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Abstract

A source produces i.i.d. vector samples from a Gaussian distribution, but the

user is interested in only one component. In the cache phase, not knowing which

component the user is interested in, a first compressed description is produced.

Upon learning the user’s choice, a second message is provided in the update phase

so as to attain the desired fidelity on that component. We aim to find the cache

strategy that minimizes the average update rate. We show that for Gaussian

codebooks, the optimal strategy depends on whether or not the cache is large

enough to make the vector conditionally independent. If it is, infinitely many

equally optimal strategies exist. If it is not, we show that the encoder should

project the source onto some subspace prior to coding. For a pair of Gaussians,

we exactly characterize this projection vector.

1 Introduction

Nowadays, streaming-services draw a huge chunk of the available bandwidth. The
on-demand aspect of video-on-demand results in an overload of individual requests at
slightly different times of the day, albeit concentrated during peak hours. Caching is
a strategy to move part of that load to off-peak times. During the night, a service
could pre-load data onto your hard drive, taking an estimated guess of the content you
might ask for during the day. If a user has a limited cache budget on his drive, what
should the server put there in order to minimize traffic during the day? In this paper,
we study these applied questions in a theoretical context of Gaussian vector sources.

A source produces length K vector samples of a Gaussian distribution, but the user
is only interested in one of the components. In the cache phase, the encoder can code
a first message up to cache rate Rc, without knowing the user’s desired component.
In the update phase, the user chooses component k uniformly, i.e., pY (Y = k) = 1/K
and reveals it to the encoder, who then sends an update at a rate Ru. The decoder
then uses the cache and this update to construct a lossy representation of the k’th
component at the desired fidelity. A schematic of this is depicted in Figure 1. Our goal
is to find the caching strategy that minimizes the average update rate.

We show in this paper that for Gaussian codebooks the optimal coding strategy
depends on whether or not the cache is sufficiently large so as to make the source
components conditionally independent when conditioned on the cache. If that is so,
Section 3.1 explains that there are infinitely many coding strategies that are equally
optimal. If not, we argue in Section 3.2 that the encoder must project the source vector
to a shorter vector. For a pair of Gaussians, we find this projection exactly; it turns
out to be solely defined by the source’s covariance and it does not change for different
values of Rc.

All that we discuss in this paper relies on the successive refinability of Gaussian
sources to connect the cache and update phase. For a general discussion we refer the
reader to [1, 2]. For the (Gaussian) vector case, one should read [3] and [4] as its
precursor. It describes the refinability of X1 to X2 as being possible if and only if their
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Figure 1: The caching scheme with cache rate Rc. After revealing Y = k as the
selection variable, E2 sends an update at rate Ru s.t. the decoder can retrieve X̂k.

covariances admit a semidefinite ordering ΣX1
� ΣX2

. A discussion on the general rate-
distortion function for Gaussian vectors was discussed in [5]. An attentive reader might
also notice that our problem shows close resemblance to the Gray-Wyner system [6].
Namely, one could draw all the events of the user asking for one of the K components
as K different decoders; the cache would then be their shared link and the required
update their individual ones [7].

2 Definitions and Cache Rate-Distortion Function

Let X be an i.i.d. Gaussian vector source of dimension K, following the distribution
N (0,ΣX) with some potentially correlated covariance ΣX. That is, at each time instant,
the source independently produces a vector sampled from this fixed distribution. We
denote the source sample at time n by X(n), and we denote its kth component by
Xk(n), for k = 1, 2, . . . , K. Independently of X, a single random variable Y is drawn
from the set {1, 2, . . .K} uniformly at random; we call it the selection variable.

We consider block coding of length N with two encoders. The first, referred to as
the cache encoder, observes only {X(n)}Nn=1 and produces a description using NRc bits,
where Rc is called the cache rate. The second, referred to as the update encoder, gets
to observe {X(n)}Nn=1 as well as the value of the random variable Y = k and produces
a description using NRu(k) bits, where Ru(k) is called the update rate for the case

Y = k. Hence, the average update rate of the encoder is given by Ru = 1
K

∑K

k=1Ru(k).
Notation-wise, the sub- or superscript c stands for cache, while u stands for update.

Upon observing the realization y and both compressed descriptions, the decoder
must output a sequence of estimates X̂y(n) in such a way as to satisfy

1

N

N
∑

n=1

(

Xy(n)− X̂y(n)
)2

≤ Du.

The question addressed in this paper is to characterize, for a fixed caching rate Rc, the
smallest average update rate Ru for which the distortion constraint can be satisfied
(irrespective of the value of Y ).

For the cache phase, we allow the server to code any Z that is jointly Gaussian with
the source. For large Rc, one can easily argue that Gaussian codebooks are optimal; for
small Rc, it remains a difficult question that we unfortunately can not yet address in
this article. In the update phase, one can compute X̂c = E[X|Z] as the MSE-estimate
of the source and subsequently the error as:

Dc = E[(X− X̂c)(X− X̂c)T ] � ΣX. (1)

The semidefinite ordering Dc � ΣX means that ΣX − Dc is positive semidefinite. It
yields an engineering perspective: any real symmetric matrix Dc that satisfies this
ordering is an achievable Gaussian codebook.



At this point, there is no operational interest for a first estimate X̂c or its error
Dc. However, Dc has theoretical value. Namely, for any X̂ jointly (not necessarily
Gaussian) distributed with X, the mutual information satisfies

I(X; X̂) ≥ 1

2
log

|ΣX|
|D| = R(D). (2)

The last step in (2) is met with equality if indeed we use Gaussians codebooks, i.e.,

X̂c = E[X|Z] with Z = X+W where W is independent from X and Gaussian as well
[5, Lemma 2]. Thus, we may not need Dc, but we can use it to characterize the rate
associated with the cache phase. Therefore, a cache strategy that yields a particular
error covariance Dc must have had a rate satisfying

Rc ≥
1

2
log

|ΣX|
|Dc| . (3)

Since our goal is to minimize Ru for a fixed Rc we can reverse (3) and state the following:

Definition 1. A (valid) caching strategy is any real symmetric matrix Dc that satisifies
the following two conditions:

1. |Dc| = |ΣX|e−2Rc , the rate-constraint (3).

2. 0 � Dc � ΣX, the semidefinite ordering constraint (1).

In the update phase, Y = k is revealed and consequently only an interest for Xk

remains. Both the encoder and decoder have access to the side information presented
by the cache. The MSE-estimator E[Xk|Z] forms the first step to an estimate X̂k and
since p(Xk|Z) is also a normal distribution, the update rate is lower bounded by the
Gaussian rate distortion function. Namely, Gaussians are successively refinable [1, 3],
which allows to combine the messages from the first and second phase. The variance
of p(Xk|Z) is simply the k’th diagonal entry of Dc and thus we have:

Ru(k) ≥
1

2
log+

Dc
kk

Du

,

which yields an average update rate for this construction:

Ru,Dc(Du) =
1

K

K
∑

k=1

1

2
log+

Dc
kk

Du

. (4)

The subscript Dc emphasizes that Ru depends on a particular cache strategy Dc.

Definition 2. The cache rate-distortion function is the average update rate needed to
attain distortion Du on any component, minimized over all caching strategies:

Ru(Du) = min
Dc

Ru,Dc(Du) s.t.

{

0 � Dc � ΣX

|Dc| = |ΣX|e−2Rc

(5)

Our search for the best caching strategy thus translates to: What choice of Dc

minimizes (4) given the search space of matrices set by Definition 1? What distortion
profile for the cache phase minimizes that rate needed for the update phase?

Unfortunately, the cache rate-distortion function (5) is a minimization over a con-
cave function. In many Gaussian source coding problems, the optimization variable D
is found in the denominator, which is convex. It is now found in the numerator, which
makes it concave and thus hard to solve. In the next section, we will argue on the
different optimal caching strategies for small and large Rc.



3 Optimal Caching Strategies

A different way of writing (5) is to pull the sum of (4) inside the log:

Ru(Du) = min
Dc

1

2K
log+

∏

k D
c
kk

DK
u

s.t.

{

0 � Dc � ΣX

|Dc| = |ΣX|e−2Rc

(6)

which leads to the insight that the numerator is lower bounded by the Hadamard
inequality

∏

k D
c
k,k ≥ |Dc|, hence

Ru(Du) ≥
1

2K
log+

|Dc|
DK

u

, (7)

and in turn |Dc| is bounded (or fixed even) by Rc, see again Definition 1. An interesting
read on the relationship between the Hadamard inequality and Gaussians was presented
in for example [8, Chapter 17]. The difference between a product of the diagonal
entries of a covariance and its determinant stems from h(X) ≤ ∑

k h(Xk). The mutual
exclusiveness of the update phase, where the encoder only refines the one component
the decoder asked for, combined with an objective to minimize the average update rate
is the reason for why this product

∏

k D
c
kk popped up instead of |Dc|.

Interestingly, there are two distinct coding strategies depending on whether the
lower bound (7) can be met or not. The Hadamard Inequality is met with equality if
and only if the matrix Dc is diagonal. Algebraically, this is not trivial as one cannot
have a diagonal Dc and satisfy Dc � ΣX at the same time if |Dc| is too large. In
terms of information theory, a diagonal cache distortion implies that the components
of X become independent when conditioned on the cache. This is impossible if Rc

is too small. These algebraic and information theoretic arguments are the same. In
the next subsection, we elaborate on a threshold R∗ on Rc and show that there are
infinitely many equally optimal cache strategies if the rate is larger than R∗. In the
subsection thereafter, we show that for smaller rates, the optimal strategy requires a
dimensionality reduction. The cache should be a particular projection of the source
components to some space. For a pair of Gaussians, we derive this projection exactly.

3.1 Large cache rates

The Hadamard inequality that was the lower bound in (7) hits equality if and only if
a matrix is diagonal. Hence there must exist a decomposition ΣX = Dc + Σ

X̂
where

Σ
X̂
and Dc are both positive semidefinite∗ and D is diagonal. For this we derive:

Theorem 1. For any cache rate Rc ≥ R∗, there exists a caching strategy Dc that
achieves the lower bound on the average update rate (7), where R∗ is the solution to

min
Dc

1

2
log

|ΣX|
|Dc| s.t.

{

0 � Dc � ΣX,

Dc is diagonal.
(8)

Proof. Recall that Rc = 1
2
log |ΣX|

|Dc|
implies the reverse relation on the determinant,

|Dc| = |ΣX|e−2Rc . Suppose that D∗ is the distortion matrix that minimizes (8) and let
R∗ be the cache rate associated to this point. Evidently, there cannot be a D′ that is

∗Demanding that ΣX decomposes into a sum of two positive semidefinite matrices is equivalent to

demanding D
c � ΣX like we did before.



diagonal and has a determinant larger than that of D∗ (or equivalenty, an Rc smaller
than R∗), otherwise D′ would have been the minimizer of (8). On the other end, for
all Rc ≥ R∗ there does exist a diagonal candidate caching strategy D′. Namely, for
diagonal matrices D′ � D∗ holds if and only if D′

i,i ≤ D∗
i,i ∀i. So one can construct

another distortion matrix D′ by decreasing the values on some arbitrary subset of
the diagonal entries of D∗. In doing so, any determinant |D′| ≤ |D∗| (and thus any
Rc ≥ R∗) can be achieved by a matrix that satisfies the chain D′ � D∗ � ΣX and is
thus both diagonal and achievable.

In the proof we constructed matrices D′ with any particular determinant in the
region Rc > R∗ by decreasing some diagonal entries of D∗, the solution to (8). It
does not matter which entries we use for this or by what amount we decrease them,
as long as the resulting determinant has the value we are after. Hence, in this high-Rc

regime, there exists infinitely many diagonal D′ with the same determinant that thus
all achieve the same lower bound on Ru (7); they are equally optimal.

The minimization of (8) is simply a MaxDet problem, which can be solved efficiently
numerically. The constraint that Dc must be diagonal is also a simple linear constraint,
namely one can replace it by Dc − diag(Dc) � 0 and we already had Dc � 0. This
brings about an interesting contrast with the original problem: Finding the general
optimal distortion profile for our problem was a hard-to-solve concave minimization.
The high-rate regime, however, now appears to be characterizable by a convex problem
which is easily solvable. To our knowledge, we do not know of any analytical expression
for Dc that minimizes (8), except for some special cases, one of which we will explain
now.

3.1.1 Example: a Pair of Gaussians

Theorem 2. For a pair of Gaussians the minimizer of (8) is R∗ = 1
2
log 1+|ρ|

1−|ρ|
, which

is achieved by a distortion matrix

D∗ =

[

σ2
1(1− |ρ|) 0

0 σ2
2(1− |ρ|)

]

. (9)

Proof. Let us find a decomposition of ΣX = Dc + Σ
X̂

of a diagonal Dc by setting
Dc = diag(α2, β2) and work out:

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

=

[

α2 0
0 β2

]

+

[

σ2
1 − α2 ρσ1σ2

ρσ1σ2 σ2
2 − β2

]

.

Such a decomposition yields positive semidefinite matrices (which is equivalent to 0 �
Dc � ΣX) and is a valid caching strategy if and only if the following conditions are
met:

1. 0 ≤ α2 ≤ σ2
1 and 0 ≤ β2 ≤ σ2

2 (Dc is PSD).

2.
ρ2σ2

1
σ2

2

(σ2

1
−α2)(σ2

2
−β2)

≤ 1 (Σ
X̂
is PSD).

3. α2β2 = |Dc| = fixed (cache rate constraint).

Let us start by evaluating the 2nd condition:

0 ≤ (σ2
1 − α2)(σ2

2 − β2)− ρ2σ2
1σ

2
2

= −α2σ2
2 −

|Dc|
α2

σ2
1 + |ΣX|+ |Dc|, (10)



where we replaced α2β2 = |Dc| and β2 = |Dc|
α2 by condition 3. Moreover, note that for

2 × 2 matrices we have |ΣX| = σ2
1σ

2
2(1 − ρ2). The right hand side is convex. If it

has two roots α2
− and α2

+, all α
2 ∈ [α2

−, α
2
+] are valid solutions, given that condition 1

is satisfied. Hence, if there are two roots then there exist infinitely many Dc that are
equally optimal.

Equation (10) has only one root -and thus yields only one optimal Dc- if the min-
imum of the right hand side is exactly at zero. By setting its derivative to zero, one

finds that α2
min =

√

|Dc|σ2

1

σ2

2

. Substituting α2
min into (10) and demanding equality:

0 = |ΣX|+ |Dc| − 2
√

|Dc|σ2
1σ

2
2

= |Dc|2 − 2|Dc|σ2
1σ

2
2(1 + ρ2) + (σ2

1σ
2
2(1− ρ2))2.

This follows from pulling −2
√

|Dc|σ2
1σ

2
2 to the left hand side, squaring both sides and

then pulling it back, while at the same time filling in |ΣX| = σ2
1σ

2
2(1− ρ2). This is a

new quadratic equation, which now revolves around |Dc| instead of α2. Its roots are

|Dc|∗± = σ2
1σ

2
2(1 + ρ2)±

√

σ4
1σ

4
2(1 + ρ2)2 − σ4

1σ
4
2(1− ρ2)2

=

{

σ2
1σ

2
2(1− |ρ|)2 valid,

σ2
1σ

2
2(1 + |ρ|)2 invalid (since |Dc| > |ΣX| cannot be).

This bifurcation point |Dc|∗ corresponds to a cache rate

R∗ =
1

2
log

|ΣX|
|Dc|∗ =

1

2
log

σ2
1σ

2
2(1− ρ2)

σ2
1σ

2
2(1− |ρ|)2 =

1

2
log

1 + |ρ|
1− |ρ| ,

and marks the transition from having no to one and then to infinitely many Dc that
have no correlation. We denote the actual distortion profile that achieves this rate D∗

(9) and find it by filling |Dc|∗ = σ2
1σ

2
2(1−|ρ|)2 into α2

min =
√

|Dc|σ2

1

σ2

2

and β2 = |Dc|
α2 .

The value R∗ = 1
2
log 1+|ρ|

1−|ρ|
also came forward in [7] as Wyner’s Common Information

for a pair of Gaussians.

3.2 Small Cache Rates for a Pair of Gaussians

For Rc smaller than the R∗ of Theorem 1, no Dc can close the Hadamard inequality,
but perhaps we can find another achievable lower bound. Here, we find this optimal
strategy for a pair of Gaussians, which shows a strong connection to Theorem 2. For
general dimensions, the problem remains open. One thing that is clear is the following:

Lemma 1. If Rc ≤ R∗, the Dc that minimizes (6) yields Dc � ΣX, but not D
c ≺ ΣX.

We will not fully prove this here, but imagine that D̄ is some candidate strategy
that yields D̄ ≺ ΣX. Since the ordering is not strict, we have room to rotate the matrix.
Determinants are rotation-invariant, hence the Rc required for this rotated distortion
profile is the same (3). The key insight is that rotation can always further minimize the
product of the main diagonal, e.g., by bringing the matrix closer to eigendecomposition.

The difference between Dc ≺ ΣX and Dc � ΣX is that the latter implies ∃v
such that vT (ΣX − D)v = 0; there exists a direction of which one learns nothing by



observing the cache. In other words, the cache encoder must have projected X onto
some subspace prior to coding. For a pair of Gaussians, a lower-dimensional coding
strategy simply means one codes a representation of vTX for any (normalized) vector
v in the cache, rather than X itself. The code in the cache can be represented as
vTX+W where W is a Gaussian noise and independent of X. Then the error is found
as Dc = [||X− E[X|vTX+W ]||2], which can be worked out completely using channel
models for lossy representations, e.g., [8, Chapter 10]. In short, any caching strategy
featuring a projection to a vector v leads to a Schur complement:

Dc(Rc) = ΣX − (1− e−2Rc)
1

vTΣxv
ΣXvv

TΣX. (11)

We specifically express this matrix as a function of Rc. Even the optimal choice of
a vector v could in principle be different for different Rc, but for a pair of Gaussians
we will prove that this is actually not the case. Note that (11) always satisfies both
conditions of Definition 1 by construction. The border case D∗ is also still a one-
dimensional coding operation. We derived D∗ algebraically, we can plug it into (11)
and solve for the vector v that could have led us to it. The particular vector associated
to D∗ turns out to be of more importance than simply the border case:

Theorem 3. If for a pair of Gaussians Rc ≤ 1
2
log 1+|ρ|

1−|ρ|
, then the caching strategy that

uniquely minimizes (6) requires one to code v∗TX with

v∗ =
1

√

tr (ΣX)

[

σ2

sign(ρ) · σ1

]

. (12)

Proof. By Lemma 1 we know it suffices to constrain the search space of Dc to those
we can describe by means of (11). Hence, we can plug (11) into (6) and minimize over
all v such that vTv = 1. To find the optimal v it suffices to look at argmin

∏

k=1,2D
c
kk:

arg min
v

:vT v=1

(

σ2
1 −

1− e−2Rc

vTΣxv

(

ΣXvv
TΣX

)

1,1

)

·
(

σ2
2 −

1− e−2Rc

vTΣxv

(

ΣXvv
TΣX

)

2,2

)

For a 2 × 2 matrix, one can work out the expression above by hand; it is not hard,
but for length constraints we choose to omit this from this paper. Its derivative with
respect to v has a clear root at (12), regardless of Rc. The sign(ρ) then ensures one
picks the minimum rather than a maximum.

As a closing comment, let us briefly explain where v∗ comes from and what it entails.
The vector can be found at the border case of Rc = R∗ by setting (11) equal to (9)
and solve for v. As for the intuition, every positive semidefinite matrix can be uniquely
represented by the ellipsoid EA = {v : vTA−1v = 1}. Its semiprincipal axes match the
eigenvectors of A and have lengths equal to

√
λi. In Figure 2 we plot both EΣX

and
ED∗ . Recall that D∗ is the covariance matrix with the largest possible determinant
that still satisfies Dc � ΣX without having any correlation. Since it is the border case,
EΣX

and ED∗ touch (that is the impact of having Dc � ΣX rather than Dc ≺ ΣX).
Even more so, the vector where these ellipses touch is the orthogonal complement to
our coding vector v∗; the cache provides information on all directions spanned by the
source, except the one orthogonal to the one we coded.

A second consequence is that, since one should use the same vector to code v∗TX
for all Rc ≤ R∗, all resulting ED(Rc) touch EΣX

at this same orthogonal complement.
In other words, EDc(Rc) is sandwiched between ED∗ and EΣX

. The result is that for a



v
∗

EΣX

ED∗

Figure 2: Ellipse of ΣX and D∗, together with the coding transform vector v∗ (dashed)
and its orthogonal complement 1/

√

tr (ΣX)[σ1, −sign(ρ)σ2]
T (dotted) that intersects the

points where both ellipses touch. The thinner ellipses in between are the optimal
Dc(Rc) for increasing Rc, coded with the same v∗, showing the ordering of (13).

sequence of cache rates 0 ≤ R1 ≤ R2 ≤ · · · ≤ Rℓ ≤ R∗, the caching strategies that
minimize (6) admit a semidefinite ordering:

ΣX � Dc(R1) � Dc(R2) � · · · � Dc(Rℓ) � D∗. (13)

Hence, as a conclusion that stands apart from the goal of this paper, the Gaussian
coding strategies that minimize the gap on the Hadamard Inequality for increasing
rates form a Markov chain and are because of this successively refinable.
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