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The  force  (F)  and  the  power  consumption  (P)  of  a magnetic  actuator  are  modeled,  measured  and  optimized
in the  context  of developing  micro-actuators  for  large  arrays,  such as  in portable  tactile  displays  for  the
visually  impaired.  We  present  a novel  analytical  approach  complemented  with  finite element  simulation
(FEM)  and  experiment  validation,  showing  that the  optimization  process  can  be  performed  considering
a  single  figure  of  merit  F/

√
P. The magnetic  actuator  is  a  disc-shaped  permanent  magnet  displaced  by

planar  microcoil.  Numerous  design  parameters  are  evaluated,  including  the  width  and  separation  of  the
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lanar coil
ermanent magnet
agnetic actuator

ower consumption
actile display
aptic technology

coil  traces,  the  trace  thickness,  number  of turns  and  the  maximum  and  minimum  radius  of  the  coil.
We  obtained  experimental  values  of  F/

√
P ranging  from  2 to 12 mN/

√
W  using  up  to  2-layer  coils  of

both  microfabricated  and commercial  printed  circuit  board  (PCB)  technologies.  This  performance  can  be
further improved  by a factor  of two by adopting  a 6-layer  technology.  The  method  can  be applied  to  a
wide  range  of electromagnetic  actuators.
. Introduction

Electromagnetic-based microactuators combine both high non-
ontact forces and large actuation strokes [1]. By using permanent
agnets, high energy densities can be achieved. Such devices have

een demonstrated for a wide range of applications, including lab-
n-a-chip valves arrays [2], micromirrors arrays [3] and tactile
isplays [4,5]. While much research has focused on single microde-
ices or small arrays of magnetic actuators, electromagnetic (EM)
ctuation scales well to very large arrays of microdevices by using
rrays of microfabricated planar coils driving arrays of small per-
anent magnets.
Haptic interfaces are central to assistive devices for blind and
isually impaired people. Tactile displays generally consist of an
rray of independent vertical actuators, called taxels (the haptic
ounterparts of pixels). Several psychophysics strategies have been
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explored to provide graphical information through tactile displays,
using static stimuli (shapes), vibrational stimuli (textures), or both
[6,7]. Meanwhile, advances in the use of different actuation tech-
nologies in haptic devices have been recently reviewed [8,9],
including the use of piezoelectric, electromagnetic, pneumatic and
shape memory alloys. EM-based devices continue to be a promising
option due to their bandwidth, scaling and portability charac-
teristics. Several EM-based tactile display prototypes have been
reported using 3D wire-wound inductors or similar technologies
to attract or repel a small permanent magnet. The focus has been
on small arrays (less than 100 taxels) generating vibration stimuli
(from 20 to 200 Hz) rather than static taxel displacement [4,10,11].
For those dynamic devices, actuation forces of 13 mN  using 400 mW
power per taxel [4] and 9 mN at 100 mW per taxel [10] were
reported, with positive results on psychophysics tests. However, to
display maps or other complex graphical information, larger tactile
areas are needed (thousands of taxels, covering the area of a page).

Scaling up EM tactile displays to thousands of taxels and to
areas of order 20 cm × 20 cm adds important challenges for inte-
gration and power consumption. From an integration perspective,

going to thousands to taxels implies an array of planar coils, as
wire-wound solutions with high-permeability magnetic cores are
not manufacturable for such high taxels count. From a power con-
sumption and heat dissipation perspective for a portable device, the

https://core.ac.uk/display/148015021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.sna.2015.08.007
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sna.2015.08.007&domain=pdf
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Fig. 1. Schematic of the magnetic system. A permanent magnet is suspended by
an  elastomer film over a planar coil, being attracted or repulsed when a current is
8 J.J. Zárate et al. / Sensors an

verage power per taxel must be well below 100 mW.  The goal of
his paper is to provide a model to allow optimizing an EM taxel for
arge arrays of mm-scale taxels.

In the framework of the Blindpad project,2 we  are developing a
ablet-sized 3000 taxel portable tactile display. Pitch size has been
et in the range from 4 to 8 mm.  In 2004, Hale et al. recommended

 threshold pressure for stimuli in fingertips of 60 mN/cm2, regard-
ess the working taxel frequency [6]. However, more recent works
ave reported that the perception force threshold varies accord-

ng to working frequency, sensing area, and surface shape [12–16].
aking into account a pin diameter pin of 2.5 mm for our device,
he required force should be of 3 mN  or higher, or 10 mN for a
in with a 4 mm × 4 mm area. Considering a typical 100 Wh  laptop
attery and a proposed autonomy of 2.5 h, the available average
ower is 40 mW/taxel. Power consumption can be also improved
y incorporating a latching system that holds both taxel states, up
nd down. In this case, the coil is actuated only for switching, and
here is no power consumption as long as the displayed image is
ot refreshed. Both force and power consumptions are key design
rivers, as is scalability and integration aspects.

Analytical models to optimize the performance of coils or mag-
ets for magnetic actuators with no presence of ferromagnetic
aterials are available in literature [5,17–19]. If the actuator does

nclude a ferromagnetic material, the optimization could be bet-
er performed by using iterative algorithms like genetic algorithms
20,21]. These systems are much more complex to solved because
f the non-linearity of the equations. However, none of the referred
orks present a simultaneous optimization of the power consump-

ion and the magnetic force generated by a planar coil on a movable
ermanent magnet. For example, Fuestel et al. presented in [17] a
olynomial analysis of the magnetic force as function of some of
he design parameters, but using a fixed value of power. Kruuss-
ng presented in [19,22] a study focused on the magnetic domains
rientation and its influence in the force calculation, but without
xtending the analysis to the influence of the applied power.

Given our goal of a portable large-area tactile display based on
M microactuator, here we present the optimization of a magnetic
icroactuator, consisting of a planar microcoil and a magnetic disc

uspended over the center of the coil, with no other magnetic ele-
ents. The taxel that is modeled was designed to be readily scalable

o large arrays. A novel analytical approach was implemented, com-
lemented with finite element simulation (FEM) and experimental
tudies. The influence of all key design parameters is analyzed in
erms of force and power, comparing: analytical calculations, FEM
imulations and measurements. Planar coils were fabricated in dif-
erent designs using two fabrication technologies, and the magnetic
orce and power consumption were measured and compared with
ur model.

As a result of this analysis, a planar coil design is proposed to
chieve the taxel requirements for a large array. The method can
e applied to a wide range of electromagnetic actuators involv-

ng permanent magnets and planar coils, whenever a reduction
f the power consumption is required, e.g. valves arrays [2] and
icromirrors arrays [3].

. Magnetic system modeling

The vertical actuator considered in this work consists of a disc-

haped permanent magnet bonded to an elastomer membrane
nd centered over a planar coil, as represented schematically in
ig. 1. When an electrical current is applied, the magnet is verti-
ally attracted or repulsed due to the interaction with the induced

2 https://www.blindpad.eu
passed through the coil. The parameters under analysis are indicated in the diagram:
the magnet radius Rm and height h, the coil external dimensions amed and �a and
the  individual trace width w, separation s and thickness t.

magnetic field. In this case it is possible to describe the system
behavior by separately modeling the magnetic interaction between
the magnet and the coil on one hand, and the elastic deformation
of the elastomer membrane on the other.

The focus of the model presented in this section is to provide an
analytical tool to precisely estimate the magnetic force F between
the magnet and the coil and the power consumption P. Given the
size of the magnet, this model can be used to design the coil that
maximize the actuator performance tacking into consideration the
figure of merit F/

√
P. As pointed out later on, this ratio is indepen-

dent of the electrical current and it allows to compare and optimize
different coil designs. Being the actuation force and power the more
challenging taxel constrains, the restoring force and the deflection
of the membrane can be then tuned to a desired value by choosing
the diameter, thickness and elastic properties of the elastomer [18].

Let us consider a permanent magnet of magnetization M and
volume V, and a differential volume inside it with magnetic moment
m = M dV.  The force f acting on M due to an external magnetic field
B can be expressed as [23],

f = (m · ∇)B = ∇(m · B) (1)

The second form of Eq. (1) is valid for regions where ∇ × B = 0,
i.e. no electrical currents or time-dependent electrical fields are
present, which is the case inside the magnetic volume. The total
magnetic force is obtained by integrating Eq. (1) over the magnet
volume,

Fi =
∑

V

fi =
∫

V

∂i (M · B(r)) dV (2)

where I depends on the chosen coordinates system. Now using
the divergence theorem, Eq. (2) can be transformed into a surface
integral,

Fi =
∮

S

(M · B(r))(î · n̂) dS. (3)

The permanent magnet we consider is homogeneously and ver-
tically magnetized (M = Mẑ). Then by symmetry, no lateral force
is expected if the magnet is located concentric with the planar
coil. Only the vertical component of the force remains and can be
calculated from Eq. (3),[∫ ∫ ]

Fz = M

top

Bz(r)dS −
bottom

Bz(r)dS (4)

with the two surface integrals calculated over the top and bottom
surfaces of permanent magnet.

https://www.blindpad.eu
https://www.blindpad.eu
https://www.blindpad.eu
https://www.blindpad.eu
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Table 1
Summary of fabricated coils used in this work. The first eight rows correspond to
microfabricated coils, while the last one is based on PCB technology.

Name N m = w/(w + s) �a [�m]  Rtot [�]
±9% (nominal) ±1%

�Fab-A 23 0.63 715 96
�Fab-B 20 0.54 725 89
�Fab-C 14 0.38 725 87
�Fab-D 28 0.38 1425 157
�Fab-E 20 0.38 1025 104
�Fab-F 24 0.38 1225 128

sputtered to insulate the first metal layer. After performing the
second photolithography, the via holes were opened into the SiO2
by buffered oxide etch (BOE). The second layer of aluminum was
deposited via sputtering and defined by dry etching. In Fig. 2, we
J.J. Zárate et al. / Sensors an

The magnetic field in a certain point r can be calculated by
umming up the contribution of each j-turn of the coil,

z(r) =
N∑

j=1

Bzj(I, aj, r) (5)

here I is the current flowing through each of them. A simplifica-
ion in the computation of the magnetic field is to consider each
piral turn as concentric one-dimensional conductive ring. In this
ase aj corresponds to the average radius.

Finally, the vertical component of magnetic field generated by
ne circular ring can be analytically calculated [19]:

zj(I, aj, r) = �0I

2aj

⎡
⎣E(k�̃,z̃) 1− �̃2−z̃2

(1− �̃)2+z̃2
+ K(k�̃,z̃)

�
√

(1 + �̃)2 + (z̃)2

⎤
⎦ (6)

here the position vector r = � �̂ + zẑ has been expressed in the
ormalized polar coordinates �̃ = �/aj and z̃ = z/aj . The functions
(k�̃,z̃) and K(k�̃,z̃) are elliptical integrals of,

�̃,z̃ =
√

4 �̃

(1 + �̃)2 + z̃2
. (7)

The applied electrical power can be calculated directly by know-
ng the electrical resistance of the coil,

 = R0I2 = 2��0amedN

wt
I2 (8)

here �0 is the electrical conductivity of the coil trace, amed the
verage radius of the N turns and (wt) is the cross section area of
he trace (Fig. 1).

If the applied power is high enough, heating will cause the coil
o increase its resistance. This effect can be considered in the power
alculation by including the thermal factor,

 = P0(1 + ˛�T) (9)

here P0 is the non-thermal dependent power calculated in Eq.
8) and  ̨ is the linear temperature coefficient of electrical resisti-
ity. The temperature increase (�T) can be expressed as the ratio
etween the average incoming power (P̄) and the thermal con-
uctance of the coil with the surroundings (G). In the case of a

atching actuation, the current is turned on only for a small frac-
ion of the time. This fraction is given by the relation between the
witching time (�s) and the average refresh time (�r). The average
ower is then calculated as P̄ = P �s/�r . For continuous current (CC)
peration the particular case �s = �r applies. The previous thermal
onsiderations can be included in Eq. (9) as,

 = P0

(
1

1 − P̄0 ˛/G

)
(10)

here P̄0 = P0 �s/�r is the non-thermal dependent average power.
he factor in parentheses in Eq. (10) approaches 1 for P̄0 � G/˛,
nd the power calculation of Eq. (8) is recovered. The ratio G/  ̨ has
nits of Watts and expresses from which value of average power the
hermal dependence of resistivity needs to be taken into account.
s discussed in Section 4.6, the values of average power per taxel
onsidered for our portable application are small enough to neglect
his correction.

The force depends linearly on the current (Eqs. (4)–(6)); while
he power increases quadratically with the applied current (Eq. (8)).
ince F ∝ I and P ∝ I2, the figure of merit F/

√
P allows analyzing and
omparing different actuator configurations independently of the
pplied current, which can be set later to reach the desired force.

Magnetic force and electrical power calculations were imple-
ented using a C routine and the GSL library for the elliptical
�Fab-G 8 0.38 425 46
�Fab-A-2L 2 × 23 0.63 425 230
PCB-2L  2 × 4 0.50 1350 0.2

integrals [24]. Finite Element Simulations (FEM) were used as a first
validation of the analytical model, using the commercial software
Comsol Multiphysics. In view of the symmetry of the system, the 2D
axisymmetric configuration was  used, assuming an homogeneous
vertical magnetization in the magnet region and constant current
distribution over the turns path.

3. Coil fabrication and experimental setup

In order to experimentally validate the analytical model, we fab-
ricated several designs of planar microcoils. The generic structure of
the coil consists of a multi-turn, with one or two level metal layer
spiral. The parameters w and s vary from 10 �m to 50 �m while
the ratio amin/amax varies between 300/1700 �m and 800/1200 �m
(i.e. N varies from 8 to 35). The analyzed designs are summarized
in Table 1.

The coils were fabricated on a standard 〈100〉 p-type silicon
wafer with a 1 �m thick thermal oxide. As first process step, a
2 �m of 99.99% aluminum layer was sputtered, followed by the
first photolithography. The bottom electrode or the first coil level
was defined via SiCl4/Ar/N2 inductive coupled plasma reactive ion
etching (ICP RIE) [25]. A 2 �m thick silicon oxide layer was then
Fig. 2. Images of the fabricated coils and the experimental setup. (a) Optical image
of  the microfabricated die with different planar coil designs. (b) SEM image of one
microfabricated coil, the result of the double layer process can be observed. (c)
Top view of a 3 × 3 array of the same actuators, implemented in a commercial PCB
technology. (d) Experimental setup for the force-displacement measurements.
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Fig. 4. Measured and computed figure of merit F/
√

P as a function of the magnet
distance d, for the sample PCB-2L. As in Fig. 3, the agreement between the experi-
mental, analytical and FEM simulation results are excellent. Inset: Measured F vs I
0 J.J. Zárate et al. / Sensors an

eport an optical image of a die with the different coil designs
Fig. 2a) and a SEM micrograph of a coil detail at the end of the
abrication process (Fig. 2b).

In order to test the system in an array, we produced also a 3 × 3
rray of coils with the same design. For this configuration we used
tandard printed circuit board technology (PCB) with wider w and

 dimensions (Fig. 2c). A 2-layer PCB technology was chosen, with
5 �m thick Cu layers separated by 1 mm.

The planar coils were experimentally tested to obtain values
f magnetic force and power dissipation as function of the design
arameters. The electrical characteristics of the conductors were
easured using a manual probe station Karl Süss PM5  and a semi-

onductor parameter analyzer Agilent 4155 with a 4-point probes
ethod. The I–V curves were acquired by sweeping the current

etween −0.1 A and +0.1 A while recording the voltage. An aver-
ge value of electrical resistivity �Al = (3.3 ± 0.1) × 10−8 �m was
btained for the aluminum coil traces.

The interaction force measurement setup is presented in
ig. 2d. A magnetic disc (Rm = 2 mm,  h = 1 mm,  N48 grade and
r = 1.37–1.42 T, from Supermagnete)  was attached to the probe of

 pull shear tester Condor EZ from XYZTEC. A power supply E3631 A
rom Agilent was  used to bias the coils. The force was recorded con-
inuously while approaching the magnet to the coil from a distance
f 1 mm to 0.1 mm.

. Results and discussion

We  first evaluated the force dependence on the magnet–coil
istance. The inset in Fig. 3 shows the experimental data of F vs d
or three different values of current on the representative sample
Fab-F. As expected, the interaction force increases as the magnet
ets closer to the coil and if the applied current is increased. To com-
are this experimental results with the analytical model and the
EM simulations, the force data are normalized by the squared root
f the applied power and plotted in Fig. 3. The three experimental
roups of data (I = 50, 100 and 150 mA)  collapse on the same curve
nd agree very well with the analytical curve and FEM simulations.

The F/
√

P information in Fig. 3 is significant because allows
alculating the generated force at any applied power. For exam-√ √

le, with the obtained value F/ P = 2.3 mN/ W (i.e. d = 0.2 mm in
ig. 3), the system can provide a force of 2.3 mN  at 1 W;  or 0.7 mN at
.1 W and so forth. The current to drive the coil at the desired power
an be calculated by knowing the resistance, using I =

√
P/R.

ig. 3. Measured and computed figure of merit F/
√

P as a function of the magnet
istance d, for the sample �Fab-F. All the measured points collapse to a single curve,

n  excellent agreement with the analytical curve and FEM simulations points. Inset:
easured values of F as function of the magnetic distance d, for values of applied

urrent I = 50, 100 and 150 mA.
for  values of d = 0.2, 0.4, 0.6, 0.8 and 1 mm.  The slope of each curves is used to obtain
the  experimental value of F/

√
P.

In subsequent analyses and in order to obtain accurate experi-
mental results of F/

√
P, the linear fit F = a · I has been used (inset in

Fig. 4). The slopes a are multiplied by 1/
√

R to calculate the exper-
imental points of F/

√
P in the main graph of Fig. 4. In this graph,

both attractive and repulsive forces were studied by switching the
current direction.

In the following subsections the optimization process is
described. First the magnet dimensions and magnetization val-
ues are analyzed. Then the coil design parameters are examined.
The parameters w and s are analyzed taking into consideration the
metallization ratio m = w/(w + s), and studied together with the
number of turns N. Finally the influence of the coil external dimen-
sions is investigated, in terms of amed, �a  and t. In all the cases
the actuator performance is evaluated in terms of F/

√
P, compar-

ing the experimental results with the analytical model and FEM
simulations.

4.1. Magnet dimensions and magnetization

As expected from Eq. (2), the force increases with magnetiza-
tion value and with the magnet volume, if the coil is proportionally
scaled up. To be compatible with the minimum taxel dimension
(4 mm × 4 mm),  the magnet radius was fixed to Rm = 1 mm,  to allow
an annular space for the holder placement and the restoring mem-
brane deformation (Fig. 1). In the analysis the magnet height was
also fixed to h = 1 mm,  region where the magnetic field gradient ∇
B is stronger.

For higher force and energy density, neodymium permanent
magnets are generally selected because of their outstanding mag-
netic properties [26]. From a microfabrication and ease of assembly
perspective, the use of magnetic materials that can be directly
deposited in a batch fabrication process might be appealing. How-
ever, these materials have much lower permanent magnetization
and they hence are not considered in this work. For permanent
magnets the magnetization value m can be obtained from the
remanent field (Br) as M = Br/�0. However, this calculation of m is
accurate only when the magnet is in a closed ferromagnetic loop.
When this condition is not satisfied, the average magnetization
value can be lower due to demagnetization effects [27,28]. In view

of this, we used a value M = 0.9Br/�0 = 1.25 T/�0 for the analytical
model and FEM calculations, which agrees with similar previous
research [17].



J.J. Zárate et al. / Sensors and Actu

Fig. 5. Figure of merit F/
√

P as a function of the metallization ratio m,  for three
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ifferent values of magnet distance d. The experimental points correspond to three
ifferent microfabricated samples. Increasing m reduces the consumption of power
or  the same applied current, and therefore the device performance is improved.

.2. Metallization ratio and number of turns

The actuator performance improves with increasing metalliza-
ion ratio m,  keeping other parameters fixed, as plotted in Fig. 5. This
s due to the decrease of power consumption when the conductor
ross section is increased.

The figure of merit F/
√

P is roughly independent on the num-
er of turns N, as long as other parameters like �a, amed, m and t
emain constant. On one hand the coil-generated magnetic force
cales up with the product (N × I) in Eqs. (5) and (7). On the other
and, by replacing w = m�a/(N − 1) in Eq. (8), it can be shown that
he applied power approximately scales with (N × I)2.

.3. Coil lateral dimensions

The lateral dimensions of the coil can be fully defined by two
ariables: mean radius, amed, and total coil width, �a.  We  fixed
med = Rm since this optimizes the force for a given current, as the

ne-turn loop (with aj = Rm in Eq. (5)) has the higher contribution
o F/

√
P. Fig. 6 shows the dependence of F/

√
P against �a. On one

and, for low �a  values, the actuator performance is decreased
ecause of the higher current density. On the other hand, at high

ig. 6. Figure of merit F/
√

P as a function of the coil width �a, for three different
alues of magnet distance d. The experimental points correspond to four different
icrofabricated samples. For small values of �a, the current density is higher and

o the power consumption, too. In the opposite limit, sufficiently large values of �a
enerate a less effective magnetic field gradient, and therefore the force decreases.
ators A 234 (2015) 57–64 61

�a  values, a wider coil makes the increase of power consump-
tion higher than the improvement of the force. An optimal value
coil width was found to be around �a  � 1.2 mm.  Moreover, this
maximum is weakly dependent on the magnet distance d.

4.4. Coil thickness

By increasing the conductor thickness t (Eq. (8)), the power con-
sumption decreases, while the force remains the same, so the ratio
F/

√
P is enhanced. That is valid for t � d. When t becomes compa-

rable to d, the force depends on t and increasing the coil thickness
is not effective to improve the figure of merit. Anyhow, the maxi-
mum  conductor thickness is limited by the maximum aspect ratio
w/t possible for the coil fabrication technologies.

Multilayer techniques can be used, increasing the total coil vol-
ume  available while keeping reasonable fabrication aspect ratios
and resistance values. Different conductive thickness samples are
compared in Fig. 7. �Fab-A points correspond to microfabricated
samples with one and two  Al conductive layers, while the PCB-
2L point corresponds to the double Cu-layer coil implemented
in standard PCB technology. In order to compare these experi-
mental data with a several layer coil, we  plotted a third series
of analytical obtained points for a typical 6-layer PCB technol-
ogy with thicknesses of 25 �m and 50 �m for the metal and
the dielectric layers, respectively. In Fig. 7 one can see that the
F/

√
P figure of merit is greatly improved in the case of six layers,

almost a factor two  compared with the measured PCB sam-
ple.

4.5. Drive electronics considerations

Driving a single taxel in the lab is straightforward, but the
portability of the tactile display imposes constraints on the drive
electronic to push current through thousands of independent coils
while consuming less than 100 W and mass of under 1 kg. The
parameters N, w and s should be tuned to obtain a coil resistance
higher than Rlim, with the limit value Rlim � 1 � given by the con-
straint of scalable drive electronics. For lower resistance values
the drive electronics for an array of a thousand of coils become

much more challenging. The inductance L for all the coils con-
sidered in this work were in the range between 0.5 and 5 �H.
These inductive loads can become relevant in an AC operation,
such as a vibration stimuli. However for the proposed DC taxel

Fig. 7. Figure of merit F/
√

P as a function of the number of conductive layers. The
experimental results from samples �Fab-A, �Fab-A-2L and PCB-2L are plotted. The
analytical predictions for an up to 6-layer commercial PCB process are also included.
In  the PCB, 25 �m thick conductive layers are considered, isolated by 50 �m thick
dielectric layers.
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Table 3
Summary of optimization process carried out for the PCB-2L  sample and for the next
generation of 6-layer coil (see Fig. 7). The criteria of choice for each design parameter
are  pointed out, while the obtained results for both designs are showed at the four
finals rows. Note: ↑ = as big as possible; ⇓ = as small as possible.

PCB-2L  PCB-6L Optimization

Rm [mm]  1 1 ↑, taxel size
h  [mm]  1 1 Opt. to ∇B strong
Br [T] 1.25 1.25 ↑
d  [�m]  50 → 250 50 → 250 Taxel dynamic range
s  [�m] 150 150 ⇓
w  [�m] 150 150 ↑, R > Rlim

amed [mm]  1 1 Optimized, �Rm
�a  [mm]  0.9 1.2 Optimized
N  4 11 =1 + �a/(w + s)
Nlayers 2 6 Optimized
tcopper [�m] 2 × 35 6 × 25 ↑
tinsulator [�m] 1 × 1000 5 × 50 ⇓
F/

√
P [mN/

√
W] 12 23 Result, @d = 0.2 mm

R  [�] 0.2 5 Result
2 J.J. Zárate et al. / Sensors an

peration, considering L = 5 �H and an actuation ramp of 1 A/ms,
n induced voltage of 5 mV  is expected, which can easily be man-
ged.

.6. Thermal effects in the coil

The influence of Joule heating in the coils was considered. Ther-
al  conductivity G was obtained for the different designs by Comsol

imulations and analytical calculations. In Eq. (10), higher values of
 lead to lower thermal corrections. In all cases G was underesti-
ated to obtain the most conservative analysis by only considering

he thermal conduction through a heat sink below the coil. The
owest thermal conductivity was found for sample PCB-2L, with

 = 6 ×10−3 [W/K]. The values of G obtained for the other samples
ere 15 × 10−3 [W/K] for the 6-layers coil and ∼1 [W/K] the micro-

abricated samples.
For sample PCB-2L,  using the thermal resistivity of copper

 ̨ = 3.8 × 10−3 [1/K]), the ratio G/  ̨ is 1.6 [W]. For an average applied
ower of 40 mW,  the value P = 1.026P0 is obtained (Eq. (10)). This
mall difference was neglected and Eq. (8) was used for the calcu-
ation of the power, where P0 is simply proportional to I2.

.7. Interaction between magnets

The actuation force and power of each taxel can be calculated by
onsidering only the magnet–coil interaction. However, in an array,
he magnetic crosstalk between magnets could be high enough to
estabilize the array of taxels. As examples, two orientation con-
gurations were considered using arrays of 30 × 30 magnets: an
ll-north-up (↑↑↑) and an alternating (↑↓↑) arrangement. The mag-
etic field generated by each magnet on the array was  computed
s a dipole. We  validated this approximation by comparing the
agnetic field generated by a disc-shape magnet (calculated by

omsol FEM simulations) with the dipole magnetic field. At the
istance of the first neighbor, the difference between the FEM cal-
ulations and the dipole model was less than 6%. Three kinds of
nstability in the center of the array were study. (a) The central test

agnet was moved in the array plane (�x0) and the lateral force
as calculated (Fxct). (b) It was moved up (�z0) and the vertical

orce was computed (Fzct). (c) The test magnet was  rotated in its
riginal position (�	0) and the generated torque was computed
�yct).

The crosstalk calculations are reported in Table 2, for pitch sizes
f 4, 6 and 8 mm.  The negative sign in a force or a torque rep-
esents a restitutive interaction, while a positive sign means a
on-restitutive interaction. In all the cases the alternating configu-
ation reduces the absolute value of Fxct and Fzct by 35%, and �ct by
0%. Also, using the alternating array the two strongest crosstalk
nteractions, Fzct and �ct, become a restitutive force and torque
espectively. These two advantages make the alternating config-
ration the best choice in terms of magnetic crosstalk instability. A
caling behavior Pitch−n is observed for the calculated forces (n = 4)

able 2
agnetic crosstalk calculations for three different pitch sizes. The magnetic fields,

orces and torques were calculated under the approximation of dipole–dipole inter-
ctions. The negative sign in a force or a torque represents a restitutive interaction.
wo magnets orientation in the array were considered: an all-north-up (↑↑↑) and
n  alternating (↑↓↑) arrangement.

Pitch [mm]  (a) Fxct [mN] (b) Fzct [mN] (c) �ct [mN  mm]
�x0 = 0.2 mm �z0 = 0.2 mm �	0 = 10◦

↑↑↑ ↑↓↑ ↑↑↑ ↑↓↑ ↑↑↑ ↑↓↑
4 −4.4 2.9 8.7 −5.6 23 −7
6  −0.58 0.38 1.15 −0.74 6.8 −2.1
8  −0.14 0.09 0.27 −0.18 2.9 −0.9
I(1 W) [A] 2.2 0.44 Result
I(40 mW)  [A] 0.45 0.09 Result

and torque (n = 3). This dependence with the separation between
magnets is expected from a dipole–dipole interaction. Finally it can
be observed that for a pitch size of 4 mm the crosstalk interactions
are of the same order of the actuation forces required for finger
stimulation (Section 1). However if the pitch size is increased to
6 mm,  the magnetic crosstalk is rapidly reduced by a factor of 1/8.

4.8. Taxel performance and further improvements

As mentioned in Section 1, the threshold force for the fingerprint
perception is generally between 3 and 10 mN for a pin diameter
between 2 and 4 mm.  For a portable application, power consump-
tion should be at most 40 mW/taxel. Both specifications can be
satisfied considering the design described in Section 4.4. A value
of F/

√
P � 23 mN/

√
W was  obtained for proposed 6-layer coil. This

corresponds to a force F = 4.6 mN at P = 40 mW for a taxel operating
in CC mode. Using a latching mechanism with a 1% of duty cycle,
a force ten times higher is obtained for the same average power.
Latching would also help to compensate for magnetic crosstalk with
a 4 mm  taxel pitch.

All the design parameters schematized in Fig. 1 have been
optimized to obtain this performance. In Table 3 the optimiza-
tion process is summarized, for the PCB-2L  fabricated sample and
for the proposed next 6-layer coil generation. For more complex
geometries or with the use of other materials, the magnetic force
can be further increased. By focusing the magnetic field with soft
ferromagnetic materials, the interaction force can be improved
and taxel–taxel magnetic crosstalk can be reduced. Adding soft
magnetic material should be to aimed at improving the magnetic
gradient ∇ B, rather than the absolute value B. In this case iter-
ative non-linear algorithms can be used to compute and optimize
the magnetic force.

5. Conclusion

With this work we  provided a powerful analytical tool to opti-
mize the magnetic actuation force between a magnet and a planar
coil. The actuator consists in a disc-shaped permanent magnet
centered over a planar microcoil. This electromagnetic technol-
ogy allows scaling up to arrays of thousands of actuators for

haptic applications. The analytical model has been validated by
FEM simulation and by experimental results, using microfabri-
cated and PCB coils. All the design parameters were analyzed using
the figure of merit F/

√
P, allowing the analysis to be performed
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cess Engineer and then as MEMS  Designer for the MEMS
BU. In collaboration with National Nanotechnology Labo-
ratory she developed AlN and GaN piezoelectric materials
for surface acoustic waves (SAW) devices. In the 2007 she
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nder the same power conditions. The optimal coil dimension
as found for a given magnet size of 2 mm diameter, 1 mm
eight. A value of F/

√
P � 12 mN/

√
W was obtained for a stan-

ard PCB sample and a value of F/
√

P � 23 mN/
√

W is expected
sing a commercial available 6-layer PCB technology. The exper-

mental value we obtained is at least 50% higher than values
eported in the literature for similar devices based on planar coils
4,17,29]. We  expect to double this performance in the next gen-
ration. With this last F/

√
P value, an actuation force of 4.6 mN at

0 mW can be achieved for a CC operation. Presented results are
ompatible with both, the psychophysical perception thresholds
nd the power consumption of a portable haptic tactile display
evice.
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