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1. Executive Summary

1.1 Introduction

In the last few years much effort has been devoted to the theore-
tical study of wave propagation and absorption in magnetized plasmas
[1-8, 13-15], in connection with rf heating experiments. Though the
properties of waves in hamogeneous and infinite plasmas have been
known since a long time [9-11], many difficulties arise when the non-
uniformity, the finite size and the actual geometry of the magnetic
configuration in the present day experiments are taken into account in
the theoretical models.

The limitations which the ray-tracing method suffers fram [16,17]
and the complexity of analytical methods [ 18] motivated a new approach
to the problem: the global determination of the wave field in inhomo-

geneous, non—uniformly magnetized, finite size plasmas, using appro-

priate numerical techniques to solve the pertinent partial differen-

tial equations with boundary conditions. By global solution we mean

that the problem is solved in one well-defined geometry, with no
matching between different regions having different geametries. We
also mean that the global solution is the sum of all incident, trans-
mitted, reflected and evanescent waves.

One could summarize the camparison of ray-tracing with global
wave methods in the following way. In the Alfvén Wave Range of Fre-
quency (AWRF) the wavelengths are larger than the dimensions of the
plasma in the actual experiments. Moreover, in the most interesting
region of the spectrum for practical considerations (good coupling and
favourable—power deposition profile), the fast wave—is evanescent
through the whole plasma cross-section. Ray tracing is then inapplic-
able and meaningless, whereas global wave methods yield good results
[7,15]. In the high frequency range (Lower Hybrid, Electron Cyclo-
tron), however, the many wavelengths inside the plasma make the global
wave field determination more and more difficult. In this case ray-
tracing techniques should be more appropriate. In the Ion Cyclotron
Range of Frequency (ICRF) both methods have their range of validity.
The global wave techniques do not suffer fram any fundamental 1imita-



-2 -

tion. However, sometimes the numerical convergence is difficult to ob-
tain [4]. On the other hand, ray-tracing suffers in that it is not
valid in the evanscent regions or near the resonances. In fact both
methods yield similar results in the case of 100% single-pass absorp-
tion in large plasmas such as JET [19].

An advantage of the global wave calculation is that it gives the
value of the wavefield in a consistent way and thus will make possible
further stulies such as transport or density fluctuations induced by

rf waves.

wWe have developed a two-dimensional global-wave numerical code
for ICRF and Alfvén wave heating in toroidal geametry. Soon after the
planning for this work it became known that other codes were already
partly operational or under develomment in the world [1 ,2,3]. However,
ours is the first to solve the partial differential equations relevant
for both Alfvén wave and ICRF heating in a toroidal plasma without
approximation concerning the geometry [4] The code has been named
LION (Lausanne ION—cyclotron-Z—D-toroidal—global—wave—code) . It has
been implemented on the Harwell CRAY-1 in April 1986 and has been

operating successful ly since.

The LION code fulfills the requirements of the technical descrip-
tion given in Annex A of the contract. In this report we would like to
recall and summarize what the code is able to do and also clearly lay

out what its limitations are.

A large part of the work concerning the method and the results of
the LION code has already been published [4,6,7,19]. In order to avoid
dupl icate work only the most important things will be mentioned in
this report. We shall extensively refer to published papers, the most
important of which is Ref. 4 added to this report as pppendix I where
the detailed description of the method and numerical analysis of the
results of the LION code are given. This work has been the subject of
phD thesis, written in French [20], where an encampassing analysis has
been made of both the physical and numerical properties of our model .
The thesis gives more details concerning the variational formulation,

the vacuun treatment, the antenna description and the numerical opti-
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mization. The behaviour of the resonant surfaces and of the global
modes in function of equilibrium parameters is analyzed in both the
Alfvén wave and ion cyclotron ranges of frequencies. The main
difference in the present work as compared to Ref. 4 is the inclusion
of the warm plasma model (see Section 1.2), in other words of the ion
cyclotron damping.

In Section 1.2 the main features of the LION code are briefly
described. In Section 1.3 a selection of results is presented. Chap-
ter 2 contains all technical information which is necessary to use the
LION code on the JET site.

1.2 Features of the LION Code

The geametry treated is toroidal with full profiles of equili-
brium magnetic field, current density, temperature and plasma densi-
ty. Up to 10 different ion species can be specified. Data concerning
the equilibrium can be obtained in two different ways, at user's
choice: either LION is coupled to an equilibriun code, EQLAUS, or it
generates a Solovev analytical equilibrium. Note that exper imental JET
equilibria can be transferred to LION via Blum's interpretation code,
thus making possible the study of one particular shot. The poloidal
cross-section can have any shape: circular, elliptical, D, racetrack,
bean, boomerang, etc. The only limitation is that no x-point is
allowed.

The user has the choice between two different plasma models: cold
or warm plasma (i.e. including cyclotron absorption). The approxima-
tion of vanishing electron inertia is made, thus E; = 0. The basic
eguations are
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Note that the cold plasma equations are exact for force-free equili-
bria, but the warm model is not since k;, which is in fact a
differential operator due to the finite poloidal field, has been
aproximated by n/r in the dielectric tensor where n is the toroidal

mode nunber and r is the distance to the axis of the torus.

The plasma is surrounded by a vacuun damain enclosed in a per-
fectly conducting shell. Various antenna models can be specified:
high-field side (HFS), low-field side (LFS), top and bottom (T-B) or
helical. The displacement current has been neglected.

The antenna is modeled by an infinitely thin sheet on which the
rf current is prescribed. For LFS antenna, for example, the rf current
has been assumed to be purely poloidal. The antenna is defined by its
poloidal extension, position of the feeder currents and distance to
the plasma surface. The shell is supposed to be infinitely conductive
and is defined by its distance to the plasma surface.
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To study a real antenna of finite toroidal extension, its current
distribution I(¢) must be decomposed in a toroidal Fourier series:

19) = J1 ™ (6)
n

The power of each Fourier camponent, P,, is camputed with the LION
code. The total power is Pror = )P, and the antenna impedance is
Z = 2Piot/Iant’, where Igne is the amplitwde of the total rf
current.

The equations are written in a variational form in toroidal mag-
netic coordinates and solved numerically using non-conformal, non-
polluting first order finite hybrid elements [4]. The discretization
is made on a general irregular mesh. The packing of the mesh points is
at user's choice. The code is vectorized in most parts, with a gain
due to vectorization of at least 10. Its structure consists of five
programmes cammunicating through a disk data base (see Section 2.1).
The maximum number of mesh cells which can be handled on a CRAY-1 is
40000, the limitation being due to disk space requirements. A calcula-
tion with 5000 cells necessitates 50 s CP and with 12800 cells
160 s CP. The central memory (CM) and disk space (DS) requirements are

Q1 = 18 Npo1” + 4N Npol (7)
and
= 2
DS = 18 N Npo) (8)

where N¢ and Npol are the radial and poloidal number of

intervals, respectively.

As output the code produces tables and graphs of the solution,
the Poynting vector, the power absorption density, the power
absorption density averaged over magnetic surfaces, the poloidal
Fourier decomposition of the solution, the polarizations, etc. Note
that the version of LION installed at JET uses the GHOST-80 graphical
routines package.
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A user's manual, camplete tables of subprogrammes and Fortran
COMMON variables, description of input and output data are given in
Appendix II. The code satisfies the standards for camputer programmes
used for JET (Oontract, Annex B).

1.3 Summary of results

a) Testing the code

Extensive numerical convergence studies have been performed [4]
showing the sane numerical properties of the code, but also giving a
measure of the accuracy of the results. In some cases the structure of
the solution is so camplicated that the convergence laws are not
satisfied within the limitations imposed by eq. (8). The user should,
therefore, be very careful when interpreting results obtained with
LION.

The code has also been tested [4] in the limit of high aspect
ratio where an analytic dispersion relation can be derived. Another
limit is the ideal MHD (w/wpij + 0) with finite aspect ratio where a
camparison with another toroidal code (ERATO) has successfully been
made.

For more details concerning the numerical properties of LION, see
Ref. [ 4].

b) General physical results

The results of the LION code have shown that in both the Alfvén
and ion-cyclotron ranges of frequencies the perpendicular resonances

of the cold plasma fast wave lie on ¢ = const. surfaces. We have thus
confirmed a previous analytical work [5]. For ICRF it is only in the
limit of the poloidal field going to zero that the usual picture is
recovered: the resonances shrink in the poloidal direction and merge

with one another, yielding a vertical resonance structure [6].

We have also shown a continuwous transition fram Alfvén Wave Heat-
ing (AWH) to ICRF by introducing a heavy minority species so that the
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original Alfvén resonant surfaces split to produce Alfvén and ion-ion
hybrid resonances [6].

We have also studied the influence of the equilibrium current
profile on the power deposition. For AWH we have confirmed the cylin-
drical calculations: it is advantageous to select negative toroidal
wavenumbers (n < 0) and try to select negative poloidal wavenumbers
(m < Q). However, due to toroidal coupling, it is not possible to
excite a pure m mode. Optimizing AWH in a torus is therefore different
than in a cylinder: one has to take care of the toroidally-coupled
resonance surfaces which usually lie further out than that one would
like to excite. However, we have been able to calculate another scena-
rio for AWH where the main and innermost resonant surface is a toroi-
dally coupled one (m = 0, the antenna being m = #1). Toroidally coupl-
ed global Alfvén eigemmodes have been found in camplete agreement with
the TCA experiment [7] We have seen that the global Alfvén eigermodes
are sensitive to the equilibrium current profile: for some profiles
they do not exist. This also is in agreement with the experiment.

For ICRF the influence of the equilibrium current is not as clear
as in the Alfvén range of frequencies. Nevertheless we have shown that
there is an asymmetry between positive and negative toroidal wave

numbers (n) .

c) Application to JET

The LION code has been applied to many different ICRF scenarios
in JET plasmas: D+7%3He, D+4%H, D+30%H, H+4%D and pure D-plasma. As an
example, Fig. 1 shows the solution for a mixture of D+7%°He,

f-=33 MHz, for-one toroidal wave nunber n—=—-15. Note the imperfect

focusing of the fast wave towards the central regions. There is a non-

vanishing transmission of the field across the ion-ion resonances, and
Alfvén resonances are weakly excited on the high-field side of the
plasma. Since WKB calculations for this case predict finite reflection
also, we can expect an excitation of global modes. This is confirmed
by our calculations. Figure 2 shows the coupled power as a function of
the toroidal wavenumber n for a given antenna current In = 1
(eq. 6). We see that peaks appear at different n's. Note that the JET
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antennae excite a broad n spectrum. Thus one can expect that many
global modes are simultaneously excited. It is therefore not sure
whether in this case the global modes would be seen as peaks in the
loading of the antenna! If we now study the power for one toroidal
wavenumber (n = -15) as a function of the applied frequency, we obtain
Fig. 3. Rather broad peaks appear which seem to be composed of many
different peaks, though the numerical resolution in this case was not
sufficient to resolve them. A 1-D global calculation for the same
parameters has shown peaks at the same places as in Fig. 3 but of
higher quality. We identify those as different radial modes of the
fast wave, the "campound" peaks of Fig. 3 being different poloidal
modes coupled by toroidal effects. A further confirmation of this
toroidal coupling will be given shortly.

If we let the concentration of 3He go to zero, sharper peaks
appear on the loading (not shown) but the average loading remains
approximately the same. This is in good agreement with the experiment.

In a case of stronger absorption, like a minority of 4% of H in a
D-plasma, the peaks get smoother (Fig. 4). Note that the real antenna
loading curve, made of the superposition of all toroidal wavenumbers
n, in this case would appear completely flat. The value of the antenna
load, however, depends on macroscopic quantities such as the density
or the distance between plasma and antenna.

Let us now consider the case of a large minority concentration,
30% of H in a D-plasma. The power absorbed for one toroidal wavenumber
(n = -15), plotted as a function of the applied frequency, shows a
host of sharp peaks (Fig. 5). This is a consequence of the strong
reflection occuring on the low-field side of the resonances. To give
an interpretation of these peaks, we show the wave field solution
corresponding to a "main peak", £ = 42.85 MHz, in Fig. 6 and to a
"satellite peak", f = 42.24 MHz, in Fig. 7. In both cases the wave
field is confined between the antenna and the reflection region. If we
canpare Figs. 6 and 7, we see that the same radial wavenumber is
excited but with different poloidal wavenumbers.
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We have also computed, for the same scenario, the power coupling
spectrun excited by other types of antennae: the "top-bottam (T/B)"
and the "high field side" (HFS) antennae. The result is shown in
Fig. 8. For the T/B antennae the coupling is not bad but unfortunately
much of the power is absorbed near the plasma boundary in front of the
antennae (not shown). We see that global modes are excited, though at
different places than for the LFS antenna (campare Figs. 5 and 8). For
HFS antenna no global modes are excited (since there is no reflec-
tion), the power deposition profile is well centred (not shown), but
the coupling is miserable (see Fig. 8, bottam curve). The ratio of
reactive over resistive powers is of the order of 400! This astonish-
ing result is an effect of the toroidal geometry. The parallel wave-
nunber, which can be approximated by n/r, is 2.4 times larger on the
HFS edge of the plasma than on the LFS. (onsequently the fast wave is
evanescent over 25 cm on the HFS but only over 2.5 amn on the LFS. This
strong evanescence reduces the amplitude of the field by a factor of
the order of 6 and consequently the total power by a factor of the
order of 36. This factor is just the ratio between the average LFS and
HFS couplings. Since the single-pass absorption for HFS is almost 100%
there is no possibility for the wave to build up an eigemmode, which
would increase the coupling.

From our studies we see that a large number of modes is excited
by the JET antennae. We have also given an explanation why these modes
may not be seen on the loading response of the antenna: due to the
very broad toroidal spectrum (Fig. 2) and due to the coupling of
different poloidal modes by toroidal effects (Figs. 5, 6 and 7), the
antenna "sees" only an average over all different excited modes.

We have compared different scenarios, deuterium and hydrogen or
heliun-3 minority, changing the concentration of the minority species,
the density and the density profile. We have found that the coupling
of the IFS antenna, when averaged over the variations due to the
presence of global modes (if any), is independent of the scenario
used. However, the coupling depends on the density near the edge of
the plasma and the distance between the plasma and the antenna: it is
larger with high edge density and with shorter plasma-antenna
distance. This can be understood in terms of the evanescence of the
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fast wave at low density and in vacuun. Thus the coupling mainly
depends on the distance between the antenna and the fast wave cutoff
at low density. This result of the LION code is in agreement with the
JET exper iment.

Let us now consider a minority heating scheme where all the ab-
sorption is given by ion cyclotron damping. The plasma consists of
deuterium and hydrogen with ng/np = 4%, The parameters are the
following: npy = 4+10°m3, R = 3m, a = 1.25m, b = 2.1m,
Bb = 2T, £ = 30 MHz (w = weyg on magnetic axis). The warm plasma
model is used with central temperatures Tpy, = Ty = 5 keV. We
examine first a single toroidal wavenumber, n = 25. In Fig. 9a we show
the Poynting flux across the magnetic surfaces,

B)= | Re(E*XE)-ég, (9)
¢=const

as a function of the radial coordinate s which labels the magnetic
surfaces. In fact s is proportional to V¢ and goes fram 0 on the
magnetic axis to 1 at the plasma surface. It is almost proportional to
the minor radius in the equatorial plane. We can see fram Fig. 9a that
50% of the total power delivered by the antenna is absorbed inside the
surface s = 0.18, which is the surface that passes at 22.5 an from
magnetic axis on the equatorial plane. Also shown in Fig. 9a is the
quantity dPg/ds. In Fig. 9b we plot the power deposition profile
averaged on the magnetic surfaces,

dPs(q’) dPs ds dv

- = =1
N we T & @ @) o

where Pg(¢) is defined by eq.—(9) and V{(¢) is the volume enclosed by
a magnetic surface. In Fig. 9b Py is in units of W/m3 per Watt of
total rf power. Its maximum value is 0.44 W/m’ on the magnetic axis.

To further document this minority case we show in Fig. 10 a con-
tour plot of the wave field polarization |E+| = ,EN + iE.Ll . We note

that due to the strong Doppler broadening of the hydrogen cyclotron
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resonance |E4| is non-zero at w = wcy. The same calculation but with
the cold plasma model shows that in this case there is a screening
effect of |E+| at the cyclotron resonance (Fig. 11). In Fig. 12 we
show the real part of Ey and in Fig. 13 the real part of E , for the
warm case., We notice that the fast wave is not campletely focused on
the magnetic axis, but there is a non-negligible vertical spread of
the wave field along the cyclotron resonance. This lack of focusing is
an effect of the ellipticity of the cross-section and of the amall
aspect ratio, It yields a certain vertical extension of the power
absorption density in the poloidal plane (Fig. 14). The same calcula-
tion but in a circular large aspect ratio (> 5) tokamak leads to good
focusing of the fast wave on the magnetic axis and hence a more peaked
power deposition profile (not shown).

For the same scenario as in Figs. 9 - 13, but with a toroidal
wavenumber n = 10 instead of n = 25, the Doppler broadening of the
cyclotron resonance is smaller and the power deposition is more
peaked. In this case the maximum value of Py (eg. 10) is 0.9 W/m3 on
the magnetic axis instead of 0.44 W/m3 for n = 25. Thus for this
scenario we can expect the power deposition profile to be more peaked
for the JET monopole antenna (for which n=10 is typical) than for the
dipole and quadrupole antennae (for which n=25 is typical). We have
also found that the maximum value of Py can be reduced by a factor 2
by moving the position of the cyclotron layer by only a few percents.
Thus central heating is strongly reduced in the case of slightly off-
axis resonance. These results of the LION code could and should be
compared with the JET exper imental results.

In extensively using the LION code in various scenarios, we were
able to derive a semi-empirical analytic formula for the power deposi-

tion profile [19] in the case of minority heating scenarios. The for-
mula depends only on the calculation of local absorption coefficients
and the Doppler broadening of the cyclotron resonance of the minority
species. The use of this formula as an input to Fokker Planck codes
made possible the study of the process of a high energy tail formation
on the velocity distributions of the heated species, its influence on
the absorption coefficients, hence on the power deposition profile. A
self-consistent steady-state solution for the power deposition profile
has been iteratively computed [19].



-12 -

2. Technical Information

2.1 Structure of the LION code

The LION code is in fact made of five principal programmes com-
municating through a disk storage data base. Since it uses a real MHD
equilibrium it can be connected to the equilibrium code EQLAUS which
gives the values of ¢ on an equidistant (r,z) mesh. These values are
then read by the first programme of LION, LION1. Note that usually a
lot of computations with the LION code are made using the same equili-
brium. It is then recommended to campute it only once and to store it
as a permanent file,

rEIELAUS: camputation ' BEquilibrium solution

of equilibrium = - __ __ = | (permanent file)

LIONI: Mapping Of e
equilibrium —_— D
N
LION2: Antenna and —-— I
vaccum —
LION3: Qonstruction | e S
of matrix A —
4
LION4: Algebraic -_—
__resolution Ax = Db =| K
LION5: Diagnostics, | e
output and plot — S

!

output
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2.2 How to activate and run the LION code

The LION code needs a certain number of files to be resident on
the CRAY: the UPDATE library named LION86, the binary library LIBICRH
and, if a numerical equilibrium is needed, the file on which the equi-
libriun solution has been written to. The first step is to check
whether these files reside as pemmanent datasets on the CRAY. If not,
then one has to create them by submitting the appropriate jobs to the
CRAY (see below, nr 1°, X, ). If they do, then only operation 4° is
necessary to run the LION code.

. Create the UPDATE library LION86: submit the job which is con-
tained in the file

JETTHN, LION. ONTL( LIBUP)
P . Create the binary library LIBICRH: submit
JETTHN. LION, CNTL(L86CORR)
P . Create a numerical equilibrium: submit
JETTHN. EQERA . ONTL( EQLAUS )
This file contains the input data for the equilibrium code BQLAUS
in the NAMELIST EQDATA. Explanations concerning the input
variables are given in Section 2.3.
£ . Run the LION code: submit
JETTHN. LION. CNTL( RUN)
This file contains the input data for the LION code in the
NAMELIST NEWNRUN, which is explained in detail in Section 2.4 and
Appendix II. The user can modify the input variables by editing

the file JETTHN.LION.CNTL(RUN) and simply change the
corresponding values in the NAMELIST NBEWRUN.
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The mesh size used in the camputations is specified by the input
variables NPSI (nr. of intervals in the ¢ direction) NCHI (nr. of
intervals in the poloidal direction in the upper half-plane; the total
nr. is then 2*NCHI-2; the mesh is symmetric with respect to the equa-
torial plane). The equilibrium solution is given on a (r,z) mesh. We
then specify NR (nr. of points in the r direction) and NZ (nr. of
points in the z direction in the upper half-plane; the equilibrium is
symmetric with respect to the equatorial plane). For a good descrip-
tion of the equilibrium solution which is necessary to have for a
given mesh of the LION code it is recammended to compute the equili-
brium (action nr. ¥ ) with a sufficiently large mesh: NR > 3*NPSI,
NZ = (NR/2)*ELLIPT. Otherwise numerical convergence is not guaranteed.

The values of NPSI, NCHI, NR and NZ in the NAMELIST NEWRUN cannot
be larger than the values of the parameters MDPSI, MDCHI, MDR, MDZ,
respectively, which define the array dimensioning and are written in
the file JETTHN.LION.CNTL(L86CORR). If a larger mesh is necessary
these values must be modified by editing the above-mentioned file.
Then this file must be submitted to the CRAY (action nr. ) before
further runs of the LION code can be performed (action nr.4°) with the
desired mesh size.

The output of the LION code consists of line-printer output and

graphical plots which are stored as a TRANGRID file in JETTHN.GRAF.
TRAN. Description of output and plot is given in Appendix II.

2.3 Normalization for the equilibrium code EQLAUS

The equilibriun code EQIAUS works in normalized units defined by:

- unit length: Ro,phs distance from axis of the torus
to geametrical centre of the cross-sec-
tion

- unit magnetic field: By,phs magnetic field on geametrical

centre of cross-section
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Therefore the input parameters in the Namelist "EQDATA" must be given

according to
the physical

RO

ASPCT
ELLIPT

TRIANG

AP,AT

B (4)

the following definitions, where the subscript ph denotes
units and eq the EQIAUS units:

1.0 geametric centre of the plasmna cross-
section

apl'/Ro,ph = aeq inverse aspect ratio

b, /a = b /a ellipticit

ph/%ph e %eq prieity

triangularity &

I (scale=1)

2

ph Yo _ Toon

Ro Ph ’ Bo,ph
plasma current in half the cross-section
polynomial expressions of P'eqlaus(¢) and

TT'eqlaus(¢) » where p and T/r are the pressure
and the toroidal magnetic field so that:

B
o,ph -
by Peq(¥) and Ty = Ry oh Bo,ph Teq!®)

ASPCT, ELLIPT and TRIANG detemmine the surface parametrization,
which is defined by:

-

i

R0 + ASPCT * cos(© + TRIANG * sino)
ELLIPT * ASPCT * sin@
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2.4 Normalizations for the LION code

The LION code works in nommalized units, defined by:

- unit length: R,, distance fram axis of the torus to magnetic
axis.,

- unit time: Ro/Cpnr where Cp, 1is the Alfvén speed on
magnetic axis.

- unit mass: po/Ro3, where po is the mass density on
magnetic axis.

- unit magnetic field:
By, equilibriumn magnetic field on magnetic axis.

All other normalized quantities are defined in function of the four
above. For example, we have :

- unit current density: By/(poRo)
- unit electric field : B Cpy

- unit current: RoBo/ 1o

- unit power: RozBOZCpo/po
- unit power density: By?Cas/(uoRo)
- unit impedance: roCap

- unit voltage: RoBoCro

- etc.

Note that all quantities defining the nomalizations of LION are
taken on magnetic axis. In the equilibrium code EQILAUS, however, the

nomalizations are defined on the geametrical centre of the dis-

charge (see Section 2.3). There is generally a slight shift between
those—two positions. Note also that the unit magnetic field, By, is
the value of the actual magnetic field, i.e. including paramagnetic
effects, but not the equivalent vacuum field.

When comparing with experiment, it is better to take both the
nomalized and the experimental quantities on the Iow Field Side
extremity of the plasma surface. For example, if }’LFS is the noma-
lized position of this point and rppg the experimental value, then
the nomalization length, R, (which is the input variable RMAJOR in
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the LION code), must be

_ Tirs
R = =
L1rs

For the magnetic field, if %(q)s) is the nommalized toroidal flux
function at plasma surface, the normalized toroidal component of the
magnetic field at the low field side extremity of the plasma is

~

N ~
Byt,rrs = Tl4g)/Trpg

if Byt,rps is the experimental value of the toroidal component of
the magnetic field at the same point, then the unit magnetic field of
LION, B, (which is the input variable BNOT in the LION code) must
be:

Bot +LFS

(T(4g)/F og)
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3. (onclusions

We have developed, constructed, thoroughly tested and installed
at JET a global wave code for the study of Alfvén wave and ICRF heat-
ing in exact toroidal geametry. The theory and the numerical implemen-
tation have been described in detail in Ref. 4. Por the specialist
reader an even more detailed description of the theory, the code and
the physical results, is available in the form of a PhD thesis [20]
written in French.

The code, named LION, has proven its ability to treat various
scenarios (mode conversion, minority). We have shown that global
effects can be important also in large machines like JET. The impor-
tance of toroidal effects has been clearly demonstrated. In the con-
text of Alfvén wave heating it resulted in a totally successful
comparison with the TCA experiment [7]. In the ICRF a detailed
camparison has not been made yet. However, so far there is no contra-
diction between experimental (JET) and numerical (LION) results.

It is of fundamental importance that the LION code, which uses a
finite element method, has been numerically tested and that the
accuracy of the results can be measuwred [4]. It gives us confidence
that the predictions of the LION code are physically relevant.

The performance of the LION code (vectorization in the most
critical parts, optimization of input/output, maximun mesh size on
CRAY1 of 40000 cells) makes it a powerful and reliable tool for the
study of rf wave heating.
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Figure Captions

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Fig. 6:

Fig. 7:

Fig. 8:

Contour plot of the left-hand polarization |E+| for a

D—( 3 He) mode conversion scenario in JET:
n(3He)/nD = 7.368, £ = 33 MHz, LFS antenna, n = -15,
Bo = 3.4 T.

Ooupling spectrum as a function of the toroidal wavenumber n
for the same parameters as Fig. 1

(a) for Iplasna = 9,5 MA, (b) for Iplasna = 4,4 MA.

Ooupling spectrum as a function of the frequency for a
single toroidal mode number (n = 15) and for the same
parameters as Fig. 1 for Ip)agng = 9.5 MA.

Coupling spectrum as a function of the frequency for a D-(H)
minority case in JET.
ng/ne = 5%, LFS antenna, n = =15, Ry = 3.4 T.

Qoupling spectrum as a function of the frequency for a D-(H)
fast wave heating case in JET.
ng/ng = 30%, LFS antenna, n = =15, B, = 3.4 T.

Gntour plot of the power absorption density for
f = 42,85 MHz, corresponding to a main peak of Fig. 5.

Gontour plot of the power absorption density for
f = 42,24 MHz, corresponding to a "satellite" peak of
F—ig-r 54

Coupling spectrun as a function of the frequency for Top-
Bottom (T/B) and HFS antennae. The other parameters and the
units of power (vertical axis) are the same as in Fig. 5.



Fig. 9:

Fig. 10:

Fig. 11:

Fig. 12:
Fig. 13:

Fig. 14:
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(a) Poynting flux Pg (eq. 9, arbitrary units) and dPg/ds
versus the radial coordinate s for a D-(H) minority case in
JET; np = 4+10w3, ngmp = 48, B = 2T,
f = 30 MHz, warm plasma model with Tpy, = Tgy = 5 kev,
n = 25. (b) Power density profile averaged on magnetic
surfaces By (eq. 10, in W/m3 per Watt of total power) for
the case of Fig. 9(a).

Contour plot of the wavefield polarization |E+| for the case
of Fig. 9. The dashed line represents w = wqy.

Same as Fig. 10 but cold plasma model., The dashed line
represents w = wey.

Real part of Ey for the case of Fig. 9.
Real part of E for the case of Fig. 9.

Oontour plot of the power absorption density for the case of
Fig. 9.
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1. Introduction

The study of waves in cold plasmas is one of the oldest subjects of plasma physics [1-3]. In the
last few years much effort has been made in this domain [4-10] in great part due to the
numerous experimental achievements with using rf waves to heat the plasma [11,12]. Though the
properties of such waves in homogeneous plasmas have been well known since a long time, many
difficulties arise when the non-uniformity, the finite size and the actual geometry of the plasma
in present day experiments, such as tokamaks, are taken into account in the theoretical models.

The first way to tackle the problem has been to treat the differential equations in the WKB
approximation, which in multi-dimensional geometries led to the ray-tracing techniques. This
approach has given many successful results [13-15]. Unfortunately, it suffers from several
limitations. Firstly, the WKB approximation may break down, for example around the reso-
nances. Secondly, in the Alfvén and Ion Cyclotron Range of Frequency (ICRF), in the actual
experimental devices the wavelength is of the same order or larger than the size of the plasma,
making a geometrical optics approach inappropriate. Thirdly, in ray tracing one has to assume
single-pass absorption, making the study of eigenmodes impossible.

These reasons, together with the complexity of the analytical methods [16], motivate a
different approach to the problem, namely the global determination of the wave field in inhomoge-
neous, non-uniformly magnetized, finite-size plasmas using numerical techniques to solve appropriate
" differential equations. By global solution we mean that:

— the problem is solved in one well-defined geometry, with no matching between different
regions having different geometries;

— the solution obtained is the sum of al/l incident, reflected, transmitted and evanescent waves;

- the differential equations are solved in the whole domain: plasma and vacuum including

antenna and shell. .

As stated above, it is specially in the Alfvén and ICRF domains that a global solution is needed.
We shall therefore limit ourselves to this frequency range.

In this domain, three physical phenomena can be exploited for rf heating:

— the existence of global eigenmodes of the fast magnetosonic wave and of the Alfén wave [17];

— the perpendicular resonances, either Alfvén or ion—ion hybrid of a multi-ion species plasma
(mode conversion regimes);

- the cyclotron damping, assisted by introducing a minority ion species (minority regime).

Our global approach will be able to treat the eigenmodes and the perpendicular resonances in

cold plasmas, as well as their simultaneous occurrence.

The numerical methods used to determine the global solution are well-known textbook
methods {18;19]. Nevertheless; their-application—to-the study of rf waves in plasmas is rather
recent. It is therefore necessary to discuss them in detail, in particular to show clearly their
mathematical foundation and to determine where their domain of validity is, in order to develop
them to a high degree of credibility. In this paper we shall present the implications of the specific
physical and mathematical properties of the problem on the choice of the numerical methods.

The paper is structured as follows. In section 2 we make a few remarks about the one-dimen-
sional problem. The aim of this section is to illustrate some of the basic methods for calculating a
global solution. First, we discuss the pertinence of using a cold plasma model for rf heating. We
then mention shooting and finite element methods. The treatment of vacuum, including antenna
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and conducting wall, is also presented. In' section 3 we describe the two-dimensional problem.
Special care has been taken of the treatment of the toroidal geometry. In particular, we present
the recent development of the LION code. LION is based on a variational formulation and finite
hybrid elements. The numerical scheme is very carefully examined. By doing convergence studies
the accuracy can be measured; comparison with analytical work [20], where possible, as well as
with experiment [21] is made; other physical tests, for example of the power balance, are
presented. Section 4 discusses the limitations of global wave codes and the possible future
improvements of the numerical techniques. We conclude in section 5.

2. Global wave solution in one-dimensional geometry
2.1. Cold plasma

The first question which arises is the pertinence of cold plasma model for studying rf heating.
In the Alfvén and ion cyclotron range of frequencies, two phenomena are pure warm plasma
effects: the existence of kinetic Alfvén and ion Bernstein waves, and the cyclotron damping. It is
therefore necessary to keep in mind that neither 2nd harmonic heating, where the interaction
with the ion Bernstein wave is crucial, nor fundamental minority heating, where ion cyclotron
absorption takes place, can ever be described in the context of cold plasma. It then remains the
question of the influence of finite temperature on mode conversion scenarios. It has been shown
that the cold plasma model is in very good agreement with the warm plasma model, at least in
1-D geometry. When the temperature of the plasma tends to zero, the ion Bernstein wave reduces
to the ion-ion perpendicular resonance. But the total power absorbed is ‘exactly the same. In
other words, the antenna ignores that the plasma is warm. For more details, see ref. [22].

2.2. Equations

2.2.1. Basic equations

We consider a cylindrical, non-uniform, current-carrying, multi-species plasma (fig. 1). All
equilibrium quantities depending on r only, we can Fourier-decompose the fields in exp{i(m8 +
kz)}. Let us define a local magnetic coordinate system (ey, e, , e;) by

eN= Vr/|V"|,
e,= B,/B,, (2.1)
e, =e”XeN,

and project Maxwell’s equations on this system. Moreover, we make the approximation of zero
electron mass, leading to E, = 0. The most elegant way to write the equations is to use £, and
B, as variables:
1d 2 \:
A~ (rE\) =Gk E, +(A4—k})iwB,, 02

d . .
A+ (iwB) = (G* - 4>)E, — Gk iwB,
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antenna

plasma

Fig. 1. Cylindrical configuration.

with
2 2
_ 2 _we_wy i
A== ki, ENN_C2 Jor ! (w/w, )2,
A 1 - ci
2k, B 2 fu/a
1Pos w* LW ; "
G=-KN*_T’ €N_L=.FID=1 e

QT 1-(w0/w,)
m
k= ( KBy, + 2 Boy ) /By,
m
k;. =(TBOz_kBoo)/Bo’

C2 = BZ/1opo,

99

(2.3)

f; = mass fraction of the ith ion species = n,m,/p, (The summations are over all the ion species.).

2.2.2. Singularities

Except for r = 0, the only possible singularities of the equations are given by 4 = 0. One can
easily show that the behaviour of the singular solution around the points r =r,,, defined by

A(r.) =0, is

E, ~In|r—r.]|,
B"~ln|r—rres|,
BN~1nIr—rres|’

EN~1/|r_rres|’
BJ.~1/|r—rres|'

(2.4)
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The presence of a continuous spectrum, defined by 4 =0, and the type of behaviour of the
different field components (2.4) will have a consequence on the choice of the numerical method.
A simple way to turn around the singularities is to introduce a small imaginary part v in A4:

A->A+iv, (2.5)

with » > 0 to satisfy the causality. Then the system (2.2) is no longer singular.
Let us make two important remarks:

1) w=w, is not a singularity of .the equations, despite of the presence of the resonant
denominators in €yy and €y, . Actually, one can show that the circular component of the
polarization of the wave field in the ion gyromagnetic direction, E +=Ey+1E , satisfies

lim |E, | =0. (2.6)

ww,

2) It is crucial that the singular behaviour of E, and B, is non-analytical (2.4): the power
absorption at the singularity is given by
Re [EYB1=*0 ~ —i(im + O(v)) (2.7)
This feature allows resonance absorption to occur; the apparent paradox is that we have
non-vanishing absorption with damping going to zero. It is then crucial that the numerical
techniques guarantee a good description of the singular behaviour.
2.2.3. Antenna and vacuum . '
We shall neglect the displacement current in all what follows. This is a good approximation
for Alfvén wave heating where the vacuum wavelength is much larger than the dimensions of the

system. For ICRF in large devices it might be questionable.
Our antenna model is a current sheet located at r = r, (fig. 1), with surface currents Je and J,

Jo=1j8(r - r,) exp(i(m8 + kz — wt)) + c.c., (2.8)
Jo=18(r-r) exp(i(m8 + kz — wt)) + c.c.. '

In the region between antenna and shell, feeder currents j. and j . are introduced to satisfy
divj=0.

The surface currents can be treated as a discontinuity of the wave magnetic field, while the
feeder currents are volume currents which have to be included in the vacuum wave equations.
These-can be-brought to-the form

k2 +k2)r k
(’BN 0 iM rBy —Lj
d ky _ ky
ar + = . . (29)
r B _lﬁ 2B,k | B _ 2iBy, i=
I rB.k, L rBy.k,r 7+
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2.2.4. Regularity, boundary and matching conditions
1) On the axis, the equations have the usual singularity of the cylindrical geometry. But for
physical reasons, the solution has to be regular. Writing £, and B, as

E, = plmi=1g,
- 2.10)
B, = .ir""'B, (
iw
and expanding around r=0: E=e0+e1r+ s, §=b0+b]r+ e, A=agtayr+ -,
G=g,+gr+ -, weuse eq. (2.2) to obtain in lowest order in r
ag|m|—m m? e
o|2| 280 °l_o. (2.11)
9~ 8o ag|m|+mg, || by
The regularity condition is then
A m2 a
E(r=0)= B(r=0). (2.12)

mgy— |m|a,

2) At the plasma-vacuum interface, we require the fields be continuous. We only have to
transform E, to By

By(r=r,)= —%E%(r=rp)- ' (2.13)

3) At the antenna, the surface currents (2.8) impose

4 BOII 2
IIBN]] =0, IIB”]] = —Js + B_jz’ (214)
0z

where the double bracket indicates a jump across the antenna from the inside to the outside.
4) On the shell, the infinite conductivity imposes

By(r=r)=0. (2.15)
The egs. (2.2) and (2.9), with (2.12)~(2.15), determine a unique solution.

2.2.5. Power
The total complex power delivered by the antenna is

Pa

L[ Evay, (2.16)
14

where V is the vacuum domain.
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It can be compared to the total power transmitted through the plasma—vacuum interface

P, =%/BQE:B“do. (2.17)

2.3. Shooting methods

The simplest numerical scheme is to solve (2.2), (2.9), (2.12)-(2.15) as an initial value problem
with a Runge-Kutta algorithm. The principle is to determine the fundamentals of the system of
equations and to use the matching conditions to fix the constants of integration. The presence of
singularities forces us to introduce » # 0 in the equations (see 2.5) and to have an adjustable step
in order to control the accuracy. We proceed as follows:

1) We start at r=38<«1 with a given initial value, using the regularity condition (2.12). We
integrate the plasma equations (2.2) up to the plasma-vacuum interface r = rpe

2) We use (2.13) to transform E, to By, and integrate the vacuum equations (2.9) with
Jr=J. =0 up to the antenna r = r,. We have then the solution at r, — 0

B(A)
c,[ N } (2.18)

3) In the region between the antenna and shell we integrate once the homogeneous (H)
" equations, i.e. (2.9) with jy =, =0, and once the inhomogeneous ones (N) starting with the
condition (2.15). We have the solution at r, + 0

B BN
G, B + B | (2.19)
4) The matching conditions at the antenna (2.14) introduced into (2.18) and (2.19) yield the
integration constants

1

=3 (CBGY + BYY),
N
L[ oo, BB . By,
C2=B _BI(I Y+ B&A) "'.]0+B_ozjz ’ (2.20)
B(A)p(H)
D= B'(IH) _M
B{M

5) We use (2.16) and (2.17) to calculate the total power.

The real antenna excitation structure can be Fourier-decomposed in exp{i(mf + kz — wt)}.
The whole procedure 1) to 5) is repeated for each Fourier component. The total power is simply
the sum of the powers of all components.
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Gl Tj e

Fig. 2. Basis functions I for the regular finite elements of first order and representation Z(r) of a function with these
elements.

An example of application of such a method has been the calculation of antenna coupling for
Alfvén wave heating in TCA [23). Different configurations of antennae were used: variation of
its excitation spectrum, tilt, positioning the feeders, etc., in order to optimize the coupling and
the radial absorption profile. Global modes can also be found using this method; in this case the
power varies as 1/», while if there is a resonant layer in the plasma the power is independent of
v for sufficiently small ». If the antenna excites neither a resonant layer nor a global mode the
power is proportional to ».

2.4. Finite element method

The principle of this method [18,19] can be summarized as follows:
1) We discretize the domain on a general non-uniform mesh {r,}”.

2) We expand the unknown fields = in a set of basis functions L,j=1...,N:
N
Z(r)= ijI}(r). (2.21)
j=1

The I are polynomials having a finite support (see fig. 2).

3) We introduce (2.21) into the differential equations to obtain an algebraic system of equations
for the x;. This is usually done by multiplying the equations by sufficiently regular test
functions and integrating by parts. On using the basis functions as test functions we get the
algebraic problem

Ax=b, (2.22)

where b is the source term due to the antenna. The matrix A is the discretized version of the

operator defined by the differential equations; in our case it is a complex non-Hermitian

band matrix. Its bandwidth depends on the number of unknown field components and on the

order of the basis functions.

The choice of the basis functions is in principle free. Our problem, however, presents a
particularity: the existence of a continuous spectrum (4 = 0, see (2.3)) requires that the basis
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Analytic Discrete Affven- Numerical spectrum
spectrum frequencies unpolluted poliuted
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Fig. 3. From the right to the left are shown typical polluted and unpolluted spectra w,, together with the Alfvén
frequencies w,(7,) at the spatial grid points r;, in comparison with the exact analytical spectrum. Alfvén modes (A) are
shown with circles, fast magnetiosonic modes (F) with crosses.

functions reproduce locally the different singular behaviours of the different field components
(2.4). Otherwise spectral pollution occurs, which means that the discretized continuum exhibits
spurious modes which can be completely outside the exact range, and sometimes even spread
among physical global modes. An example is given in fig. 3 (right-hand side) for the case of ideal
MHD (w/w,; = 0), using regular finite elements of first order [24]. These unphysical modes can
be eliminated by increasing the number of intervals, but it can be an unrewarding task to make
such convergence studies for each case. In the case of the cylindrical cold plasma, we were able
to use £, and B, as variables by eliminating Ey. Since they have the same singular behaviour
(2.4), there is no problem in using regular finite elements.

However, we shall see that it is no longer possible in toroidal geometry; one is forced to use
Ey and E | as variables which have different singular behaviour (2.4). This suggests the use of
different basis functions for E and E , e.g. piecewise constant for Ey and piecewise linear for
E |, such that dE, /dr has the same behaviour as E. This technique was successfully tested in
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the frame of ideal MHD [24]; spectral pollution disappears (fig. 3, second spectrum from the
right).

Another technique is the use of hybrid elements [25]. It consists in considering a function and
its derivative as independent variables. This technique will be presented more in detail in the
next chapter.

Brief discussion

The advantage of the shooting method over finite elements is its simplicity. A problem arises,
however, if there exists an evanescent wave branch: when integrating backwards, the solution
will explode exponentially due to the numerical noise. Fortunately, in a cold plasma the wave is
not too strongly evanescent, so that one can still guarantee a reasonable accuracy if the
evanescent region is not too large. For a warm plasma, the presence of an evanescent Bernstein
wave prevents completely the use of shooting methods.

On the other hand, the finite element method solves the problem as boundary value problem;
unphysical exponentially growing solutions cannot appear. This is the great advantage of this
method.

3. Global wave solution in two-dimensional (toroidal) geometry '
3.1. Introduction

The two first successful attempts to determine a global solution of the wave equations in the
ICRF in toroidal geometry were made by Itoh et al. [6,26] and Colestock et al. [27]. Both
numerical methods were finite difference schemes. The first authors used a simplified geometry
via expansion in inverse aspect ratio. The configuration was a cylindrical plasma with a circular
cross section, a density depending on the minor radius and an axial magnetic field depending on
the major radius. On the other hand, the first global wave code in real toroidal geometry, but
restricted to the study of Alfvén wave heating in ideal MHD (w/w,; = 0), was constructed a few
years ago [28,9]; its development was based on the ERATO stability code [29].

In this section we present the first global wave code which solves the wave equations relevant
for both Alfvén wave and ICRF heating in a cold toroidal plasma, with no geometrical
approximation. The problem is formulated variationally and solved nsing finite hybrid clements.

3.2. Toroidal geometry

The axisymmetric equilibrium magnetic field can be written
B,=T(Y)Vé+ Ve x vy, (3.1)

where { = const define< a magnetic surface and ¢ is the toroidal angle (fig. 4).
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X =const

magnetic axis

Fig. 4. Toroidal configuration showing the local magnetic coordinate system (ey, e, e;), the polar coordinates
(r, z, ¢) and the toroidal magnetic coordinates (y, x, ¢).

The toroidal and poloidal components, By, = T/r and By, = | vy | /r, have a two-dimensional
functional dependence. This implies that the magnitude of the magnetic field varies along a field
line. As a consequence, it is impossible to define the parallel wavelength in the same way as in
the cylinder by an algebraic expression (2.3); k, is now not only a function of position but it is a
differential operator:

. 1

This means that the relation giving the Alfvén and ion—ion hybrid perpendicular resonances
(énn — k=0 in 1-D) - hence the resonance absorption - is also a differential operator. This
complication makes analytical work difficult. Studies by Hellsten et al. [7] indicated that the
resonant surfaces lie on the magnetic surfaces (y = const). With our global code it is possible to
check this result as well as to show how the usual one-dimensional picture is recovered when the
size of the plasma is increased, or when the poloidal field is decreased [30].

We shall see in the next section that the magnetic surfaces (¥ = const) have an interesting
property for the partial differential system of equations.

3.3. Equations

3.3.1. Basic equations

We consider a plasma in an axisymmetric equilibrium. The magnetic field is given by (3.1) and
the density profile p,, as well as the concentrations of the different ions species f;, can be
arbitrarily specified. In our case we have chosen p, and f; to depend on Y only. We write
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Maxwell’s equation in the local magnetic coordinate system (ey, e, e,) defined by ey =
VY/|VY|, ey=By/By, e, =¢;Xey

rotrot E—¢E=0, (3.3)

where e is the dielectric tensor of a cold current-carrying multispecies plasma. It is a differential
operator. It neglects any finite 8 effects, such as finite Larmor radius and equilibrium pressure,
but it takes into account the equilibrium plasma current density Jo- Finite electron mass has been
neglected, leading to E; = 0. We have then

_ | NN €Ny Jo*B,[rotyey rotye,
E_[_EN.L ‘NN}+ B? [rotJ_eN rot e, |’ (3.4)
where
oW /i
T ST (idem in 2.3) (3.5)
idem in 2. '

2 2 W/ W

v = ZiD=i L ¥ L%
C CA i 1—(“’/""ci)
Notice that the operators roty and rot, act also on E. The reason why we. included the
equilibrium current in the dielectric tensor is that this term has been shown to be important for
Alfvén wave heating in cylindrical geometry, e.g. the existence of global eigenmodes of the
Alfvén wave [17], or the effect of assisting to deposit energy in the central resonant layers [31].
Whether this term is important also in the ICRF is not yet clear.

3.3.2. Variational form of the equations
It can be obtained by operating on eq. (3.3) with:

deIZ'- , § = plasma volume, (3.6)
Q
where E is a sufficiently regular test function. After partial integration, we have

: - e B = © € :
de(rotE-rotE—"’B—Z"E-rotE—E-[ o ‘“]E) —iw[ do+(EXB)=0.
e /

; “E€Nn1L  ENN a0

(3.7)

3.3.3. Singularities and symmetries
The operator in (3.7) is non-compact due to the presence of singularities. As discussed in
section 3.2, they are described by a differential equation. A simple way to treat the problem is to
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make the transformation
€nn = Enn T+ 2iv0’p,, (3.8)

with » > 0 to satisfy the causality. We have chosen » = const. One could also take the collisional
form of ey, or replace w by w+ir [6). But these options have the disadvantage that the
imaginary part of €,y peaks around = w_;, with a width proportional to ». Since v has to be
sufficiently large to turn around the discretized singularities, it would introduce pseudo-cyclotron
absorption acting on the total electric field E and not only on the polarization E_ [30].

With » # 0 the operator in (3.7) has no longer singularities, but it has lost its Hermiticity.

The axisymmetry of the equilibrium allows us to decompose the wave field E and the test
function E in Fourier series in the toroidal angle

E=) Ee'"*,
! 3.9
E=YE e (39)

Introducing these expressions in the variational form (3.7) and integrating over ¢, we can treat
each Fourier component separately since for a given n only the term n’ = —n will contribute.
We then have

9/d¢ =1in, when acting on E,

d/d¢ = —in, when acting on E. (3.92)

The operator in (3.7) is not symmetric with respect to the “updown” transformation (fig. 5)

Bo-') _Bo,
Jo= —Jo-

(3.10)

This is due to the privileged direction of the ion gyromagnetic rotation. As a consequence, we
have to solve the equations not only in a half-plane like in ideal MHD, but in the whole poloidal
plane.

The finite aspect ratio breaks the cylindrical symmetry. The azimuthal wavenumbers m cease
to be good “quantum” numbers. They are no longer independent: toroidal coupling occurs

V4 V4

| :
=

Fig. 5. Schematic view of the “up-down” transformation defined by eq. (3.10).
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between modes of a given m and m % 1,... . The ellipticity of the cross section couples m to
m = 2,... . These effects have been studied in the context of ideal MHD [9]. When a line w = W,
crosses the plasma, one expects the break of cylindrical symmetry to be even larger, due to the
vertical w, structure.

Let us make the following remark: each break of symmetry corresponds to a splitting of
degenerated modes, thus allowing for many of them to exist and to be possibly excited by the
antenna. The less the system is symmetric, the more one can expect the mode structure to be
complex.

3.3.4. Toroidal coordinates
We have chosen v, x, ¢ as coordinates (see fig. 4).

1) The relation ¢ = const defines the magnetic surfaces (eq. (3.1)). For convenience we shall use
the “radial” variable s:

s=4/%, . (3.11)

where ¢, is the value of y at the surface of the plasma.
2) The “poloidal angle” x is such that the Jacobian defined by

J=[vy-(vxxve)] ! | (3.12)
becomes
J=qr*/T, (3.13)

where T'= T(y) is defined in (3.1) and g = g(¢) is the safety factor

B
q(¢)=%9§lﬁd1, (3.14)

r BOp

where d/ is a length element in the poloidal plane on a y = const surface. We have
dl=JB,, dx (3.15)

Notice that r2/J is a function of ¢ only.

3) The choice of the toroidal angle ¢ is natural since we have decomposed the wave field in
Fourier series in ¢ (3.9).

Instead of Ey and E, , we shall use the variables ¥ and X defined by

VT Xr?
E= mv¢—XTVx+ V. (3.16a)
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Thus
T|vy]
2y
r*B,
JIvy|

Ey= (V-8.X),

(3.16b)

E, =-
where B, is the non-orthogonality:

B, = —Z—s—w- vX. (3.16c)
Using the relations

d d 0
V=V4/W + an+7¢£,

A
!

B. e l(_a_+ i)
0 J\ax " T8¢ )’ (3.17)
d 1 9

9y~ 29,5 05’

dV=2Jy . dsdyx,

one can write

2

vT X
24@) X vy —(VXT) X vx + (VTr) X Vo

vy Ve
+4
Iv¥l T2 v

rotE=(V

Vo X vy
vollvy|’

=4, Asl

il +ina)
A =—— ing | X,
T 7

_SB(AX (D
Ay =3 (as + 3 +(Zm T)X), (3.18)

Bgpr X, 9X 9. r
A= 25st(lnq(V B, X) - s Py (EglnT)X)'

The same expression holds for rot E, except that n has to be replaced by —n (see (3.9b)). With
the relations (3.16)—(3.18), the variational form (3.7) can be written as

1. f2n 8
-/odsfo dx chlj’".]j

Jj=1

+S=0, (3.19a)
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where
IL=J=X,
L=X J,=V,
=V, J,=X,
¢ N . (3.19b)
Is=J,=08X/0x +ingX,
Ig=J,=3X/0s + dV/0x,
I,=J,=0X/3s+ BAX/dx + B,ingX + HX —inqV,
I;=J;=X,
—2¢ssr2A
¢ =————8&,
' BLJ
—JB(fPBOZ,r“A
Cy = '—-—26,
2y sB;
—B.r3
=i
C4= —C3,
T 2yt S (3.19¢)
cs= ,
BLJ?
o= Boztr4
6 2yJ’
Bozpr4
=2y’
_ —2r'q, K
€8 = Js
. f
€= pyw?), —kz,
k1= (w/w)
g= powzz fkw/wck ,
k 1 - (""’/"‘Jck)2
9. rr 2ys. (3.19d)
H= mln 7 + @Jo‘p,

_2 ﬂﬂ“i

40 | r2BZ, ~ 2r 3y
j0¢ _=j0' Ve/|Ve|,

2p2
Inr Bs, |
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S=—iw| do-(EXB). (3.1%)

This section may appear unnecessarily complicated to the reader who is unfamiliar with
toroidal geometry. For example, one may think that it is much simpler for the algebra to take r,
z, ¢ as coordinates. In this case both variables have derivatives with respect to r and z, making
the differential system appear as a fourth-order system. The great advantage of using magnetic
coordinates is that one variable, ¥, has no derivative in the { direction, thus lowering the order
of the differential operator. This has many advantages for the numerical resolution. Moreover,
we have the same differential structure as for the ideal MHD stability problem. It is then natural
to take advantage of the existence of the numerical code ERATO [29] by using the same
coordinate system.

3.3.5. Regularity, boundary and matching conditions. Vacuum solution
The regularity on the magnetic axis (s=0) imposes the fields to remain finite. Since
lim,_,|vy|=0and lim,_,|Vy|/s=const, from (3.16) we conclude

lim X = 0. (3.20)

s—0

The surface term S in (3.19) has to be connected to the vacuum solution via boundary
conditions. Here we require the fields be continuous across the plasma-vacuum interface.

Our model of antenna is a current-carrying sheet surrounding the plasma (fig. 6). As in the
1-D case, we shall neglect the displacement current. The antenna surface is defined by

D(r)=0 ’ ' (3.21)
and its current j,, satisfying automatically v +j, =0, is
Jo=8(D)vD X vB exp(i(n¢ — wt)), (3.22)

where f is the “current potential”. For the sake of simplicity we assume 8 to be a function of

/.
magnetic
axis

Fig. 6. Poloidal cross sections of the plasma, antenna and shell surfaces.
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only where § is the poloidal angle (see fig. 6). Then B determines the current in the poloidal
direction, and d8/d# is related to the current in the toroidal direction [9].
The matching conditions at the antenna are

n,X[B]=n,x vg,

n -[B] =0, (3.23)

where n, is the outer normal to the antenna; the double bracket indicates a jump across the
antenna from the inside to the outside.
The vacuum region is surrounded by a perfectly conducting shell where we have

n+B=0, (3.24)

where n, is the outer normal to the shell.
The vacuum equations are

B=v9,

3.25
v2d =0. (3.25)

We are now ready to express the surface term S (3.19¢) in terms of the vacuum solution. S can
be written, using E, =0 in the plasma, as

- —iw[ E,Bdo. | (3.26)
an

Using the vacuum equations (3.25) and the identity

roty(PE) =iw®By + E, B, (3.27)
we have
S= wzf ®B,do, (3.28)
R

or, with iwBy = — V,E.,
S=iw] mf ov,E, do. (3.29)
082

The potential @ is functionally related to its normal derivative on the boundaries of the
vacuum region (the plasma boundary, antenna and shell) via Green’s theorem. Using the
boundary and matching conditions (3.23) and (3.24) one can write @ on the plasma boundary as

o(r) =j;QQ(r, r)d(r)-dd’ + D (r), (3.30)
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where @ is the source term due to the antenna. The derivation of the full expressions for Q and
@, has been given in ref. [9].
Introducing (3.30) into (3.29), we obtain

S = —./;gj;QQ(r, r’)(V"El(r’))(V"El(r))dado’

+iw[ Pg(r)(v,E (r))do’, (3.31a)
a2

with

Q=M;\(E,, - (D,,— 2I)D;'E,,),

O = M;,,l((pps -21)D;'D, + 21— Dpa)B,

M, =D, -2I- (D, —-2I)D;'D,,

Dt (r) = 3= [(10) ~1() VG (, )+ do, (3.310)

E;.wf(r) = zi‘n/G(’;n ",,')V'f(r’) 'dU,,
G(r,v)=1/|r,—r1,

p, v =p (plasma), a (antenna) or s (shell). :

An alternative to the Green’s function technique is the numerical integration of vacuum
equations, e.g. using finite elements [32].

Once the antenna current (3.22) is specified, the solution of the variational form (3.19), with its
vacuum contribution (3.31a) and the regularity condition (3.20), is uniquely determined. Before
explaining the numerical construction of this solution, we shall derive a few expressions which
are interesting from the physical point of view.

3.3.6. Power, Poynting flux and power balance
The total power delivered by the antenna is

P = %deVja *E*, V=vacuum region. (3.32)

It can be written, using the definition of the antenna current (3.22), after partial integration and
use of Maxwell’s equations as

1w
P,= —Tff”* -do,. (3.33)

The integral is a surface integral along the antenna. With the same Green’s function technique as
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described above, B*-de, can be expressed as a surface integral along the plasma—vacuum
interface

B*-doa=/;2(ra, n)(V,EX(r,))do, + ¥ (n), (3.34)
and

P, = (f )fz(,,, r)(v,EX(r,))dedo, +f3(r)~p5( )do) (3.35a)
with

Z T ( PP PPQ)’

B‘I’E= T;)—alUpPQE,

T..=E,,—(D,,—2I)D;'E,,, (3.35b)

UPP:DPP_zl—(DPB—ZI)Da;IDalw

Vop=Ep,— (D,, = 2I)D'E,,.

Another interesting quantity is the total power transmitted through the plasma surface

P, =%/aQ(E*xB)-dap. : - (3.36)

P

It can be evaluated either from the explicit calculation of the Poynting vector §, or directly from
the variational form (see (3.7)).
The global power balance is

Re P,=Re P,. (3.37)
The local power absorption density div $Re (E* X B) can be written as

Py(r)= %(Im exn|E, |2+ 2Im(eny +iey, )Im(EZE)). (3.38)
In our case we have an imaginary part only in €y (see (3.8)); thus this relation reduces to

Bd(r—)=%lm-ew|E|2. (3:39)

To check the validity of the solution, we compare the power absorbed in a given volume with the
Poynting flux across the surface of this volume. Let £, be a torus defined by a y = const surface,
and let us define the Poynting flux P, as

Ps(\p)=%j;ﬂlRe(ExB)-do¢ | (3.40)
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and the power flux P, as
P.(y) =/ P,(r)dv. (3.41)
‘Q»"

The local power balance is evidently

P(¢) =Pe@), vy. (3.42a)

One can also compare d P,/dy with f Py(r)do,. (3.42b)
22,

Finally, we must have

Re P, =Re P, = P(¢,) = P.(¥,), (3.43)

where v is the magnetic flux at the plasma—vacuum interface. The Poynting vector S = E* X B
can be evaluated using B =(1/iw) rot E and the expression (3.18) for rot E.

3.4. Numerical solution of the variational form

We now have all the material necessary to describe the numerical scheme used in the LION
code. It consists of five distinct parts.

3.4.1. Equilibrium

The equilibrium can be computed either in a separate code or by using the Solovev analytical
model [33]. In both cases one obtains the values of y, solution of the Grad-Shafranov equation,
on a rectangular mesh in (r, z): {¢,J=¢(r,, z;), i=1,...,N, j=1,...,N,}. In the actual
version of the code the equilibrium is assumed to be symmetric in z is determined only in the
upper half-plane. The plasma domain is covered with a rectangular non-uniform mesh in (s, x):
{Csis x;) i=1,...,N,, j=1,..., Noar} (s is defined in eq. (3.11)). The information has to be
inverted, i.e. for a given (s;, ¢;) we have to find the corresponding r and z coordinates and all
the equilibrium quantities needed for the calculation of the coefficients of the variational form
(3.19). The code works in dimensionless units such that the major radius R,, the equilibrium
magnetic field B, the mass density p, and the Alfvén transit-time R,/C, are normalised to their
values on the magnetic axis.

3.4.2. Vacuum

The vacuum region contains the antenna and shell surfaces. These are given by arbitrary
functions p,(8) and p,(8) (fig. 6). The antenna current is specified by the function B(6) in eq.
(3.22). Different forms of p,(#) and B(8) will define various antenna models: helical, low field
side, high field side, both high and low field sides, or top-bottom.

The vacuum contribution (3.31) to the variational form is represented by a matrix and a
source vector. These are obtained by calculating Q and @ according to the relations (3.31b).
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Notice that the boundary and matching conditions are included in these expressions. Everything
is then prepared for the calculation of the power delivered by the antenna (3.35): we evaluate Z
and B ¥ according to (3.35b).

3.4.3. Plasma

We have chosen to use finite hybrid elements for the following reasons. Firstly, we want our
code to be valid for any aspect ratio, in particular in the cylindrical limit, where we know that
regular finite elements may cause trouble due to the spectral pollution (fig. 3). Secondly, the
hybrid elements lead to simpler integration formulas than the regular ones. Nevertheless, they
have the same convergence laws. Thirdly, the LION code has been developed from the ERATO
stability. code which uses finite hybrid elements of first order and it was most convenient to
retain the same elements.

Let us now describe the principle of the method. Instead of solving the variational form (3.19)
as

Z(X,V)=0, (3.44)
we consider

XD o XD YW

@ —
& ax » s 0 ax |4 0, _ (3.45)
with the evident relations
XU = xy@ - X(3), v = p@, . . (3.46)

An equivalent way to write (3.46) is

1
lim — [ (X = X®)dVy=0, vAcCQ, .47
lim 7 f ) (3.47)
and the same for the other relations. After discretization we restrict the conditions (3.47) by
identifying A with a mesh cell. When the number of these cells tends to infinity we recover the
initial problem (3.44).

Fig. 7. A mesh with its 6 nodal points and their local numbering. The small square in the centre is the point where the
relations (3.48) are defined.
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We expand X0, X@, X 1M and ¥® in a set of basis functions. The simplest choice is
made, i.e. we require each term in the variational form (3.19) be constant on each mesh cell. The
shape of these basis functions is given in ref. [29]. The integration reduces to a multiplication of
the value of the integrand at the centre of a cell by the volume of this cell. We define x , as the
values of X and ¥ on the nodal points. Fig. 7 shows their positions in a mesh cell and their local
numbering, j=1 to 6. At the centre of the cell we have

XD xy+xg—x; — x4

09X - 2Ax ’
YO = Xyt Xy + x5+ xg
4 ’
0X?®  xs+x—x,—x,
= 3.48
as 2As ’ ( )
ax Ax
Xs+ X
(2) 3 4
4 2

For each mesh cell we calculate the contribution to the variational form (3.19) using the
formulas (3.48). This yields 6 X 6 “local matrices” which have to be added in the proper way to
the total matrix A of the discretized form. This is done by choosing a global numbering of the
nodal points. The matrix A is constructed by blocks of contributions of s = const cells (fig. 8).
The numbering is non-monotonic in x and the periodicity in x is automatically satisfied. The
matrix obtained has the structure shown in fig. 9. It consists of N, blocks which partly overlap;
each block is subdivided in 9 subblocks of dimensions Nyt X Ny, €ach subblock is a band
matrix of bandwidth 5. We introduce the regularity condition (3.20) on the first block. The

¥4
X

22 s
A Y
h‘ 20
6
24 4
1676
P 18
r‘r"

1

Fig. 8. A set of 5 = const cells with the global numering of the nodal points for Noot = 8.



L. Villard et al. / Global waves in cold plasmas 119
X VXV Xx V..

17 18 19 20 21 22 23 2
X
v NN
2
X A A2 3_>3\
v A; A5 1A Z
X U7lAglhdg 5
v 6
! 7 \
8 N\

Fig. 9. Block and subblock structure of the matrix A for the numbering shown in fig. 8. The subblock A, is the
subblock A, of the next block.

vacuum contribution (3.31) is added to the last block. The matrix A is complex and non-Hermi-
tian. In the actual version of the code we store the full blocks, not profiting from the many zeros
they contain. However, it is possible to gain a substantial amount of storage by using sparse
matrix techniques. We shall discuss this point later.

3.4.4. Algebra
The problem has been reduced to the determination of the solution of the linear system of
algebraic equations '

Ax=b, | (3.49)

where b is the source vector due to the antenna (see(3.31)). We decompose A into LDU where L
and U are lower and upper triangular matrices and D is a diagonal matrix. The solution x is then
obtained in two steps

y=L"1p,

3.50
x=U"'D" 1. (3.50)

The matrices are treated block by block with subsequent input/output operations.

We check the validity of the solution x by substituating it into egs. (3.49) and comparing the
norm of Ax with the norm of 5. In all cases the results agree to 13 digits, hence the matrix A is
well conditionned for this elimination procedure. Since the variational form itself can be
considered as a power balance relation (see (3.7)), and since we solve it exactly, we have found a
formulation-in which the pewer-balanee-is exactly satisfied.

3.4.5. Diagnostics

The total power delivered by the antenna, P,, is evaluated according to (3.35). The total power
transmitted through the plasma surface, P, (3.36), is calculated directly from the source vector
and the solution at plasma—vacuum interface

1

_ k.
P,=—x*:b. (3.51)
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Fig. 10. Surface 92, passing through the centres of the mesh cells where the Poynting and power fluxes, P.(Y) and
P,(¥), defined by egs. (3.40) and (3.41), are compared.

From the solution x we reconstruct the variables X and ¥V as well as their derivaties 9.X /0x,
90X /ds and 3V /0x according to (3.48). We use the definition of X and V (3.16b) to obtain the
components of the wave electric field Ey and E |, the expression (3.18) for rot E to calculate
the wave magnetic field By, B, and B, and the Poynting vector Sy, S, and S,- The
polarizations of the electric field E, = Ey +iE, and the Fourier decomposition of the solution
in the poloidal angle x are also computed. The power absorption density P, (3.38), the Poynting
flux P(¢) (3.40) and the power flux P.(y) (3.41) are constructed, and the related power
balances (3.42) (3.43) are checked.

We have to be careful in comparing P,(y) with P,(y). According to the finite hybrid elements
(3.48), the fields E, B and S associated with the wave are defined at the centre of each mesh cell.
The comparison between P,(y) and P.(y) has to be done on a surface 42, passing through the
centres of the cells (fig. 10). Therefore we have to take into account only one half of the volume
of the exterior cells when integrating P.(y).

The real antenna structure can be decomposed in Fourier series in the toroidal angle. For each
Fourier component we repeat the calculation presented in sections 3.4.1 to 3.4.5. The total power
is simply the sum of the powers of all components.

3.4.6. An application of the LION code to JET

As an illustrative case we show an example of the mode conversion scenario at the ion—ion
hybrid resonance in JET. The plasma contains a mixture of deuterium (96.6%) and helium-3
(3.4%). The antenna is on the low field side. The antenna current, given by the function B(0) in
eq. (3.22), has been chosen to be constant and purely poloidal. Its excitation frequency is such
that it matches the cyclotron frequency of helium-3 32 cm from the magnetic axis towards the
high field side. We show here only one toroidal Fourier component (n = 3). The equilibrium is of
the Solovev type with an expect ratio of 3, an ellipticity of 1.3 and a safety factor on axis of 1.11.
The other parameters are n, =3 X 10" m~>, B;=3.5 T, R,=3 m, the frequency w/2m = 35
MHz, »=10"2. The mesh used in this computation is 100 intervals in the radial direction
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N

Fig. 11. Contour lines of the power absorption density for a mode conversion scenario in JET in a deuterium plasma
with 3.4% helium-3. The parameters are: n, =3%10'"> m™3, By =35 T, R, =3 m, aspect ratio = 3, frequency = 35
MHgz, low field side antenna, n =3, » =10~2. The dashed lines indicate where the frequency matches the cyclotron
frequencies of deuterium and helium-3. The dotted line is the approximate resonance condition epy — n2/r2 = 0.



122 L. Villard et al. / Global waves in cold plasmas
= 50). This mesh size (5000 cells) is

(N, =100) and 50 intervals in the poloidal direction (N
approximately the maximum of what can be handled on a CDC-Cyber 855. It requires 500 s of

central processor time and 89000 words of central memory. The turn-around time is long due to

the many input/output operations.

%
H
Z
=
e

-~
\\\‘-u\\\\. S

N

Fig. 12. Poynting vector for the case shown in fig. 11. The parallel component is not represented
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The contours of the power absorption density are plotted in fig. 11. Notice that the resonances
are located on pieces of magnetic surfaces at specific places along the line €y —n2/r*=0
(dotted line) which usually defines the resonance condition in the WKB approximation. The

Fig. 13. Contour lines of the circular left-hand polarization of the electric field, |[E,|=|EN+iE, |, for the case
shown in fig. 11.
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Poynting vector (fig. 12) shows a'complicated fine structure which results from the superposition
of the “incoming” and “partly reflected” waves. The contour plot of the absolute value of one
circular component of the polarization of the wave electric field, |E, | = | Ey +1iE, |, is shown
in fig. 13. Notice the focalization of the fast wave towards the central regions.

Let us now turn to the various checks of this calculation. Firstly, we have Ax = b to all digits
(10~') which means that the solution of the discretized problem is exact. Secondly, the total
powers, P, (3.35) and P, (3.36), are equal with an accuracy of 3%. Thirdly, the comparison of the
Poynting and power fluxes, P,(y) (3.40) and P.(y) (3.41), is good within 1.5%. This does not
mean, however, that we have solved the problem with such an accuracy but merely that we did
not make gross errors when programming. There remain errors due to the discretization which
can be assessed by convergence studies. This is discussed in the next section.

3.5. Properties of the computational model

3.5.1. Preliminary remarks

It is nice to show a result of a numerical code. However, we may address the question of its
credibility. In other words, we would like to know - and if possible to measure — to which extent
we can be confident in the numerical solution. We have shown in the preceding part that the
equations are solved exactly on a given finite number of mesh points. We now have to show what
happens to the solution when the number of mesh points is increased, whether the results
converge and how. This is done in section 3.5.2.

The other parameter which is still free is » (see (3.8)). In section 3.5.3 we discuss how the
solution behaves with respect to the value of » and how this behaviour can be interpreted.

From a more physical point of view it is important to determine how the numerical code
compares with other models and whether it is able to describe correctly the experiment. These
points are discussed in section 3.5.4.

3.5.2. Convergence properties

We shall examine the convergence properties in three different cases. We consider first a single
species plasma with no resonant layer inside. The frequency is such thatw/w,=1.5 on the
magnetic axis. We introduce a rather strong damping: » = 0.4. The equilibrium is of the Solovev
type, with an aspect ratio of 10, a circular cross section and a safety factor on axis of 1. The
antenna is located both on the high and low field sides, with currents given by 8(#) = cos 4 in
€q. (3.22), and we consider only one toroidal Fourier component: n = — 4. The problem is solved
on various meshes. We define

Neen = Ny N,

pol»

3.52
= 1/ cell * ( )

We let N, and N, vary simultaneously with N, = 2N, and examine the numerical results as a
function of A.

For non-Hermitian problems solved using finite elements of first order the theoretical
convergence law of the solution is linear in 4. In our case we have found a mixture of quadratic
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Fig. 14. Convergence study of the total resistive power versus h®=1/N2, for a strong damping case with no
resonance inside the plasma (w/w, =1.5 on the magnetic axis, v =0.4). P, denotes the power delivered by the
antenna (3.35) and P, the power transmitled through the plasma surface (3.36) and (3.51).

and quartic dependencies. In fig. 14 the quanutles Re P, (3.35) and Re P, (3.51) are plotted
versus h®. We see that the convergence is quartic, rmxed with a small quadratlc dependence
which shows up only for very fine meshes. Let us write

- 2 4 5
Re P, =P, +f,h*+g h*+ O(h°),

(3.53)
Re P,=P, +f,h*+gh*+ O(h%).

From fig. 14 we deduce g, = 17330 and g, = 11500. A plot of Re P, — g, 4* and of Re P, — g,h*
versus A% (not shown) y1elds the converged values P,,, = 5.500 + 0. OOl and P, =5.500 + 0.001.
Notice that even for rather coarse meshes the result 1s within 1% of the converged value. In fig.
15 the power balance relation ( P.(y) — P,(y))/P.({) evaluated on the outermost cells is plotted
versus h%. A quadratic convergence is observed. We are very pleased to see that the converged
value is zero and that even for coarse meshes the balance is satisfied with an accuracy of 0.02%.
Other quantities such as the reactive power, the maximum value of the power absorption density,
the Poynting vector or the electric field converge quadratically in 4 (not shown).

We now consider the same plasma as before but lower the excitation frequency so that
w7'w,; =0:375 on the magnetic axis. This is in the Alfvén wave heating domain. The antenna is
helical: the currents are given by B(8) = exp(im#) in eq. (3.22), with n=—6 and m= —1. A
small damping » = 2 X 1072 is introduced. As shown in fig. 16a the quantity Re P, converges in
O(h*). The quantity Re P, still exhibits a mixture of quadratic and quartic convergences In this
sense Re P, (see (3. 51)) is a better evaluation of the resistive power than Re P, (3.53).
Nevertheless, both quantities differ only by 2% even for coarse meshes and they converge to the
same value Re P, =Re P, =3.107 £ 0.001. The reactive power inside the plasma shows the
same behaviour (fig. 16b): Im P, converges quartically to 8.515 + 0.002 and Im Pp!*™ converges
to the same value with a mixture of quadratic and quartic laws. The vacuum power Im Py2csum
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Fig. 15. Convergence study of the power balance (P.(y)— P,(¥))/P.(¢) versus h2=1 / N. for the same case as in

fig. 14.
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Fig. 16. Convergency study of (a) the total resistive power, (b) the reactive power inside the plasma and (c) the electric
field at a given point versus h*, for an Alfvén wave heating case (w/w,; = 0.375 on the magnetic axis, » = 2 X 1072).
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Fig. 17. Convergence study of (a) the electric field at a given point and (b) the power balance (P.(¢)— P,(y))/P.(¢)
. versus h?, for the same case as in fig. 16. .

converges quadratically to 1.936 + 0.005. At certain points the value of the wave field converges
quartically. An example is given in fig. 16c where Re Ey (s=0.336, x =0, ¢ =0) is plotted
versus h®. In general, however, it converges quadratically as shown in fig. 17a where Re Ey
(s =0.585, x=m, =0) is plotted versus h®. The power balance (P.(4) — P, (y))/P.(y) con-
verges quadratically to zero (fig. 17b)). As in the previous case we have an accuracy of 0.02%
even with rather coarse meshes.

In some cases the solution shows a complicated structure, so that the maximum mesh size
available is insufficient to demonstrate the convergence properties of the numerical code. There
is also the problem of the strong variation of €yy and ey, (3.5) around the line w = w,, specially
if the concentration of the corresponding ion species is small. In such cases it is difficult to have
enough spatial resolution for a good description of €y and €y, . Our choice of the coordinates
¥ and x is certainly not the best in this respect; however, since the solution often shows much

tructure in  our mesh will describe it~advantageously. As an example we consider a large
plasma (JET) containing a mixture of hydrogen (97.4%) and deuterium (2.6%). The equilibrium is
of the Solovev type, with an aspect ratio of 3, an ellipticity of 1.3 and a safety factor on axis of
1.11. The magnetic field B, is 3.5 T and the density n, is 4 X 10" m~>. The antenna is on the
low field side. The antenna current, given by the function B(8) in eq. (3.22), has been chosen to
be constant and purely poloidal. The frequency, 27.2 MHz, is such that the cyclotron frequency
of deuterium is matched at the centre of the plasma column. A small damping (» = 2.5 X 1073) is
introduced. The solution is shown in fig. 18 where the contour lines of the circular left
polarization, |E, | = | Ey +iE, |, are plotted. Notice the importance of the magnetic structure.
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Fig. 18. Contour lines of the circular left-hand polarization of the electric field, |E, | =|Ey +1E, |, for a mode
conversion scenario in JET in a hydrogen plasma with 2.6% deuterium. The parameters are: n, = 4x10" m3,
By=35T, Ry=3 m, aspect ratio = 3, frequency = 27.2 MHz, low field side antenna, n =3, »=2.5%x10"3. The
dashed line indicates w = wcp.
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Fig. 19. Convergence study of the total resistive power versus 42 for the same case as in fig. 18. For the maximum
mesh size used (N, =100, Nt = 50) the convergence is not reached.

The power absorptlon occurs predormnantly on the intersections of the resonant y-surfaces with
the line ey — n2/r2=0 which is the resonance in the WKB approximation (not shown). The
mesh used in the calculation is N, =100 and N,, =50 and, as we.shall see, is not sufficient to
get close to convergence. In fig. 19 the quantity Re P, is plotted versus various mesh sizes. Large
oscillations occur with an amplitude which decreases with the number of mesh cells. We cannot
state an accuracy of better than 30%. Therefore we have to be careful in presenting numerical
results such as fig. 18: they can give a good insight into what happens physically but cannot be
regarded as the final (converged) result. An indication that the solution shown may be not so bad
is given by the power balance relations. The comparison between the quantities P, (3.35) and P,
(3.51) gives Re P, = Re P, with an accuracy of 0.6%. The agreement between the Poynting and
power fluxes, P, (¢) (3. 40) and P,(y) (3.41), is within 0.5% on the outermost cells and better
than 2% elsewhere However, this does not mean that the solution is so close to the converged
result. Satisfying a power balance relation is not sufficient to validate a solution. Let us consider
for example the mesh N, = 48, N, =24. We have Re P, = Re P, within 1% and P,(y) = P.(¥)
within 3% on the outermost cells. But the solution is manifestly not correct with such an accuracy
(see_fig. 19)!

It can be a fastidious task to make such convergence studies for each case. A possibility of
getting an idea of the accuracy of a result is to vary the distribution of the mesh cells and look
how the different quantities depend on this variation. In cases like in fig. 18 the number of
resonant magnetic surfaces is so large that the number of cells is not sufficient to describe all of
them. By changing the distribution of the mesh cells, new resonances may show up while others
may vanish. This can give an idea of the size of the mesh required for convergence.

The results of the above convergence studies can be summarized as follows: either the mesh is
insufficient due to the intrinsic complexity of the solution and no convergence law can be
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v

Fig. 20. Behaviour of the total resistive power with respect to » for the resonance absorption case. The frequency used
for the curves (b) and (c) is slightly different from that used for the curve (a). For the curve (c) the mesh points are
accumulated around the main resonant surface.

evidenced, or the mesh is fine enough and a convergence or even super-convergente is observed,
leading to very accurate results. No mathematical explanation of this super-convergence has been
found as yet.

3.5.3. Behaviour with respect to v

Four different types of behaviour of the solution with respect to » may occur. They can be
related to four different physical situations: excitation of a global mode, resonance absorption,
both these phenomena occur simultaneously, none of them occurs.

In the case of a pure global mode, the role of » is the same as that of the electric resistance in
an LCR circuit: the power absorption is inversely proportional to ». If we trace the power as a
function of the frequency, a global mode will show up as a peak whose width is proportional to »
and height inversely proportional to ». The structure of the power deposition is global and does
not depend on ». This is not the case when a resonant surface is present inside the plasma.

In the case of resonance absorption, the role of » (eq. (3.8)) is to turn around the singularities.
The power is then independent of » for sufficiently small ». For a given mesh, however, there is a
minimum value of » below which the effects of the discretization show up. We have to remember
that resonance absorption means the excitation of a mode belonging to a continuum, and that
this continuum is numerically represented by a finite set of modes (see fig. 3). The value of »
must be such that at least two discretized modes are simultaneously excited. To illustrate this
important feature we consider an Alfvén wave heating scenario with the same parameters as in
fig. 14. We solve the problem on a mesh with N, =40 and N, = 20. The curve (a) in fig. 20
shows the total resistive power Re P, as a function of ». We see that Re P, is independent of »
for values down to »;,, = 1072 Below this value the power varies as 1/, but this does not mean



L. Villard et al. / Global waves in cold plasmas 131

0 T T
0 50. 100.
17y

Fig. 21. Behaviour of the total resistive power with respect to » for the case of simultaneous excitation of a continuum
and of a global mode. The parameters are the same as in fig. 11 except the frequency = 32.1 MHz.

that a global mode is excited. It merely means that the frequency is equal to the frequency of one
of the discretized modes of the continuum; below »;;, we excite only this one. The mode is not
physical since it depends on the mesh. Therefore one has to be careful before identifying every
feature which varies proportionally to 1/» as a global mode! By varying the mesh it is
nevertheless possible to eliminate the ambiguity. An example is shown in fig. 20 where the curves
(b) and (c) represent the total resistive power, Re P,, corresponding to the same case but solved
on different meshes. A mesh with N, = 40 and Ny = 20 is used; for the curve (c) we accumulate
the mesh points around the main resonant surface For the curve (b) the excitation frequency is
situated between two discretized frequencies, so that below »,, =10"2 the power drops
proportionally to ». For the curve (c) we excite a discretized mode (as for curve (a)) but the mesh
accumulation allows us to lower »;, down to 3 X 1073,

In the case of the excitation of a global mode in the presence of resonance absorption, » plays
both roles described above. This situation is delicate since we have to be sure that the mode
observed is physical and not due to the discretization. The presence of a global mode inside a
continuum enhances the power absorption. Let us consider a mode conversion scenario in JET
with the same parameters as in fig. 11: a minority of helium-3 in a deuterium plasma. We only
change slightly the frequency (32.1 MHz instead of 35 MHz). The total resistive power Re P, as
a function of 1/» is plotted in fig. 21. The error bars are due to the lack of mesh resolutlon
(N, =100, N, = 50). Therefore we must consider this result as preliminary. For » down to 10~2
we have

Re P, =Py, + Pyoat/?- (3.54)
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For values of » smaller than 10~2 we deviate from this dependency because we start to lose the
contribution from resonance absorption. It is therefore not possible to know whether or not, for
smaller values of », the power is independent of » (which means that the power due to the
presence of the global mode is also resonantly absorbed). The indication of the presence of a
global mode when a continuum is also excited is delicate and needs still further investigations.
For example, we can calculate the power as a function of the frequency (or the plasma density).
A global mode manifests itself as a peak. The width of the peak is proportional to » and its
height above the continuum is inversely proportional to », as (3.54) suggests. This kind of study
has been applied to the tokamak TCA where such peaks superposed on a continuum have been
found experimentally [34]. This point is discussed in the next section.

In the case where neither a global mode is excited nor resonance absorption occurs, the only
absorption arises from the damping » so that the total power is just proportional to ».

3.5.4. Comparison with other models and with experiment

A very important check of the validity of the numerical scheme is to examine its ability to
reproduce the results of other models. We mention here two limiting cases: the cylindrical limit
with finite w/w,, and the ideal MHD limit (w/w_, = 0) with finite aspect ratio.

For homogeneous plasmas in cylindrical geometry an analytic dispersion relation can be
derived, giving the eigenmodes of the fast magnetosonic wave and of the Alfvén wave. A study of
the spectrum of these modes for the case m = +1 can be found in ref. [20]. On using the LION
code in this large aspect ratio limit we have found the same spectrum as the analytical one.

In the ideal MHD in toroidal geometry we compare the results of our numerical scheme with
those of the ERATO code in its version used for the study of Alfvén wave heating [9]. Since our
model does not include finite B effects but ERATO does, both calculations yield the same results
with a discrepancy of the order of B.

These two checks demonstrate the ability of the LION code to treat both the physics related to
finite w/w_; and the toroidal geometry.

The final criterion of the validity of a theoretical model is the comparison with experiment.
The studies of Alfvén wave heating in the TCA tokamak provide us with a possibility to perform
such a check, and even to show a case where the combined effects of the finite w/w_, and
toroidal geometry are necessary to explain the phenomenon. The experiments have shown the
existence of modes, both global Alfvén and subsequent continuum, in a region of the spectrum
where none was expected from a cylindrical model. The interpretation of this fact is the toroidal
coupling from the antenna excitation structure (here n =2, m =1) to the mode (n =2, m = 0).
The ideal MHD toroidal model (ERATO) was able to show the existence of the continuum,
while the global mode was still absent in the calculations. With our present model which includes
also the effects of finite ion cyclotron frequency (here w/w_, = 0.22) we have found a global
mode at the same place in the spectrum as the experiment [21].

4. Limitations and further improvements of global wave codes

The essential limitation of global wave codes is the maximum mesh size which can be treated
due to the large memory storage, input/output operations and central processor time required.
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We have seen that in some cases this maximum is insufficient to allow us to demonstrate
convergence. Therefore we have to develop new algorithms having a better efficiency.

In the LION code the full blocks of the matrix A are stored though they are sparse (fig. 9).
This is due to the fact that the decomposition of A into LDU fills the blocks. There is clearly a
need to overcome this handicap. A possibility is to take advantage of the particular structure of
the matrix A: the blocks overlap only for the variable X (see fig. 9). This arises from the fact that
V' has no derivative in the y direction and from the choice of the finite hybrid elements of first
order. The variable V appears therefore as “one-dimensional”. It is then possible to eliminate it,
so that the only subblocks of the matrix A which must still be stored as full matrices are the
overlaps (A, in fig. 9). All the others can be stored as band matrices. The LDU decomposition is
only applied to the subblocks A; and A. All the other operations are resolutions of linear
triangular or banded systems of equations. This technique has been successfully applied to the
ERATO stability code [35]. It led to a gain in CPU time and memory storage of the order of 4
and to a gain in disk storage and input/output operations of the order of 10, thus reducing
dramatically the turn-around time. For the LION code the expected gains are comparable.

Another class of algorithms, the iterative methods, keep the sparseness of the matrix A
untouched. These algorithms are easily vectorizable. Unfortunately, in our case A is neither
symmetric nor positive definite. When applying a Gauss—Seidel scheme to our problem, the
solution diverges after 4 or 5 iteration steps even on a mesh as small as 4 X 4! A possibility is to
solve

AAx=ATh : (4.1)

instead of Ax = b(3.51). The matrix ATA is symmetric and positive definite but its condition,
defined as the ratio of the largest to the smallest eigenvalue, is usually very bad. A very
promising scheme is the “incomplete Cholesky-conjugate gradient” method (ICCG) [36] in which
incomplete LDU decomposition of the matrix is performed, thus retaining its sparseness and
greatly accelerating the conjugate gradient iteration.

An alternative to the finite element and finite difference schemes is to expand the fields in
Fourier series in the poloidal direction [37]. Unlike the toroidal decomposition, the poloidal
Fourier components are not independent from each other. Practically, one has to truncate the
series to a finite number of terms. Whether or not such a method is competitive depends on the
rapidity of convergence with respect to the number of terms in the Fourier series.

In this paper we discussed the toroidal geometry in particular. It is clear that the numerical
methods presented here are not restricted to this geometry but in principle can be applied to
other two-dimensional configurations such as axisymmetric mirrors [38,39] or straight stellerators
{32,40}, for-example. '

We have restricted ourselves to the cold plasma model. There remains the question of
introducing more physics into the numerics. For example, without touching the differential
structure of the equations we can model the collisional or ion-cyclotron damping of the fast
wave. However, as soon as more effects of finite temperature are taken into account, the
differential structure of the equations is altered and thus the code needs more profound
modifications. First of all, one would have to derive the pertinent equation in two-dimensional
geometry, a task which is not easy at all. Moreover, since we met spatial resolution problems
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already with the cold plasma model, one can expect these problems to be even tougher when
“kinetic” short-wavelength waves are present. For more details concerning the global wave
solution in warm plasmas see refs. [22,41].

5. Conclusion

In this paper we have presented and discussed some of the methods which are used for the
numerical determination of the global solution in cold plasmas. We hope we have demonstrated
that the global wave codes can be a powerful and reliable tool for the study of rf wave heating. A
great advantage of these methods is that the accuracy of the results can be checked and measured
by doing convergence studies.

As an example we have shown in detail the numerical code LION which solves the pertinent
partial differential equations in exact toroidal geometry using a finite element method. The
model is valid for any aspect ratio and any shape of plasma cross section. It provides a
description of both the Alfvén and ion—ion hybrid resonances. Its compatibility with the ideal
MHD and with an analytic dispersion relation for homogeneous plasma cylinder has been
checked. By means of this code we were able to find global modes and to study the toroidal
coupling. A successful comparison with the experiment in the TCA tokamak has been made in
this context.

The work on global wave codes is still in progress. The efficiency of the methods needs-to be
improved by adapting modern and if possible vectorizable algorithms to our particular problem
in order to increase the maximum mesh size available.
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REFERENCES :

(1) L.VILLARD, K.APPERT, R.GRUBER AND J.VACLAVIK,
'GLOBAL WAVES IN COLD PLASMAS',LAUSANNE REPORT
LRP 275/85 (1985) CRPP, LAUSANNE, SWITZERLAND.
COMPUT. PHYS. REPORTS 4 (1986) 95.

(2) R.GRUBER ET AL., COMPUT. PHYS. COMMUN. 24
(1981) 323.

(3) K.APPERT ET AL., NUCL.FUS. 22 (1982) 903.

1. PLASMA PHYSICS

THE EQUILIBRIUM CAN BE GIVEN IN TWO DIFFERENT WAYS, DEPENDING



ON THE VALUE OF 'NTCASE'.

NTCASE = 2 ====) SOLOVEV EQUILIBRIUM, DEFINED BY THE VARIA-
BLES :
'ASPCT' (INVERSE ASPECT RATIO)
'B2R2' (B2)
'ELLIPT'(ELLIPTICITY SQUARED)
'"QIAXE' (1/Q(AXIS))

SEE REF.(2), EQS (2.7) (2.8).

NTCASE = 3 ====)> NUMERICAL EQUILIBRIUM, OBTAINED FROM AN
OTHER CODE. THE VALUES OF PSI ON A (R,2)
MESH ARE READ FROM A FILE 'DORY' (TAPE NR.
'NDORY', DEFAULT SETTING 'TAPE11').

IT 1S CRUCIAL TO NOTE HOW THE TRANSFER OF
DATA TAKES PLACE (SEE P1C3502.34,36).

IN PARTICULAR THE NUMBER OF MESH POINTS IN
THE R AND Z DIRECTIONS MUST CORRESPOND TO
THE ONES IN THE EQUILIBRIUM CODE + 1.

THIS EQUILIBRIUM CAN BE SCALED BY USING THE
PARAMETER 'SCALE' . DIFFERENT VALUES OF
'SCALE' VWILL DEFINE DIFFERENT EQUILIBRIA.
SEE REF.(2), ERQ.(6.13).

NOTE THAT BY RUNNING LION1 WITH NLOTP1(1)=.TRUE., ONE OBTAINS
INFORMATION ABOUT THE EQUILIBRIUM PROFILES. (Q,T,ETC.)

THE LOGICAL VARIABLE 'NLCOLD' SELECTS EITHER THE COLD OR LUKEWARM
PLASMA MODEL. LUKEWARM MODEL INCLUDES CYCLOTRON DAMPING OF THE FAST
WAVE BUT NOT THE ION BERNSTEIN WAVE, IN OTHER WORDS INCLUDES THE
PARALLEL TEMPERATURE BUT NOT THE PERPENDICULAR. THE USER MUST BE
AVARE THAT THIS MODEL CANNOT PREDICT WHICH FRACTION OF THE POWER
IS DEPOSITED ON IONS.

'NRSPEC' IS THE NUMBER OF ION SPECIES. WE GIVE THEIR NUMBER DENSI-
TIES ON MAGNETIC AXIS ('CENDEN()',M%%-3) AND TEMPERATURES ('CENTI()',
EV, DISCARDED IF NLCOLD=.TRUE.). THE VARIABLES 'EQDENS' AND 'EQKAPD'
SPECIFY THE DENSITY PROFILE ACCORDING TO:

N-SUB-I = CENDEN(I) * (1.-EQDENS*S%S) *xEQKAPD .
(SUBROUTINE DENSIT, 1.2.3%4).

IT IS ALSO POSSIBLE TO DEFINE RADIAL PROFILES OF THE MINORITY
CONCENTRATIONS WITH 'FRCEN' (RADIAL POSITIONS OF THE CENTERS OF THE
DISTRIBUTIONS, NORMALIZED TO THE MINOR RADIUS) AND 'FRDEL' (WIDTH OF
THE DISTRIBUTIONS). THESE PROFILES HAVE NOT BEEN PROGRAMMED YET. SEE
SUBROUTINES 'FRPROF' (3.2.15) AND 'SHAPE' (3.2.16).

THE TEMPERATURE PROFILES ARE GIVEN BY 'EQTI()' AND 'EQKAPT()'
ACCORDING TO :

T-SUB-I = CENTI(I) * (1.-EQTI(I)*S%S) *+EQKAPT(I)



(SUBROUTINE TEMPI, 3.2.18)

THE ION SPECIES ARE DEFINED BY THEIR ATOMIC CHARGE NUMBERS
'ACHARG()', AND ATOMIC MASS NUMBERS 'AMASS()'.

WE SPECIFY ALSO THE MAGNETIC FIELD ON MAGNETIC AXIS ('BNOT',TESLA)
THE MAJOR RADIUS ('RMAJOR',M) AND THE WAVE CAUSAL DAMPING ('ANU').
NOTE THAT 'ANU' IS DIMENSIONLESS AND CORRESPONDS TO NU IN EQ. (3.8)

OF REF.(1).

2. ANTENNA AND SHELL

THE VARIABLE 'NANTYP' SELECTS THE TYPE OF ANTENNA.

NANTYP = 1 ====> HELICAL ANTENNA. CURRENT SHEET AT A CONSTANT
DISTANCE OF THE PLASMA SURFACE. THE CURRENTS
ARE HARMONIC FUNCTIONS OF THE POLOIDAL ANGLE
THETA, WITH A POLOIDAL WAVENUMBER GIVEN BY
'"MPOLWN()"':

BETA(THETA) = SUM(J=1 TO MANCMP) OF
CURSYM(J)*COS(MPOLWN(J)*THETA) +
I«CURASY(J)*SIN(MPOLWN(J)*THETA).

THERE ARE NO FEEDERS.

NANTYP = 2 ====) LFS OR HFS ANTENNA. CURRENT SHEET WHICH,
BETWEEN THETA = ANTUP AND -ANTUP, IS AT A
CONSTANT DISTANCE OF THE PLASMA SURFACE AND
CARRIES CONSTANT PURE POLOIDAL CURRENTS

BETA(THETA) = CURSYM(1)

BETWEEN THETA = ANTUP AND THETA = FEEDUP ARE
THE FEEDERS, WHERE THE DISTANCE FROM THE
PLASMA SURFACE INCREASES SMOOTHLY.
THE SELECTION OF EITHER LFS OR HFS ANTENNA
AUTOMATIC :
ANTUP.LT.FEEDUP SELECTS LFS
ANTUP.GT.FEEDUP SELECTS HFS

IT IS NOT POSSIBLE TO HAVE ANTUP=FEEDUP.

THE ANGLES 'ANTUP' AND 'FEEDUP' ARE MEASURED
IN DEGREES ABOVE THE EQUATORIAL PLANE FROM
THE MAGNETIC AXIS.

'NLDIP' SELECTS MONOPOLE OR DIPOLE ANTENNA. THE DIPOLE OPTION
HAS NOT BEEN PROGRAMMED YET.

'ANTRAD' AND 'REXT' SPECIFY THE DISTANCES OF ANTENNA AND SHELL
FROM MAGNETIC AXIS IN UNITS OF THE MINOR RADIUS IN THE Z=0 PLANE.

'FREQCY' 1S THE GENERATOR FREQUENCY IN HZ.



'WNTORE' IS THE TOROIDAL WAVE NUMBER.

ALL OUTPUT

'NLOTPO' :

'NLOTP1()'
(1
(2)
(3)
4
(5)

'NLOTP2()'
(1)
(2)
(3)
4)
(5)

'NLOTP3()'
(1)
(2)

'NLOTP4 ()"’
(1)
(2)
(3)
4

(5)
THE

'NLOTPS ()
1)
(2)
(3)
)
(s)
(6)
(7
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)

3. OUTPUT AND PLOT

IS IN CODE-NORMALIZED UNITS UNLESS SPECIFIED.

GENERAL SVWITCH FOR LINE-PRINTER OUTPUT AND GRAPHICS.

LINE-PRINTER OUTPUT FOR LION1.
(S,CHI) MESH AND EQUILIBRIUM PROFILES.
CYLINDRICAL MHD-ALFVEN FREQUENCIES.

LINE-PRINTER OUTPUT FOR LION2.
QUANTITIES AT PLASMA SURFACE

: POSITION OF PLASMA SURFACE, ANTENNA AND SHELL.

ANTENNA CURRENT.

LINE-PRINTER OUTPUT FOR LION3.

LINE-PRINTER OUTPUT FOR LIONj.
NAMELIST

OHM-VECTOR

SOLUTION AT PLASMA BOUNDARY

TOTAL POWER IS PERMANENT OUTPUT.

LINE-PRINTER OUTPUT FOR LIONS.
NAMELIST

RADIAL POWER ABSORPTION

POLOIDAL POWER ABSORPTION

2-D POWER ABSORPTION DENSITY

2-D POWER ABSORBED IN EACH CELL
2~D NORMAL COMPONENT OF POYNTING
2-D PERP COMPONENT OF POYNTING
2-D PARALLEL COMPONENT OF POYNTING

2-D REAL PART OF E-NORMAL

2-D REAL PART OF E-PERP

2-D IMAGINARY PART OF E-NORMAL

2-D IMAGINARY PART OF E-PERP

2-D POLARAZATION NORM OF E-PLUS SQUARED
2-D POLARIZATION NORM OF E-MINUS SQUARED



(16) :
(17
(18)
(19)
(20)

NORM OF POLOIDAL FOURIER COMPONENTS OF E-NORMAL
(21) i E-PERP
(22) 2-D EPSILON SUB-N-N - N#%2 / Rw¥w%2

(23) : 2-D IMAGINARY PART OF EPSILON SUB N-N

(24) : 2-D OMEGA - OMEGACI

(25) :

THE 2-D TABLES GIVE THE VALUES ON THE CENTERS OF THE CELLS
OF THE (S,CHI) MESH. A LINE IN THE TABLE CORRESPONDS TO A PSI =
CONST SURFACE. IT GOES FROM CHI=0 TO CHI=PI IN THE UPPER HALF-PLANE
AND FROM CHI=PI TO CHI=2+PI IN THE LOWER HALF-PLANE. THE VALUES
ARE NORMALIZED TO THEIR MAXIMUM VALUE. THE FIRST AND THE LAST LINES
OF THE TABLES GIVE THE POLOIDAL NUMBERING OF THE CELLS. THE FIRST
COLUMN GIVES THE RADIAL NUMBERING OF THE CELLS.

'NLPLO5()' : GRAPHICAL OUTPUT FOR LION5
(1) : GENERAL SWITCH FOR GRAPHICAL PLOTS
(2) : RADIAL POWER ABSORPTION AND FLUX
(3) : POLOIDAL POWER ABSORPTION

(4) : 2-D CONTOURS OF POWER ABSORPTION DENSITY

(5) : 2-D SYMBOLIC OF POWER ABSORBED IN EACH CELL
(6) : 2-D ARROWS OF POYNTING VECTOR (NORMAL,PERP)
(7) : 2-D ARROWS OF REAL (E-NORMAL,E-PERP) AT VARIOUS

TOROIDAL ANGLES ('ANGLE(J)' dJ=1 TO 'NFIG')
(8) : 2-D CONTOURS OF NORM OF E-PLUS
(9)
(10) :
(14) : 2-D CONTOURS OF POYNTING VECTOR (PARALLEL)
(12) : 2-D LINE EPSILON SUB (N,N) - N#%2/R%%2 = 0
(13) : 2-D CONTOURS OF IMAGINARY PART OF EPSILON (N,N)
(14) ¢ 2-D LINE(S) OMEGA=OMEGACI
(15) TO (25) : FREE

THE DIMENSION OF THE 2-D PLOTS IS SPECIFIED BY 'ALARG' AND
'AHEIGT'. THE NUMBER OF CONTOUR LINES IS GIVEN BY 'NCONTR'. THE

ARROWS HAVE A SIZE NORMALIZED TO THEIR MAXIMUM VALUE. THIS SIZE
IS CONTROLLED BY THE VARIABLE 'ARSIZE'.

VERSION 10 LDV MARCH 1986 CRPP LAUSANNE
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LABRUN LABEL THE RUN 1.1.01

CLEAR CLEAR VARIABLES AND ARRAYS 1.1.02
PRESET SET DEFAULT VALUES 1.1.03



DATA
AUXVAL

STEPON
FORMEQ
MESH(1)
KERTP
KERTES
SCALES
FITAXE
NOREPT
TANDP
SELECT(1)
ISTPSI(2)
EQANAL (1)
ALPHA(2)
PSRHO(5)
PSIRZ(2)
DERIVE(2)
INTFAC(4)
ADVANC(5)
INTPOL(5)
RUMEQU (1)
SURFIT
FITSUR(3)
TRIBAC(6)
MERCIR
BALOON
ALDLT(5)
BETAST(1)
DOMAIN
SMLEQU
YYP(7)
BNDRY

OUTEQU( 1)
IODSK1(1)

DEFINE DATA SPECIFIC TO RUN
SET AUXILIARY VALUES

STEP ON CALCULATION
ORGANIZE EQUILIBRIUM CALCULATIONS
SET UP PSI-CHI MESH

PREPARES NTCASE=1

PREPARES NTCASE=2

SCALES NUMERICAL EQUILIBRIUM

FITS EQUILIBRIUM AROUND AXIS
NORMALIZES TO ERATO STANDARD

SETS T , P AND RHO

SELECTS ANALYTICAL OR NUMERICAL EQUILIBRIUM
RADIAL COUNTER AT Z=0

ANALYTIC SOLOVEV EQUILIBRIUM
CALCULATES Q AND NON ORTHOGONALITY
GIVES R,Z(PSI)

PSI(R,2) BY FIT

DERIVATIVES OF PSI(R,Z)

INTERFACE NUMERICAL EQUILIBRIUM - ERATO
ADVANCES ON PSI=CONSTANT LINE
INTERPOLATES ON CHI=CONSTANT
NUMERICAL EQUILIBRIUM

ORGANIZES NTCASE=4

FITS PLASMA SURFACE

SOLVES SYSTEM OF LINEAR EQUATIONS
MERCIER CRITERION

BALLOONING MODE CRITERION
DECOMPOSES A=LDLT

CALCULATES BETA VALUES

DOMAIN FOR ANALYTIC FIT

ANALYTIC EQUILIBRIUM IN DOMAIN
PARABOLIC FIT

BOUNDARY FOR HELICAL GEOMETRY

PRINT OUT EQUILIBRIUM QUANTITIES
DISK OPERATIONS FOR ERATO1
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VACUUM
TETMSH
ABCDEF
ROTETA(3)
SHELL(5)
CONCEL(3)
QCON
ZERO(1)
WCON
SYMETR
MULT(4)
EKN(4)
EK(3)

ORGANIZE VACUUM

THETA MESH IN VACUUM

MATRICES A , B , C , D, E, F
RO , TETA AT INTEGRATION POINTS
POSITION OF THE SHELL
CONTRIBUTION PER CELL

MATRIX Q

REDUCES FOR N=0

VACUUM MATRIX

SYMMETRICITY CONDITION
MULTIPLIES TWO MATRICES
ELLIPTIC INTEGRALS

COMPLETE ELLIPTIC INTEGRALS

1.1.04
1.1.05

1.2.01
1.2.02
1.2.03
1.2.04
1.2.05
1.2.06
1.2.07
1.2.08
1.2.09
1.2.10
1.2.11
1.2.12
1.2.13
1.2.14
1.2.15
1.2.16
1.2.17
1.2.18
1.2.19
1.2.20
1.2.21
1.2.22
1.2.23
1.2.24
1.2.25
1.2.26
1.2.27
1.2.28
1.2.29
1.2.30
1.2.31

1.3.01
1.3.02

2.2.01
2.2.02
2.2.03
2.2.04
2.2.05
2.2.06
2.2.07
2.2.08
2.2.09
2.2.10
2.2.11
2.2.12
2.2.13



IMGC(4)
CURRENT
MATVEC
RALD
MOPPOW
EKN
EKNSIE
EKNL I
BESMDI
BESMDK
NUM

I0DSK2
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AANDB
CONMAT
INTEGR
AHYBRD
STORE
CONDIT
ADDVAC
AWAY
DEC
BASIS2
EQCHG
QUAEQU
FRPROF
SHAPE
DAMP IN
TEMPI
DISPFN
ERROR
BESSEL
CONST1
CONST2
VECT
DIADIC
ADD

I0DSK3
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ORGANY
SET4
POVER
NOSYBL
FXFU
CONALR

MATRIX INVERSION

ANTENNA CURRENT.JUMP OF POTENTIAL
REAL MATRIX % COMPLEX VECTOR

LDU DECOMPOSITION OF A REAL MATRIX
MATRIX OPERATIONS FOR POWER AT ANTENNA
ELLIPTICAL INTEGRAL KN AND DKN/DPETA
ELLIPTICAL INTEGRAL WITH SERIES
ELLIPTICAL INTEGRAL WITH BESSEL
MODIFIED BESSEL FUNCTION I

MODIFIED BESSEL FUNCTION K
UP/DOWN/UP/DOWN NUMBERING

DISK I/0 OPERATIONS FOR LION2

ORGANIZE MATRIX CONSTRUCTION

CONSTRUCT MATRIX A

CONTRIBUTION OF ONE CELL TO MATRIX A
CONSTRUCTS LOCAL 6«6 MATRIX (HYBRID ELEMN.)
ADD LOCAL CONTRIB. TO0 MATRIX BLOCK

BLOCK OVERLAP AND BOUNDARY CONDITIONS

ADD VACUUM CONTRIBUTION

REMOVE A COLUMN AND A ROW OF LOCAL MATRIX
GLOBAL NUMBERING OF UNKNOWNS IN A CELL
BASIS FUNCTIONS OF LINEAR HYBRID ELEMENTS
OBTAIN LOWER HALF-PLANE EQUILIBRIUM QUANT.
PHYSICAL LOCAL QUANTITIES

PROFILES OF ION DENSITIES

SHAPE OF PROFILE

WAVE PHENOMENOLOGICAL DAMPIN

TEMPERATURE OF ION SPECIES

FRIED-CONTE DISPESION FUNCTION

ERROR FUNCTION

BESSEL ROUTINE FOR ERROR

COEFFICIENTS C-J OF WEAK FORM TERMS
COEFFICIENTS OF UNKNOWNS OF W.F. TERMS
MULTIPLY W.F.TERMS WITH BASIS FUNCTIONS
CONTRIBUTION OF ONE W.F.TERM TO MATRIX
ADD CONTRIB. OF ONE TERM TO LOCAL MATRIX

DISK I/0 OPERATIONS FOR LION3

ORGANIZE ALGEBRAIC SYSTEM RESOLUTION
INITIALIZE LIONY

COMPUTE TOTAL POWER

SOLVE COMPLEX BLOCK NON-SYM LIN.SYSTEM
PUT SOURCE VECTOR INTO XT

DECOMPOSE A INTO LDU

2.2.14
2.2.15
2.2.16
2.2.17
2.2.18
2.2.19
2.2.20
2.2.21
2.2.22
2.2.23
2.2.24

2.3.01

3.2.01
3.2.02
3.2.03
3.2.04
3.2.06
3.2.07
3.2.09
3.2.10
3.2.11
3.2.12
3.2.13
3.2.14
3.2.15
3.2.16
3.2.17
3.2.18
3.2.19
3.2.20
3.2.21
3.2.22
3.2.23
3.2.24
3.2.25
3.2.26

3.3.01

4.2.01
4.2.02
4.2.03
§.2.04
4.2.05
4.2.06



CALD
CBXLU
CDLHXV
EIGEN
VAX
ENDXUV
GETRG
PUTRG
INFORM

CVZERO
CAXPY
CCOPY
CDOTU
CSCAL

CDOTC

I10DSK4
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DIAGNO

INIT

ENERGY
FIELDS
FOURIE
EQUANT
THEEND

CENTER
ELECTR
LOCPOV
MAGNET
POYNTI
SFLINT

OUTPS
TABLE
TABLEF
PLOTS
ARROY
SCAPLO
SURFPL
LABPLO
LEVEL
LZERO
CONTOR
ACROSS

I0DSKS

DECOMPOSE A BLOCK OF A INTO LDU

SOLVE LOWER TRIANGULAR SYSTEM

SOLVE UPPER TRIANGULAR SYSTEM

COMPUTE THE NORM OF A*XT

MULTIPLY A BLOCK OF A WITH SOLUTION VECTOR
TERMINATE THE CALCULATION

GET A SECTION OF VECTOR XT

PUT A VECTOR INTO XT

DATE AND COMPUTER TIME

ZEROES A COMPLEX VECTOR

Y=Y+ A X (COMPLEX) ($SCILIB)
COPIES X ONTO Y ($SCILIB)
SCALAR PRODUCT X*Y (4$SCILIB)

SCALES A VECTOR BY A CONSTANT($SCILIB)
SCALAR PRODUCT CONJG(X)x*Y ($SCILIB)

DISK I/0 FOR LION4

ORGANIZE THE DIAGNOSTICS

INITIALIZE LIONS

POWVER AND ENERGY DIAGNOSTICS
FIELDS DIAGNOSTICS

COMPLEX FOURIER ANALYSIS IN CHI
EQUILIBRIUM QUANTITIES DIAGNOSTICS
TERMINATE THE CALCULATION

VALUE OF UNKNOWNS AT CENTER OF CELL
ELECTRIC FIELD,NORMAL AND PERP
LOCAL POWER ABSORPTION

WAVE MAGNETIC FIELD

POYNTING VECTOR

CONTRIBUTION TO POYNTING FLUX

LINE-PRINTER OUTPUT

2-D PRINTOUT

PRINTOUT OF POLOIDAL FOURIER COMPONENTS
GRAPHICAL OUTPUT

2-D VECTOR FIELD PLOT

2-D SCALAR FIELD PLOT

PLOT THE PLASMA SURFACE

PLOT THE LABELS

2-D SCALAR PLOT : CONTOUR LINES
PLOT THE ZEROS OF VOUT+

PLOT THE LINE VOUT1=0.0

LINEAR INTERPOLATION

DISK I/0 OPERATIONS FOR LIONS

4.2.07
4.2.08
§.2.09
4.2.10
b.2.11
§.2.12
4.2.13
4.2.14
§.2.15

vVsoo
Vso1
vVso2
vso3
VSog

VSos

4.3.01
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VERSION 10 LDV MARCH 1986 CRPP LAUSANNE
1. GENERAL OLYMPUS DATA
COMBAS BASIC SYSTEM PARAMETERS C1.1
2. PHYSICAL PROBLEM
COMPHY GENERAL PHYSICS VARIABLES Cc2.1
COMEQU EQUILIBRIUM QUANTITIES Cz2.2
3. NUMERICAL SCHEME
COMESH (R,Z2) AND (PSI,CHI) MESH VARIABLES C3.1
COMNUM NUMERICAL VARIABLES C3.2
COMAUX AUXILIARY VARIABLES FOR LION3 AND 4 €3.3
COMVEC VECTORS FOR LIONA4 C3.4
COMIVI NUMERICAL VARIABLES FOR LION} €3.5
5. I/0 AND DIAGNOSTICS
COMCON CONTROL VARIABLES C5.1
COMOUT I1/0 DISK CHANNELS NUMBERS C5.2
9. BLANK COMMON
COMMAP MAPPING QUANTITIES FOR LION1 C9.1
coMVID VACUUM QUANTITIES FOR LION2 C9.2
COMMTR MATRIX BLOCKS FOR LION3 AND LION4 €9.3
COMPLO OUTPUT AND PLOT QUANTITIES FOR LIONS C9.5

VERSION 10 LDV MARCH 1986 CRPP LAUSANNE
A(MDLENG) MATRIX BLOCK OF DISCRETIZED WEAK FORM CA 9.3
A1(MDRZ) CONSTANT COEFFICIENT RA 9.1
A2 (MDRZ) COEFFICIENT FOR R#%2 RA 9.1
A3(IMDRZ) COEFFICIENT FOR Rww} RA 9.1
Al (MDRZ) COEFFICIENT FOR Z#*2 RA 9.1
A5 (MDRZ) COEFFICIENT FOR Zw%} RA 9.1
A6 (MDRZ ) COEFFICIENT FOR R#w2%Z#%2 RA 9.1
ABSPOW(MDPSI) POWER ABSORBED ON PSI=CONST. RA 9.5
ACHARG(MDSPEC) *ATOMIC CHARGES OF ION SPECIES RA 2.1
AHEIGT *HEIGHT OF 2-D PLOTS R 5.1
Al INTEGRAND FOR Q INTEGRAL R 3.2
R 3.2

Al2 INTEGRAND FOR DQ/DPSI INTEGRAL



AJR

ALARG
AMASS (MDSPEC)
ANGLE(16)
ANTR(MD IN2)
ANTRAD
ANTUP

ANU

APHI
APP(10)
AR(201)
ARSIZE
ASPCT
ASYIMB
ATTP(19)
AZ(201)
B2R2

BETA

BETAP

BETAS

BETRZ (MDRZ)
BNL

BNOT

BP

BPARL

BPL

CA
CA(IMDOVL)
Cb

cC
CCHI(MDIN2)

CCR(MDPSI,MDCHI)

CCS(MDPSI)

CCZ(MDPSI,MDCHI)

CDEVIA
CDQ(MDPSI1)

CURRENT DENSITY

*WIDTH OF 2-D PLOTS

«ATOMIC MASSES OF ION SPECIES

*«TOROIDAL CUTS (DEGREES)

ANTENNA VECTOR

*ANTRAD-1.=DISTANCE ANTENNA-PLASMA
*UPPER POSITION OF LFS/HFS ANTENNA (DEGREES)
*CAUSAL DAMPING ADDED TO DIELECTRIC TENSOR
TORODIDAL ANGLE PHI

PARAMETERS FOR ANALYTICALLY GIVEN DP/DPSI
R DURING ANALYTICAL INTEGRATION

«SIZE OF ARROWS

*INVERSE ASPECT RATIO FOR SOLOVEV EQUILIBRIU
*SIZE OF SYIMBOLS

PARAMETERS FOR T+DT/DPSI

Z DURING ANALYTICAL INTEGRATION
*CONSTANT B2 FOR SOLOVEV EQUILIBRIUM
BETA VALUE

BETA POLOIDAL

BETA STAR PRINCETON

NON-ORTHOGONALITY IN CHI

NORMAL COMPONENT OF WAVE MAGNETIC FIELD
*MAGNETIC FIELD AT MAGNETIC AXIS (TESLA)
POLOIDAL MAGNETIC FIELD

PARALLEL COMP. OF WAVE MAGNETIC FIELD
PERP. COMP. OF WAVE MAGNETIC FIELD
CONSTANT TO DEFINE SHELL

OVERLAP SUBBLOCK OF MATRIX A

i

i

CHI VALUES AT CENTER OF CELLS

R AT CENTER OF CELLS
S VALUES AT CENTER OF CELLS

Z AT CENTER OF CELLS
WIDTH OF POWER DISTRIBUTION IN CHI
DQ/DPSI

CELPOW(MDPSI,MDIN2)

CENDEN(MDSPEC)
CENTI(MDSPEC)
CEOMCI (MDSPEC)
CHI(MDCHI1)
CHIPOW(MDIN2)
CHIRZ (MDRZ)
CIQ(MDPSI1)
CMEAN
CMERC(MDPSI 1)

CHNR(MDPSI,MDCHI)

CNZ (MDPSI,MDCHI)

CONA(6,6)
CONMSH(3,5)

POWER ARBSORBED IN THE CELLS

«DENSITIES OF ION SPECIES AT MAGN.AXIS (M-3)
*I0ON TEMPERATURES AT MAGN.AXIS (EV)
*NORMALIZED ION CYCLOTRON FREQUENCIES

CHI MESH VALUES

POWER ABSORBED ON CHI=CONST.

CHI(R,Z2) AT CROSS POINTS WITH PSI=CONSTANT
1./Q

CENTER OF POWER DISTRIBUTION IN CHI

MERCIER CRITERION

NORMAL TO PSI=CONST., R COMPONENT
NORMAL TO PSI=CONST., 2 COMPONENT

LOCAL (CELL) CONTRIBUTION TO A
*COEFFICIENTS FOR IRREGULAR S-MESH
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CPI

CPL

CPLE
CPPR(MDPSI1)
CPR(MDPSI1)
CPSEQ(MDR,MDZ)
CPSI(MDPSI1)
CPSRF
CR(MDCHI)
CS(MDPSI1)

CST

CURASY (MDFOUR)
CURSYM (MDFOUR)
CZ(MDCHI)
D2ROP

DBP2
DC(MD2CP2)

3.141592653589793

POWER ABSORBED IN A CELL
POVER IN A CELL DUE TO NU
DP/DPSI1

PSI(R,Z2) FROM EQUILIBRIUM CODE
PSI MESH VALUES

*PSI AT PLASMA SURFACE
R(CHI,PSI=CONSTANT)

S MESH VALUES

*1. / (Q(AXIS) = CPSRF)
*AMPLITUDE OF SIN ANTENNA CURRENT (HELICAL)
*AMPLITUDE OF ANTENNA CURRENT
Z(CHI,PSI=CONSTANT)

Dx%2RHO /DTHETA*%2 AT MID-POINT
PSI DERIVATIVE OF BP#*%2
DELTA-CHI

DENPOW(MDPSI,MDIN2)

DPDR(MDCHI )
DPDZ(MDCHI )
DPL

DPLE

DPR

DPZ

D(3)
DRODT(4)
DROPDT(4)
DVDC

DXDC

DXDS

ECHEL
ELEPOW
ELLIPT

ENL

EPL

EPSMAC
EQ(20,MDCHI)
EQDENS
EQKAPD
EQKAPT(MDSPEC)
EQPS (MDR)
EQR(MDR)

EQT (MDR)
EQTI(MDSPEC)
EQZ(MDZ)
FEEDUP
FIT(16)
FLUPOW(MDPSI1)
FRAC (MDSPEC )

FRCEN(MDSPEC)
FRDEL (MDSPEC)
FREN(13,MDPSI)
FREP(13,MDPSI)

POVER ABSORPTION DENSITY

DPSI/DR (CHI,PSI=CONSTANT)

DPSI/DZ (CHI PSI=CONSTANT)

POVER ABSORPTION DENSITY AT CENTER OF CELL
POVER ABSORPTION DENSITY DUE TO NU
DPSI/DR

DPSI/DZ

DQ/DPSI

DRHO/DTHETA AT INTEGRATION POINTS
DRHOPRIME/DTHETA

DV/DCHI

DX/DCHI

DX/DS

SCALE FACTOR FOR 2-D PLOTS

POVER DUE TO NU

«ELLIPTICITY SQUARED FOR SOLOVEV EQUILIBRIUM

NORMAL COMPONENT OF WAVE ELECTRIC FIELD
PERP. COMP. OF WAVE ELECTRIC FIELD
*ROUND-OFF ERROR OF COMPUTER

EQUILIBRIUM QUANTITIES FOR PSI=CONSTANT
*PROFILE PARAMETER OF TOTAL MASS DENSITY
*PROFILE PARAMETER OF TOTAL MASS DENSITY
«PROFILE OF 10N TEMPERATURE

DP/DPSI(R) GIVEN POINTVISE

R MESH FROM EQUILIBRIUM

T(R) GIVEN POINTWISE

«PROFILE OF ION TEMPERATURE

Z MESH FROM EQUILIBRIUM

*POSITION OF UPPER FEEDER OF LFS/HFS ANTENNA

FIT PARAMETERS
POWER ABSORBED INSIDE PSI=CONST.
«MASS FRACTION OF ION SPECIES

*CENTER OF ION DENSITY PROFILE

«WIDTH OF ION DENSITY PROFILE

FOURIER DECOMPOSITION IN CHI OF E-N
FOURIER DECOMPOSITION IN CHI OF E-PERP
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FREQCY
FRINT(?7,MDCHI)

*FREQUENCY OF GENERATOR (HZ)
INTEGRAL FOR FOURIER DECOMPOSITION

G(MDIN2,MDIN2, 13)

GAMMA
ILOC(MDCHI )
ITEST
LENGTH

M1

M4

M12

M2

MANCMP
MEQ
MPOLWN (MDFOUR)
N

NAN

NANL
NANR
NANTYP
NANZ

NCHI
NCOLMN
NCOMP
NCONTR
NCONV
NDA

NDB

NDES
NDIM
NDLT
NDORY
NDS
NDSCRC
NEG

NFIG

NIT
NITMAX
NLCOLD
NLDIP
NLONG
NLOTPO
NLOTP1(4)
NLOTP2(5)
RLOTP3(2)
NLOTP4(5)
NLOTPS(25)
NLPLO5(25)
NLQUAD
NLTORE
NLY
NMESH
NPIN(14)
NPLAC(6)
NPOL

ALL MATRICES
ADIABATICITY INDEX
COUNTER FOR POLYNOMIAL WICH CUTS CHI=CONST

*NB.OF ELEMENTS OF A MATRIX BLOCK

RANK OF MATRIX OVERLAP SUBBLOCK

M1+1

M1+M2 = RANK OF MATRIX BLOCK

RANK OF MATRIX BLOCK - M1

*«NB,OF POLOIDAL WAVE NUMBERS (HELICAL ANT.)
*EQUILIBIUM QUANTITIES

*«POLOIDAL WAVE NUMBERS (HELICAL ANT.)

NB. OF MATRIX BLOCKS (=NPSI)

*NUMBER OF ANALYTIC PSI SURFACES

LEFT R COUNTER FOR ANALYTICAL FIT

RIGHT R COUNTER FOR ANALYTICAL FIT

*SELECTS 1:HELICAL OR 2:LFS/HFS ANTENNA
UPPER Z COUNTER FOR ANALYTICAL FIT

*NUMBER OF CHI INTERVALS IN UPPER HALF-PLANE
*RANK OF A MATRIX BLOCK

NB. OF ELEMENTS OF SOLUTION VECTOR

*«*NUMBER OF CONTOUR LINES

«MATRIX A

*R,Z COORDINATES AND NORMALS
DIMENSION OF MATRICES
«DECOMPOSED MATRIX L,D,U
+NUMERICAL EQUILIBRIUM
*SOLUTION VECTOR

*SCRATCH SPACE

*NUMBER OF TOROIDAL CUTS

*SELECTS COLD OR LUKEVWARM PLASMA MODEL
*SELECTS MONO/DIPOLE ANTENNA FOR LFS OR HFS
NB. OF ELEMENTS IN A MATRIX BLOCK
*GENERAL LINE-PRINTER OUTPUT SWITCH
*0UTPUT SWITCHES FOR LION1

«O0UTPUT SWITCHES FOR LION2

*QUTPUT SWITCHES FOR LION3

*QUTPUT SWITCHES FOR LION4

*QUTPUT SWITCHES FOR LIONS

*PLOT SWITCHES FOR LIONS

QUADRATIC TERM IN THE WEAK FORM
SELECTS THE TOROIDAL GEOMETRY

AUTOMATIC IRREGULAR S-MESH

INPUT PARAMETERS FOR ALGEBRAIC SOLVER
GLOBAL NUMBERING OF CELL MESH POIRTS
*TOTAL NUMBER OF CHI INTERVALS
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NPOUT(14)
NPRNT

NPSI

NR

NRSPEC

NRZ

NRZS
NRZSUR
NSAVE
NSCRTC
NSHIFT
NSING

NSUR
NTCASE
NTURN

NUMt

NVAC

Nz
OHMR (MD IN2)
OMEGA
PSILIM

Q(3)

QB

QIAXE
QPSI(MDPSI1)
RAXIS
REASCR
REXT
RHO(MDPSI1)
RMAG
RMAJOR
RO(4)

RO2

RO2P

ROP(4)
RPSIA
RRO(MDRZ)
RRS (MDRZ)
RSUR

RZS (MDRZ)
SAUTR(MDIN2)
SAUTX(MDIN2)
SB2

SCALE
SDEVIA
SFLUX(IMDPSI)
SI

SIGMA
SMEAN

SN(IMDPSI,MDIN2)

SHNL
SOURCE(MDIN2)
SP

SP2

OUTPUT PARAMETERS FOR ALGEBRAIC SOLVER
*L INE-PRINTER OUTPUT

*«NUMBER OF S INTERVALS

«NUMBER OF EQUILIBRIUM MESH POINTS IN R
*«NUMBER OF ION SPECIES

NUMBER OF R-Z CUTS WITH PSI=CONSTANT
NRZ(PSI AT SURFACE)

NUMBER OF POINTS FOR PLOTTING THE SURFACE
*«NAMELIST LINK LION1 TO §

*SCRATCH SPACE

PERFORM SHIFT IN NQ

SINGULARITY INDICATOR (=-1 IF A IS SING.)
*PLASMA SURFACE

*=2 :SOLOVEV, =3:NUMERICAL EQUILIBRIUM
NUMBER OF TURNS FOR BALOONING CRITERION
MAX(NAN+1, SQRT (NPSI)+1)

*VACUUM QUANTITIES

*NUMBER OF EQUILIBRIUM MESH POINTS IN 2
OHM VECTOR

*NORMAL IZED FREQUENCY (+*RMAJOR/ALFV.SPEED)
PSI AT LIMITER

SAFETY FACTOR Q

SAFETY FACTOR AT PLASMA SURFACE
*1./Q(AXIS) FOR SOLOVEV EQUILIBRIUM
SAFETY FACTOR Q

POSITION OF MAGNETIC AXIS (IN EQU.UNITS)
REACTANCE SCALAR

%1, -REXT = DISTANCE SHELL-PLASMA

TOTAL MASS DENSITY

POSITION OF MAGNETIC AXIS (IN ERATO=1)
*MAJOR RADIUS (1)

RHO AT INTEGRATION POINTS

RHO AT THE CENTER

RHO PRIME AT THE CENTER

RHO PRIME AT INTEGRATION POINTS

PSI AT MAGNETIC AXIS (IN EQU. UNITS)
RHO(PSI=CONSTANT)

R(PSI=CONSTANT)

OUTER RADIAL POSITION OF PSI=CPSRF
Z(PSI=CONSTANT)

JUMP ACROSS ANTENNA SURFACE

TEMP ORARY

TOTAL MAGNETIC PRESSURE

*«SCALE FACTOR FOR NUMERICAL EQUILIBRIUM
WIDTH OF POWER DISTRIBUTION IN S
POYNTING FLUX ACROSS PSI=CONST.

TOTAL PLASMA CURRENT

*NORM FACTOR FOR V-THEMAL (IONS)

MINOR RADIUS OF HALF POWER ABSORPTION
NORMAL COMPONENT OF POYNTING

NORMAL COMPONENT OF POYNTING

SOURCE VECTOR

TOTAL PRESSURE

TOTAL PRESSURE SQUARED

SPAR(MDPSI,MDIN2)
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SPARL

PARALLEL COMPONENT OF POYNTING
PARALLEL COMPONENT OF POYNTING

SPERP (MDPSI,MDIN2)

SPL
SR(MD2CP2)
sV
SZ(MD2CP2)
T(MD2CP2)
To

B
TETA(MDRZ)
TH(MD2CP2)
TLIM

TMF (MDPS14)
TP(Y4)

TQP (MDPSI1)
TT(4)
TTP(MDPSI1)
U(MDCOL)

uT
VA(MDCOL)
ve

PERP. COMPONENT OF POYNTING

PERP. COMP. OF POYNTING

R(CHI) DEFINING PLASMA SURFACE
TOTAL PLASMA VOLUME

Z(CHI) DEFINING PLASMA SURFACE
THETA AT CHI MESH POINTS

T(AXIS) IN EQUILIBRIUM UNITS
TOROIDAL MAGNETIC FLUX AT PLASMA SURFACE
THETA(PSI=CONSTANT)

THETA AT CENTER OF CHI MESH

ERATO T(AXIS)=1 FIXED WHILE SCALING
TOROIDAL MAGNETIC FLUX T

THETA PRIME AT INTEGRATION POINTS
D(T/Q) / DPSI

THETA AT INTEGRATION POINTS

T » DT/DPSI

VECTOR OF UNKNOWS FOR ONE BLOCK
TEMPORARY STORAGE

TEMPORARY STORAGE

v

VOUT1 (MDPSI,MDIN2)

TEMPORARY STORAGE

VOUT2(MDPSI,MDIN2)

WBETCH
WBPOL2
WBTOR2
WBTOT
WBTOT2
WCHI
WCOMEG
WDCHI
WDS
VEPS
WFRAC (MDSPEC)
VG
WGRPS2
WH
WIDTH
WJAC
WK

WNL
WNTORE
WNU
WoMCI(MDSPEC)
WPSI
va

WR2
WRHO
s

wT

wIQ

TEMPORARY STORAGE

NON-ORTHOGONALITY OF PSI,CHI (BETA-CHI)
POLOIDAL FIELD SQUARED

TOROIDAL FIELD SQUARED

TOTAL FIELD

TOTAL FIELD SQUARED

CHI AT CENTER OF THE CELL

COMPLEX NORMALIZED FREQUENCY

CHI WIDTH OF CELL

S WIDTH OF CELL

DIELECTRIC TENSOR COMPONENT EPSILON N-N
MASS FRACTION OF ION SPECIES

DIELECTRIC TENSOR COMPONENT EPSILON N-PERP

GRADIENT OF PSI SQUARED

COEFFICIENT H

WIDTH OF DISTRIBUTION OF CHI MESH POINTS
JACOBIEN OF PSI,CHI COORDINATE SYSTEM
COEFFICIENT K

HELICITY

*TOROIDAL WAVE NUMBER N

WAVE DAMPING

NORMALIZED ION-CYCLOTRON FREQUENCY
PSI

SAFETY FACTOR Q

R SQUARED

MASS DENSITY

S COORDINATE AT CENTER OF THE CELL
TOROIDAL FLUX FUNCTION T

T/Q
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X(MDCOL ) VECTOR OF UNKNOWNS FOR ONE BLOCK
XC X
XC1(8) CONSTANTS C-J OF WEAK FORM TERIMS
XDCHI(MDIN2) DELTA-CHI AT PLASMA SURFACE
XDTH(MD IN2) DELTA-THETA AT PLASMA SURFACE
XETA(5) CONSTANTS OF TEST-FUNCTIONS
XF(16) BASIS FUNCTIONS AT MESH POINTS
XINT(201) INTEGRAL VALUES FOR Q AND CHI
XINT2(201) INTEGRAL VALUES FOR NON-ORTHOGONALITY
XKSI(5) CONSTANTS OF UNKNOWNS
XM(6,6) CONTRIBUTION OF ONE TERM OF THE WEAK FORM
XNORM VECTOR NORM SQUARED
XOHMR(MD IN2) OHM VECTOR FOR POWER AT ANTENNA
XS (MDRZ) R COORDINATES OF PLASMA SURFACE
XT(MDCOMP ) TOTAL VECTOR OF UNKNOWHNS
XVETA(6) VECTOR OF COEFFICIENTS FOR TEST-FUNCTIONS
XVKSI(6) VECTOR OF COEFFICIENTS FOR UNKNOWNS
¥YS (MDRZ) Z COORDINATES OF PLASMA SURFACE
INDEX OF COMMON VARIABLES

VERSION 10 LDV MARCH 1986 CRPP LAUSANNE

C2.1 GENERAL PHYSICS VARIABLES
VERSION 10 LDV MARCH 1986 CRPP LAUSANNE

COMMON/COMPHY /

ACHARG(MDSPEC) *ATOMIC CHARGES OF ION SPECIES
AMASS (MDSPEC) *ATOMIC MASSES OF ION SPECIES
ANTRAD *ANTRAD-1.=DISTANCE ANTENNA-PLASMA
ANTUP *«UPPER POSITION OF LFS/HFS ANTENNA (DEGREES)
ANU *CAUSAL DAMPING ADDED TO DIELECTRIC TENSOR
ASPCT *INVERSE ASPECT RATIO FOR SOLOVEV EQUILIBRIU
B2R2 *CONSTANT B2 FOR SOLOVEV EQUILIBRIUM
BETA BETA VALUE
BETAP BETA POLOIDAL
BETAS BETA STAR PRINCETON
BNOT *MAGNETIC FIELD AT MAGNETIC AXIS (TESLA)
CDQR(MDPSI1) DR/DPSI
CENDEN(MDSPEC) «*DENSITIES OF ION SPECIES AT MAGN.AXIS (M-3)
CENTI(MDSPEC) «ION TEMPERATURES AT MAGN.AXIS (EV)
CEOMCI(MDSPEC) *NORMALIZED ION CYCLOTRON FREQUENCIES
CIQ(MDPSI1) 1./Q
CMERC (MDPSI1) MERGIER CRITERION
CPPR(MDPSI1) DP/DPSI
CPR(MDPSI1) -----
CPSRF *PST AT PLASMA SURFACE
CST *1. / (Q(AXIS) = CPSRF)
CURASY(MDFOUR) #AMPLITUDE OF SIN ANTENNA CURRENT (HELICAL)

CURSYM(MDFOUR)

*AMPLITUDE OF ANTENNA CURRENT
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DQ(3)} DQ/DPSI

ELLIPT *ELLIPTICITY SQUARED FOR SOLOVEV EQUILIBRIUM

EQDENS *«PROFILE PARAMETER OF TOTAL MASS DENSITY

EQKAPD *«PROFILE PARAMETER OF TOTAL MASS DENSITY

EQKAPT(MDSPEC) *PROFILE OF ION TEMPERATURE

EQTI(MDSPEC) *PROFILE OF ION TEMPERATURE

FEEDUP *POSITION OF UPPER FEEDER OF LFS/HFS ANTENNA

FRAC(MDSPEC) *«MASS FRACTION OF ION SPECIES

FRCEN(MDSPEC) *CENTER OF ION DENSITY PROFILE

FRDEL (MDSPEC) *WIDTH OF ION DENSITY PROFILE

FREQCY *FREQUENCY OF GENERATOR (HZ)

GAMMA ADIABATICITY INDEX

OMEGA *NORMALIZED FREQUENCY (*RIMAJOR/ALFV.SPEED)

Q(3) SAFETY FACTOR Q

QIAXE *1./Q(AXIS) FOR SOLOVEV EQUILIBRIUM

QPSI(MDPSI1) SAFETY FACTOR Q

REXT %*1.-REXT = DISTANCE SHELL-PLASMA

RHO(MDPSI1) TOTAL MASS DENSITY

RMAJOR *MAJOR RADIUS (M)

RSUR OUTER RADIAL POSITION OF PSI=CPSRF

SB2 TOTAL MAGNETIC PRESSURE

SCALE *SCALE FACTOR FOR NUMERICAL EQUILIBRIUM

SI TOTAL PLASMA CURRENT

SIGHMA *NORM FACTOR FOR V-THEMAL (IONS)

SP TOTAL PRESSURE

SP2 TOTAL PRESSURE SQUARED

sV TOTAL PLASMA VOLUME

TMF (MDPSI1) TOROIDAL MAGNETIC FLUX T

TQP (MDPSI1) D(T/Q) / DPSI

TTP(MDPSI1) T » DT/DPSI

WNL HELICITY

WNTORE *«TOROIDAL WAVE NUMBER N

MANCMP *NB.OF POLOIDAL WAVE NUMBERS (HELICAL ANT.)

MPOLWN(IMDFOUR) *POLOIDAL WAVE NUMBERS (HELICAL ANT.)

NANTYP *«SELECTS 4:HELICAL OR 2:LFS/HFS ANTENNA

NRSPEC *NUMBER OF ION SPECIES

NLCOLD *SELECTS COLD OR LUKEWARM PLASMA MODEL

NLDIP *SELECTS MONO/DIPOLE ANTENNA FOR LFS OR HFS
Cz2.2 EQUILIBRIUM QUANTITIES

VERSION 10 LDV MARCH 1986 CRPP LAUSANNE

COMMON/COMEQU/

WCOMEG COMPLEX NORMALIZED FREQUENCY

WEPS DIELECTRIC TENSOR COMPONENT EPSILON N-N

VG DIELECTRIC TENSOR COMPONENT EPSILON N-PERP

EQ(20,MDCHI) EQUILIBRIUM QUANTITIES FOR PSI=CONSTANT

WBETCH NON-ORTHOGONALITY OF PSI,CHI (BETA-CHI)

WBPOL2 POLOIDAL FIELD SQUARED

WBTOR2 TOROIDAL FIELD SQUARED

WBTOT TOTAL FIELD

WBTOT2 TOTAL FIELD SQUARED

WCHI CHI AT CENTER OF THE CELL

WDCHI

CHI WIDTH OF CELL
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WDS S WIDTH OF CELL
WFRAC(MDSPEC)  MASS FRACTION OF ION SPECIES
WGRPS2 GRADIENT OF PSI SQUARED
WH COEFFICIENT H
WJIAC JACOBIEN OF PSI,CHI COORDINATE SYSTEM
WK COEFFICIENT K
WNU WAVE DAMPING
WOMCI(MDSPEC) NORMALIZED I0N-CYCLOTRON FREQUENCY
wPS1 PSI
wa SAFETY FACTOR Q
WR2 R SQUARED
WRHO MASS DENSITY
ws S COORDINATE AT CENTER OF THE CELL
wI TOROIDAL FLUX FUNCTION T
wTQ T/0
€3.1 (R,Z) AND (PSI,CHI) MESH VARIABLES
VERSION 10 LDV MARCH 1986 CRPP LAUSANNE
COMMON /COMESH/
CHI (MDCHI1) CHI MESH VALUES
CONMSH(3,5) *COEFFICIENTS FOR IRREGULAR S-MESH
CPSI(MDPSI1)  PSI MESH VALUES
CR(MDCHI) R(CHI,PSI=CONSTANT)
CS(MDPSI1) S MESH VALUES
CZ(MDCHI ) Z(CHI,PSI=CONSTANT)
DPDR(MDCHI) DPSI/DR (CHI,PSI=CONSTANT)
DPDZ (MDCHI) DPS1/DZ (CHI PSI=CONSTANT)
WIDTH WIDTH OF DISTRIBUTION OF CHI MESH POINTS
NCHI «NUMBER OF CHI INTERVALS IN UPPER HALF-PLANE
NPOL *TOTAL NUMBER OF CHI INTERVALS
NPSI *NUMBER OF S INTERVALS
NSHIFT PERFORM SHIFT IN NQ
€3.2 NUMERICAL VARIABLES
VERSION 10 LDV MARCH 1986 CRPP LAUSANNE
COMMON /COMNUM/
Al4 INTEGRAND FOR Q INTEGRAL
Al2 INTEGRAND FOR DQ/DPSI INTEGRAL
AJR CURRENT DENSITY
AR(201) R DURING ANALYTICAL INTEGRATION
AZ(201) Z DURING ANALYTICAL INTEGRATION
BP POLOIDAL MAGNETIC FIELD
CPI 3.141592653589793
DBP2 PSI DERIVATIVE OF BP#*2
DPR DPSI/DR
DPZ DPSI/DZ
FIT(16) FIT PARAMETERS
PSILIM PSI AT LIMITER
XINT1(201) INTEGRAL VALUES FOR Q AND CHI
XINT2(201) INTEGRAL VALUES FOR NON-ORTHOGONALITY

LENGTH

*NB.OF ELEMENTS OF A MATRIX BLOCK
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CA
CA
CA

ggs

NAN «NUMBER OF ANALYTIC PSI SURFACES
NANL LEFT R COUNTER FOR ANALYTICAL FIT
NANR RIGHT R COUNTER FOR ANALYTICAL FIT
NANZ UPPER Z COUNTER FOR ANALYTICAL FIT
NCOLMN +RANK OF A MATRIX BLOCK
NR «NUMBER OF EQUILIBRIUM MESH POINTS IN R
NTURN NUMBER OF TURNS FOR BALOONING CRITERION
NUM MAX (NAN+1, SQRT(NPSI)+1)
NZ «NUMBER OF EQUILIBRIUM MESH POINTS IN Z
€3.3 AUXILIARY VARIABLES FOR LION3 AND 4
VERSION 10 LDV MARCH 1986 CRPP LAUSANNE
COMMON /COMAUX/
CA(MDOVL) OVERLAP SUBBLOCK OF MATRIX A
CONA(6,6) LOCAL (CELL) GONTRIBUTION TO A
XC1(8) CONSTANTS C-dJ OF WEAK FORM TERMS
XETA(5) CONSTANTS OF TEST-FUNCTIONS
XKSI(5) CONSTANTS OF UNKNOWNS
XM(6,6) CONTRIBUTION OF ONE TERM OF THE WEAK FORM
XVETA(6) VECTOR OF COEFFICIENTS FOR TEST-FUNCTIONS
XVKSI(6) VECTOR OF COEFFICIENTS FOR UNKNOWNS
XF (16) BASIS FUNCTIONS AT MESH POINTS
NPLAC(6) GLOBAL NUMBERING OF CELL MESH POINTS
NLQUAD QUADRATIC TERM IN THE WEAK FORM
C3.4 VECTORS FOR LIONY
VERSION 10 LDV MARCH 1986 CRPP LAUSANNE
COMMON/COMVEC/
U(MDCOL) VECTOR OF UNKNOWS FOR ONE BLOCK
UT TEMPORARY STORAGE
VA(MDCOL) TEMPORARY STORAGE
X(MDCOL) VECTOR OF UNKNOWNS FOR ONE BLOCK
XOHMR (MD IN2 ) OHM VECTOR FOR POWER AT ANTENNA
XT (MDCOMP) TOTAL VECTOR OF UNKNOWNS
XDCHI(MDIN2)  DELTA-CHI AT PLASMA SURFACE
XDTH(MDIN2) DELTA-THETA AT PLASMA SURFACE
€3.5 NUMERICAL VARIABLES FOR LION4
VERSION 10 LDV MARCH 1986 CRPP LAUSANNE
COMMON/COMIVI/
EPSMAC «ROUND-OFF ERROR OF COMPUTER
XNORM VECTOR NORM SQUARED
M1 RANK OF MATRIX OVERLAP SUBBLOCK
M11 M1+1
M12 M1+M2 = RANK OF MATRIX BLOCK
M2 RANK OF MATRIX BLOCK - M1
N NB. OF MATRIX BLOCKS (=NPSI)
NCOMP NB. OF ELEMENTS OF SOLUTION VECTOR

NCONV
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REG I 3.5
NIT I 3.5
NITHMAX I 3.5
NLONG NB. OF ELEMENTS IN A MATRIX BLOCK I 3.5
NPIN(14) INPUT PARAMETERS FOR ALGEBRAIC SOLVER 1A 3.5
NPOUT(14) OUTPUT PARAMETERS FOR ALGEBRAIC SOLVER IA 3.5
NSING SINGULARITY INDICATOR (=-1 IF A IS SING.) I 3.5
C5.1 CONTROL VARIABLES
VERSION 10 LDV MARCH 1986 CRPP LAUSANNE
COMMON/COMCON/
AHEIGT «HEIGHT OF 2-D PLOTS R 5.1
ALARG «WIDTH OF 2-D PLOTS R 5.1
ANGLE(16) *TOROIDAL CUTS (DEGREES) RA 5.1
ARSIZE *SIZE OF ARROWS R 5.1
ASYMB *SIZE OF SYMBOLS R 5.1
NCONTR *NUMBER OF CONTOUR LINES I 5.1
NFIG *NUIMBER OF TOROIDAL CUTS I 5.1
NMESH AUTOMATIC IRREGULAR S-MESH I 5.1
NTCASE *=2 :SOLOVEV, =3:NUMERICAL EQUILIBRIUM I 5.4
NLOTPO *GENERAL LINE-PRINTER OUTPUT SWITCH L 5.1
NLOTP1(4) *QUTPUT SWITCHES FOR LION1 LA 5.1
NLOTP2(5) *QUTPUT SWITCHES FOR LION2 LA 5.1
NLOTP3(2) *QUTPUT SWITCHES FOR LION3 LA 5.1
NLOTP4(5) *QUTPUT SWITCHES FOR LION4 LA 5.1
NLOTP5(25) *QUTPUT SWITCHES FOR LIONS LA 5.1
NLPLO5(25) *PLOT SWITCHES FOR LIONS LA 5.1
NLTORE SELECTS THE TOROIDAL GEOMETRY L 5.1
NLY L 5.1
Cs5.2 I1/0 DISK CHANNELS NUMBERS
VERSION 10 LDV MARCH 1986 CRPP LAUSANNE
COMMON/COMOUT/

ITEST I 5.2
MEQ «EQUILIBIUM QUANTITIES I 5.2
NDA «*MATRIX A I 5.2
NDB 1 5.2
NDES *R,2 COORDINATES AND NORMALS I 5.2
NDLT «DECOMPOSED MATRIX L,D,U I 5.2
HDORY *NUMERICAL EQUILIBRIUM I 5.2
NDS *SOLUTION VECTOR I 5.2
NDSCRC #«SCRATCH SPACE I 5.2
NPRNT *«LINE-PRINTER OUTPUT I 5.2
NSAVE «NAMELIST LINK LION1 TO S I 5.2
NSCRTC *SCRATCH SPACE I 5.2
NSUR *PLASMA SURFACE I 5.2
NVAC *VACUUM QUANTITIES I 5.2



9. BLANK COMMON

C9.1 MAPPING QUANTITIES FOR LION1

VERSION 2C 1479779 RG CRPP LAUSANNE
COMMON// (COMMAP )

A1(NRZ) CONSTANT COEFFICIENT RA
A2(NRZ) COEFFICIENT FOR R#*2 RA
A3(NRZ) COEFFICIENT FOR R} RA
A4 (NRZ) COEFFICIENT FOR Zw%2 RA
A5 (NRZ) COEFFICIENT FOR Z#%4 RA
A6 (NRZ) COEFFICIENT FOR R##2%Z%%2 RA
APP(10) PARAMETERS FOR ANALYTICALLY GIVEN DP/DPSI RA
ATTP(10) PARAMETERS FOR T+DT/DPSI RA
BETRZ (NR+2NZ) NON ORTHOGONALITY IN CHI RA
CHIRZ (NR+2N2Z) CHI(R,Z) AT CROSS POINTS WITH PSI=CONSTANT RA
CPSEQ(NR,NZ) PSI(R,Z) FROM EQUILIBRIUM CODE RA
EQPS(NR) DP/DPSI(R) GIVEN POINTWISE RA
EQR(NR} R MESH FROM EQUILIBRIUM RA
EQT(NR) T(R) GIVEN POINTVISE RA
EQZ (NZ) Z MESH FROM EQUILIBRIUM RA
RAXIS POSITION OF MAGNETICAL AXIS (IN EQU. UNITS) R
RMAG POSITION OF MAGNETICAL AXIS (IN ERATO=1) R
RPSI4 PSI AT MAGNETICAL AXIS (IN EQU. UNITS) R
RRO(NRZ) RHO(PSI=CONSTANT) RA
RRS(NRZ) R(PSI=CONSTANT) RA
RZS(NRZ) Z(PSI=CONSTANT) RA
TETA(NRZ) TETA(PSI=CONSTANT) RA
TLIM ERATO T(AXIS)= 1 FIXED WHILE SCALING R
To T(AXIS) IN EQUILIBRIUM UNITS R
ILOC(NCHI) COUNTER FOR POLYNOMIAL WHICH CUTS CHI=CONST IA
NRZ NUMBER OF R-Z2 CUTS WITH PSI=CONSTART I
NRZsS NRZ(PSI AT SURFACE) 1

C9.2 VACUUM QUANTITIES FOR LION2
VERSION 10 LDV MARCH 1986 CRPP LAUSANNE

COMMON// (COMVID)

ANTR(MD IN2) ANTERNA VECTOR CA
OHMR (MD IN2) Ol VECTOR CA
REASCR REACTANCE SCALAR c
SAUTR(MD IN2) JUMP ACROSS ANTENNA SURFACE CA
SAUTX(MDIN2) TEMPORARY CA
SOURCE(MDIN2) SOURCE VECTOR CA
CA CONSTANT TO DEFINE SHELL R
cB # R
cc # R
D2ROP D##%2RHO/DTHETA%*%2 AT MID-POINT R
DC(MD2CP2) DELTA-CHI RA
DRODT(4) DRHO/DTHETA AT INTEGRATION POINTS RA
DROPDT (4) DRHOPRIME/DTHETA RA
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G(MDIN2,MDIN2, 13)

QB

RO(4)

RO2

RO2P

ROP (%)
SR(MD2CP2)
SZ(MD2CP2)
T(MD2CP2)
B
TH(MD2CP2)
TP(4)
TT(4)
NDIM

VERSION 40

COMMON//

A(MDLENG)

VERSION 10

COMMON//

BNL

BPARL

BPL

DVDC

DXDC

DXDS

ENL

EPL
FREN(13,IDPSI)
FREP(13,MDPSI)
FRINT(?,MDCHI)
ve

ALL MATRICES

SAFETY FACTOR AT PLASMA SURFACE
RHO AT INTEGRATION POINTS

RHO AT THE CENTER

RHO PRIME AT THE CENTER

RHO PRIME AT INTEGRATION POINTS
R(CHI) DEFINING PLASMA SURFACE
Z(CHI) DEFINING PLASMA SURFACE
THETA AT CHI MESH POINTS

TOROIDAL MAGNETIC FLUX AT PLASMA SURFACE
THETA AT CENTER OF CHI MESH
THETA PRIME AT INTEGRATION POINTS
THETA AT INTEGRATION POINTS
DIMENSION OF MATRICES

TERErTggRgregey

C9.3 MATRIX BLOCKS FOR LION 3 AND LION%
LDV MARCH 1986 CRPP LAUSANNE

(COMMTR)

MATRIX BLOCK OF DISCRETIZED WEAK FORM CA

C9.5 OUTPUT AND PLOT QUANTITIES FOR LIONS
LDV MARCH 1986 CRPP LAUSANNE

(COMPLO)

NORMAL COMPONENT OF WAVE MAGNETIC FIELD
PARALLEL COMP. OF WAVE MAGNETIC FIELD
PERP. COMP. OF WAVE MAGNETIC FIELD
DV/DCHI

DX/DCHI

DX/DS

NORMAL COMPONENT OF WAVE ELECTRIC FIELD
PERP. COMP. OF WAVE ELECTRIC FIELD
FOURIER DECOMPOSITION IN CHI OF E-N
FOURIER DECOMPOSITION IN CHI OF E-PERP
INTEGRAL FOR FOURIER DECOMPOSITION

v

XC X
ABSPOW(MDPSI) POWER ABSORBED ON PSI=CONST.
APHI TOROIDAL ANGLE PHI
CCHI(MDIN2) CHI VALUES AT CENTER OF CELLS
CCR(MDPSI,MDCHI)

R AT CENTER OF CELLS
CCS(MDPST) S VALUES AT CENTER OF CELLS

CCZ(MDPSI,MDCHI)

CDEVIA

Z AT CENTER OF CELLS
WIDTH OF POVWER DISTRIBUTION IN CHI

CELPOVW(IMDPSI,MDIN2)

CHIPOW(MDIN2)

POWER ARBSORBED IN THE CELLS
POVER ABSORBED ON CHI=CONST.
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CMEAN

CNR(MDPSI,MDCHI)

CNZ(MDPSI,MDCHI)

CENTER OF POWER DISTRIBUTION IN CHI

NORMAL TO PSI=CONST., R COMPONENT

NORMAL TO PSI=CONST., 2 COMPONENT

CPL POVER ABSORBED IN A CELL
CPLE POWER IN A CELL DUE TO NU
DENPOW(MDPSI,MDIN2)

POVER ABSORPTION DENSITY
DPL POWER ABSORPTION DENSITY AT CENTER OF CELL
DPLE POVER ABSORPTION DENSITY DUE TO NU
ECHEL SCALE FACTOR FOR 2-~D PLOTS
ELEPOV POVER DUE TO NU
FLUPOW(MDPSI1) POWER ABSORBED INSIDE PSI=CONST.
SDEVIA WIDTH OF POWER DISTRIBUTION IN S
SFLUX(MDPSI) POYNTING FLUX ACROSS PSI=CONST.
SMEAN MINOR RADIUS OF HALF POWER ABSORPTION
SN(MDPSI,MDIN2) NORMAL COMPONENT OF POYNTING
SHL NORMAL COMPONENT OF POYNTING

SPAR(MDPSI,MDIN2)

SPARL

PARALLEL COMPONRENT OF POYNTING
PARALLEL COMPONENT OF POYNTING

SPERP (MDPSI,MDIN2)

SPL

PERP. COMPONENT OF POYNTING
PERP. COMP. OF POYNTING

VOUT1(MDPSI,MDIN2)

TEMPORARY STORAGE

VOUT2(MDPSI,MDIN2)

XS(MDRZ)
YS(MDRZ)
NRZSUR

TEMPORARY STORAGE

R COORDINATES OF PLASMA SURFACE

Z COORDINATES OF PLASMA SURFACE

NUMBER OF POINTS FOR PLOTTING THE SURFACE
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