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1 INTRODUCTION 

1.1 Scope 

The purpose of this deliverable is to present a set of utility metrics that will be used in 
the scope of the OpenIoT utility computing paradigm. This answers to one of the 
goals of WP4, related to research and devise mechanisms for the autonomic and 
automated formulation of societies of internet-connected objects in response to 
requests for utility services. As part of this paradigm, a variety of utility-based 
algorithms will be designed and deployed, notably regarding resource management, 
utility-driven privacy and utility-driven optimization mechanisms. These algorithms 
have been designed and implemented as part of WP5 of the OpenIoT project, yet 
they make use of the utility metrics outlined in the scope of this document. In 
addition to resource management, optimization, privacy and security, utility metrics 
will serve as a basis for accounting and management of SLAs (Service Level 
Agreements) between the OpenIoT cloud services providers and end-users. The 
present document constitutes the final version of the OpenIoT utility metrics 
specifications, along with some examples of using these utility metrics in different 
contexts. In particular, the present (and final) version of this deliverable presents how 
the utility metrics and the utility manager of the OpenIoT architecture can be used to 
drive utility-based privacy and a tangible billing implementation. 

1.2 Audience 

This document is addressed to researchers, engineers and other IoT experts both 
within and outside the OpenIoT consortium. Within the OpenIoT consortium this 
document will be consulted by the implementers of the OpenIoT middleware 
platform, as well as by researchers that work on the utility-driven mechanisms and 
algorithms of the project (notably researchers working in WP5 of the project). The 
former (implementers) need to consult this document as part of the implementation of 
the Utility Manager component of the project, which will keep track of all the utility-
related parameters. At the same time, the latter (researchers) will have to take into 
account this document as part of their efforts to design and implement utility driven 
mechanisms for resource management and the overall efficiency of the OpenIoT 
infrastructure. 

Outside OpenIoT consortium’s members, IoT experts wishing to gain insights on 
utility calculation for both in terms of both metrics and algorithms also can consult this 
document. In the scope of IoT applications the topic of utility driven IoT metrics is still 
in its infancy and therefore the present deliverable is one of the first efforts towards 
addressing metrics for utility-driven services in the IoT domain.  

1.3 Summary  

This deliverable specifies the utility metrics that are considered and used in the 
scope of the OpenIoT project. These utility metrics are recorded as part of the 
implementation of the Utility Manager component of the OpenIoT platform, while they 
have also been used to drive the utility based optimization mechanisms of the 
project in WP5. This is strictly related to the OpenIoT task T4.3 Utility Metrics 
Specification. In particular we provided the following contributions: 
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 We provide an analysis and summary of utility metrics for different data 
providers and environments, including physical sensors, sensor networks, 
and virtual sensors. These metrics can be used to measure utility for 
interconnected objects. 

 We proposed utility functions that use metrics in order to compute valuation 
and cost functions. These functions can be used by utility-based 
optimization techniques (implemented as part of WP5, for task T5.1). The 
utility based schemes proposed provide means and algorithms that can help 
selecting virtual sensors for efficient data collection. 

 We describe utility metrics, tailored specifically for the OpenIoT use cases, 
indicating the relevant parameters (e.g. location, bandwidth, availability, 
privacy), and cost and valuation functions (if applicable).  

We explore how these metrics can be used to optimize data acquisition, as 
indicated in Task T4.3, including type of ICOs, data quality, data transmitted, 
bandwidth, location of ICOs, etc. It is clear that for different use cases, the metrics 
can be more or less relevant, and we provide details about these specificities at the 
end of this document. 

The deliverable classifies the various utility metrics into two broad categories, namely 
utility metrics for physical sensors (such as energy, bandwidth, data volumes) and 
metrics for virtual sensors (which in several cases coincide with those of the physical 
sensors). We report in this document how these metrics can be used in order to 
formulate utility functions that take into account the heterogeneity of queries that can 
be posed to the OpenIoT platform. Queries from users and applications can 
potentially share many sensors among them, and using all the data from all of them 
at the same time is not efficient. For this, we propose utility functions that can help 
optimizing the data acquisition process, and which have been used in WP5. 

Furthermore, these metrics are related to the OpenIoT use cases, notably the use 
cases for which location, metering, accounting and billing makes more sense. Hence, 
specific examples are given on how these metrics can and will be used for metering 
in the scope of the OpenIoT use cases. 

In addition to specifying metrics for utility driven functions, the deliverable reviews 
also popular algorithms and schemes for metering and accounting, notably schemes 
inspired from internet networking. These schemes are transferred and described in 
the IoT domain. They include flat-rate schemes, time-based schemes, volume-based 
schemes, smart-market schemes and more. Most of them are applicable to several 
IoT applications and hence could be implemented as add-ons to the OpenIoT 
platform. The implementation of all these schemes is however out of the scope of the 
OpenIoT workplan, yet they can serve as a sound basis for contributions by the open 
source community. 

1.4 Structure 

This deliverable is structured as follows:  

 Section 2 (following this introductory section), provides an overview of utility 
metrics associated with physical sensors, notably metrics that are commonly used 
in the scope of sensor based applications. 
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 Section 3 focuses on utility metrics for sensor networks and related application 
services (i.e. it also focuses on metrics associated with the deployment and 
delivery of sensor network applications). 

 Section 4 presents metrics associated with the utility of virtual sensors. It also 
illustrates possible algorithms for metering, accounting and billing, based on the 
use of the proposed/introduced metrics. 

 Section 5 describes how the utility functions can be used to drive utility-based 
privacy implementations in the context of OpenIoT. 

 Section 6 is focused on the specification of utility metrics associated with the 
OpenIoT use cases, notably in terms of manufacturing where examples of utility 
calculation are also given.  

 Section 7 illustrates the use of the utility metrics and the utility manager of the 
OpenIoT architecture in order to support billing functionalities for IoT. 

 Section 8 is the concluding section of this deliverable. 
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2 UTILITY METRICS FOR PHYSICAL SENSORS AND ICO 

The physical sensors and ICOs are the fundamental (lowest level) data producers in 
OpenIoT. We can distinguish the following most important utility metrics for physical 
sensors and ICOs. 

1. Quality: The quality of sensors and ICOs is the most fundamental metric that 
determines the accuracy and sensitivity of the measurements provided by a 
sensor and it may also influence energy consumption. Thus, in a given SN 
(Sensor Network) we may have a mix of high quality expensive sensors and low 
quality inexpensive sensors. 

2. Energy consumption: Energy consumption is one of the most crucial utility 
metrics for sensor systems and more specifically wireless sensor networks 
(WSN). In WSN energy consumption is directly associated with the lifetime of the 
sensor network and therefore this metric can be used for functions like 
accounting, resource optimization and billing. The use of energy consumption in 
order to measure utility requires the introduction of an appropriate energy model 
[Schmidt 2007], which is usually a very complex research problem. Based on 
various energy models, the consumption is usually simulated [Shnayder 2004], 
yet in several cases they are also used for on-line accounting or resource 
management [Dunkels 2007] (e.g., in software). However, most of the energy 
models are usually simply taking for example into account the (total) 
number/volume of packets/data sent. Even though the volume of data is 
analogous to the energy consumption, other factors (such as the energy spent 
when listening for packets and the energy consumption of sensors’ 
microcontrollers) should be also taken into account. In some cases these factors 
lead to more energy consumptions than the data transmitted though the network. 
To the extent that OpenIoT will rely on the measurement of WSN energy as a 
utility metric, the project’s platform shall integrate one or more energy models. 
There are two options for the integration of these models within the OpenIoT 
architecture: (a) Integration of a single set of global models for WSN energy 
consumption, which should become part of the utility manager of the project. 
Each WSN could then be associated with one or more of these models, as part of 
its announcement to the OpenIoT directory service and (b) Integration of WSN 
specific energy models, falling in the responsibility of the WSN owner/provider. In 
this case the energy models should be integrated with the GSN nodes, which will 
undertake to communicate these models or the (resulting) utility metrics to the 
utility manager of the project. 

3. Bandwidth: The bandwidth of a physical sensor refers to a bit-rate measure, 
representing the available or consumed data communication resources 
expressed in bits per second or multiples of it (bit/s, kbit/s, Mbit/s, Gbit/s, etc.). 
Note that in signal processing the word 'bandwidth' is used to refer to analog 
signal bandwidth measured in hertz. The connection is that according to Hartley's, 
the digital data rate limit (or channel capacity) of a physical communication link is 
proportional to its bandwidth in hertz. Thus, the utility of a sensor can be 
measured as an available or consumed bandwidth in the scope of an application. 

4. Data volume: The volume of data (amount of data) produced by a physical 
sensor can be used as a utility metric. The more data streamed by the sensor, the 
more the utilization of the sensor. Hence, the utility of the sensor can be 
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analogous to the volume of sensor data streamed or consumed in the scope of an 
application. Thus, the utility of a sensor can be measured as a delivered data 
volume in the scope of an application. 

5. Trustworthiness: The trustworthiness of a sensor can be measured as a trust 
one can place on a sensor that it will deliver true measurements on time within 
the scope of its technical parameters. Thus, the trustworthiness is related to the 
quality of a sensor. 

For each physical sensor registered in the OpenIoT sensor directory, the OpenIoT 
utility manager will keep track of the following five utility parameters i.e. quality (as a 
semi-static value), energy consumption, bandwidth (in the scope of an application or 
service or time window), data volume (in the scope of an application or service or 
time window), and trustworthiness (as a semi-static value correlated with the quality 
of the sensor).  
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3 UTILITY METRICS FOR A SENSOR NETWORK AND 
APPLICATION SERVICE LEVEL  

Most IoT applications and services comprise a large number of connected sensors. 
Therefore at the SN and application service level, the utility metrics combine utility 
metrics related to the sensors and the network itself.  Thus, the utility of SN and the 
application service level can be measured based on the following parameters: 

1. System Lifetime: System lifetime determines the longevity of the nodes.  It is the 
most crucial factor in SN implying that the energy has to be utilized in the most 
effective way that is possible. 

2. Latency: Latency measures the time delay experienced in a system where the 
lower limit of latency is determined by the medium being used for 
communications. In reliable communication systems, latency limits the maximum 
rate that information can be transmitted, as there is often a limit on the amount of 
information that is "in-flight" at any one moment.  

3. Quality: Quality of SN is determined by the quality of data provided in response 
to a query.  

4. Delay and Delay Variation: The delay and delay variation refer to delay in data 
collection from nodes. 

5. Bandwidth, Capacity and Throughput: These indicate the capacity of data 
which can be sent over a link within a given time. 

6. Hop Count: Hop count in communication determines the cost of a path, and 
eventually the energy consumed in the process. 

7. Ease of Deployment: SN nodes have to be able to communicate with each other 
even in absence of established network infrastructure. 

8. Reliability: Reliability measures the ability of the system or components to 
perform its required functions under stated conditions for a specified period of 
time. 

9. Survivability: Survivability is the quantified ability of the system subsystem to 
continue to function during and after a natural or man-made disturbance. In 
particular, a survivable system should have self-healing mechanisms to cope 
with data transfer corruptions and failed nodes.  

10. Scalability: Scalability measures the ability of the system to accommodate 
growth in the number of nodes such that the performance of the system does not 
deteriorate to the point where the system is unusable.  

11.  Resource optimization and cost efficiency: Resource optimization and cost 
efficiency measures the ability of the system to maximize the social welfare 
defined as an efficient allocation of limited resources in a society to optimize the 
resource utilization. It is well known that a system is efficient if and only if the 
system’s social welfare is maximized. Thus, the social welfare of a system is 
equal to the difference between the system benefit and the system cost. 

12.  Relevance: Given an information need of a user of a WSN that is expressed by a 
corresponding query, the utility of a given sensor can be measured by its 
usefulness in answering the query. For example, given a query asking for CO2 
the highest utility will have sensors providing CO2 while sensors providing 
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temperature will have lower utility since by receiving temperature one can obtain 
an approximate value of CO2 by exploiting the dependence between CO2 
concentration and temperature. 

13.  Confidentiality: Confidentiality refers to the ability of the system to protect 
privacy of results provided for a particular user such that multiple users are not 
afraid that some aspect of their business can be compromised. 

The above metrics will be also considered for any SN to be used and integrated 
within the OpenIoT platform and the OpenIoT sensor directory. Note that most of the 
above parameters map to static or semi-static values that can later used for 
composite cost calculations. However, OpenIoT will be also integrating virtual 
sensors, with relevant utility metrics as described in the following paragraph. 
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4 UTILITY METRICS FOR VIRTUAL SENSORS AND ICO  

4.1 Virtual Sensors in OpenIoT 

The previous section has underlined utility metrics that can be used for accounting 
with physical sensors in the scope of the OpenIoT platform. It is however the case 
that several of the sensors that will be integrated with the OpenIoT sensor cloud 
infrastructure will be virtual sensors rather than physical sensors. This is also the 
case since most of the sensors are likely provided by third-party providers of sensing 
infrastructures (instead of the OpenIoT cloud service provider) and integrated 
through the GSN middleware. Therefore, OpenIoT will in several cases have to deal 
with virtual sensors that announce themselves to the semantic directory service, and 
accordingly stream their data to the cloud (database). Furthermore, it is likely that 
OpenIoT will have to deal with virtual sensors, without knowing or controlling the 
composition of the physical sensors that contribute to the production and streaming 
of the virtual sensor data.  For this reason, OpenIoT will have to keep track of the 
utility of virtual sensors, which bear several differences associated from physical 
sensors. For example, while energy models and metrics are important for physical 
wireless sensor networks, they cannot be directly associated with virtual sensors 
since the information about which physical sensors comprise the virtual sensors 
might not be generally available to the OpenIoT platform. On the other hand, there 
are also utility metrics that are common to both physical devices and virtual sensors, 
such as the volume of the transmitted data and the bandwidth consumed. The 
following paragraph attempts a discussion of utility metrics that are applicable to 
virtual sensors.  

4.2 Parameters for defining and calculating virtual-sensor utility 

The following parameters can be used to measure the utility of virtual sensors: 

1. Data Volume: The volume of data (i.e. number of bytes) streamed by the virtual 
sensors can be used as a utility metric. The more data streamed by the virtual 
sensor, the more the utilization of the virtual sensor. Hence, the utility of the 
sensor can be analogous to the volume of sensor data streamed or consumed in 
the scope of an application. 

2. Bandwidth: Directly related to the data volume of a virtual sensor is the 
bandwidth (i.e. bytes/sec) consumed/associated with the data volume streamed 
by the virtual sensor i.e. the rate of data streaming. Similarly to the previous case 
the utility of a sensor can be analogous to the bandwidth consumed (by the virtual 
sensor) in the scope of an application. 

3. Time of the Usage Session: Virtual sensors can be used in the scope of 
application sessions. The time during which a sensor has been used can serve as 
a metric for utility calculation. Note however that there are different ways to define 
the timing boundaries associated with the usage of a sensor (e.g., according to 
the overall application session where the virtual sensor is used, or the actual time 
a specific virtual sensor has been occupied). In order to keep track of the time 
boundaries the start and finish time associated with the use of a resource or a 
service should be recorded.  
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4. Virtual Sensor Location: The location of a virtual sensor is another prominent 
parameter that defines its value (or utility). Different locations can signify different 
business values for the same sensor. 

5. Virtual Sensor Task: In the scope of business processes, virtual sensors serve 
some task (process step). The relative business value of this step can drive the 
definition of the utility or the business value of a sensor. Note that the task 
associated with a virtual sensor can in several cases be related with the location 
of the sensor.  

6. Number and type of Physical Sensors used: A virtual sensor utility metric can 
be defined and calculated on the basis of the number and types of the physical 
sensors that comprise the virtual sensor. In particular, a weighted formula can be 
used to define and calculate the utility of the virtual sensors on the basis of one or 
more utility metrics associated with the physical sensors that comprise the virtual 
sensor. In this way, the utility metrics associated with physical sensors (e.g., 
energy consumption) (as defined in previous sections) could be used in order to 
calculate the utility of the virtual sensor.  

7. User Defined Cost: Similar to the case of a physical sensor, a user-defined 
cost/utility value could be assigned to the sensor.  The assignment of the user-
defined cost could take into account the above criteria and parameters, but also 
other criteria defined by the owner, deployer or integrator of the sensors 
infrastructure.  

The OpenIoT platform should keep track of the above parameters as a means to 
enable utility calculation for accounting, billing and resource management purposes. 
Resource management concerns primarily the service provider’s perspective, while 
billing and accounting concerns also the end-user’s perspective. For the latter, the 
utility should be ultimately assigned to the OpenIoT service, typically on the basis of 
a combination of the utility metrics for virtual sensors. 

4.3 Virtual Sensor Parameters for Accounting and Billing 

OpenIoT specifies and implements (as part of WP5) a set of utilitarian mechanisms 
for resource management, as well as utility-based privacy and security. Apart from 
providing support for these mechanisms, the recording of utility metrics (such as 
those outlined above), can enable the implementation of accounting and billing 
mechanisms as required by the utility nature of the OpenIoT sensor-cloud. In terms 
of billing mechanisms, a number of different schemes can be adopted based on 
approaches that have been proposed in literature, notably in the area of charging for 
Internet resources and services (e.g., see [Falkner 2000] and [Choi 2007] for a 
survey of main schemes and issues). Note that such schemes consider one of more 
virtual sensors comprising a service, as well as one or more of the virtual sensor 
utility metrics outlined above. 

A summary of these approaches are provided below: 

 Flat-rate schemes: Flat-rate schemes are the simplest billing schemes and are 
calculated on the basis of fixed tariffs for a specified amount of time. Flat-rate 
schemes should be based on the assignment of a utility-rate to OpenIoT services, 
which are typically provided based on the combination of multiple sensors (as 
already explained in deliverable D4.1 of this work package). 
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 Time-based schemes: On the basis of these schemes pricing is based on how 
long a service is used. In general time-based pricing bills for resources and 
services on the basis of the time a service or resource is utilized. The usage time 
associated with a resource or a service should be therefore taken into account. 
The price can be defined as a function of this time, and more specifically of the 
start and finish time. This is directly related to the time usage metric outlined in 
the previous section. 

 Volume-based schemes: Volume based billing/pricing schemes apply functions 
over the volume of data incurred in the usage of the service. OpenIoT services 
will typically comprise multiple virtual (and physical sensors) and hence a volume 
based scheme will exploit the volume-related utility metrics of multiple sensors. 

 SLA (Service Level Agreement) or QoS (Quality of Service) based schemes: 
Pricing is usually based on the quality of the service or the service level 
agreement associated with the utility services. These can be defined based on 
one or more of the defined utility metrics, including specific types of sensors, 
specific locations of the sensors, guaranteed volume of the sensors and more. 

 Priority-based schemes: Priority schemes have their origins in the Internet, 
where services can be labelled and priced according to their priority. In this 
respect, priority schemes are relevant to the SLA/QoS based schemes. In 
OpenIoT, services can be labelled according to the number and type of sensors 
that they use, thereby getting some priority over others. Another alternative could 
be based on the SLA between end-users and OpenIoT service provider. 

 Schemes based on number, type and location of ICOs: In the scope of 
internet-based pricing, there have been proposed schemes that calculate bills on 
the basis of the distance (or number of hops) between the service and the user. 
As a variation of this scheme, pricing could be based on the number, type and 
location of ICOs. 

 Effective volume / Session-oriented pricing schemes: Session-oriented 
schemes are based on the calculation of an effective utilization of the resource 
entailed in a session. The calculation can take into account the anticipated time 
usages of the session, as well as the data volumes of the various sensors to be 
consumed. The prediction of the volume of data to be used gives rise to the 
characterization of these schemes as «effective volume» ones, based on the 
terms effective bandwidth that has its roots in internet traffic management 
research, yet it has also been used for wireless networks [Tse 1998].  

 Smart market based schemes: Such schemes foresee pricing on the basis of an 
auction for specific resources (i.e. sensors / ICO) or services. They can be 
implemented on the basis of a dynamic market based regulation of the user-
defined cost parameters associated with the virtual sensors outlined above. The 
idea is the more the demand (i.e. number of users/services asking for a sensor) 
the higher its price (i.e. user-defined cost/utility). 

In addition to these schemes, several others can be proposed/derived on the basis of 
variations and combinations of the above, such as location-based schemes (i.e. 
charging according to the locations of the sensors) and content based pricing (i.e. 
pricing based on the type and volume of the content delivered to the user. Moreover, 
there are several classifications of the above schemes e.g., as static pricing schemes 
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(i.e. when the pricing function does not change over time) and as dynamic pricing 
schemes (i.e. when the pricing function is dynamically adapted to the behavior of the 
users). 

The schemes outlined above can be used in order to combine the utility of the 
various sensors into utility metrics for wider applications or services that comprise 
multiple sensors. For example, a volume based scheme can be applied towards 
calculating the utility of an IoT service as a weighted sum of the utility metrics of the 
various sensors comprising the service. 

Research and implementation of specific pricing schemes in not in the scope of 
OpenIoT research and development, However, as an IoT middleware framework, the 
OpenIoT platform will record and document the utility metrics needed in order to 
support the implementation of one or more of the above schemes. Hence, each 
integrator or solution provider using the OpenIoT open source software will be able to 
select and implement the above schemes. This is also a task that could be offered to 
interested members of the OpenIoT open source community.  
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5 UTILITY FUNCTIONS FOR VIRTUAL SENSORS AND ICO 

Up to now we have presented utility metrics applicable for different types of data 
sources including physical sensors, sensor networks and virtual sensors. These are 
of particular interest for the OpenIoT platform, as they represent the underlying ICOs 
whose data is provided and queried across the web.  

In this section we dive deeper in the details of how these metrics can be used in 
order to propose specific utility functions for an IoT environment. The utility functions, 
in general, need to be maximized, representing an increase in the social welfare. 
Nevertheless, defining such functions is not a simple task, as there are many 
variables and metrics, and these also depend on different costs and valuation 
functions that might need to be defined.  

We present a review of utility functions that have been used in the literature, taking 
into account participatory sensing, community driven utility functions, privacy 
concerns, equilibrium in an IoT society and stimulation mechanisms. Then, we 
propose an approach for defining utility functions for OpenIoT, considering different 
types of queries or requests from heterogeneous users, and taking into account utility 
metrics defined previously. The analysis and results of this work have been used to 
create optimization mechanisms and algorithms for data acquisition, which are 
described in OpenIoT Deliverable D5.1.2. This section has been partially adapted 
from [Riahi 2013]. 

5.1 Review of Utility-based Metrics and Functions 

Several approaches exist in the literature for defining utility functions for sensor data 
collection, acquisition, billing and service delivery, optimization, etc. In this section we 
review some of these, focusing mainly on community and participatory sensing. This 
is a particularly interesting setting, as it has to deal with the heterogeneity of the ICOs 
and virtual sensors that provide data to the cloud. This is precisely the type of 
environment that OpenIoT use-cases are related to. Data provided by ICOs can be 
queried by users and applications through very different schemes and with very 
different purposes. Moreover, privacy can be an additional cost in some scenarios 
while in others (e.g. public weather information) these restrictions might be relaxed. 
Also, and as it is the case in the OpenIoT use-cases, location-based queries are also 
of particular importance, although several sensors may provide overlapping data 
whose value may decrease as the degree of overlap increases. 

In this section we first analyse specific functions for community sensing. Then we 
present our proposal for utility-based functions, which are used in the OpenIoT 
prototypes presented in the Deliverable 5.1.2. 

5.1.1 Community Sensing Utility Functions 

One of the first attempts at establishing utility-based community sensing [Krause 
2008], the approach consists in weighting information needs based on the expected 
demand by the users. In this setting, the application selects sensors from the 
available ones in such way that the sensor readings improve the most demanded 
aspects of the phenomenon model. This model can be formalized as a stochastic 

process within spatial boundaries (e.g. a random variable 𝑋𝑠 for a location 𝑠 ∈ 𝑉). 
The goal in this approach is to select a set A of locations such that the variance of 
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unobserved locations is minimized. Given a particular subset of locations 𝐵 ∈ 𝑊 of all 
possible locations W, we introduce P(A | B) as the distribution over subsets A. The 
objective, then is to maximize the following function: 

𝐹(𝐵) = 𝔼𝐴ǀ𝐵[𝑅(𝐴)] = ∑ 𝑃(𝐴ǀ𝐵)𝑅(𝐴)

𝐴

 

Where R(A) is the expected demand-weighted variance reduction over the location 
subset A. Then, in order to select a set of locations B, one needs to consider the 
inherent costs (denoted as a function C(B)), which should be limited by a budget L. 
This is the restriction for the final optimization problem, which has been shown to be 
NP-hard. Therefore, approximation algorithms have been proposed for solving it.  

Some of the assumptions made for this approach are not really applicable for most of 
the OpenIoT scenarios. First, it does not consider the heterogeneity of applications 
and users, which may potentially launch several different types of queries, and not 
only requesting one type of phenomenon. Moreover, there is not any notion of 

trustworthiness or quality of the sensing participants. In a more generic scenario, 
each application might have its own utility and costs, and the obtained value 
depends on the quality of the received data.  

5.1.2 Privacy in Community Sensing Utility Functions 

Data from ICOs may inherently contain private information, even when it is 
aggregated within an IoT community. Users may find benefits when sharing part of 
this data (e.g. from social status, to services provided by the services of the IoT). 
However the users may want to preserve their privacy, at least to some level of 
granularity, balancing the costs and benefits of data sharing. Following these lines, 
game-theoretic approaches such as [Liu 2008] have been devised, in which users 
reveal their location, only at certain level of granularity. More formally, a user i from 
the set of all users N, can see only a subset N(i) of nearby users. The granularity of 
the location of user i is given by some value 𝑎𝑖 ∈ [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥]. Then the following 
utility function is defined: 

𝑈(𝑎𝑖, 𝑎−𝑖) = min (𝐾, ∑ min(𝑎𝑖, 𝑎𝑗)

𝑗∈𝑁(𝑖)

) − 𝑐 ∙ 𝑎𝑖 

Where min (𝑎𝑖, 𝑎𝑗) is the perceived accuracy of user j for user i. K is a predefined 

constant that indicates an upper bound of the user benefits. 𝑎−𝑖 is a strategy vector 
for all other users except i ; and c is a penalty factor.  

While this approach includes is rather simplistic, it introduces an interesting game-
theory scheme that looks for optimality in an environment where all users look for 
maximizing their gain, but not in a greedy way. Moreover, the penalty factor in this 
utility function is under-specified, and should be more general than just a constant 
factor. In more realistic scenarios, privacy and resource consumption are parameters 
that must be included in cost factors. Finally, this utility-based approach assumes 
that all utility functions are homogeneous, while in OpenIoT we add the possibility of 
users having different privacy levels and thresholds.  
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5.1.3 Bargain-based Utility Functions 

In the Internet of Things, when users or applications provide data to the cloud, they 
become participants of the overall system. These participants may be motivated by 
rewards that they could gain for providing their data. In the approach proposed by 
[Xie 2009], users are selfish and rational but not malicious, trying to maximize their 
rewards. All participating nodes communicate through messages to a sink node. 

More formally, this formalization introduces the expected credit reward, defined as: 

𝑅𝑖
𝑚(𝑟) = 𝐴𝑖

𝑚(𝑟) × 𝑃𝑖(𝑟) 

Where 𝑃𝑖(𝑟) is the contact probability of node i with the sink node of message r. 𝑃𝑖(𝑟) 
denotes the message appraisal associated with each message. It indicates the 
probability that no other node has provided a copy of the message to the sink. From 
this, the following utility function for a node i is defined: 

𝑆𝑖 =  ∑ ( ∑ 𝑅𝑖
𝑚(𝑟)

𝑚∈𝜙(𝑟)

− ∑ 𝑅𝑖
𝑚(𝑟)

𝑚∈𝜓(𝑟)

)

𝑅

𝑟=1

 

Where R is the total number of message types, 𝜙(𝑟) and 𝜓(𝑟) are messages of types 
r, after and before exchange. Participants exchange message lists, and start a 
bargaining process as a cooperative game. To find an optimal solution for this 
bargaining process [Xie 2009] proposes a Nash optimal solution through a greedy 
algorithm with polynomial time complexity. 

Although this proposal introduces an interesting bargaining model that may have 
similarities with OpenIoT user cost-benefit expectations, it has some limitations. 
These include the negligible cost of exchanging control information, and the possible 
duplication of appraisal values.  

 

5.2 Utility Functions for Efficient Data Acquisition in OpenIoT 

There exist many possible usages of utility metrics in the context of OpenIoT. In the 
project, we have settled mainly on looking for optimization schemes that use these 
metrics in order to efficiently use the available resources. More specifically, we are 
interested in the optimal usage of ICOs and the data that they provide to the platform. 
Considering the potentially very large number of sensors that act as data providers, it 
may happen that at different points in time, the OpenIoT platform may need only a 
fraction of the data that the complete set of available ICOs supplies. A 
mismanagement of these resources would directly translate in over-utilization of data, 
causing unnecessary bandwidth usage and potentially higher response times, etc.  

To alleviate this, in OpenIoT we propose using a utility-based approach that 
maximizes the social welfare, while users and applications can have different data 
requirements (through different types of queries), and utility consideration (through 
different utility functions). We illustrate this scheme in Figure 1 in a general way, 
where an aggregator can potentially acquire data from a set of sensors S. Users may 
issue queries to the aggregator, requesting for instance the average CO2 level in a 
certain location or in a broader area. The aggregator is also aware of the sensors’ 
capabilities, including energy, location, etc. and constraints (e.g. privacy 
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requirements, energy and bandwidth thresholds), which can be used to efficiently 
schedule the queries in such a way that the global utility is maximized.  

 

Figure 1: General utility-based optimization for participatory sensing. 

 

This is a very general model that can be specialised for different use-cases and 
requirements. It also depends on the metrics that are being used, the utility functions 
that are chose, and also the types of queries that are received. The heterogeneity of 
queries make it highly complex to formulate an optimization scheme based on utility 
functions.  

5.2.1 Utility-based Optimizer in OpenIoT 

The proposed general utility-based model described above, has been specialized for 
the OpenIoT architecture. We propose a utility-based data acquisition approach, 
which is explained in details in Deliverable 5.1.2 of the OpenIoT project. This 
approach is focused on a Utility-based optimizer that selects sensors, given the 
queries, budget and quality requirements from the OpenIoT Scheduler module. With 
this information, the optimizer should use the sensor metadata (e.g. including 
location, energy, privacy, etc.) to select a subset of sensors S’ from the global set of 
sensors S, such that the valuation minus the cost of using this subset is maximal.  

The optimizer, operating at the Local-scheduler level,  is able to transform the original 
queries from the users, into rewritten queries that only use the subset S’, given as a 
result of the utility-based optimization. Then, based on the user needs X-GSN may 
activate or deactivate virtual sensors depending on the relevancy to the queries. 
While this optimization techniques have been reported as part of WP5, they use 
the utility metrics, utility functions and cost schemes described henceforward, 
as part of WP4.  
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This optimization can be formalized as follows. The objective is to acquire data for 

the queries from the available sensors in order to maximize the utility over a period 𝑇. 
We denote as 𝒬 the set of all queries up to 𝑇, 𝒮𝑡 denotes the set of available sensors 

at time slot 𝑡, and 𝐾: 𝒬 → ×𝑡=1
𝑇 2𝒮𝑡

 defines an allocation scheme that assigns sensors 
to each query. 𝑌(𝐾, 𝑡) is a function that returns the set of sensors that are assigned to 

all queries at time 𝑡. We represent the cost of sensor s at time 𝑡 given the allocation 
𝐾 by 𝑐𝑠(𝐾, 𝑡). Let 𝒦 denote the set of all possible allocation schemes. Then the goal 
is to find allocation 𝐾∗ ∈ 𝒦 that maximizes the social welfare: 

𝐾∗ =  argmax
𝐾∈𝒦

(∑ 𝑣𝑞(𝐾(𝑞)) −  ∑ ∑ 𝑐𝑠(𝐾, 𝑡)

𝑠∈𝑌(𝐾,𝑡)

𝑇

𝑡=1𝑞∈𝒬

) 

Tor solve this problem, we need to know in advance all the queries that will be issued 

over 𝑇, and the location and cost of all the sensors at each time slot. However, in the 
context of OpenIoT, users must be able to submit new queries whenever they desire 
and it is not realistic to ask the users to pose all their queries in the beginning of the 

period 𝑇, and their exact locations at a specific time slot cannot be determined a 
priori. Due to the lack of access to all the required information to solve the above 
long-term optimization problem, we resort to a myopic approach (Figure 2), in which 
we try to maximize the utility at the current time slot without considering the future 
state of the system. In this approach, when finding the optimal allocation scheme, we 
only consider the queries and sensors that are available at the current time slot. After 
finding the best allocation scheme, the cost of each selected sensor is shared among 
queries that are answered using the measurement from that sensor.  

 

Figure 2: Myopic approach: focusing on monitoring a hotspot, at each time slot.  

Formally the optimization can be defined as the allocation 𝑀∗ ∈ ℳ that maximizes 
the total utility in the current time slot: 

𝑀∗ = argmax 
𝑀∈ℳ

(∑ 𝑣𝑞(𝑀(𝑞))

𝑞∈𝑄

− ∑ 𝑐𝑠

𝑠∈𝑌(𝑀)

) 

M is an allocation scheme that assigns sensors in S to each query q. Y(M) is a 
function that returns the set of sensors assigned to queries.  
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Finally, we have to ensure that using the selected sensors 𝑆𝑞 for a query q, the utility 

is positive: 

𝑣𝑞(𝑆𝑞) − ∑ 𝜋𝑞,𝑠

𝑠∈𝑆𝑞

> 0 

Where 𝜋𝑞,𝑠 is the price of q for using sensor s. 

5.2.2 Sensor Sharing in OpenIoT 

Now that we have defined the utility optimization problem, we need to consider how it 
can be solved. In general, this has been shown to be an NP-hard problem, and 
therefore we have proposed heuristic algorithms for different cases in [Riahi 2013]. 
Specifically, we focus in this section on different types of queries for which we have 
shown the feasibility of our approach. These types of queries emerge from real-world 
needs in an IoT environment where an arbitrary number of sensors in a location or an 
area can potentially be useful for an, also arbitrary, number of queries from users and 
applications. We illustrate this in Figure 3, where sensors (denoted as stars) can be 
shared among heterogeneous queries. A point query (in a particular location) might 
be answered by sensors nearby with different quality levels (higher or lower 
valuation). A trajectory query might require data form several sensors across its path. 
A Location monitoring query may need data from a specific location, but over a 
certain time frame, at different rates. In a more general region monitoring query, a 
number of sensors may overlap and provide different valuations at different costs. 

 

Figure 3: Sensor sharing between different types of simultaneous queries. 

In our research, we have shown algorithms for some of these cases (Figure 4), in 
particular: Point queries, spatial aggregate queries, Location and Region 
monitoring queries. 
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Figure 4: Types of queries: a classification 

5.3 Utility Functions in Selected Query Types 

For all cases, the valuation functions and costs have been detailed in Deliverable 
D5.1.2, where all these functions are used. Moreover the algorithms for each case 
and the experimental evaluation are fully detailed in [Riahi 2013]. In this section we 
mainly discuss the utility functions. 

In single sensor point queries, users are interested in a phenomenon at certain 
location. For point one-shot queries, the utility function is defined as: 

 

𝑢(𝑆′) = ∑ max
𝑠∈𝑆′

𝑣𝑙(𝑠)

𝑙∈𝐿

− ∑ 𝑐𝑠

𝑠∈𝑆′

 

 

Where S’ is a subset of S, l is the location and 𝑣𝑙 is the computed utility at location l. 
This is a non-monotone submodular function that has been to be solvable by an 
approximation LocalSearch algorithm.  

For multi-sensor one-shot queries we require to select the set of sensors exploiting 
as much as possible the common data requirements among the posed queries. The 
proposed greedy algorithm for solving this optimization problem, iteratively selects 
sensors that maximize the partial overall utility. The utility function defined is given 
by: 

 

𝑢(𝑆′) = ∑ 𝑣𝑞(𝑆′)

𝑞∈𝑄

− ∑ 𝑐𝑠

𝑠∈𝑆′

 

Where again S’ is the set of selected sensors and Q is the set of queries.  

 

For the case of continuous queries (i.e. continuously executed during a time period), 
we can consider first a location monitoring query. In this case the user is interested at 
some phenomena at a given location, but over a certain time period (i.e. with a 
requested sampling time). However, the sensors may not always be able to provide 
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data at the same intervals (Figure 5).  In such cases, if the budget allows, the data 
from other sampling times can be used for acquisition. 

 

 

 

 

 

 

 

 

 

In summary, the problem of location monitoring queries can be solved by generating 
several point queries, answering those point queries using approximation algorithms 
as the one mentioned above, and then calculating the payments for each satisfied 
query. At the end of every time slot, the remaining budget can be updated for each 
query. 

For region monitoring queries, sensor data sharing is possible if the regions over 
which the queries are executed overlap. A modified algorithm can take advantage of 
this, by providing a set of weighted costs of sensors. As an example, if a subset of 
sensors was already selected by another continuous query, then a weight of 0 can be 
assigned to that subset of sensors. 

 

Figure 6: Region Monitoring Query. 

As a final case, we can combine the abovementioned types of queries in a query mix, 
and the problem can be seen as a composition of the sub-cases described above. 
Figure 7 illustrates this case. The proposed algorithm for the query mix selects 
sensors by exploiting the commonalities of the queries posed to the system. It first 
generates point queries for location and region monitoring queries. Then, all queries 
are provided to the greedy algorithm used for multiple sensor one-shot queries, so 
that it optimizes the total utility. Afterwards, the results of the point queries are 
applied for continuous queries. As in this stage there might be queries sharing the 
same sensors (e.g. regions overlapping), the payments need to be adjusted 
accordingly. 

Requested sampling time 

A measurement can be provided 

Time 

Figure 5: Location Monitoring Queries. 
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Figure 7: Approach for a Query Mix sensor data acquisition. 
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6 UTILITY METRICS FOR OPENIOT USE CASES 

6.1 Utility Metrics for the OpenIoT Manufacturing Use Case 

6.1.1 Overview 

The manufacturing use case implemented by SENSAP in the scope of WP6 provides 
a good opportunity for implementing and using several of the utility metrics outlined 
above. As detailed in WP2 deliverables the use case concerns the exploitation of 
several physical sensors along with the OpenIoT framework in order to facilitate the 
on-demand selection and visualization of manufacturing KPIs for plant operators. The 
use case involves several physical sensors, which focus on the needs of the 
paper/packaging industry including: 

 Color diffusion sensors, which are used to audit and make sure that all colors are 
printed correctly. 

 Automated barcode scanners & camera-based verifiers (chiefly laser-triggered 
sensors).  

 Weight sensors. 

 Height sensors, mainly used to detect when containers are full. 

 RFID sensors, usually as part of dock-door portals). 

 

All the above sensors are integrated within the (Industrial Traceability Kiosk (ITK) 
product of SENSAP, which aggregates data from all the above physical sensors and 
sends them to SENSAP’s S-BOX middleware product for further processing. As part 
of the use case implementation, S-BOX announces and integrates a number of 
virtual sensors to the OpenIoT platform. These virtual sensors correspond to 
manufacturing performance related events and are structured according to 
EPCglobal EPCIS standard (which provides the framework for placing these events 
in a given manufacturing context). Compliance to EPCglobal metadata and event 
mechanisms is accomplished through the S-BOX middleware, which undertakes to 
translate raw data streams to EPCglobal Application Level Events (ALE) and at a 
later stage to EPCIS streams. 

Since virtual (rather than physical) sensors are integrated in the OpenIoT platform, 
utility calculation for the applications will leverage virtual sensor metrics, in-line with 
the general-purpose metrics listed in Section 3. In particular, the following metrics will 
be used to quantify the utility of the calculation of a manufacturing KPI as part of the 
application: 

 The number of EPCIS stream processed in order to generate a virtual sensor 
result. In practice, this is proportional to the difficulty of estimating the requested 
(by the end-user (i.e. plant operator) KPI value. For example, the generation of a 
KPI for a logistics process (which typically has only phase) is much easier (and 
hence less costly) than generating a KPI for a manufacturing process (which 
typically spans multiple phases) need to install additional hardware/sensors to 
different locations to capture data)  



Deliverable 4.2.2 – Doc. Id.: OpenIoT-D422-140105-Draft   

Copyright  2013 OpenIoT Consortium  26 

 The number of raw data streams (physical sensor data) processed for generating 
EPCIS streams. The ability to keep track of this number stems directly from the 
recording of the physical sensors that are used by a virtual sensor.  

 The event backlog/queue used by the virtual sensor. The queue/backlog of 
history events that is examined to produce a virtual sensor result. For example, in 
order to calculate the average production rate, an observation window of the last 
N hours of operation of the production is used. This event queue is a metric 
directly associated to the volume of data used for producing the virtual sensor 
result. 

 The perceived added-value of information value for the organization 
(manufacturer), which can be mapped to percentage of the generated products' 
value). This added-value can be calculated on the basis of the user-defined value 
assigned to virtual sensors. 

 

6.1.2 Utility Calculation Model 

In-line with the general guidelines for utility calculation presented above, Figure 8 
illustrates the process of combining physical sensor measurements from the 
manufacturing shop floor towards virtual sensors. As shown in the figure, the virtual 
sensors of the OpenIoT manufacturing use case are composed based on a series of 
sensor-events that comply to the EPCIS standard. A virtual sensor is typically based 
on a combination of real-time (on-line) events and historical events (also EPCS 
compliant) that are stored in an EPCIS repository. 

 

 

Figure 8. Use of Virtual Sensors in the Manufacturing Use Case (and their associated 
to physical devices) 
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The utility calculation model is therefore applied over virtual sensors according to the 
model depicted in Figure 8. In particular, for a given process P, n physical sensors 
are deployed. An a priori known operational cost CNi is assigned to each physical 
sensor (on the basis of parameters such as power requirements, labour costs to it 
setup, monetary cost of the sensor etc).  

Each physical sensor i produces a raw stream Si that is in turn processed by a set of 
business rules yielding m EPCIS events. A data acquisition and filtering cost CBj is 
assigned to each one of the M EPCIS events. This cost factors in the computational 
costs involved in multiplexing the physical sensor events and the application of 
business rules (which may need to perform multiple queries to external data 
sources). 

If the virtual sensor needs to query history data from an external EPCIS repository 
we also need to apply a data retrieval cost CD = g(w) where w is the size of the 
history window that we are retrieving. Note that the external EPCIS repository 
contains historic EPCIS events (values) derived previously.  

Finally, the organization assigns an importance metric I = f(P) which is a function of 
the monitored process and indicates the level of importance of the sensor output for 
the process execution. For example, early detection of printing errors at the 
beginning of a high-cost manufacturing process is very important to a company 
whereas knowing the exact number of produced items during the process execution 
is of less importance. This importance metrics is organization and business process 
specific. 

Given the above model, the utilization of our setup can be estimated on the basis of 
the following formula: 

   Pf+wga+CB+CN=U
m

j=

j

n

=i

i 
11

 

where a = 0 if no EPCIS history data is required, 1 otherwise. 

 

6.2 Utility Metrics for the OpenIoT Smart Cities Use Cases 

A large number of metrics can also be used for the different services that are usually 
deployed in the scope of smart cities (e.g., overall metrics for energy efficiency, 
volumes of data collected and more).  In the more specific context of the Campus 
Guide use case there will be a need to keep track of the service utilization. In 
particular, applications like facility management services or accounting management 
will need to be aware of the actual usage of the service. To this end, service level 
metrics shall be recorded upon each invocation of the IoT services that comprise the 
use case. 

In the Campus Guide application, users may start conversation and interchange 
messages and objects through their QR codes using their mobile devices. While the 
rooms and classes are rather static objects, and their data is not too dynamic, the 
users’ locations are. Therefore it might be of interest to set up queries that monitor 
the presence of other students in the same location, or around the same room. Here, 
the previously described location monitoring queries could be applied to some extent. 
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Nevertheless, other simple considerations could be taken to define the valuation 
functions. For example, students not taking a course at the present time, have a 
utility value of zero as they are not potential participants in a discussion. In general 
the following metrics can be of use in this case: 

 Bandwidth: the bandwidth (i.e. bytes/sec) consumed/associated with the data 
volume streamed by a virtual sensor i.e. the rate of data streaming.  

 Time of the Usage Session: Virtual sensors can be used in the scope of 
application sessions. The usage of sensors in this use case might be directly 
associated to the conversation or discussion in the smart campus.  

 Virtual Sensor Location: The location of a virtual sensor is a key parameter 
in this use case, considering that proximity between participants, e.g. in the 
boundaries of a room. ICOs in a distant location may have no value at all for a 
user.  

For the Silver Angel use case, we can take as example the smart meeting scenario 
(Figure 9), as it considers many of the query requirements and privacy concerns 
discussed in Section 5.  

 

 

As it is described in Deliverable 6.3.1, in this scenario a meeting can be proposed by 
finding a place that meets certain criteria, which could include: 

 People (few/many/ignored) 

 Noise (low/high/ignored) 

 Pollen levels (low or ignored) 

 Air quality, etc. 

In this case the community sensing approach we described can be a basis for 
defining the utility functions. Queries may include for instance requesting the current 
noise levels in a location, or the pollen levels in a limited region. According to these 
criteria, one or several sensors could be chosen, in such way that the overall benefit 
is obtained. More precisely we can enumerate some of the metrics to consider: 

 Location: this is again a key parameter. Only those sensors in the location, 
region or boundaries of the meeting is relevant to the query and the value of 
other participant sensors in negligible in terms of utility.  

Figure 9: Silver Angel smart meeting scenario. 
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 Accuracy: Depending on the accuracy of the sensor observations (e.g. 
accuracy of the air quality monitor) a particular sensor may have less value to 
the target query. 

 Trustworthiness: The data for certain observations may be overlapping when 
two or more sensors provide it for the same area. However, sensors deployed 
by a trustworthy source may be weighted more than, for instance a home-
made sensor provided by an anonymous citizen. 

 Privacy: For instance a user providing noise levels using her smartphone will 
be concerned if the values provided allow in some way that her position is 
disclosed. Cost functions associated can be raised using the privacy as a 
parameter, in order to make it more expensive to get results from a particular 
participant in every time period.  

 Acquisition rate: even if a sensor is able to provide the expected 
measurements at the requested location, the rate at which the data is 
gathered is another important metric. If air quality levels are measured every 
week, or every hour of the day, makes a difference at the time of taking 
decisions. This can also be added to the utility function in question. 

 

6.3 Utility Metrics for the OpenIoT Digital Agriculture Phenonet Use 
Case 

The Digital Agriculture – Phenonet – implemented by CSIRO in the course of WP6 
could make use of some of the utility metrics described in previous chapters. 
'Phenonet' describes the network of wireless sensor nodes collecting information 
over a field of experimental crops. The term “Phenomics” describes the study of how 
the genetic makeup of an organism determines its appearance, function, growth and 
performance. Plant phenomics is a cross-disciplinary approach, studying the 
connection from cell to leaf to whole plant and from crop to canopy (CSIROa 2013).  

Analysing the size, growth and performance of plants in a greenhouse or field site 
can be time-consuming and laborious. More specifically, when a field site is located 
in a remote area, it becomes quite expensive to send people out to the field. The 
ability to collect this information from remote locations and send it back to the 
laboratory in real time is an invaluable tool for plant scientists (CSIROa 2013, 
CSIROb 2013). 

CSIRO has developed smart wireless sensors nodes that work autonomously and 
independently cooperating with each other to set up an ad hoc network to record 
environmental conditions and wirelessly transfer data to a data store. 

The Phenonet project is supported by a production system with commercial quality 
grade software and unit tests developed for researchers in CSIRO and government 
organizations in Australia. Phenonet platform is currently being used on a daily basis 
and enjoys high level of uptime and very stable code. The high-level architecture of 
Phenonet project is depicted in Figure 10 and consists of five stages. 
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Figure 10: Phenonet Architecture based on OpenIoT platform 

 Field: The field is an experimental plot comprising different types of crops 
varieties. Wireless sensors are installed in the experimental plots that 
measure various environmental features such as soil temperature, crop 
canopy temperature, humidity, wind speed etc. Using this information, the 
crops growth, performance, size, etc. are continuous sensed/computed in real-
time.  

 Data Store: Data Storage highlights the need to have all captured data and 
information about the data (metadata), to be stored in a safe location. At 
storage state, we are targeting both sensor measurements and metadata 
information. Examples of metadata information include; sensor types, serial 
numbers, MAC address, experimental treatment, crop sowing date, genotype, 
replicate number etc. Each sensor stream is identified using a globally unique 
identifier (GUID). This layer in current Phenonet relies on python scripts to 
upload data into the system. 

 OpenIoT middleware to enable Data Analysis: Is the brain behind all the 
calculations, data modelling, data cleansing and linear aggregation models 
used by Phenonet project. This component directly contacts Data Store layer 
when it requires data from a particular stream. Internally, Data Analysis 
component also performs extensive caching and applies proprietary 
algorithms and mechanisms to ensure a highly responsive interaction with the 
system is maintained at all times. Data Analysis component is accessible 
through HTTP RESTful API. The response to any request received by this 
component is in format of JSON object. This layer is developed in Scala. 

 OpenIoT Service Composition using HTML5 Visualization: This 
component is responsible to generate RESTful network requests and send 
them to data analysis component. The response is then rendered by the 
frontend and appropriate visualization components. This layer is written in 
CoffeeScript and uses HTML5 for rendering and visualization. 
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 End user: Ranges from a plant biologist to a farmer. The system also 
provides tools and mechanisms to share data analysis and visualizations with 
other group of users.  

 

For such a complex system as Phenonet potentially a large number of utility metrics 
can be used. However, we identify and focus on the following important metrics: 

 Data quality: Sensors deployed in the field are continuously producing data 
streams. GRDC, Australia plants 1 million 10m2 plots every year, and each 
plot produces about 50,000 data points every week. Given the economy of 
scale we are potentially looking at big data. However, only a fraction of that 
data constitutes what is called “golden data points”. Therefore, it is crucially 
important to define data quality utility metric and have a reliable way of 
computing it. 

 Data Capture (Cost of data collection and maintenance): The Phenonet 
infrastructure consists of a large number of sensors and weather stations 
deployed in the field. Some of the sensors are wireless and require regular 
replacement of batteries. All of the sensors also require regular calibration. 
These all carry some costs that need to be computed and considered when 
taking into account the data capture cost. 

 Cost of data analytics models: The Phenonet data needs to be processed, 
validated, analysed. Different types of processing require different degrees of 
complexity which can be described by the utility metrics. 

 Return on investment (RoI): In order to encourage farmers to invest in the 
Phenonet infrastructure and share the data for the common good as well as a 
viable and attractive incentive, the RoI metric should be a convincing 
motivation for investing into the Phenonet infrastructure. 
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7 IOT BILLING BASED ON OPENIOT UTILITY METRICS 

7.1 Overview 

In this section we describe a simple pay-as-you-go framework that can be integrated 
(as an add-on module) to the OpenIoT platform. A main characteristic of the 
framework is that it uses utility metrics and functions of the OpenIoT ontology 
(described in deliverable D3.1) in order to implement the ever important billing 
functionality. Though simple, this framework is among the very few efforts towards 
implementing practical billing schemes for IoT. The framework includes three 
different sets of data and related data structures:  

(a) User information data 
(b) OpenIoT usage data, which are derived from the OpenIoT platform (and its 

ontology) via a REST Web Service and  
(c) Customer invoice and billing data, which are essential elements of the billing 

functionality.  

In the sequel we present the main data structures used to store and process the 
corresponding data as long as the data flow between the Service Delivery 
Management module and the Utility Management module. 

 

7.2 Data Structures 

7.2.1 User information data 

Figure 11 shows the data structures used to store the user information data, and the 
corresponding relations between them. Each new user in the system triggers the 
generation of a new BaseUser object class. Each object instance is tied to a single 
row in a database table. The creation of a new object corresponds to the addition of a 
new row upon save, or the update of an existing row upon update.  The class fields 
are as follows: 

 id : The unique user identifier. It corresponds to the database table primary 
key. 

 createDatetime : The creation time of the user. That corresponds to the time 
the user was inserted to the database. 

 failedAttemps : The number of failed login attempts. After a number of failed 
attempts that are defined by the system administrator, the user is locked and 
should be unlocked by the administrator. 

 lastLogin : The time the last login of the user occurred. 

 lastStatusChange : The time the last status change of the user occurred. 

 password : The user password. 

 userName : The user name. That corresponds to a valid email.  

 firstName : The user first name. 

 lastName : the user last name. 

 baseEntity : BaseEntity class object. It is used to identify the user as a 
customer or an administrator.\ 
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 currency : Currency class object. The implementation supports a multi-
currency system. It is used to identify the user choice of currency. 

 status : GenericStatus class object. It is used to identify the user’s activity 
status. The possible values are: (a) Active user; (b) Inactive user; (c) Locked 
user. 

 language: Language class object. The implementation supports a multi-
language system. It is used to identify the user choice of language.  

 

 

 

Figure 11: User Information Data Structures (part of the OpenIoT Add-on Billing 
Framework) 

 

For customers of IoT services, we use additional fields to store customer only related 
data. The class fields are as follows: 

 id: the user last name. The unique user identifier. It corresponds to the 
database table primary key. 

 creditLimit : The customer credit limit, that is set by the system administrator. 

 dueDateValue : The due date of the customer’s current payment instalment. 

 dynamicBalance :  The customer’s current balance. It is updated each time the 
customer orders a new service or makes a new payment. 

 baseUser : BaseUser class object. That is used to link the customer object 
with the corresponding BaseUser object.    

 

7.2.2 OpenIoT usage data 

The OpenIoT usage data are handled with the use of three related classes. Those 
are the “OpenIoTApplication” class, the “OpenIoTService” class and the 
“OpenIoTSensor” class. The three classes are presented in Figure 12. Each user 
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request is server by an OpenIoT application. In order to fulfil the user request, 
multiple OpenIoT services may be needed, therefore an OpenIoT application may 
comprise of multiple OpenIoT services. Finally, OpenIoT service may gather data 
from multiple OpenIoT sensors. Following, we will describe the three classe’s fields. 

The “OpenIoTApplication” class fields are as follows: 

 applicationId : The application Id that is the primary key in the database table. 

 requestDatetime : The application request time by the customer. 

 applicationCost : The total cost of the application. This is calculated after the 
choice of the billing scheme is applied. 

 status : It describes the order status to which the IoT application corresponds 
to. The possible values are: (a) New order; (b) Order invoice created; (c) Order 
completed; and (d) Order cancelled.  

 baseUser : BaseUser class object. This is the object of the user that requested 
the IoTApplication. 

 billingScheme : BaseEntity class object. This is the object that has the 
description of the billing scheme. The billing scheme will be applied during the 
application cost calculation.  

 

The “OpenIoTService” class fields are as follows: 

 serviceDesc : The service description that is the primary key in the database 
table. 

 dataVolume : The total volume of data used by the service, in order to 
accommodate the application’s request. 

 dataType : The type of data measured in the dataVolume field. That can be 
time usage or volume usage. 

The OpenIoTSensor class fields are as follows: 

 sensorId and serviceDesc : The sensor Id and the service description, 
comprise of a composite primary key. They identify the sensor and service the 
data correspond to. 

 sensorWeight : The sensor weight that identifies the importance of the data 
provided by the sensor. That is taken into account during billing. 

 BillingSchemeCost: The Cost per billing Scheme 

 



Deliverable 4.2.2 – Doc. Id.: OpenIoT-D422-140105-Draft   

Copyright  2013 OpenIoT Consortium  35 

 

Figure 12: OpenIoT Usage/Utility Data  

7.2.3 Customer invoice and billing data 

Customer invoice follows the information recorded at “OpenIoTApplication”. Each 
“OpenIoTApplication” request corresponds to a single invoice line. All invoice lines 
corresponding to a single customer request will form an invoice. Each customer will 
have multiple invoice lines, each one corresponding to a single request. Each invoice 
line information is stored in an “InvoiceLine” class object, while each invoice 
information is stored in an Invoice class object. Both classes are presented in Figure 
13. 
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Figure 13: Invoice and Billing Data of the OpenIoT Billing Framework 

 

The InvoiceLine class fields are as follows: 

 id : The invoice line id that is the primary key in the database table. 

 openIoTApplication : The OpenIoTApplication usage corresponding to the 
invoice line. 

 invoice : Invoice class object. The invoice to which the invoice line 
corresponds to. 

 The Invoice class fields are as follows: 

 id : The invoice id that is the primary key in the database table. 

 Balance : The invoice balance. It corresponds to the total cost of the invoice. 
When a payment of the invoice is performed the balance is decreased by the 
amount paid. 

 createDatetime : The date and time the invoice was created. 

 dueDate : The date and time until which the customer should pay the invoice. 

 lastReminder : The date and time the last reminder for the payment was send 
to the customer. 

 status : The status of the invoice. Possible values are: (a) Invoice created; 
(b)Invoice cancelled; (c) Payment successful; (d) Payment failed; and (e)Party 
paid. 
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 customer :  Customer class object. The customer to which the invoice 
corresponds to. 

In order to process payments, each invoice corresponds to a single payment invoice. 
The customer will be presented with all the pending payment invoices, and he will 
choose with which ones to proceed. The chosen ones will be handled as a single 
payment comprising of the chosen payment lines. Each payment invoice information 
is stored in a PaymentInvoice class object, while each payment information is stored 
in a Payment class object. Both classes are presented in Figure 14.   

 

 

Figure 14 Customer payment data structures 

 

 

The PaymentInvoice class fields are as follows: 

 id : The payment invoice id that is the primary key in the database table. 

 amount : The amount corresponding to the payment invoice. 

 createDatetime : The date and time the payment invoice was created. 

 invoice : Invoice class object. The invoice to which the payment invoice 
corresponds to. 

 payment : Payment class object. The payment which the payment invoice is 
part of.    

 

The Payment class fields are as follows: 
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 id : The payment invoice id that is the primary key in the database table. 

 amount : The total amount corresponding to the payment. 

 balance : The payment balance. That is used in case the customer does not 
pay the total amount; therefore balance represents the outstanding amount. 

 baseEntity : BaseEntity class object. It stores the payment method. The 
available methods are: (a) Payment by credit card; (b) Payment by bank 
transfer; and (c) Payment by Paypal. 

 paymentDate : The date and time of the payment. 

 status : GenericStatus class object. The possible values are: (a) Payment 
successful; (b) Payment failed; and (c) Party paid. 

 customer : Customer class object. The customer related to the payment. 

 

The customer invoice and billing data schema is shown in Figure 15. 

 

Figure 15 Customer invoice and billing data schema 

 

7.3 Utility Metering Process 

Metering is performed in the Service Delivery & Utility Management module. The 
module enables data retrieval from the selected sensors comprising the OpenIoT 
service, and maintains and retrieves information structures regarding service usage. 
When a service is requested, the module performs the following steps: 

 Delivers the requested service 
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 Access and process data streams from the cloud, following processing 
instructions specified during the request 

 Keep track of utility parameters associated with the request, like the time 
usage of the service, the transmitted data volume and number and type of 
sensors used. 

 Encapsulate this info to the “AppUsageReport” document (shown in Figure 16) 
and forward it to the Utility Management module. 

 

 

Figure 16 App Usage Report Object 

 

The Utility Management system reads all the info provided by the pay-as-you go 
framework in the Database. An administrator is needed to assign billing scheme to 
an OpenIoT User and after that the utility calculates according to the billing scheme 
the price per invoice-line and bills the user. The user can login and download in pdf 
his invoice and see per “OpenIotApplication” the sensors the he have used and billed 
for. 

 

7.4 Scenarios Validation  

In this section we present the application of three billing schemes in the pay-as-you-
go framework. The billing schemes examined is the following:  

a) flat-rate scheme 
b) time-based scheme and 
c) volume-based scheme. 

The application of the flat-rate scheme is the simplest of all, since it is calculated on 
the basis of a fixed tariff for a specified amount of time (i.e per month, per annum, 
etc.). In order to calculate billing with the use of that scheme, we do not really need 
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any utility metrics, since the customer will be changed with the flat-rate amount. The 
only validation we would need to perform would be to verify that the customer paid 
the corresponding instalment for the service. 

In order to apply the time-based or volume-based scheme, we use the recorded 
dataVolume per service, as shown in Figure 16 & Figure 17. In case we use a time-
based scheme the measurement base unit will be time (i.e seconds), while if we use 
a volume-based scheme the measurement base unit will be the volume of date (i.e 
Megabytes). In order to calculate the total cost of the customer request, we gather all 
the application requests. For each application, we add the time or data-volume used 
per service, and calculate the total time or data volume used by the application. The 
customer is billed based on the time or data volume used by all the applications he 
requested, in combination with the service change per time unit or data-volume unit. 
Additionally, we can also apply the weight of each sensor in the service usage, which 
is also recorded in the system. That will provide more accurate usage calculation per 
sensor per service, and accordingly more accurate billing.  

 

 

 

Figure 17 Billing Scheme Assignment class structure 

 



Deliverable 4.2.2 – Doc. Id.: OpenIoT-D422-140105-Draft   

Copyright  2013 OpenIoT Consortium  41 

8 CONCLUSIONS  

This deliverable has specified a set of utility metrics that will be recorded and 
processed in the scope of the OpenIoT platform implementation. These involve 
metrics pertaining to physical devices (e.g., the quality of a sensor, the energy 
consumption of a wireless sensor, the bandwidth of the sensors, the data volume 
produced and/or consumed by a given sensor, the type of the sensor, the location of 
the sensor), as well as metrics pertaining to virtual sensors (which lack properties 
that pertain to the physical characteristics of the sensor). Furthermore, the 
deliverable has outlined several schemes (e.g., volume based, time based, SLA 
based) that take advantage of metrics for individual sensors in order to build metrics 
meaningful for wider IoT applications and services. In this context some concrete 
examples of utility calculation associated with the manufacturing use case of the 
project have been given. 

Overall the utility metrics identified in this deliverable can give rise to the 
implementation of several metering, accounting and billing schemes. These may 
include schemes that have already been proposed in literature (along with their 
variations), but possible also additional schemes that could be introduced in 
response to specific application requirements. Moreover, the utility metrics that are 
specified in this document provide the basis to the implementation of a range of 
utilitarian optimization techniques (WP5), which attempt to optimize specific 
metrics during the course of the operation of multiple IoT services within the OpenIoT 
platform. As a result, the OpenIoT platforms should not be confined to keeping track 
of a subset of metrics that are relevant to the proof-of-concept implementation of the 
OpenIoT platform and use cases. Rather, it should record and keep track of the full 
range of sensor utility metrics that are specified in this document. By recording these 
metrics, the OpenIoT platform will allow integrators and services providers to 
implement metering and billing schemes of their choice. These schemes will be 
applicable to the service and applications levels. 

In this document, we have also detailed how these metrics can be used to 
formulate utility functions that encompass different query requirements from users 
and applications, while constraint to a certain budget. Beyond the state of the art in 
this area, we have shown how this can be done even for very heterogeneous 
requests form the users, and we have shown specific optimization techniques, 
targeting the selection of only the most relevant sensors from the complete set of 
available ICOs.  

Note that the recording of the various utility metrics are in the process of being 
implemented at the Utility Manager module of the OpenIoT platform. This module 
stores, updates and manages the various metrics associated with the various 
sensors, while providing the means for combining them towards service-level utility 
calculation. Specifically, we have described how a utility-based optimization 
approach has been designed for the OpenIoT architecture, such that it is able to 
efficiently use subsets of the available virtual sensors exposed by X-GSN. As a 
result, X-GSN at the local scheduling level can actively activate and deactivate 
sensors, if they contribute or not to the overall social welfare. This optimization 
scheme has been detailed in Deliverable D5.1.2 in detail. Historical information 
associated with the various metrics should be also maintained, since this can be 
required by some schemes, while also being useful for monitoring purposes. 
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Finally, we have described a simple pay-as-you-go framework that can be 
integrated to the OpenIoT platform. A main characteristic of the framework is that it 
uses utility metrics and functions of the OpenIoT ontology. 
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