
Scalable Parallelization of Skyline Computation for
Multi-core Processors

Sean Chester∗, Darius Šidlauskas†, Ira Assent∗, and Kenneth S. Bøgh∗

∗Data-Intensive Systems Group, Aarhus University, Denmark
† Data-Intensive Applications and Systems Laboratory, EPFL, Switzerland

schester@cs.au.dk darius.sidlauskas@epfl.ch ira@cs.au.dk ksb@cs.au.dk

Abstract—The skyline is an important query operator for
multi-criteria decision making. It reduces a dataset to only those
points that offer optimal trade-offs of dimensions. In general, it is
very expensive to compute. Recently, multicore CPU algorithms
have been proposed to accelerate the computation of the skyline.
However, they do not sufficiently minimize dominance tests and
so are not competitive with state-of-the-art sequential algorithms.

In this paper, we introduce a novel multicore skyline algo-
rithm, Hybrid, which processes points in blocks. It maintains a
shared, global skyline among all threads, which is used to min-
imize dominance tests while maintaining high throughput. The
algorithm uses an efficiently-updatable data structure over the
shared, global skyline, based on point-based partitioning. Also,
we release a large benchmark of optimized skyline algorithms,
with which we demonstrate on challenging workloads a 100-fold
speedup over state-of-the-art multicore algorithms and a 10-fold
speedup with 16 cores over state-of-the-art sequential algorithms.

I. INTRODUCTION

Skyline computation, introduced in 2001 [4], is still an
active research area with applications in route planning for road
networks [14], [21], data exploration [5], web service com-
position [1], and many other multi-criteria decision-making
domains wherein (possibly conflicting) preferences need to be
balanced. Figure 1a illustrates the skyline over an example
dataset. If small values are preferred (e.g., the points represent
fuel consumption and expected travel time), then q is clearly a
worse option than (i.e., is dominated by) p, since it has larger
values for both coordinates. The skyline consists of all non-
dominated points (in this case, p, r, s, t).

However, the skyline is expensive to compute, especially
when it is large relative to the input, because each skyline
point (at least implicitly) needs to be compared to every other
skyline point. This computational challenge has prompted
the use of modern computing platforms, such as GPUs [3],
[8] and multicore CPUs [13], [16], as well as distributed
environments [12], including MapReduce [17], [19], [22], to
accelerate the computation. Of these, multicore CPUs are a
particularly attractive option, because the cost of shared data
structures is much lower and parallel work need not be isolated.
Still, we demonstrate the surprising conclusion that current
multicore skyline algorithms can be outperformed by at least
an order of magnitude by sequential algorithms on modest
workloads.

Current multicore algorithms adopt the same paradigm as
distributed algorithms, a divide-and-conquer approach wherein

†Work done while in the MADALGO group at Aarhus University.

(a) Skyline example (b) Partitioning

Fig. 1: (a): p, r, s, t are in the skyline, but not q: it has higher x-
and y-values than p. (b): partitioning reveals incomparability
and refines the probability of a point dominating another.

the dataset is cut, local skylines are computed in isolation by
each thread, and then local results are merged to produce a
global result. This paradigm suffers two principal drawbacks.
First, if the local results are large, then the merging step
becomes prohibitively expensive. Moreover, this partitioning
hinders pruning capacity. If p and q in Figure 1a are allocated
to separate threads, then the dominance cannot be detected un-
til the more expensive merge phase, once all threads complete.

By contrast, we adopt a different paradigm, where all
known skyline points are maintained in a global data structure.
The skyline is updated at regular synchronization points and
read by all threads. We order the skyline points in the data
structure to maximize the probability of detecting new domi-
nance relationships quickly so that subsequent dominance tests
can be averted. The processing of points is done in ordered
blocks that guarantee each point is compared to at most α
more points than in a sequential algorithm, a guarantee that a
divide-and-conquer approach cannot offer.

As a consequence, we have no expensive merge phase,
dominance relationships are determined early rather than being
severed by file cutting, and, like state-of-the-art sequential
algorithms, we can report results progressively. In all, we not
only outperform state-of-the-art multicore algorithms by up
to two orders of magnitude, but also outperform sequential
algorithms on account of good multi-threaded scalability.

A. Contributions and Outline

We study parallel skyline computation for multicore archi-
tectures with a focus on parallel scalability and raw perfor-
mance. In particular, after formally introducing the problem
(Section II) and before concluding (Section VIII), we:

• discuss the overlap in key principles for skyline and
multicore computation, elaborating on the challenges in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148014889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

effective skyline parallelization (Section IV);
• introduce our Hybrid algorithm based of maximizing

parallel throughput in a global computation paradigm
(Section V) and integrating sophisticated skyline concepts
such as point-based partitioning (Section VI); and

• present extensive experiments with optimized implemen-
tations of state-of-the-art skyline algorithms (Section VII).
The entire experimental suite is made public.

II. PROBLEM DEFINITION

In this section, we formally define the skyline. We assume
a dataset P over d ordinal dimensions, where p[i] denotes
the value of p ∈ P on dimension i. The skyline is defined
through the concept of dominance. We say that a point p may
dominate another point q if it has a smaller or equal value on
all dimensions (Definition 1): it is then clearly at least as good
as q for any combination of attributes.1

Definition 1 (Potential Dominance). Given p, q ∈ P , p may
dominate q, denoted p � q, iff:

∧d−1
i=0 p[i] ≤ q[i].

Note that (p � q ∧ q � p) =⇒
(∧d−1

i=0 p[i] = q[i]
)

,
which we denote by p ≡ q (i.e., p and q are coincident). We say
that p dominates q if, additionally, p and q are not coincident
(Definition 2): then there is clearly some combination of
attributes for which p is a strictly better point than q.

Definition 2 (Dominance). Given p, q ∈ P , p dominates q,
denoted p ≺ q, iff: p � q ∧ q 6� p (equiv., p � q ∧ p 6≡ q).

Definition 2 is equivalent to that typically presented in
literature. Finally, the skyline (Definition 3) is the subset of
points in P that are not dominated by any other points in P .

Definition 3 (Skyline [4]). The skyline of dataset P , denoted
SKY(P) is the set: SKY(P) = {p ∈ P| 6 ∃q ∈ P : q ≺ p}.

The objective in this paper is to compute SKY(P) effi-
ciently using the parallelism of multicore processors.

III. RELATED WORK

The skyline operator was introduced by Börzsönyi et al. [4]
along with a basic divide-and-conquer (DnC) and a block-
nested-loop (BNL) algorithm. The first improvements came
from index-enabled methods, based on B-trees [20] and R-
trees [18]. Subsequent literature moved from indexing to main-
memory processing to support pushing the skyline operator
later in the query plan after, for example, joins and selects.

The Sort-Filter Skyline (SFS) algorithm [9] improved the
performance of BNL by incurring the preprocessing cost of
sorting the data so that points are compared first to other points
that are closer to the origin, since they are the most likely to
prune. The LESS [11] optimizations conduct dominance tests
during the sorting to reduce the input size for the BNL-style
processing, and SaLSa [2] introduced a min-value sort order
that makes early termination possible. All three methods have
similar performance and are relatively easy to parallelize.

1We assume WLOG to prefer smaller values; otherwise, invert signs.

Whereas the sort-based algorithms qiuckly detect domi-
nance relationships, the object-based space partitioning meth-
ods of Zhang et al. [23] and Lee and Hwang [15] detect
incomparability quickly. Both OSP [23] and BSkyTree-P [15]
recursively select a data point with which to partition the rest
of the data and store the skyline points in a data structure that
admits faster Phase I processing. Lee and Hwang also intro-
duce, BSkyTree-S, which does not use recursion nor the data
structure. The primary difference between OSP and BSkyTree-
P is how the pivot point is selected, either as a random skyline
point or as one that minimizes range, respectively.

Parallel techniques exist for the GPU [3], [8], MapRe-
duce [17], [19], [22], and other distributed architectures (sur-
veyed by Hose and Vlachou [12]). We focus here on multicore
parallelization, for which exists three algorithms. PSkyline [13]
naively cuts the dataset, processes each partition on a separate
core, and then merges the results together. APSkyline [16]
follows the same pattern, but uses sophisticated angle-based
partitioning of the dataset that does not scale with dimen-
sionality (the reported experiments consider d = 5 at most).
Additionally, PSFS [13], a weaker version of our Q-Flow,
was introduced in [13] as a naive baseline and VSkyline [7]
modifies PSkyline to utilize SIMD instructions.

Lastly, note that the most recent thorough experimental
evaluation of centralized skyline algorithms [10] pre-dated the
state-of-the-art methods OSP [23] and BSkyTree [15].

IV. KEY PRINCIPLES FOR SKYLINES AND MULTICORE

Here we describe key principles for obtaining efficiency
in skyline (Section IV-A) and multicore (Section IV-B) algo-
rithms, and how these principles relate (Section IV-C).

A. Skyline Computation

A dominance test (DT) is one check of whether p ≺ q.
Naively, the skyline can be computed by checking this rela-
tionship n(n− 1) times, once for each ordered pair of points.
One DT can be very efficiently computed (see Section VII),
but DTs are the primary operation of skyline algorithms; so,
efficiency is obtained by reducing how many must be done.

DTs can be avoided in three ways:

• transitivity—If p ≺ q, one can discard q immediately
without compromising the result, even if ∃r : q ≺ r,
thereby avoiding any other DTs that involve q;
• cheap filter tests—Single values (e.g., L1(p) =

∑
p[i])

can be precomputed for each point and can indicate p 6≺ q
without a full DT (e.g., L1(p) ≤ L1(q) =⇒ q 6≺ p);
• region-wise incomparability—points can be determined

incomparable based by mutual relationship to another
point (e.g., p 6� s∧s 6� p is evident in Figure 1b, because
of their mutual relationship to the midpoint).

To illustrate region-wise incomparability, consider the
points in Figure 1b, which have been assigned to 2d partitions
based on whether they are smaller or larger than the midpoint
of the data space. Points in 01 (the upper left) need not be
compared to points in 10 (the lower right) nor 11 (the upper
right), which all have a larger x-value, which saves 4 DTs.
With similar logic for 10 (the lower right), one can avoid

a further 2 × 3 DTs, for a total of 10 out of the possible
5× (5− 1) = 20.

Furthermore, processing order is critical. Ideally, a point
is determined to be dominated early, before comparing to
many other points. Then it can immediately discarded (based
on transitivity), avoiding all DTs that otherwise would have
subsequently been conducted. If q is compared to p before
r, s, t, one saves another 3 DTs. For two random points in
the same partition, each has a 0.5d probability of dominating
the other. On the other hand, a random point p in partition
01 has a 0.5 probability of dominating a random point q in
partition 11, since only the y-coordinate provides uncertainty
wrt dominance: p necessarily has a smaller x-coordinate than
q for them to have fallen into their respective partitions. As
such, it is prudent to compare points in partition 11 to those
in 10 and 01 before comparing to other points in 11 because
the probability of stopping early is then higher.

B. Multicore Computation

Ideal multicore computation scales elegantly with paral-
lelism: doubling physical resources should lead to nearly a
two-fold improvement in performance. Also, the overhead
introduced should not be so much that a single-threaded run is
uncompetitive against a natively sequential algorithm. A few
key principles promote achieving this high throughput.

First, throughput requires large blocks of independent,
unordered work. Preferably, the work is nearly identical so
that the work distributed to each thread is balanced.

Second, global data structures must be either read-only or
very infrequently updated during parallel processing. Other-
wise, threads compete to update the data structures and either
stall each other with locks or create dirty writes. Alternatively,
the data structure can be updated during sequential work, but
then only one thread is participating and the others idle.

Third, the choice of synchronization points must be done
very carefully. One loses throughput first by waiting for the
last t − 1 threads to finish their workloads and then for the
sequential work that takes place after synchronizing. Work
done here is subject to Amdahl’s Law: no matter of parallelism
can improve beyond the cost of this phase.

Observing all these principles usually introduces some
overhead relative to a natively sequential algorithm because,
for example, the processing order is sub-optimal or the data
structures are less current and/or complex.

C. Multicore skylines: bridging the computational principles

The principles outlined in Sections IV-A and IV-B conflict,
presenting a major challenge for parallelization—the central
role of processing order. The points in Figure 1b cannot be
partitioned in any way such that both q and r can compare to
points in all “lower” partitions (p and s) before being compared
to each other. As soon as the computation becomes local, the
probability of discarding a point early decreases.

The lone exception is if partition 00 is dense (e.g., when
the data is highly correlated), when any random partitioning
will be effective, because the dominance probability is always
high. It will not be surprising then in Section VII when we

Algorithm 1 Q-Flow (P, α −→ SKY(P))

1: S ← ∅.
2: Prefilter, sort, and/or partition P . . Initialization
3: while P 6= ∅ do
4: Q← next α points of P .
5: P ← P \Q.
6: for i ∈ [0, |Q|) do . Parallel Phase I
7: if ∃q ∈ S : q ≺ Q[i] then
8: Mark Q[i] as pruned.
9: Remove pruned Q[i] from Q. . Compression

10: for i ∈ [0, |Q|) do . Parallel phase II
11: if ∃j ∈ [0, i) : Q[j] ≺ Q[i] then
12: Mark Q[i] as pruned.
13: Remove pruned Q[i] from Q. . Compression
14: Append Q to S. . Update structure
15: return S.

show that state-of-the-art multicore algorithms are drastically
outperformed by state-of-the-art sequential algorithms for any
but low-dimensional, highly correlated data.

Furthermore, skyline points are found quite quickly, so
maintaining a shared, up-to-date, sophisticated search structure
over existing skyline points is challenging. The approach in
[13], [16] is to not do this at all.

V. FLOW OF CONTROL

In this section, we introduce Q-Flow, a simplification
of our proposed algorithm that illuminates the key ideas
with regards to maximizing parallelism in a skyline-friendly
manner.

A. Overall algorithm design

Q-Flow is described in Algorithm 1. At a high-level, the
points are sorted and then batch processed in blocks of size α.
The sorting is chosen such that two properties are maintained:
first, if p precedes q, then q 6≺ p. Second, points which are most
likely to prune other points appear early in the sort order. In
particular, Q-Flow uses Manhattan (L1) norm.2 Points are then
processed in blocks of size α. The objective with each block is
to determine whether any of the points within it are dominated.
Once a block finishes, points that were not dominated are
appended to the list of skyline points, since the sort order
implies they will not be dominated by any as-yet-unprocessed
points.

Threads are free to process points within a block out-of-
order; so, nothing is guaranteed in terms of execution order
within the block. However, the block is not processed until
after all blocks preceding it; so, once it starts, the skyline points
preceding it are completely and globally known.

The processing of a block thus occurs in two phases. First,
each point p in the block is compared in parallel in the same
order as a sequential algorithm to known skyline points to see
if any dominate p, in which case p is flagged for removal.

2L1(p) =
∑
p[i]. One can easily verify that if p � q, then p has a smaller

or equal value on all attributes, so therefore has a smaller sum than q, too [9].
If sums are equal, then either p ≡ q or ∃i, j : p[i] < q[i] ∧ q[j] < p[j].

(a) Q-Flow Phase I: comparing to skyline points.

(b) Q-Flow Phase II: comparing to other survivors.

Fig. 2: The parallel phases of the Q-Flow algorithm: compar-
ing to known skyline points (a), then other survivors (b).

Phase I shrinks the block to size α′ ≤ α. Phase II determines
for each surviving point p whether p is dominated by any other
surviving points that precede it in the block. Any points that
survive both phases are therefore skylines points and appended
to the global skyline list.

After each phase, we synchronize threads and remove the
dominated points, which in each parallel phase had only been
flagged for removal (so that neither the block, nor the dataset,
nor the skyline need to be updated during parallel processing).

Overall, Q-Flow balances maximizing throughput during
the expensive but parallelized phases with minimizing domi-
nance tests using ordered computation against a global skyline.

B. Phase I: Comparing to skyline points

The most expensive phase of computation, requiring
O(α|S|d), is in comparing to known skyline points, which
can be a large percentage of the input (depending on data
correlation). This phase is fully parallelized. Each point p is
processed by an independent thread, which iterates the known
skyline points to see if any dominate p. If so, p is marked
for removal and processing for p is immediately terminated.
Figure 2a illustrates this process, where each point in the set Q
is independently compared to each point in the known skyline.
Processing for the second and fourth points terminates at the
first and second skyline point, respectively, where they are first
discovered to be dominated.

The early detection of dominance is enabled because we
maintain a skyline shared among all threads that is accurate
up to the start of the current α-block. Up to this point,
comparisons to the known skyline can be done in the exact
same manner as any sequential algorithm. This ensures a
higher probability of detecting dominance early, minimizing
DTs through transitivity.

C. Phase II: Comparing to peers

In Phase II, each point p that survived Phase I is compared
to other surviving points. Processing for p needs only continue

until p because of the sort order and can still abort as soon as p
is dominated. This is illustrated in Figure 2b, where processing
for the second and fourth points terminates at the first and third
point, respectively, but the third and fifth points are compared
to all preceding two and four points, respectively.

Phase II is necessarily less efficient than Phase I, because
the processing is unordered. For example, in a sequential
algorithm, the fifth point in Figure 2b would not be compared
to the fourth point, because the fourth point is not in the
skyline. However, since the first thread had not yet processed
the fourth point when the second thread processed the fifith,
it was not yet known that the fourth point is dominated.
This phase does not exist in sequential algorithms: it is the
compromise for high parallel throughput. But it is still not
naive, it is fully parallelized, and it comprises only a very
small percentage of overall execution time, requiring O(α2d).

D. Sequential work: compression and skyline updates

Each phase is followed by a synchronization phase, which
serves several purposes. Foremost, it ensures that the skyline
is always correct to within α points. Secondarily, it eliminates
branching and improves data locality and cache-friendliness.

After each parallel phase, we compress the α-block by
shifting all the surviving points left to overwrite those that
are flagged for removal, reestablishing a contiguous layout.
After Phase II, where all surviving points are clearly in the
skyline, we also append the compressed, contiguous block to
the known skyline, all requiring O(α) of sequential work.

Without the compression, for each newly processed point
q, one would either require a DT against removed points that
transitivity implies is unnecessary or a branch at every point
p determining whether p has been marked for removal or not.

E. Summary of Q-Flow contributions

Q-Flow maintains high throughput with the majority of
work in independent, parallel chunks (Phase I). Limited syn-
chronization keeps the data contiguous and the globally known
skyline within a bounded additive factor of correctness, α.

It utilizes transitivity extensively by removing dominated
points as soon as a phase completes. It also utilizes cheap
filter tests extensively by pre-sorting the data by L1 norm.
This eliminates half of the DTs by ensuring dominance can
only occur in one direction for any given pair of points.
Furthermore, it keeps the global list of skyline points ordered
so that dominance can be detected earlier. Consequently,
Q-Flow is already efficient. We will show in Section VII that
even it outperforms the state-of-the-art multicore algorithms
on moderate-to-heavy workloads.

Lines 6 and 10 are intentionally presented very abstractly.
Naively, they incur quadratic loops. Our Hybrid algorithm
(Section VI) minimizes the number of DTs on these lines by
processing points in a more sophisticated manner, using point-
based partitioning and a data structure over the known skyline.

VI. THE Hybrid MULTICORE SKYLINE ALGORITHM

In the previous section, we introduced Q-Flow to illustrate
the parallel concepts of our algorithm. In particular, Q-Flow

(a) The 2-level partitioning of skyline
points for the Hybrid data structure.

(b) Physical layout of
the data structure.

Fig. 3: Skyline points data structure in Hybrid.

eliminated more than half of the DTs through its sorting by
L1 norm (a cheap filter) and its synchronization points (to
facilitate transitivity by removing dominated points). Early
domination was made more probable by maintaining an or-
dered, global skyline and processing points block-wise.

Recall from Section IV-A that there is a third method
for eliminating DTs: region-wise incomparability. Here, we
introduce our full algorithm, Hybrid, which uses point-based
partitioning and a simple, effective data structure for the sky-
line points to facilitate detecting region-wise incomparability.

At a high-level, the algorithm is identical to Q-Flow,
except that we first pre-filter the dataset and then partition it
into 2d−1 regions by their relationship to a (potentially virtual)
pivot point (Section VI-A). We can then use this to enhance
both Phase I (Section VI-C) and Phase II (Section VI-D) by
means of a novel, simple data structure (Section VI-B).

A. Initialization and partitioning

The initialization consists of three parts: pre-filtering, par-
titioning, and sorting.

1) Pre-filtering: Most datasets contain points that are dom-
inated by a relatively large percentage of the dataset, and thus
are easily pruned. For correlated data, this is true of most
points. Therefore, we quickly remove these points without
much cost before the heavier initialization tasks such as
calculating a pivot point for partitioning and sorting the data.

The filter requires two parallel passes of the dataset. In the
first, each thread maintains a priority queue of the β points
with smallest L1 norm the thread has seen. Each point p is
first compared to the largest of these by L1 norm and replaces
it if smaller. Otherwise, p is compared to each of the β points
to see if any of them dominate it.

On the second pass, each thread grabs points and compares
them to all points in all priority queues.3

2) Partitioning: We partition the data (after pre-filtering)
based on a constant point, v, called the pivot. Point p is
assigned to a partition with mask m, m[i] = (p[i] < v[i]?0 : 1).
The pivot thus splits the data into 2d regions, which enables
reasoning about entire regions of points at one time. In
particular, two properties are worth noting. First, if |m| denotes
the number of bits set in a mask, then |m| ≥ |m′|,m 6= m′

implies that no point q with mask m can dominate a point p

3β = 8 empirically configured; appreciable impact only correlated data.

Algorithm 2 updateS&M(S,M(S), Q)

1: Append Q to S.
2: Pop sentinel off of M(S).
3: (m, i)← top(M(S))
4: for j ∈ [0, |Q|) do
5: if Q[j].m= m then
6: Q[j].m← part(Q[j], S[i]).
7: else
8: (m, i)← (Q[j].m, |S|+ j).
9: Push (m, i) onto M(S).

10: Push sentinel (2d, |S|+ |Q|) onto M(S).

with mask m′. This guarantee arises since q is worse relative
to v on more dimensions than p is; so, clearly q is worse than
p on at least one dimension.

Second, if m & m′ < m, then no point q with mask m
can dominate a point p with mask m′ because there exists a
dimension on which p is better relative to v and q is worse.
The masks are stored with the points and can then be used as
cheap filter tests for DTs based on the above two properties.

Figure 3a illustrates how partition masks are assigned.
For example, p has a smaller x-coordinate that the midpoint
of the data, but a larger y-coordinate. So, it is assigned
partition 01. We experiment with several methods of selecting
an appropriate pivot, but typically use the median of the data,
because it produces partitions of roughly equal size.

3) Sorting: Let m denote the mask assigned to points. We
sort the data based on three keys: the number of bits set in the
mask, |m| (i.e., the level), the integer value of the mask, m,
and finally the L1 norm as in Q-Flow. We use a bithack to
improve the efficiency of sorting by combining the level and
mask as follows: We store the compound key, K = (|m| �
d) | m (requiring d+lg d bits). Then, we can retrieve the mask
m = K & (2d − 1) and the level |m| = K� d. By using this
composite key, we can sort by level and mask by sorting just
one value.

This three-way sort has two key ideas. First, it maintains
the property that q 6≺ p if p precedes q in the sort order.
Second, by grouping points by levels and masks, we can skip
entire groups of points at once when the cheap filter tests of
Section VI-A2 evaluate true.

B. Data Structure for skyline points

Because Phase I is expensive, to further minimize the
required DTs, we build an auxiliary data structureM(S) over
the known skyline points with two-level partitioning.

Figure 3 illustrates the structure, a simple vector of mask-
pointer pairs. Each pair, ordered the same as the data and
skyline points, contains a mask and a pointer to the first skyline
point with that mask. The final pair is a sentinel indicating the
end of the list. The simplicity of the data structure makes it
very efficient to update (Algorithm 2), very fast to iterate, and
space-efficient, because empty partitions are not stored. Since
the data was originally sorted by level and mask first, and the
compression phase of Section V-D always shifts data left, all
partitions are contiguous; the end of a partition is the point
immediately preceding the start of the next partition.

Algorithm 3 compareToSky (S,M(S), q −→ {true, false})
1: for i ∈ [0, |M(S)|) do
2: m←M(S)[i].m.
3: if m is not incomparable to q.m then
4: s←M(S)[i].s; t←M(S)[i+ 1].s
5: m′ ← part(q, S[s]).
6: if m′ = 2d − 1 ∧ q 6≡ S[s] then return true.
7: for j ∈ (s, t) do
8: if S[j].m is not incomparable to m′ then
9: if S[j] ≺ q then return true.

10: return false.

For the second level of partitioning, the pivot is simply
the first point in the partition (the one with lowest L1 norm),
so that no cost is incurred in computing it. The partitioning
is done on Line 6 of Algorithm 2, where a point that is not
a level-2 pivot is reassigned to a new partition based on its
partitions’ pivot. For example, in Figure 3a, partition 10 has
two points; so it repartitioned. Since t has a smaller L1 norm,
it is chosen as the pivot. Point s is assigned a new partition 01
based on its relationship to t. This is reflected in Figure 3b,
where M(S) points to t, which retains its old mask, but s,
located contiguously with t, has its new mask stored with it.

The data structure is updated on Line14 of Algorithm 1,
when Q is appended to S. It is initialized with the first point,
which is necessarily in the skyline, and a sentinel pointing to
the second point, the position after the initially known skyline.

C. Phase I: comparing to skyline

For Q-Flow, Phase I consisted of a naive quadratic loop.
For Hybrid’s Phase I, described in Algorithm 3, we take
advantage of partitioning twice, usingM(S). When processing
point q, rather than iterating all points p ∈ S, we iterate all
masks in M(S) (Line 1). For each mask, we first conduct a
cheap filter test to see if points with that mask can dominate
points with q’s mask. If not, we skip it, and all the corre-
sponding DTs, entirely. Otherwise, we jump straight to that
partition in the skyline list S (Line 4) and process those points
contiguously.

Second, we compare q to the pivot point v of the partition
(pointed to by M(S)) to produce a new mask m′ (Line 5).
Since all points in the partition have been reassigned new
masks based on v, we can use m′ as a stronger cheap filter
test for the rest of the points in the partition (Line 8): if the
second property of Section VI-A2 holds, we can skip the DT.

Consequently, we are able to derive most of the benefit
of recursive point-based partitioning [15], [23] in terms of
skipping DTs in Phase I without the need for either recursion
nor complex tree structures. Furthermore, we vastly reduce the
number of DTs required in Phase I relative to Q-Flow.

D. Phase II: comparing to peers

In Phase II, a point q is compared to points for which there
is no data structureM(S), which is updated after Phase II. It is
not yet known whether any (except the first) of these points are
skyline points. Although we cannot take advantage of the data

Algorithm 4 compareToPeers (Q,me −→ {true, false})
1: i← 0.
2: while Q[i].|m| < Q[me].|m| do
3: if Q[i] is not pruned then
4: if Q[i].m is not incomparable to Q[me].m then
5: if Q[i] ≺ Q[me] then return true.
6: i← i+ 1.
7: while Q[i].m < Q[me].m do
8: i← i+ 1.
9: while i < me do

10: if Q[i] ≺ Q[me] then return true.
11: return false.

structure, we can still exploit the partitioning, because data is
sorted by partition. Algorithm 4 gives Phase II of Hybrid.

Each point q is compared to those preceding it in the same
α-block. We can decompose the iteration over those points into
three consecutive loops, each maintaining different invariants.
The first points are those in levels less than that of q (Line 2).
For these points, it is worthwhile to conduct a cheap filter test
based on masks to detect region-wise incomparability (Line 4).
The second set of points all have the same level as q but are in
different partitions (Line 7). All of these, by the first property
of Section VI-A2, are necessarily incomparable to q and can
be skipped. Finally, the remaining points that precede q are in
the same partition (Line 9). In this case, no assumption can be
made, and the DT must be conducted (Line 10).

E. Summary of Hybrid contributions

In summary, Hybrid benefits from the high throughput
flow of control in Q-Flow and state-of-the-art point-based
partitioning ideas. It maintains a global, shared skyline with
an efficient, simple data structure that dramatically reduces the
number of DTs in Phase I. Phase II also benefits from the level-
mask-based sort order. The for loop can be decomposed into
three loops, each maintaining different assumptions about the
data. In the next section we show that, indeed, we substantially
reduce DTs, yielding state-of-the-art performance.

VII. EXPERIMENTAL EVALUATION

In this section, we conduct a thorough empirical evaluation
of the run-time performance and scalability of our proposed
algorithm, relative to the state-of-the-art alternatives in litera-
ture [13], [15]. This includes our custom parallelization of the
sequential BSkyTree algorithm, which we call PBSkyTree.
Furthermore, we extensively contrast Hybrid and Q-Flow in
order to characterize the impact of our data structure and
partitioning, and we investigate the impact of the block-size,
α, and selection of pivots, v.

A. Experimental Setup

1) Hardware: We run all experiments on the same machine
with 64 GB of RAM and a dual eight-core Xeon E5-2670
processor clocked at 2.67 GHz. The machine has Hyper-

Threading disabled so we experiment with at most 16 threads.4
All skyline methods are executed completely in main memory.

2) Software: We implement both Q-Flow (Section V) and
Hybrid (Section VI). Additionally, we consider three state-of-
the-art alternatives:

PSkyline [13]: the state-of-the-art multicore algorithm based
on a simple divide-and-conquer strategy where a dataset is
linearly partitioned into smaller blocks—one per thread—
of equal size. Each thread computes a local skyline within
its block (aka Phase I) and then the resulting skyline set is
merged into a global skyline (aka Phase II). Both phases
are efficiently parallelized specifically to exploit multicore
architectures.

BSkyTree [15]: the state-of-the-art sequential algorithm that
employs sophisticated pivot selection and recursive point-
based space partitioning techniques to significantly reduce
DTs. We use its most efficient variant, BSkyTree-P, shown
to outperform all other sequential algorithms [15].

PBSkyTree: our parallelized version of BSkyTree. It is not
trivial to parallelize BSkyTree because it uses a dynamic
tree structure (SkyTree) to store skyline points, which is
constantly updated, and the algorithm is fully recursive.
Details of parallelizing BSkyTree are in Appendix A.

In general, significant improvements can come from vector-
ization of dominance tests (DTs) [7]. We extend the techniques
of 4-degree data-level parallelism (128-bit SIMD registers and
SSE) in [7] to obtain 8-degree data-level parallelism supported
by our experimental hardware (256-bit SIMD registers and
AVX). The vectorized DTs are used by all algorithms for
speedups of 1.75×, 1.32×, 2×, and 1.25× in PSkyline,
BSkyTree, Q-Flow, and Hybrid, respectively (under our
default workload, n = 1M and d = 12).

Implementations are written in C++ using a common
interface and the same optimized dominance tests for a fair
comparison. The CPU code is compiled using g++ (v4.4.7)
with the -O3 optimization flag. For multi-threading, we use
the OpenMP API (v3.0). We publicly release the extensible
collection of algorithms, called SkyBench.5

3) Datasets: We generate correlated, independent, and anti-
correlated synthetic datasets using the standard skyline data
generator from [4]. We adopt (and extend) the parametres from
the existing skyline research so that results can be directly
compared. In particular, we vary dimensionality, d, from 4
to 16 and cardinality, n, from 500K to 8M. Figure 4 shows
the corresponding skyline sizes for all three distributions. By
default, as in [15], we set d = 12 and n = 1M.

We also include three real datasets. NBA and House are
described in [15] and Weather is described in [6]; although,
we use more dimensions and years of data than [6].6 Statistics
for the real datasets are given in Table I.

4Experiments with 8 threads on our less powerful but hyperthreading-
enabled 4-core machine show that hyper-threading improves Hybrid by 29%
and PBSkyTree by 38% under the default, independent workload (d = 12,
n = 106). Using 16 threads slows performance for both algorithms. Thus
there is some limited potential parallelism for hyperthreads to exploit too.

5http://cs.au.dk/research/research-areas/data-intensive-systems/repository/
6Preprocessing scripts for datasets are also available within SkyBench.

0.5 1 2 4 8
Cardinality, x106

0
1
2
3
4
5
6
7
8

|S
ky
lin

e|
, x

10
6

n

Correlated
Independent
Anticorrelated

6 8 10 12 14 16
Dimensionality

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4: Skyline sizes in synthetic data.

Dataset Cardinality Dimensionality |SKY|
NBA 17, 264 8 1, 796 (10.40%)
HOUSE 127, 931 6 5, 774 (4.51%)
WEATHER 566, 268 15 63, 398 (11.20%)

TABLE I: Specifications of real datasets.

B. Overall Performance of Algorithms

We begin by comparing the performance of Hybrid to
the state-of-the-art sequential and parallel algorithms. We also
include Q-Flow and our parallel version of BSkyTree. The
four parallel algorithms are run with 16 threads (t = 16) to
utilize all available cores.

1) Varying Dimensionality: Figure 5 reports running times
for the five algorithms on each distribution as a function of d.
Naturally, irrespective of distribution, all algorithms slow with
increases in d because the skyline size grows (c.f., Figure 4).

Consider first the primary multicore algorithms,
PBSkyTree, Hybrid, and PSkyline on the correlated
data (top-right subfigure). While Hybrid is outperformed by
PSkyline when d ≤ 12 and by PBSkyTree when d > 12,
all algorithms are competitive and finish within 70 ms at 12
dimensions and within 300 ms at 16 dimensions. On the more
challenging workloads, the independent (bottom-left) and
anticorrelated (bottom-right) data, Hybrid is the clear best
performer across all dimensions. Due to its carefully crafted
partitioning scheme, Hybrid is able to skip most of the DTs
for points within incomparable regions, a figure that grows
with d. PSkyline, by contrast, has no means to recognize
this incomparability and thus suffers heavily–it is the worst
performing algorithm of all five. PBSkyTree, on the other
hand, cannot maintain the high throughput of Hybrid; so,
the performance diverges as the increased workloads provide
more opportunity for parallelism. Overall, Hybrid scales the
best with increasing d among all skyline methods and achieves
one order of magnitude better performance by d = 16.

Next, consider Q-Flow, the simplification of Hybrid. We
can see that in all cases it is substantially slower than Hybrid,
indicating that the use of region-wise incomparability and
our partition data structure pays significant dividends. Fur-
thermore, except on correlated data, Q-Flow is 2× faster
than PSkyline on average. This illustrates that optimizing
throughput is enough already to outperform the state-of-the-

http://cs.au.dk/research/research-areas/data-intensive-systems/repository/

BSkyTree
Hybrid (t=16)
PBSkyTree (t=16)
Q-Flow (t=16)
PSkyline (t=16)

6 8 10 12 14 16
Dimensionality

10-2

10-1

Ru
n-
tim

e,
 s
ec

Correlated

6 8 10 12 14 16
Dimensionality

10-1

100

101

102

Ru
n-
tim

e,
 s
ec

Independent

6 8 10 12 14 16
Dimensionality

100

101

102

Ru
n-
tim

e,
 s
ec

Anticorrelated

Fig. 5: State-of-the-art performance w.r.t. d (n = 1M).

BSkyTree
Hybrid (t=16)
PBSkyTree (t=16)
Q-Flow (t=16)
PSkyline (t=16)

0.5 1 2 4 8
Cardinality, x106

10-1

Ru
n-
tim

e,
 s
ec

Correlated

0.5 1 2 4 8
Cardinality, x106

100

101

102

Ru
n-
tim

e,
 s
ec

Independent

0.5 1 2 4 8
Cardinality, x106

100

101

102

103

104

Ru
n-
tim

e,
 s
ec

Anticorrelated

Fig. 6: State-of-the-art performance w.r.t. n (d = 12).

art multicore algorithm, highlighting the importance thereof.
Still, both Q-Flow and PSkyline, without advanced techniques
for reducing expensive DTs, are outperformed even by single-
threaded BSkyTree by up to an order of magnitude. Our
parallelized PBSkyTree further achieves up to 5× speedup
over BSkyTree; so, on independent and anticorrelated data,
the region-wise incomparability is critical for competitiveness.

Note that PBSkyTree is unable to make use of its
techniques to the same extent and is worse than sequential
BSkyTree with d > 14. This is because threads idle or receive
imbalanced workloads when the partitions become too small;
so, the overhead of thread management is never amortized.

Notably, none of the advanced techniques pay off on the
low-dimensional correlated data, where one finds a tiny skyline
(c.f., Figure 4). This is because most points are eliminated
on their first DT. As such, PSkyline with no initialization
overhead (trivial division of points to threads) compared to
other methods achieves the best performance. However, with
increasing d, it eventually becomes the worst performer ceding
the place to our parallelized PBSkyTree, because the skyline
size grows closer to that of the other distributions.

2) Varying Cardinality: Figure 6 instead shows the effect
of increasing cardinality. Here, like with d, increases naturally
slow all algorithms, because they increase the number of pairs
of points that must be compared. Again, Hybrid reports the
fastest times on independent and anticorrelated data outper-
forming the closest competitor, our parallelized PBSkyTree,

Algorithm NBA HOUSE WEATHER
msec. speedup msec. speedup sec. speedup

BSkyTree 12 – 42 – 6.50 –
PBSkyTree 6 2× 18 3× 1.44 8.5×
PSkyline 9 2.8× 54 5.3× 3.61 8.7×
Q-Flow 4 8.2× 30 9× 6.18 11.6×
Hybrid 4 5.7× 12 7.2× 0.89 13×

TABLE II: Performance on real data.

by a multiplicative factor of 2 to 7. All correlated workloads
are completed by all algorithms in less than 50 milliseconds.

The relative gap between all algorithms excluding
PBSkyTree remains constant with increasing n. The relative
improvement for PBSkyTree is explained conversely to its
degradation with respect to d: a larger input size creates
larger partitions. Consequently, it can better utilize the physical
resources than it can on smaller datasets.

3) Real Datasets: A main reason to evaluate skyline al-
gorithms on real datasets is to verify their efficiency when
distinct value condition cannot be assumed (i.e., values can be
duplicated in the dataset). Table II shows the corresponding
run-times with t = 16 and speedups over t = 1.

Since NBA and House datasets are relatively small, we do
not obtain significant performance gains with multi-threaded
algorithms. Though, Q-Flow is at least 8.2× faster than its
single-threaded run. This is due to efficient use of threads in the

α=
2
7

α=
2
10

α=
2
13

α=
2
16

PS
ky
lin
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ru
n-
tim

e,
 s
ec

Correlated
Init. Phase I Phase II Other

α=
2
7

α=
2
10

α=
2
13

α=
2
16

PS
ky
lin
e

0

10

20

30

40

50

60
Independent

α=
2
7

α=
2
10

α=
2
13

α=
2
16

PS
ky
lin
e

0

50

100

150

200

250

300

350
Anticorrelated

Fig. 7: Effect of α in Q-Flow with varied α (n = 1M, d = 12)

initialization phase (computing L1 for each point in parallel).
Hybrid has a pre-filtering phase that is not amortized; so, the
speedup is smaller.

On Weather, the most challenging real dataset, we observe
≥ 8.5× speedup by all parallel algorithms; they all outperform
single-threaded BSkyTree. Hybrid achieves almost linear scal-
ability with a 13× speedup (of the theoretical limit, 16×).

Our main observation is that while Q-Flow is outperformed
in most cases on real datasets, highly optimized Hybrid is the
best performer without exception. Its 16-threaded runs benefit
most from each core and outperform all other counterparts.

The results here are not surprising, since the absence of
distinct value condition effects mostly the efficiency of the
DTs (and to some extent, the size of the skyline). However, our
optimized and vectorized DTs mitigates this very effectively.

C. Refined performance analysis

Having established in the previous section the overall
performance characteristics of the algorithms, we now turn to
a more granular analysis of Q-Flow, PSkyline, and Hybrid to
elucidate better explanations for their relative performance. We
first look at the effect of α (Section VII-C1). We report these
results with the running times decomposed into the various
phases of the algorithm. Then, we look at the effect of the
pivot selection (Section VII-C2).

1) Granular performance study with effect of α: As de-
scribed in Section V, Q-Flow processes points in α-sized
blocks. To evaluate its impact, we vary α from 128 to 64K
and report the results in Figure 7. We measure the execution
time and break it down into the phases of Q-Flow: compute
L1 and sort (“Init.”), Phase I, Phase II, and the rest (“Other”).
For comparison, we also show the execution time of PSkyline.
In PSkyline, there is no initialization phase, while Phase I and
Phase II correspond to local (parallel map) and global (parallel
merge) skyline computation, respectively.

We make the following three observations. First, setting α
optimally results in up to 5.7×, 1.9×, and 1.3× speedups on

α=
2
7

α=
2
10

α=
2
13

α=
2
16

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

R
un

-ti
m
e,
 s
ec

Correlated

Init.
Pivot

Compress
Phase I

Phase II
Other

α=
2
7

α=
2
10

α=
2
13

α=
2
16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Independent

α=
2
7

α=
2
10

α=
2
13

α=
2
16

0

1

2

3

4

5

6
Anticorrelated

Fig. 8: Effect of α on Hybrid with varied α (n = 1M, d = 12)

correlated, independent, and anticorrelated data, respectively.
Notably, the same α value (α = 213) is optimal under all three
distributions and we therefore use (and have used) it in all other
experiments. Second, the initialization overhead (≈ 25 ms) is
relevant only on correlated data, where the resulting skyline
is tiny and thus computed very fast (in a few ms). While
α generally helps to balance the computation between the
phases, Phase I still dominates the entire processing on inde-
pendent and anticorrelated distributions. Third, our simplified
algorithm, Q-Flow, outperforms the state-of-the-art multicore
PSkyline algorithm on all but correlated data. This is because
all local skyline computations are isolated and cannot benefit
from the global skyline until the merge phase starts. As such,
Phase II is the most expensive part in PSkyline. On correlated
data, by the time Q-Flow computes L1 for each point and
sorts the data, PSkyline computes the actual skyline.

Also note the relative time spent by each algorithm in Phase
I/II, a result of the different flows of control. This implies that
the multi-threaded scalability of the algorithms is dependent on
parallelizing different computation. For Q-Flow, it is critical
to effectively parallelize Phase I; for PSkyline, Phase II.

Similarly, we evaluate the effect α has on Hybrid in Fig-
ure 8. Since Hybrid involves more computational categories,
we decompose time into additional groups. The extra timings
include prefiltering using priority queues (“Pre-filter”), pivot
selection (“Pivot”), and α-block compression (“Compress”).

For Hybrid, the precise setting of α has less impact on
performance, offering at best a speedup of 2× (relative to α =
27). The ideal value is again consistent, although this time
slightly smaller, α = 210. Regarding performance, note that
the scales in Figure 8 differ from those in Figure 7, and that
Hybrid outperforms both other algorithms (as we saw in the
previous subsection).

The decomposed running times are revealing. On the
correlated data, virtually no time is spent in Phase I nor Phase
II: the pre-filtering consumes half the cost, but nearly produces
the solution. The total time is doubled by the 15ms of overhead
involved in other tasks such as constructing the data structure.

16 128 1024 8192
Block size α

10-2

10-1

Ru
n-
tim

e,
 s
ec

Balanced
Volume

Manhattan
Randon

Median

16 128 1024 8192
Block size α

10-1

100

101

102

16 128 1024 8192
Block size α

100

101

102

103

Fig. 9: Effect of pivot selection in Hybrid (n = 1M, d = 12)

On independent and anticorrelated data, the initialization
and other costs shrink proportionately as the skyline size grows
and more DTs are required. In both cases, the fully parallelized
Phase I becomes the dominant cost, as with Q-Flow. This is
ideal, because Phase I contains the most sophisticated DT-
reduction techniques and is the most scalable with additional
hardware resources. Together, Phase I and Phase II, the parallel
components, combine for up to 95% of computation.

2) Impact of pivot selection in Hybrid: Next, recall from
Section VI-A2 that Hybrid partitions data based on a selected
pivot, v. Here, we investigate five methods of selecting v:

• Balanced [15]: the skyline point with minimum range;
• Manhattan [9]: the point with minimum L1 norm, which

is necessarily a skyline point7;
• Median: virtual point where each dimension is the me-

dian of points surviving pre-filtering;
• Volume [2]: the point with maximum Πip[i], which is

necessarily a skyline point;
• Random [23]: A (non-uniform) random skyline point.8

Figure 9 shows the effect of the pivot selection methods
relative to α for correlated, independent, and anti-correlated
default workloads, respectively. On correlated data, the selec-
tion method has limited impact—all methods perform more-
orless equally—because there is so little Phase I and Phase
II processing to be done. On the other workloads, Median
performs consistently best, and Balanced is a clear second-
best. Both techniques provide well balanced partition sizes,
which is ideal for skipping large blocks of points with region-
wise incomparability. All methods demonstrate the same trend
with respect to α as in Figure 8, confirming that these trends
are independent of pivot selection method.

D. Multi-threaded Parallel Scalability

Lastly but importantly, we report the multi-threaded scal-
ability of the parallel algorithms. In Figures 10 and 11, we

7Our level 2 partitioning in the data structure always uses Manhattan
8For one pass, we select a uniform random point, v, then iterate the dataset

conducting one-way DTs and replacing v whenever it is dominated

show how Q-Flow and PSkyline scale with increasing num-
ber of threads when varying dimensionality and cardinality,
respectively. Both algorithms scale linearly with increasing
number of threads and Q-Flow thus preserves its advantages
on all but less challenging datasets. In Figure 10, Q-Flow
is up to 2× faster than PSkyline on anticorrelated data with
all d and on correlated and independent data with d ≥ 14
and d ≥ 6, respectively. In Figure 11, Q-Flow is up to
1.7× and 1.3× faster on independent and anticorrelated data.
On correlated data, due to the initialization overhead, which
is O(n), Q-Flow is up to 4× slower. Nevertheless, skyline
computation of correlated data with n = 8M (d = 12) takes
less than 1s with more than two threads (t > 2) in Q-Flow.

In Figures 12 and 13, we show how Hybrid scales with
increasing number of threads when varying dimensionality and
cardinality, respectively. For comparison, we also include the
scalability of our parallelized PBSkyTree.

Both Hybrid and PBSkyTree scale linearly with increas-
ing number of threads and thus benefit from each core in a
system. This confirms our fair implementation of PBSkyTree.
With respect to d (Figure 12), Hybrid scales significantly
better on independent and anticorrelated data, outperforming
PBSkyTree by more than an order of magnitude with d =
16. The performance difference is especially substantial with
d > 10. This is because the progressively smaller partition
sizes hurt the throughput of PBSkyTree, whereas Hybrid,
based on Q-Flow maintains the high throughput. As before,
Hybrid is outperformed due to its initialization overhead on
easy, correlated workloads, where the run-times are below 100
ms for t > 2.

With respect to n (Figure 13), the performance de-
creases linearly by both algorithms. However, 4 and 8 threads
are enough for Hybrid to outperform a 16-threaded run
of PBSkyTree on independent and anticorrelated data, re-
spectively. Again, on correlated data, due to the initializa-
tion overhead (inherited from Q-Flow), Hybrid falls behind
PBSkyTree as well. However, the run-times are much faster
and all runs finish within half of a second.

The overall strong multi-threaded scalability of Q-Flow
and Hybrid arises from the dominance of the sophisticated,
fully parallelized Phase I in the computational cost that was
observed in Figures 7 and 8.

VIII. CONCLUSION

In this paper, we investigated scalable and efficient par-
allelization of skyline algorithms on multicore architectures.
We first introduced a simplification, Q-Flow, of our algorithm
to demonstate how we achieve high parallel throughput. We
then introduced our full algorithm, Hybrid, which is the
first multicore skyline algorithm to maintain a global, shared
skyline that can be used to minimize dominance tests. It is
also the first multicore skyline algorithm to exploit ideas of
object-based partitioning. In an extensive experimental study,
we show that even Q-Flow, which also maintains a global,
shared skyline, outperforms state-of-the-art multicore skyline
computation, and that Hybrid outperforms both the most
efficient skyline algorithm in literature and our non-trivial
parallelization of it. Our decomposition of performance reveals
that on non-correlated data Hybrid performs well on account

of primarily spending time in the most sophisticated and best
parallelized phase of computation.

ACKNOWLEDGMENTS

This research was supported in part by the Danish Council
for Strategic Research, grant 10-092316, and by the Danish
National Research Foundation, grant DNRF84, for the Center
for Massive Data Algorithmics (MADALGO). We thank the
authors of BSkyTree [15] and PSkyline [13] for their imple-
mentations off which we based our implementations.

REFERENCES

[1] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for
qos-based web service composition,” in Proc. WWW, 2010, pp. 11–20.

[2] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based skyline
evaluation,” TODS, vol. 33, no. 4, pp. 31:1–49, 2008.

[3] K. S. Bøgh, I. Assent, and M. Magnani, “Efficient gpu-based skyline
computation,” in Proc. DaMoN, 2013, pp. 5:1–6.

[4] S. Börzsönyi, D. Kossman, and K. Stocker, “The skyline operator,” in
Proc. ICDE, 2001, pp. 421–430.

[5] S. Chester, M. L. Mortensen, and I. Assent, “On the suitability of skyline
queries for data exploration,” in Proc. ExploreDB, 2014, pp. 161–166.

[6] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides, “Computing
k-regret minimizing sets,” PVLDB, vol. 7, no. 5, pp. 389–400, 2014.

[7] S.-R. Cho, J. Lee, S.-W. Hwang, H. Han, and S.-W. Lee, “VSkyline:
Vectorization for efficient skyline computation,” SIGMOD Rec., vol. 39,
no. 2, pp. 19–26, 2010.

[8] W. Choi, L. Liu, and B. Yu, “Multi-criteria decision making with skyline
computation,” in Proc. IRI, 2012, pp. 316–323.

[9] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presort-
ing,” in Proc. ICDE, 2003, pp. 717–719.

[10] H. Eder and F. Wei, “Evaluation of skyline algorithms in postgresql,”
in Proc. IDEAS, 2009, pp. 334–337.

[11] P. Godfrey, R. Shipley, and J. Gryz, “Algorithms and analyses for
maximal vector computation,” VLDB J, vol. 16, no. 1, pp. 5–28, 2007.

[12] K. Hose and A. Vlachou, “A survey of skyline processing in highly
distributed environments,” VLDBJ, vol. 21, no. 3, pp. 359–384, 2012.

[13] H. Im, J. Park, and S. Park, “Parallel skyline computation on multicore
architectures,” Inf. Syst., vol. 36, no. 4, pp. 808–823, 2011.

[14] H.-P. Kriegel, M. Renz, and M. Schubert, “Route skyline queries: a
multi-preference path planning approach,” in Proc. ICDE, 2010, pp.
261–272.

[15] J. Lee and S.-w. Hwang, “Scalable skyline computation using a balanced
pivot selection technique,” Inf. Syst., vol. 39, pp. 1–24, 2014.

[16] S. Liknes, A. Vlachou, C. Doulkeridis, and K. Nørvåg, “APSkyline:
Improved skyline computation for multicore architectures,” in Proc.
DASFAA, 2014, pp. 312–326.

[17] K. Mullesgaard, J. L. Pederseny, H. Lu, and Y. Zhou, “Efficient skyline
computation in MapReduce,” in Proc. EDBT, 2014, pp. 37–48.

[18] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems,” TODS, vol. 30, no. 1, pp. 41–82,
2005.

[19] Y. Park, J.-K. Min, and K. Shim, “Parallel computation of skyline and
reverse skyline queries using mapreduce,” PVLDB, vol. 6, no. 14, pp.
2002–2013, 2013.

[20] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline
computation,” in Proc. VLDB, 2001, pp. 301–310.

[21] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang, “Stochastic
skyline route planning under time-varying uncertainty,” in Proc. ICDE,
2014, pp. 136–147.

[22] B. Zhang, S. Zhou, and J. Guan, “Adapting skyline computation to the
mapreduce framework: Algorithms and experiments,” in Proc. DASFAA,
2011, pp. 403–414.

[23] S. Zhang, N. Mamoulis, and D. W. Cheung, “Scalable skyline compu-
tation using object-based space partitioning,” in Proc. SIGMOD, 2009,
pp. 483–494.

Distribution n = 500K n = 1M n = 2M n = 4M n = 8M
Correlated 1.0× 1.3× 1.9× 1.4× 1.4×
Independent 3.9× 3.2× 3.3× 3.2× 3.3×
Anti-correlated 4.9× 5.0× 5.2× 5.6× 6.7×

TABLE III: BSkyTree relative to PBSkyTree (d = 12, t = 1)

APPENDIX

A. Parallelization of BSkyTree

A central idea of BSkyTree [15] is a depth-first recursion,
which ensures that a point p is compared only to partitions
that partially dominate the partition of p, and only after those
partitions have been completely processed. Consequently, p
requires far fewer dominance tests. So, the primary challenge
with parallelizing BSkyTree is to parallelize the depth-first
recursion. Launching threads early in the recursion sacrifices
control over the processing order; threads launched late in the
recursion when partitions are small have high relative overhead
given that the time required for only a few points to traverse a
SkyTree is neglible. Figures 5 and 6 illustrate this effect: with
increasing dimensionality, the partitions become smaller (2d
increases but n is fixed) and the performance of the sequential
and parallel algorithms converge. With increasing cardinality
(2d is fixed but n increases), the partitions become larger and
the performance diverges.

We use two ideas to create PBSkyTree. First, we halt the
recursion when there are fewer than 64 points on which to
recurse; recursing futher only adds overhead. (This number
was determined experimentally.) Second, at the base of the
recursion, a leaf of the recursion tree is being processed and its
right siblings are queued. Each of the right siblings represents
a partition that has not yet been sub-partitioned (and may
itself be a leaf). To increase the amount of parallel work, we
group together the current node and its leftmost right siblings
to create a large work batch of up to (16 * num threads)
points to process in parallel. (This number was also tuned
experimentally.) Thus, we still recurse deeply, taking advantage
of the extra information of region-wise incomparability created
on each recursive call, yet accumulate large blocks of parallel
work. Each point in the work batch is then independently
compared to all the previous points, including the partial
dominance (Phase I: comparing many points to the current
skyline) that comprises the majority of work in the sequential
algorithm. We do not parallelize the pivot selection: it incurs
negligible cost. We parallelize partitioning as in Hybrid.

Table III indicates the overhead introduced into BSkyTree
by our parallelization. We execute PBSkyTree with 1 thread
and compare against the natively sequential BSkyTree. We
expect overhead because the last point in a work batch is
potentially processed (16 * num threads) points too early
(relative to sequential), in which case there are up to (16
* num threads) points to which it might not have been
compared at all in the sequential version. Nonetheless, for
d = 12, the overhead can be absorbed by 2-8 threads,
depending on the dataset.

Recall for contrast that Hybrid does not process parallel
batches of work along partition boundaries, instead selecting
a constant work batch size, α. This nicely circumvents the
difficulties in parallelizing BSkyTree.

Q-Flow (t=1)
Q-Flow (t=2)
Q-Flow (t=4)
Q-Flow (t=8)
Q-Flow (t=16)
PSkyline (t=1)
PSkyline (t=2)
PSkyline (t=4)
PSkyline (t=8)
PSkyline (t=16)

6 8 10 12 14 16
Dimensionality

10-2

10-1

Ru
n-
tim

e,
 s
ec

Correlated

6 8 10 12 14 16
Dimensionality

100

101

102

103

Ru
n-
tim

e,
 s
ec

Independent

6 8 10 12 14 16
Dimensionality

101

102

103

Ru
n-
tim

e,
 s
ec

Anticorrelated

Fig. 10: Q-Flow versus PSkyline w.r.t. d (n = 1M).

Q-Flow (t=1)
Q-Flow (t=2)
Q-Flow (t=4)
Q-Flow (t=8)
Q-Flow (t=16)
PSkyline (t=1)
PSkyline (t=2)
PSkyline (t=4)
PSkyline (t=8)
PSkyline (t=16)

0.5 1 2 4 8
Cardinality, x106

10-1

100

Ru
n-
tim

e,
 s
ec

Correlated

0.5 1 2 4 8
Cardinality, x106

102

103

Ru
n-
tim

e,
 s
ec

Independent

0.5 1 2 4 8
Cardinality, x106

102

103

104

105

Ru
n-
tim

e,
 s
ec

Anticorrelated

Fig. 11: Q-Flow versus PSkyline w.r.t. n (d = 12).

Hybrid (t=1)
Hybrid (t=2)
Hybrid (t=4)
Hybrid (t=8)
Hybrid (t=16)
PBSkyTree (t=1)
PBSkyTree (t=2)
PBSkyTree (t=4)
PBSkyTree (t=8)
PBSkyTree (t=16)

6 8 10 12 14 16
Dimensionality

10-2

10-1

Ru
n-
tim

e,
 s
ec

Correlated

6 8 10 12 14 16
Dimensionality

10-1

100

101

102

Ru
n-
tim

e,
 s
ec

Independent

6 8 10 12 14 16
Dimensionality

100

101

102

Ru
n-
tim

e,
 s
ec

Anticorrelated

Fig. 12: Parallel Scalability in Hybrid w.r.t. d (n = 1M).

Hybrid (t=1)
Hybrid (t=2)
Hybrid (t=4)
Hybrid (t=8)
Hybrid (t=16)
PBSkyTree (t=1)
PBSkyTree (t=2)
PBSkyTree (t=4)
PBSkyTree (t=8)
PBSkyTree (t=16)

0.5 1 2 4 8
Cardinality, x106

10-1

Ru
n-
tim

e,
 s
ec

Correlated

0.5 1 2 4 8
Cardinality, x106

100

101

102

Ru
n-
tim

e,
 s
ec

Independent

0.5 1 2 4 8
Cardinality, x106

100

101

102

103

Ru
n-
tim

e,
 s
ec

Anticorrelated

Fig. 13: Parallel Scalability in Hybrid w.r.t. n (d = 12).

	Introduction
	Contributions and Outline

	Problem Definition
	Related Work
	Key Principles for Skylines and Multicore
	Skyline Computation
	Multicore Computation
	Multicore skylines: bridging the computational principles

	Flow of Control
	Overall algorithm design
	Phase I: Comparing to skyline points
	Phase II: Comparing to peers
	Sequential work: compression and skyline updates
	Summary of QFlow contributions

	The Hybrid Multicore Skyline Algorithm
	Initialization and partitioning
	Pre-filtering
	Partitioning
	Sorting

	Data Structure for skyline points
	Phase I: comparing to skyline
	Phase II: comparing to peers
	Summary of Hybrid contributions

	Experimental Evaluation
	Experimental Setup
	Hardware
	Software
	Datasets

	Overall Performance of Algorithms
	Varying Dimensionality
	Varying Cardinality
	Real Datasets

	Refined performance analysis
	Granular performance study with effect of
	Impact of pivot selection in Hybrid

	Multi-threaded Parallel Scalability

	Conclusion
	References
	Appendix
	Parallelization of BSkyTree

