2.1.1A5 2.1.1.-

R00744 |1.2.1A2(rev)|1.2.1A2 1.2.1.-

R01339 |2.6.1A1(rev) 2.6.1.-

R02343 |1.1.1A1(rev)|1.1.1A1|1.2.1B1(rev)|1.2.1B1 1.1.1.-]1.2.1-

R02344 |1.1.1A1(rev)|1.1.1A1|1.2.1B1(rev)|1.2.1B1 1.1.1.-]1.2.1-

R02583 |4.2.1A1(rev)|4.2.1A1|4.2.1A2(rev) |4.2.1A2|4.2.1A6(rev) | 4.2.1A6 42.1.-

R02659 |3.1.1A1(rev)|3.1.1A1 3.1.1.-

R02798 |4.2.1A2(rev)|4.2.1A2|4.2.1A6(rev) |4.2.1A6 42.1.

R02801 |4.2.1A1(rev)|4.2.1A1|4.2.1A2(rev) | 4.2.1A2|4.2.1A6(rev) | 4.2.1A6 42.1.-

R02856 |1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev)|1.2.1B2 1.1.1.-]1.2.1-

R03082 |1.2.1D3(rev) 1.2.1.-

R03128 |5.3.2A1(rev)|5.3.2A1 5.3.2.- | 5.3.2.

R03249 |1.5.1A1(rev)|1.5.1A1 1.5.1.-| 1.5.1.-

R03250 |3.5.3A1(rev)|3.5.3A1 3.5.3.- | 3.5.3.-

R03314 |1.5.1A1(rev)|1.5.1A1 1.5.1.-| 1.5.1.-
|3.1.2A1(rev)|3.1.2A1|3.3.1A1]6.2.1A1(rev) | 6.2.1A1|6.2.1B1(rev) | 6.2.1B1|6.

R03383 2.1C1(rev)|6.2.1C1|6.2.1D1(rev)|6.2.1D1 3.1.2.-|3.3.1- | 6.2.1.-

R03506 |1.1.1D1(rev)|1.1.1D1|1.2.1A1(rev)|1.2.1A1 1.1.1.-]1.2.1-

R03507 |1.1.1A1(rev)|1.1.1A1|1.2.1B1(rev)|1.2.1B1 1.1.1.-]1.2.1-
|4.2.1A1(rev)|4.2.1A1]4.2.1A2(rev) |4.2.1A2|4.2.1A6(rev) | 4.2.1A6 | 4.2.1C1(re

R03694 v)|4.2.1C1 4.2.1.-
|3.1.2A1(rev)|3.1.2A1|3.3.1A1|6.2.1A1(rev) | 6.2.1A1|6.2.1B1(rev) | 6.2.1B1|6.

R03695 2.1C1(rev)|6.2.1C1|6.2.1D1(rev)|6.2.1D1 3.1.2.-|3.3.1- | 6.2.1.-
|1.1.1B2(rev)|1.1.1B2|4.1.1A2(rev) | 4.1.1A2| 4.1.1A3(rev) | 4.1.1A3 | 4.1.1A6(re

R03758 v)|4.1.1A6|4.1.1A7(rev) | 4.1.1A7 | 4.2.1A4(rev) 1.1.1.-]4.1.1.-]421.-

R03863 |1.1.1A1(rev)|1.1.1A1|1.2.1B1(rev)|1.2.1B1 1.1.1.-]1.2.1-

R03864 |1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev)|1.2.1B2 1.1.1.-]1.2.1-

R03892 |5.3.2A1(rev)|5.3.2A1|5.3.2A2(rev) | 5.3.2A2 5.3.2.-
|4.2.1A1(rev)|4.2.1A1]4.2.1A2(rev) |4.2.1A2|4.2.1A6(rev) | 4.2.1A6 | 4.2.1C1(re

R03897 v)|4.2.1C1 4.2.1.-

R04269 |2.6.1A1(rev) 2.6.1.-

R04416 |4.2.1A2(rev)|4.2.1A2|4.2.1A6(rev) |4.2.1A6|4.2.1C1(rev) | 4.2.1C1 42.1.-

R04443 |1.5.1A1(rev)|1.5.1A1 1.5.1.-

R04446 |1.5.1A1(rev)|1.5.1A1 1.5.1.-
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R04453 [1.2.1A2(rev)|1.2.1A2 1.2.1.-

R04593 [3.1.1A1 3.1.1.-

RO4646 [2.4.1D1(rev)|2.4.1A1(rev)| 2.4.1B1(rev) | 2.4.1C1(rev) 2.4.1.-

R04875 [3.5.1A1 3.5.1.-

R04876 [1.1.1A1(rev)|1.2.1B1(rev) 1.1.1.- | 1.2.1.-
|4.1.1A1(rev)|4.1.1A1|4.1.1A6(rev) | 4.1.1A6 | 4.1.1A7(rev) | 4.1.1A7 | 4.2.1A4(re

R04918 v) 411.-]4.21.-

R04987 [1.14.13A1(rev) | 1.14.13.-

R04999 [3.1.1A1 3.1.1.-

R05056 [5.3.3A1(rev)|5.3.3A1]5.3.3A2(rev) | 5.3.3A2 5.3.3.-

R0O5057 [5.3.3A1(rev)|5.3.3A1]5.3.3A2(rev) | 5.3.3A2 | 5.3.3A3(rev) | 5.3.3A3 5.3.3.-

RO5058 [5.3.3A1(rev)|5.3.3A1]5.3.3A2(rev) | 5.3.3A2 5.3.3.-

R05080 [2.4.1E1(rev) | 2.4.1A1(rev)| 2.4.1B1(rev) | 2.4.1C1(rev) 2.4.1.-

R05107 [2.4.1A1]2.4.1E1(rev) | 2.4.1A1(rev) | 2.4.1B1(rev) | 2.4.1C1(rev) 2.4.1.-

R05108 [2.4.1C1]2.4.1E1(rev) | 2.4.1A1(rev) | 2.4.1B1(rev) | 2.4.1C1(rev) 2.4.1.-

R05119 [1.2.1A1(rev)|1.2.1A1 1.2.1.-

R05125 [5.3.3A1(rev)|5.3.3A1]5.3.3A2(rev) | 5.3.3A2 5.3.3.-

R05232 [1.1.1A1(rev)|1.1.1A1|1.2.1B1(rev) | 1.2.1B1 1.1.1.- | 1.2.1.-

R05250 [1.14.13A1(rev)| 1.14.13.-

R05303 [2.1.1A5(rev)|2.1.1A5]2.1.1A1(rev) 2.1.1.-

R05445 |3.8.1A2(rev)|3.8.1A2 3.8.1.-

RO5471 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-

R05477 |3.8.1A2(rev)|3.8.1A2 3.8.1.-

R05478 [4.2.1A2(rev)|4.2.1A2|4.2.1A6(rev) | 4.2.1A6|4.2.1C1(rev) | 4.2.1C1 42.1.-

R05515 [1.1.1A1(rev)|1.1.1A1|1.2.1B1(rev)|1.2.1B1 1.1.1.- | 1.2.1.-

R05535 |4.5.1A1(rev)|4.5.1A1 4.5.1.

R05543 14.2.1A2]4.2.1A6 42.1.-

R05569 [3.5.99A1(rev) |3.5.99A1 3.5.99.-

RO5609 [5.3.3A1(rev)|5.3.3A1]5.3.3A2(rev) | 5.3.3A2 5.3.3.-

R05656 |5.5.1A5(rev)|5.5.1A5 5.5.1.-

R05659 [4.2.1A1(rev)|4.2.1A1]4.2.1A2(rev)|4.2.1A2 | 4.2.1A6(rev) | 4.2.1A6 42.1.

RO5677 |3.5.1A1]6.3.1A1(rev) 3.5.1.- | 6.3.1.-

R05694 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-

R05856 14.2.1A6(rev)|4.2.1A6 42.1.-

R05866 [1.14.13A5(rev) | 1.14.13A5 1.14.13.-

R05870 [2.3.1F1(rev)|2.3.1D1|2.3.1D1(rev) 2.3.1.-

RO5881 [2.1.1A4(rev)| 2.1.1A5(rev) | 2.1.1A5] 2.1.1A1(rev) 2.1.1.-

RO6418 [5.3.3A1(rev)|5.3.3A1|5.3.3A2(rev) | 5.3.3A2 | 5.3.3A3(rev) | 5.3.3A3 5.3.3.-

R06428 [4.2.1A1(rev)|4.2.1A1]4.2.1A2(rev) | 4.2.1A2 | 4.2.1A6(rev) | 4.2.1A6 42.1.-

R06429 [1.3.1A2(rev)|1.3.1A2 1.3.1.-

R06430 [1.3.1A2(rev)|1.3.1A2 1.3.1.-

R06432 [2.1.1A1]2.1.1A1(rev) 2.1.1.-

R06434 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-

R06472 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-

R06473 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-
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R06474 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-

R06475 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-

R06592 14.2.3A2(rev)|4.2.3A2 4.23.

R06593 [4.2.1A1(rev)|4.2.1A1]4.2.1A6(rev) | 4.2.1A6 4.2.1.-

R06594 [1.1.1A1(rev)|1.1.1A1|1.2.1B1(rev) | 1.2.1B1 1.1.1.- | 1.2.1.-

R06627 [2.1.1A4(rev)|2.1.1A5(rev) | 2.1.1A5] 2.1.1A1(rev) 2.1.1.-

R06629 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-

RO6665 [4.2.1A2(rev)|4.2.1A2|4.2.1A6(rev) | 4.2.1A6 4.2.1.-

RO6685 [3.1.1A1 3.1.1.-

RO6686 [4.1.1A6(rev)|4.1.1A6]4.1.1A7(rev) | 4.1.1A7 4.1.1.-

R06752 [1.14.15A1(rev)|1.14.15A1 1.14.15.-

RO6774 [2.1.1A5(rev)|2.1.1A5]2.1.1A1(rev) 2.1.1.-
[1.1.1B2(rev)|1.1.1B2|4.1.1A2(rev) | 4.1.1A2|4.1.1A3(rev) | 4.1.1A3 | 4.1.1A6(re

R06830 v)[4.1.1A6]4.1.1A7(rev) |4.1.1A7 | 4.2.1A4(rev) 1.1.1.-|41.1.- | 4.2.1.-

R06866 [4.1.1A6(rev)|4.1.1A6]4.1.1A7(rev) | 4.1.1A7 4.1.1.-

R06867 [2.4.1E1(rev) | 2.4.1A1(rev)| 2.4.1B1(rev) | 2.4.1C1(rev) 2.4.1.-

RO6968 [3.5.99A1(rev) |3.5.99A1 3.5.99.-

R06997 [2.3.1F1(rev)|2.3.1D1]2.3.1D1(rev) 2.3.1.-

RO7009 [5.5.1A5(rev)|5.5.1A5 5.5.1.-

R07010 |5.5.1A5(rev)|5.5.1A5 5.5.1.-

RO7011 |5.5.1A5(rev)|5.5.1A5 5.5.1.-

R07012 |5.5.1A5(rev)|5.5.1A5 5.5.1.-

R07016 [1.14.13A5(rev) | 1.14.13A5 1.14.13.-

RO7058 [1.1.1A1(rev)|1.1.1A1|1.2.1B1(rev)|1.2.1B1 1.1.1.- | 1.2.1.-

RO7067 [4.2.1A2(rev)|4.2.1A2|4.2.1A6(rev) | 4.2.1A6]4.2.1C1(rev) | 4.2.1C1 42.1.-

R07073 [5.5.1A5(rev)|5.5.1A5 5.5.1.-

R07074 |5.5.1A5 5.5.1.-

RO7076 |5.5.1A5 5.5.1.-

RO7086 |5.5.1A5(rev)|5.5.1A5 5.5.1.-

RO7095 14.2.1A6 42.1.-

RO7101 14.2.1A6 42.1.

RO7124 [3.1.2A1]3.3.1A1]6.2.1A1(rev) | 6.2.1B1(rev) | 6.2.1C1(rev) | 6.2.1D1(rev) 3.1.2.- | 6.2.1.-

RO7427 [5.3.3A3(rev)|5.3.3A3 5.3.3.-

RO7428 [1.1.1A1(rev)|1.1.1A1|1.2.1B1(rev) | 1.2.1B1 1.1.1.- | 1.2.1.-

RO7474 [1.14.15A1(rev)|1.14.15A1 1.14.15.-

R07497 [5.3.3A3(rev)|5.3.3A3 5.3.3.-

RO7506 [1.3.1A2(rev)|1.3.1A2 1.3.1.-

RO7576 [4.2.1A1 42.1.-

RO7707 |5.5.1A5(rev)|5.5.1A5 5.5.1.-

RO7708 [4.2.1A2(rev)|4.2.1A2]4.2.1A6(rev) | 4.2.1A6 42.1.-

R07922 [2.1.1A4(rev)| 2.1.1A5(rev) | 2.1.1A5] 2.1.1A1(rev) 2.1.1.-
[4.2.1A1(rev)|4.2.1A1]4.2.1A2(rev) | 4.2.1A2 | 4.2.1A6(rev) | 4.2.1A6 | 4.2.1C1(re

R07986 v)[4.2.1C1 42.1.-

RO7991 14.2.1A1 42.1.-

R07992 14.2.1A1 42.1.-

R08024 [4.2.1A1 42.1.
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RO8061 13.6.1A1(rev)|3.6.1A1 3.6.1.-

R08062 13.6.1A1(rev)|3.6.1A1 3.6.1.-

R0O8063 13.6.1A1(rev)|3.6.1A1 3.6.1.-

RO8064 [3.6.1A1(rev)|3.6.1A1 3.6.1.-

RO8069 [3.1.3A1(rev)|3.1.3A1 3.13.-

R08070 [3.1.3A1(rev)|3.1.3A1 3.13.-

RO8071 [3.1.3A1(rev)|3.1.3A1 3.13.-

R08079 [3.1.3A1(rev)|3.1.3A1 3.13.-

R08128 [2.4.1A1]2.4.1E1(rev) | 2.4.1A1(rev) | 2.4.1B1(rev) | 2.4.1C1(rev) 2.4.1.-

R08145 16.3.5A1(rev)|6.3.5A1 6.3.5.-

R08148 [1.14.13A5(rev)|1.14.13A5 1.14.13.-
R08152 [3.3.2A1(rev)|3.3.2A1 3.3.2.-

R08153 [3.3.2A1(rev)|3.3.2A1 3.3.2.-

R08154 [2.7.1A1(rev)|2.7.1A1|2.7.8A1 2.7.1.-|2.7.8.-
RO8251 |3.5.1A1]6.3.1A1(rev) 3.5.1.- | 6.3.1.-
R08279 [4.2.1A1 4.2.1.-

R08289 14.2.1A1 42.1.-

R08309 |4.3.2A1 43.2.-

RO8311 [3.5.1A1 3.5.1.-

|4.1.1A1(rev)|4.1.1A1|4.1.1A6(rev) | 4.1.1A6 | 4.1.1A7(rev) | 4.1.1A7 | 4.2.1A4(re

R08328 v) 411.-]4.21.-
RO8451 [3.5.1A1 3.5.1.-

R08492 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-
R08494 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-
RO8561 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-
R08562 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-
R08563 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-
R08590 [1.1.1A1(rev)|1.2.1B1(rev) 1.1.1.- | 1.2.1.-
RO8591 [5.3.2A1(rev)|5.3.2A1]5.3.2A2(rev) | 5.3.2A2 5.3.2.-

RO8861 [1.1.1A2(rev)|1.1.1A2|1.2.1B2(rev) | 1.2.1B2 1.1.1.- | 1.2.1.-
R08870 [2.3.3A1(rev)|2.3.3A1|2.3.3B1(rev)| 2.3.3B1 2.33.-

RO8871 [2.3.1D3(rev)|2.3.1F1(rev) 2.3.1.-

R08874 |3.5.1A1]6.3.1A1(rev) 3.5.1.- | 6.3.1.-
R08876 |3.5.1A1]6.3.1A1(rev) 3.5.1.- | 6.3.1.-
R09170 |5.5.1A5(rev)|5.5.1A5 5.5.1.-

R09172 [5.5.1A5(rev)|5.5.1A5 5.5.1.-

R09175 |5.5.1A5(rev)|5.5.1A5 5.5.1.-

R09179 |5.5.1A5 5.5.1.-

R09253 |4.3.1A3(rev)|4.3.1A3 43.1.

R09259 [4.1.2A2 4.1.2.-

R09260 [4.1.2A2 4.1.2.-

R09261 [4.1.2A2 4.1.2.-

R09273 [3.1.1A1 3.1.1.-

R09276 [1.13.11A1(rev)|1.13.11A2(rev)| 1.13.11A2 1.13.11.-
R09278 |4.1.1A6(rev)|4.1.1A6]4.1.1A7(rev) | 4.1.1A7 4.1.1.-
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R09282 [4.2.1A1(rev)|4.2.1A1]4.2.1A6(rev) | 4.2.1A6]4.2.1C1(rev) | 4.2.1C1 42.1.-
R09312 |1.6.5A1(rev)|1.6.5A1 1.6.5.-
R09337 [3.1.1A1 3.1.1.-

R09342 [4.2.1A1(rev)|4.2.1A1]4.2.1A6(rev) | 4.2.1A6 4.2.1.-
R09377 |3.5.4A1(rev)|3.5.4A1 3.5.4.-
R09779 |3.5.1A1]6.3.1A1(rev) | 6.3.2A1(rev) 3.5.1.- | 6.3.1.- | 6.3.2.-
R09850 [2.7.4B1 2.7.4.-

R09854 [2.3.1F1(rev) 2.3.1.-

R10013 1.5.1A1] 1.5.1.-

R10212 1.2.3B1] 1.2.3.-

R10458 2.1.1A5] 2.1.1.-

R10459 1.1.1A1(rev)|1.2.1B1(rev)| 1.1.1.- | 1.2.1.-
R10638 2.4.1A1| 2.4.1.-

R10639 2.4.1A1| 2.4.1.-
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Table A2: List of 81 reactions that BNICE.ch proposed them as “novel reactions” based on theKEGG
2012 database and they are reported as “known reactions” in KEGG 2014 database. It shows the
capability of BNICE.ch for prediction reactions that follow known biochemistry rules.

KEGG

reaction Equation EC number Reaction rule

R10013 C20279<=>C00001+C16138 1.5.1A1]

R10021 C00003+C03448<=>C00004+C00080+C03037 1.1.1.327 1.1.1A1]1.2.1B1]|

R10037 C00029+C18796<=>C00015+C08334 2.4.1.63 2.4.1A1]

R10042 C00004+C00007+C00080+C01407<=>C00001+C00003+C00146 1.14.13.0 1.14.13A2|

R10043 C00004+C00007+C00080+C00146<=>C00001+C00003+C0O0090 1.14.13.0 1.14.13A2|

R10044 C00005+C00007+C00080+C07160<=>C00001+C00006+C20321 1.14.13.160 | 1.14.13A7|

R10046 C00001+C05841<=>C00121+C00253 3223 3.3.1A1]

R10051 C00001+C20320<=>C20324 3.7.1.18 3.7.1A1]

R10052 C00003+C04411<=>C00004+C00011+C00080+C00233 1.1.1.85 1.1.1.A9]

R10075 C00006+C20325<=>C00005+C00080+C20308 1.3.1.92 1.3.1A2]|

R10078 C€20329<=>C00001+C11887 1.14.13.109 | 4.2.1A6]|

R10084 C00001+C20331<=>C20332 1.14.99.36 3.3.2A1]

R10093 C00002+C20345<=>C00008+C00129 2.7.4.26 2.7.4A1|2.7.4B1|

R10094 C00026+C20350<=>C00025+C20351 2.6.1.94 2.6.1A1(rev)|

R10096 C00029+C02627<=>C00015+C20353 2.4.1.284 2.4.1A1]

R10101 C00001+C00007+C15987<=>C00027+C00218+C00232 1.5.3.21 1.4.3A1]

R10102 C00001+C00007+C15987<=>C00027+C00067+C00334 1.5.3.19 1.4.3A1]

R10103 C00001+C00007+C20361<=>C00027+C00218+C19567 1.4.3.24 1.4.3A1]

R10105 C00001+C00006+C19567<=>C00005+C00080+C19569 1.2.1.83 1.2.1A2]

R10110 C00007+C19789<=>C20367 1.13.11.64 1.13.11A2|

R10114 C00006+C12448<=>C00005+C00080+C20371 1.1.1.334 1.1.1A2[1.2.1B2|

R10116 C00005+C00080+C20372<=>C00006+C20373 1.1.1.100 1.1.1A2(rev)|1.2.1B2(rev)|
4.2.1A1]14.2.1A2]4.2.1A6|4.2.1C1(r

R10117 C20373<=>C00001+C20374 4.2.1.59 ev)|

R10118 C00005+C00080+C20374<=>C00006+C20375 1.3.1.10 1.3.1A2(rev)|

R10120 C00005+C00080+C20376<=>C00006+C20377 1.1.1.100 1.1.1A2(rev)|1.2.1B2(rev)|
4.2.1A114.2.1A2]4.2.1A6|4.2.1C1(r

R10121 C20377<=>C00001+C20378 4.2.1.59 ev)|

R10122 C00005+C00080+C20378<=>C00006+C19846 1.3.1.10 1.3.1A2(rev)|

R10125 C00003+C09849<=>C00004+C00080+C09848 1.1.1.0 1.1.1A1]1.2.1B1]|

R10128 C00003+C09131<=>C00004+C00080+C20379 1.1.1.332 1.1.1A1]1.2.1B1]|

R10130 C00006+C17580<=>C00005+C00080+C17581 1.1.1.329 1.1.1A2|1.2.1B2|

R10134 C00001+C20383<=>C00191+C20380 3.1.1.93 3.1.1A1|3.2.1A1|

R10153 C00025<=>C05574 5.4.3.9 5.4.3A1]

R10161 C00003+C00100<=>C00004+C00080+C00894 1.3.1.95 1.3.1A1]

R10172 C€01209+C01944<=>C00010+C00011+C05753 2.3.1.207 2.3.1D2|

R10178 C00022+C00334<=>C00041+C00232 2.6.1.96 2.6.1A1(rev)|

R10179 C00048+C00334<=>C00037+C00232 2.6.1.96 2.6.1A1(rev)|

R10180 C00022+C00078<=>C00041+C00331 2.6.1.99 2.6.1A1(rev)|

C00005+C00007+C00080+C00331<=>C00001+C0O0006+C00011+
R10181 C00954 1.14.13.168 | 1.14.13A3|
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1.1.1.339]1

R10190 C00003+C03187<=>C00004+C00080+C00688 .1.1.344 1.1.1A1]1.2.1B1]

R10208 C01271<=>C00001+C00693 4.2.1.59 4.2.1A1]4.2.1A2]4.2.1A6|

R10212 C00001+C00007+C14279<=>C00027+C01546 1.2.3B1]

1.1.1.343]1

R10221 C00003+C00345<=>C00004+C00011+C0O0080+C00199 .1.1.351 1.1.1.A9]|

R10222 C00003+C02489<=>C00004+C00080+C00161 1.1.1.345 1.1.1A1]1.2.1B1]

R10232 C00001+C17325<=>C00014+C00868 3.5.4.35 3.5.4A1]6.3.4A1(rev)|

R10235 C00001+C01344<=>C00009+C06196 3.6.1.64 3.6.1A1]|

R10250 C00019+C10453<=>C00021+C10454 2.1.1.146 2.1.1A5]

R10251 C00019+C16930<=>C00021+C10452 2.1.1.146 2.1.1A5]

R10253 C00024+C00590<=>C00010+C20225 2.3.1.0 2.3.1D1|2.3.1D1(rev)|

R10308 C00003+C01500<=>C00004+C00080+C01499 1.1.1.347 1.1.1A1]1.2.1B1]

R10332 C00003+C01217<=>C00004+C00080+C05927 1.5.1.47 1.5.1B1]|

R10343 C00033+C00091<=>C00024+C00042 2.8.3.18 2.8.3A1(rev)|

R10412 C00003+C01126<=>C00004+C00080+C03461 1.1.1.354 1.1.1A1]1.2.1B1]

R10448 C00019+C00805<=>C00021+C12305 2.1.1.274 2.1.1A5]

R10458 C00019+C00688<=>C00021+C11460 2.1.1A5]

R10459 C00004+C00080+C11460<=>C00003+C12481 1.1.1A1(rev)|1.2.1B1(rev)|

R10466 C00001+C05933<=>C00077+C07044 3.5.3.25 3.5.4A1]

R10472 C00019+C10343<=>C00021+C01448 2.1.1.283 2.1.1A5]

R10473 C00024+C00556<=>C00010+C15513 2.3.1.224 2.3.1D1|2.3.1D1(rev)|

R10474 C00024+C02394<=>C00010+C12299 2.3.1.224 2.3.1D1|2.3.1D1(rev)|

R10491 C00019+C14155<=>C00021+C14153 2.1.1.95 2.1.1A5]

R10492 C00019+C14156<=>C00021+C14154 2.1.1.95 2.1.1A5]

R10520 C00003+C00092<=>C00004+C00080+C01236 1.1.1.363 1.1.1A1]1.2.1B1]

R10523 C00019+C00135<=>C00021+C03298 2.1.1.44 2.1.1A5]

R10524 C00019+C03298<=>C00021+C04259 2.1.1.44 2.1.1A5]

R10528 C00006+C02489<=>C00005+C00080+C00161 1.1.1.272 1.1.1A2]1.2.1B2]|

R10547 C00001+C12213<=>C00009+C12212 3.1.3.92 3.1.3A1]

R10555 C01151<=>C01182 5.3.1.29 5.3.1A3]

R10561 C00002+C01107<=>C00008+C00009+C0O0011+C20345 41.1.0 4.1.1C1]|

R10600 C00024+C00490<=>C00033+C00531 2.8.3.0 2.8.3A1(rev)|
3.1.2A1|3.3.1A1]6.2.1A1(rev)|6.2.
1B1(rev)|6.2.1C1(rev)|6.2.1D1(rev)

R10612 C00001+C04348<=>C00010+C00149 3.1.2.30 |

R10615 C00001+C00006+C00577<=>C00005+C0O0080+C00258 1.2.1.89 1.1.1D2|1.2.1A2|

R10638 C00029+C00561<=>C00015+C00844 2.4.1A1]

R10639 C00029+C00844<=>C00015+C08325 2.4.1A1]

R10687 C00001+C12270<=>C00025+C01042 3.4.17.21 3.5.1A1]6.3.1A1(rev)|
4.2.1A1(rev)|4.2.1A2(rev) | 4.2.1A6(

R10696 C00001+C09821<=>C09825 3.7.1.21 rev)|

R10699 C00047+C01092<=>C01037+C04076 2.6.1.105 2.6.1A1(rev)|

R10701 C00001+C10434<=>C00493+C01197 3.1.1.0 3.1.1A1]

R10703 C00003+C01845<=>C00004+C00080+C00207 1.1.1.0 1.1.1A1]1.2.1B1]

R10705 C00001+C17530<=>C00033+C00132 3.1.1.0 3.1.1A1]

R10707 C00024+C01209<=>C00010+C00011+C0O5744 2.3.1.180 2.3.1D2|

R10709 C00019+C17570<=>C00021+C16695 2.1.1.295 2.1.1A5]
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Table A3: Thermochemical data for the reactants of isodesmic reactions of Table 7.2 that are used

for the calculation of thermodynamic properties for the heavy metabolites in the gas phase

Compound AH / kI mol™ A:G / kI mol™
Methane -74.52 -50.49
Ethane -83.85 -31.92
Propane -104.68 -24.39
n-Butane -125.79 -16.7
isoButane -134.18 -20.76
n-Pentane -146.76 -8.813
isoPentane -153.6 -14.05
Methanol -200.94 -162.32
Ethanol -234.95 -167.85
1-Propanol -255.2 -159.9
2-Propanol -272.7 -173.47
1-Butanol -274.6 -150.3
Ethylene glycol -387.5 -302.6
p-Ethylphenol -144.05 -21.58
Acetaldehyde -166.2 -132.8
Acetone -215.7 -151.3
Acetic acid -432.25 -374.6
Propanoic acid -453.5 -366.7
Butanoic acid -475.8 -360.0
Dimethyl ether -183.94 -112.8
Methylamine -19.38 32.07
Dimethylamine -18.45 68.39
Propylamine -70.1 41.7
Butylamine -91.9 49.3
Pentylamine -113.2 57.3
Ammonia -45.57 -16.4
Benzene 82.88 129.6
Ethylbenzene 29.92 130.73
Tetrahydrofuran (THF) -182.5 -79.69
Tetrahydropyran (THP) -224.28 -80.37
Acetamide -238.3 -159.53
Propanamide -259.0 -151.05
Butanamide -282.0 -132.13
Imidazole 131.5 192.75
Indole 156.6 237.3
Pyrrolidine -3.6 114.7
Guanidine 27.95 95.94
Methyl propyl sulfide -82.3 17.93
Adenine 225.7 348.67
Guanine 16 184.49
Cytosine -69.5 50.24
Uracil -301.5 -198.35
Thymine -338 -192.27
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Table A4: Thermochemical quantities of neutral, deprotonated, and protonated aminoacids.

Literature values are shown in parenthesis. All quantities are given in kimol™.

0 0

AG AH
Metabolite neutral | deprotonated protonated neutral deprotonated | protonated
Alanine -298.0 -411 347.0 -421.9 -524 209.0
(-423.1) (-528.6) (209.5)
Arginine -129.9 -273 389.8 -398.9 -532 99.7
Asparagine -411.4 -572 196.6 -612.0 -760 -21.0
Aspartic acid -621.8 -830 9.23 -790.2 -991 -177.2
Cysteine -272.8 -411 370.2 -396.5 -525 233.5
Glutamic acid -631.0 -812 -26.0 -819.0 -997 -233.0
Glutamine -395.8 -558 182.2 -626.0 -777 -68.0
Glycine -300.1 -409 358.9 -391.7 -491 254.3
(-391.6) (-494.1) (256.0)
Histidine -87.6 -252 475.5 -289.9 -447 264.1
(-289.5)° (-451.3)° (265.1)°
Isoleucine -279.7 -394 348.3 -493.5 -601 120.5
(-492.1) (-606.3) (123.9)
Leucine -280.6 -395 349.4 -495.2 -602 121.8
(-494.8) (-606.8) (125.0)
Lysine -205.9 -329 355.1 -458.8 -576 80.2
Methionine -248.0 -356 366.2 -427.8 -534 167.5
Phenylalanine -142.2 -268 478.9 -323.5 -433 279.5
Proline -221.8 -341 383.2 -391.1 -499 200.0
(-385.9) (-497.3) (207.4)
Serine -433.5 -583 201.5 -581.5 -722 39.5
Threonine -439.5 -592 187.5 -620.0 -763 -6.0
Tryptophan -29.8 -155 574.2 -246.9 -358 341.1
Tyrosine -288.4 -415 329.6 -489.0 -602 111.0
Valine -282.2 -398 349.8 -472.6 -577 145.4
(-473.4) (-586.7) (146.7)

163



Table A5: Parameters of linear fits in Figures 7.5 and 7.6

Protonated Aminoacids
Free energy of formation (Fig. 7.5) Enthalpy of formation (Fig. 7.6)
R? 0.953 0.943
Intercept 589.0 SD=15.8 583.7 | SD=27.9
Slope 0.925 SD =0.047 0.976 | SD =0.055
Deprotonated Aminoacids
R? 0.984 0.986
Intercept -105.3 SD=10.8 -64.5 SD=15.7
Slope 1.107 SD =0.032 1.131 | SD=0.031

Table A6: Parameters of linear fits in Figures 7.7 and 7.8

Protonated Aminoacids and References

AG° (Line C, Fig. 7.7)

AHC (Line F, Fig. 7.8)

R’ 0.983 0.983
Intercept | 605.4 SD=6.1 594.6 SD =9.48
Slope 0.971 SD = 0.022 0.999 SD = 0.023

Deprotonated Aminoacids and References

AG° (Line B, Fig. 7.7)

AHC (Line E, Fig. 7.8)

R? 0.988 0.989
Intercept | -113.5 SD=7.0 --77.8 SD=11.3
Slope 1.067 SD =0.022 1.098 SD =0.024
Protonated Sugars and References

AG° (Line I, Fig. 7.7) AHC (Line L, Fig. 7.8)
R? 0.993 0.996
Intercept | 759.0 SD =13.7 750.9 SD=17.8
Slope 1.031 SD =0.038 1.021 SD =0.033

Deprotonated Sugars and References

AG° (Line H, Fig. 7.7) AHC (Line K, Fig. 7.8)
R’ 0.988 0.992
Intercept 62.4 SD =25.7 65.9 SD =273
Slope 1.160 SD = 0.042 1.117 SD = 0.034
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