
Chaos: Scale-out Graph Processing from Secondary Storage

∗ Amitabha Roy1 Laurent Bindschaedler2 Jasmina Malicevic2 Willy Zwaenepoel2

Intel1 EPFL2, Switzerland

firstname.lastname@{intel.com1, epfl.ch2}

Abstract

Chaos scales graph processing from secondary storage to

multiple machines in a cluster. Earlier systems that process

graphs from secondary storage are restricted to a single ma-

chine, and therefore limited by the bandwidth and capacity

of the storage system on a single machine. Chaos is limited

only by the aggregate bandwidth and capacity of all storage

devices in the entire cluster.

Chaos builds on the streaming partitions introduced by

X-Stream in order to achieve sequential access to storage,

but parallelizes the execution of streaming partitions. Chaos

is novel in three ways. First, Chaos partitions for sequential

storage access, rather than for locality and load balance, re-

sulting in much lower pre-processing times. Second, Chaos

distributes graph data uniformly randomly across the clus-

ter and does not attempt to achieve locality, based on the

observation that in a small cluster network bandwidth far

outstrips storage bandwidth. Third, Chaos uses work steal-

ing to allow multiple machines to work on a single partition,

thereby achieving load balance at runtime.

In terms of performance scaling, on 32 machines Chaos

takes on average only 1.61 times longer to process a graph 32

times larger than on a single machine. In terms of capacity

scaling, Chaos is capable of handling a graph with 1 trillion

edges representing 16 TB of input data, a new milestone for

graph processing capacity on a small commodity cluster.

∗ This work was done when Amitabha Roy was at EPFL.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3834-9/15/10...$15.
http://dx.doi.org/10.1145/2815400.2815408

1. Introduction

Processing large graphs is an application area that has at-

tracted significant interest in the research community [10,

13, 14, 16–18, 21, 25, 26, 28, 30–32, 34]. Triggered by

the availability of graph-structured data in domains ranging

from social networks to national security, researchers are ex-

ploring ways to mine useful information from such graphs.

A serious impediment to this effort is the fact that many

graph algorithms exhibit irregular access patterns [20]. As

a consequence, most graph processing systems require that

the graphs fit entirely in memory, necessitating either a su-

percomputer or a very large cluster [13, 14, 25, 26].

Systems such as GraphChi [18], GridGraph [34] and X-

Stream [31] have demonstrated that it is possible to pro-

cess graphs with edges in the order of billions on a single

machine, by relying on secondary storage. This approach

considerably reduces the entry barrier to processing large

graphs. Such problems no longer require the resources of

very large clusters or supercomputers. Unfortunately, the

amount of storage that can be attached to a single machine

is limited, while graphs of interest continue to grow [30].

Furthermore, the performance of a graph processing system

based on secondary storage attached to a single machine is

limited by its bandwidth to secondary storage [22].

In this paper we investigate how to scale out graph pro-

cessing systems based on secondary storage to multiple ma-

chines, with the dual goals of increasing the size of graphs

they can handle, to the order of a trillion edges, and im-

proving their performance, by accessing secondary storage

on different machines in parallel.

The common approach for scaling graph processing to mul-

tiple machines is to first statically partition the graph, and

then to place each partition on a separate machine, where the

graph computation for that partition takes place. Partitioning

aims to achieve load balance to maximize parallelism and lo-

cality to minimize network communication. Achieving high-

quality partitions that achieve these two goals can be time-

consuming, especially for out-of-core graphs. Optimal par-

titioning is NP-hard [12], and even approximate algorithms

may take considerable running time. Also, static partitioning

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148014848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


cannot cope with later changes to the graph structure or vari-

ations in access patterns over the course of the computation.

Chaos takes a fundamentally different approach to scaling

out graph processing on secondary storage. First, rather than

performing an elaborate partitioning step to achieve load

balance and locality, Chaos performs a very simple initial

partitioning to achieve sequential storage access. It does this

by using a variant of the streaming partitions introduced

by X-Stream [31]. Second, rather than locating the data

for each partition on a single machine, Chaos spreads all

graph data (vertices, edges and intermediate data, known

as updates) uniformly randomly over all secondary storage

devices. Data is stored in large enough chunks to maintain

sequential storage access. Third, since different streaming

partitions can have very different numbers of edges and

updates, and therefore require very different amounts of

work, Chaos allows more than one machine to work on the

same streaming partition, using a form of work stealing [8]

for balancing the load between machines.

These three components together make for an efficient im-

plementation, achieving sequentiality, I/O load balance and

computational load balance, while avoiding lengthy pre-

processing due to elaborate partitioning. It is important to

point out what Chaos does not do: it does not attempt to

achieve locality. A fundamental assumption underlying the

design of Chaos is that machine-to-machine network band-

width exceeds the bandwidth of a storage device and that

network switch bandwidth exceeds the aggregate bandwidth

of all storage devices in the cluster. Under this assump-

tion the network is never the bottleneck. Locality is then

no longer a primary concern, since data can be streamed

from a remote device at the same rate as from a local device.

This assumption holds true for clusters of modest size, in

which machines, even with state-of-the art SSDs, are con-

nected by a commodity high-speed network, which is the

environment targeted by Chaos. Recent work on datacenter

networks suggests that this assumption also holds on a larger

scale [15, 27, 29].

We evaluate Chaos on a cluster of 32 machines with ample

secondary storage and connected by a high-speed network.

We are able to scale up the problem size by a factor of

32, going from 1 to 32 machines, with on average only

a 1.61X increase in runtime. Similarly, for a given graph

size, we achieve speedups of 10 to 22 on 32 machines.

The aggregated storage also lets us handle a graph with a

trillion edges. This result represents a new milestone for

graph processing systems on small commodity clusters. In

terms of capacity it rivals those from the high performance

computing community [1] and very large organizations [2]

that place the graph on supercomputers or in main memory

on large clusters. Chaos therefore enables the processing of

very large graphs on rather modest hardware.

We also examine the conditions under which good scaling

occurs. We find that sufficient network bandwidth is critical,

as it underlies the assumption that locality has little effect.

Once sufficient network bandwidth is available, performance

improves more or less linearly with available storage band-

width. The number of cores per processor has little or no

effect, as long as enough cores are available to sustain high

network bandwidth.

The contributions of this paper are:

• We build the first efficient scale-out graph processing

system from secondary storage.

• Rather than expensive partitioning for locality and load

balance, we use a very cheap partitioning scheme to

achieve sequential access to secondary storage, leading

to a short pre-processing time.

• We do not aim for locality in storage access, and we

achieve I/O load balance by randomizing1 data location

and access.

• We allow multiple machines to work on the same par-

tition in order to achieve computational load balance

through randomized work stealing.

• We demonstrate that the system achieves its goals in

terms of capacity and performance on a cluster of 32

machines.

The outline of the rest of this paper is as follows. In Sec-

tion 2 we describe the GAS programming model used by

Chaos. Partitioning and pre-processing are covered in Sec-

tion 3. In Section 4 we give an overview of the Chaos de-

sign, followed by a detailed discussion of the computation

engine in Section 5, the storage engine in Section 6, and

some implementation details in Section 7. We describe the

environment used for the evaluation in Section 8, present

scaling results for Chaos in Section 9, and explore the im-

pact of some of the design decisions in Section 10. Finally,

we present related work in Section 11, before concluding in

Section 12.

2. Programming Model

Chaos adopts an edge-centric and somewhat simplified GAS

(Gather-Apply-Scatter) model [10, 13, 31].

The state of the computation is stored in the value field

of each vertex. The computation takes the form of a loop,

each iteration consisting of a scatter, gather and apply phase.

During the scatter phase, updates are sent over edges. During

the gather phase, updates arriving at a vertex are collected

in that vertex’s accumulator. During the apply phase these

accumulators are applied to produce a new vertex value. The

1 The extensive use of randomization instead of any order is the reason for

naming the system Chaos



while not done

// Scatter

for all e in Edges

u = new update

u.dst = e.dst

u.value = Scatter(e.src.value)

// Gather

for all u in Updates

u.dst.accum = Gather(u.dst.accum, u.value)

// Apply

for all v in Vertices

Apply(v.value, v.accum)

Figure 1: GAS Sequential Computation Model

// Scatter

function Scatter(value val)

return val.rank / val.degree

// Gather

function Gather(accum a, value val)

return a + val

// Apply

function Apply(value val, accum a)

val.rank = 0.15 + 0.85 * a

Figure 2: Pagerank using Chaos

precise nature of the computation in each of these phases is

specified by three user-defined functions, Gather, Apply and

Scatter, which are called by the Chaos runtime as necessary.

Figure 1 provides pseudo-code for the overall computation.

During the scatter phase, for each edge, the Scatter func-

tion is called, taking as argument the vertex value of the

source vertex of the edge, and returning the value of an up-

date sent to the destination vertex of the edge. During the

gather phase, for each update, the Gather function is called,

updating the accumulator value of the destination vertex of

the update using the value supplied with the update. Finally,

during the apply phase, for each vertex, the Apply function is

called, applying the value of the accumulator to compute the

new vertex value. Figure 2 shows, for example, how Pager-

ank is implemented in the GAS model.

When executing on multiple machines, vertices may be

replicated to achieve parallelism. For each replicated ver-

tex there is a master. Edges or updates are never replicated.

During the scatter phase parallelism is achieved by process-

ing edges (and producing updates) on different machines.

The update phase is distributed by each replica of a vertex

gathering a subset of the updates for that vertex in its local

accumulator. The apply phase then consists of applying all

these accumulators to the vertex value (see Figure 3).

The edge-centric nature of the programming model is evi-

denced by the iteration over edges and updates in the scatter

and gather phases, unlike the vertex-centric model [21], in

which the scatter and gather loops iterate over vertices. This

model is inherited from X-Stream, and has been demon-

strated to provide superior performance for graph process-

ing from secondary storage [31]. The GAS model was intro-

duced by PowerGraph, and naturally expresses distributed

graph processing, in which vertices may be replicated [13].

Finally, Chaos follows the simplifications of the GAS model

introduced by PowerLyra [10], scattering updates only over

outgoing edges and gathering updates only for incoming

edges.

As in other uses of the GAS model, Chaos expects the fi-

nal result of multiple applications of any of the user-supplied

functions Scatter, Gather and Apply to be independent of the

order in which they are applied in the scatter, gather and ap-

// Apply

for all v in Vertices

for all replicas v’ of v

Apply(v.value, v’.accum)

Figure 3: Apply in Distributed Computation Model

ply loops respectively. Chaos takes advantage of this order-

independence to achieve an efficient solution. In practice, all

our algorithms satisfy this requirement, and so we do not

find it to be a limitation.

3. Streaming Partitions

Chaos uses a variation of X-Stream’s [31] streaming parti-

tions to achieve efficient sequential secondary storage ac-

cess. A streaming partition of a graph consists of a set of ver-

tices that fits in memory, all of their outgoing edges and all

of their incoming updates. Executing the scatter and gather

phases one streaming partition at a time allows sequential

access to the edges and updates, while keeping all (random)

accesses to the vertices in memory.

In X-Stream the size of the vertex set of a streaming partition

is – allowing for various auxiliary data structures – equal to

the size of main memory. This choice optimizes sequential

access to edges and updates, while keeping all accesses

to the vertex set in memory. In a distributed setting other

considerations play a role into the proper choice for the size

of the vertex set. Main memory size remains an upper bound

in order to guarantee in-memory access to the vertex set, and

large sizes facilitate sequential access to edges and updates,

but smaller sizes are desirable, as they lead to easier load

balancing.

Therefore, we choose the number of partitions to be the

smallest multiple of the number of machines such that the

vertex set of each partition fits into memory. We simply par-

tition the vertex set in ranges of consecutive vertex identi-

fiers. Edges are partitioned such that an edge belongs to the

partition of its source vertex.

This partitioning is the only pre-processing done in Chaos. It

requires one pass over the edge set, and a negligible amount

of computation per edge. Furthermore, it can easily be par-

allelized by splitting the input edge list evenly across ma-



chines. This low-cost pre-processing stands in stark contrast

to the elaborate partitioning algorithms that are typically

used in distributed graph processing systems. These complex

partitioning strategies aim for static load balance and local-

ity [13]. Chaos dispenses with locality entirely, and achieves

load balance at runtime.

4. Design overview

Chaos consists of a computation sub-system and a storage

sub-system.

The storage sub-system consists of a storage engine on each

machine. It supplies vertices, edges and updates of differ-

ent partitions to the computation sub-system. The vertices,

edges and updates of a partition are uniformly randomly

spread over the different storage engines.

The computation sub-system consists of a number of com-

putation engines, one per machine. The computation engines

collectively implement the GAS model. Unlike the concep-

tual model described in Section 2, the actual implementation

of the model in Chaos has only two phases per iteration, a

scatter and a gather phase. The apply phase is incorporated

into the gather phase, for reasons of efficiency. There is a

barrier after each scatter phase and after each gather phase.

The Apply function is executed as needed during the gather

phase, and does not imply any global synchronization.

The Chaos design allows multiple computation engines to

work on a single partition at the same time, in order to

achieve computational load balance. When this is the case, it

is essential that each engine read a disjoint set of edges (dur-

ing the scatter phase) or updates (during the gather phase).

This responsibility rests with the storage sub-system. This

division of labor allows multiple computation engines to

work on the same partition without synchronization between

them.

The protocol between the computation and storage engines

is designed such that all storage devices are kept busy all the

time, thereby achieving maximum utilization of the bottle-

neck resource, namely the bandwidth of the storage devices.

5. Computation sub-system

The number of streaming partitions is a multiple k of the

number of computation engines. Therefore, each computa-

tion engine is initially assigned k partitions. This engine is

the master for all vertices of those partitions, or, for short,

the master of those partitions.

We start by describing the computation in the absence of

work stealing. This aspect of Chaos is similar to X-Stream,

but is repeated here for completeness. Later, we show how

// Scatter for partition P 1

function exec_scatter(P) 2

for each unprocessed e in Edges(P) 3

u = new update 4

u.dst = e.dst 5

u.value = Scatter(e.src.value) 6

add u to Updates(partition(u.dst)) 7

8

// Gather for partition P 9

function exec_gather(P) 10

for each unprocessed u in Updates(P) 11

u.dst.accum = Gather(u.dst.accum, u.value) 12

13

/////// Chaos compute engine 14

15

// Pre-processing 16

for each input edge e 17

add e to Edges(partition(e.src)) 18

19

// Main loop 20

while not done 21

22

// Scatter phase 23

for each of my partitions P 24

load Vertices(P) 25

exec_scatter(P) 26

27

// When done with my partitions, steal from others 28

for every partition P_Stolen not belonging to me 29

if need_help(Master(P_Stolen)) 30

load Vertices(P_Stolen) 31

exec_scatter(P_Stolen) 32

global_barrier() 33

34

// Gather Phase 35

for each of my partitions P 36

load Vertices(P) 37

exec_gather(P) 38

39

// Apply Phase 40

for all stealers s 41

accumulators = get_accums(s) 42

for all v in Vertices(P) 43

Apply(v.value, accumulators(v)) 44

delete Updates(P) 45

46

// When done with my partitions, steal from others 47

for every partition P_Stolen not belonging to me 48

if need_help(Master(P_Stolen)) 49

load Vertices(P_Stolen) 50

exec_gather(P_Stolen) 51

wait for get_accums(P_Stolen) 52

global_barrier() 53

Figure 4: Chaos Computation Engine

Chaos implements work stealing between computation en-

gines. The complete pseudo-code description of the compu-

tation engine (including stealing) is shown in Figure 4.

5.1 Scatter phase

Each computation engine works on its assigned partitions,

one at a time, moving from one of its assigned partition to

the next (lines 23–33) without any global synchronization

between machines. The vertex set of the partition is read

into memory, and then the edge set is streamed into a large

main memory buffer. As edges are processed, updates may

be produced. These updates are binned according to the

partition of their target vertex, and buffered in memory.

When a buffer is full, it is written to storage. Multiple buffers



are used, both for reading edges and writing updates, in order

to overlap computation and I/O.

5.2 The gather phase

Each computation engine works on its assigned partitions,

one at a time, moving from one of its assigned partition to

the next (lines 35–45) without any global synchronization

between machines. The vertex set of the partition is read

into memory, and then the update set is streamed into a

large main memory buffer. As updates are processed, the

accumulator of the destination vertex is updated. Multiple

buffers are used for reading updates in order to overlap

computation and I/O.

5.3 Work stealing

The number of edges or updates to be processed may differ

greatly between partitions, and therefore between computa-

tion engines. Chaos uses work stealing to even out the load,

as described next.

When computation engine i completes the work for its as-

signed partitions (lines 23–26 for scatter and lines 35–38 for

gather), it goes through every partition p (for which it is not

the master) and sends a proposal to help out with p to its

master j (line 30 for scatter and line 49 for gather). Depend-

ing on how far along j is with that partition, it accepts or

rejects the proposal, and sends a response to i accordingly.

In the case of a negative answer, engine i continues to iterate

through the other partitions, each time proposing to help. It

does so until it receives a positive response or until it has de-

termined that no help is needed for any of the partitions. In

the latter case its work for the current scatter or gather phase

is finished, and it waits at a barrier (line 33 for scatter and

line 53 for gather).

When engine i receives a positive response to help out with

partition p, it reads the vertex set of that partition from

storage into its memory, and starts working on it. When two

or more engines work on the same partition, it is essential

that they work on a disjoint set of edges (during scatter) or

updates (during gather). Chaos puts this responsibility with

the storage system: it makes sure that in a particular iteration

an edge or an update is processed only once, independent

of how many computation engines work on the partition to

which that edge or update belongs. This is easy to do in

the storage system, and avoids the need for synchronization

between the computation engines involved in stealing.

For stealing during scatter, a computation engine proceeds

exactly as it does for its own partitions. Using the user-

supplied Scatter function, the stealer produces updates

into in-memory buffers and streams them to storage when

the buffers become full.

Stealing during gather is more involved. As before, a com-

putation engine reads updates from storage, and uses the

user-supplied Gather function to update the accumulator

of the destination vertex of the update. There are now, how-

ever, multiple instances of the accumulator for this vertex,

and their values need to be combined before completing the

gather phase. To this end the master of the partition keeps

track of which other computation engines have stolen work

from it for this partition. When the master completes its

part of the gather for this partition, it sends a request to all

those computation engines, and waits for an answer. When

a stealer completes its part of the gather, it waits to receive

a request for its accumulator from the master, and eventu-

ally sends it to the master (line 52). The master then uses

the user-supplied Apply function to compute the new ver-

tex values from these different accumulators, and writes the

vertex set back to storage.

The order in which the master and the stealers complete

their work is unpredictable. When a stealer completes its

work before the master, it waits until the master requests

its accumulator values before it does anything else (line

52). When the master completes its work before one or

more of the stealers, it waits until those stealers return their

accumulator (line 42).

On the plus side, this approach guarantees that all accumu-

lators are in memory at the time the master performs the ap-

ply. On the minus side, there may be some amount of time

during which a computation engine remains idle. An alter-

native would have been for an engine that has completed

its work on a partition to write its accumulators to storage,

from where the master could later retrieve them. This strat-

egy would allow an engine to immediately start work on an-

other partition. The idle time in our approach is, however,

very short, because all computation engines that work on

the same partition read from the same set of updates, and

therefore all finish within a very short time of one another.

We therefore prefer this simple and efficient in-memory ap-

proach over more complicated ones, such as writing the ac-

cumulators to storage, or interrupting the master to incorpo-

rate the accumulators from stealers.

5.4 To steal or not to steal

Stealing is helpful if the cost, the time for the stealer to read

in the vertex set, is smaller than the benefit, the reduction in

processing time for the edges or updates still to be processed

at the time the stealer joins in the work. Since Chaos is I/O-

bound, this decrease in processing time can be estimated by

the decrease in I/O time caused by the stealer.

This estimate is made by considering the following quanti-

ties: B is the bandwidth to storage seen by each computation

engine, D is the amount of edge or update data remaining

to be read for processing the partition, H is the number of



computation engines currently working on the partition (in-

cluding the master), and V is the size of the vertex state of

the partition.

If the master declines the stealing proposal, the remaining

time to process this partition is D
BH

. If the master accepts

the proposal, then V
B

time is required to read the vertex set

of size V . Since we assume that bandwidth is limited by

the storage engines and not by the network, an additional

helper increases the bandwidth from BH to B(H + 1), and

decreases the remaining processing time from D
BH

to D
B(H+1) .

The master therefore accepts the proposal if and only if:

V

B
+

D

B(H + 1)
<

D

BH
(1)

=⇒V +
D

(H + 1)
<

D

H
(2)

The master knows the size of the vertex set V , and keeps

track of the number of stealers H. It estimates the value of

D by multiplying the amount of edge or update data still to

be processed on the local storage engine by the number of

machines. Since the data is evenly spread across storage en-

gines, this estimate is accurate and makes the decision pro-

cess local to the master. This stealing criterion is incorpo-

rated in need help() on lines 30 and 49 of the pseudo-

code in Figure 4.

6. Storage sub-system

For an out-of-core graph processing system such as Chaos,

computation is only one half of the system. The other half

consists of the storage sub-system that supplies the I/O band-

width necessary to move graph data between storage and

main memory.

6.1 Stored data structures and their access patterns

For each partition, Chaos records three data structures on

storage: the vertex set, the edge set and the update set. The

accumulators are temporary structures, and are never written

to storage.

The access patterns of the three data structures are quite dif-

ferent. Edge sets are created during pre-processing and are

read during scatter.2 Update sets are created and written to

storage during scatter, and read during gather. After the end

of a gather phase, they are deleted. Vertex sets are initial-

ized during pre-processing, and always read in their entirety,

both during scatter and gather. Read and write operations to

edges and updates may be performed by the master or by

2 In an extended version of the model, edges may also be rewritten during

the computation.

any stealers. In contrast, read operations to the vertex state

may be performed by the master or any stealers, but only

the master updates the vertex values during apply and writes

them back to storage.

6.2 Chunks

One of the key design decisions in Chaos is to spread all data

structures across the storage engines in a random uniform

manner, without worrying about locality.

All data structures are maintained and accessed in units

called chunks. The size of a chunk is chosen large enough so

that access to storage appears sequential, but small enough

so that they can serve as units of distribution to achieve

random uniform distribution across storage engines. Chunks

are also the “unit of stealing“, the smallest amount of work

that can be stolen. Therefore, to achieve good load balance,

they need to be relatively small.

A storage engine always serves a request for a chunk in its

entirety before serving the next request, in order to maintain

sequential access to the chunk, despite concurrent requests

to the storage engine.

6.3 Edge and update sets

Edges and updates are always stored and retrieved one chunk

at a time.

Edges are stored during pre-processing, and updates during

the scatter phase, but Chaos uses the same mechanism to

choose a storage engine on which to store a chunk. It simply

picks a random number uniformly distributed between 1 and

the number of storage engines, and stores the chunk there.

To retrieve a chunk of edges or updates, a computation

engine similarly picks a random number between 1 and the

number of machines, and sends the request to that storage

engine. In its request it specifies a partition identifier, but it

does not specify a particular chunk.

When a storage engine receives a request for a chunk for a

given partition, it checks if it still has unprocessed chunks for

this partition, and, if so, it is free to return any unprocessed

chunk. This approach is in keeping with the observation that

the order of edges or updates does not matter, and therefore

it does not matter in which order chunks of edges or updates

are processed. For both edges and updates, it is essential,

however, that they are read only once during an iteration. To

this end, a storage engine keeps track of which chunks have

already been consumed during the current iteration.

If all chunks for this partition on this storage engine have

already been processed, the storage engine indicates so in

the reply to the computation engine. A computation engine

knows that the input for the current streaming partition is

empty when all storage engines fail to supply a chunk.



6.4 Vertex sets

Vertex sets are always accessed in their entirety, but they are

also stored as chunks. For vertices, the chunks are mapped to

storage engines using the equivalent of hashing on the parti-

tion identifier and the chunk number. During pre-processing

the chunks of the vertex set of a partition are stored at stor-

age engines in this manner. During the execution of the main

computation loop the computation engines wishing to read

or write the vertex set use the same approach to find the stor-

age engines storing these chunks, and request the next chunk

from this storage engine.

6.5 Keeping all storage engines busy

As described, a computation engine only issues one request

at a time to the storage system. Although randomization,

on average, spreads such requests evenly across storage en-

gines, the lack of coordination can cause significant inef-

ficiencies due to some storage engines becoming instanta-

neously idle. With an equal number of computation and stor-

age engines, and with storage and not computation being

the bottleneck, there are always as many requests as there

are storage engines. Without coordination between compu-

tation engines, several of them may address their request to

the same storage engine, leaving other storage engines idle.

To keep all storage engines busy with high probability, each

computation engine keeps, at all times, multiple requests to

different storage engines outstanding. The number of such

outstanding requests, called the batch factor k, is chosen to

be the smallest number that with high probability keeps all

storage engines busy all the time. The proper batch factor is

derived as follows.

If a computation engine has k requests outstanding, then only

some fraction are being processed by the storage sub-system.

The other requests are in transit. To ensure there are k out-

standing requests at the storage engines, the computation en-

gines use a larger request window φk. This amplification fac-

tor φ can easily be computed by repeated application of Lit-

tle’s law [19]:

k = λ Rstorage

φk = λ (Rstorage +Rnetwork)

where λ is the throughput of the storage engine in terms of

requests per unit time, Rstorage is the latency for the storage

engine to service the request and Rnetwork is the latency of

a round trip on the network. Solving we have the required

amplification φ :

φ = 1+
Rnetwork

Rstorage

(3)

With this choice of φ , we end up with k outstanding requests

from each of m computation engines distributed at random

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 5  10  15  20  25  30

U
ti
liz

a
ti
o

n

Number of computation engines

k=1
k=2

k=3
k=5

Figure 5: Theoretical utilization for different number of

machines as a function of the batch factor k

across the m storage engines. We can then derive the utiliza-

tion of a particular storage engine as follows. The probability

that a storage engine is un-utilized is equal to the probability

that no computation engine picks it for any of its k requests:
(

Cm−1
k

Cm
k

)m

= (1−
k

m
)m

The utilization of the storage engine is therefore the proba-

bility that at least one computation engine picks it, a function

of the number of machines m and the batch-factor k:

ρ(m,k) = 1− (1−
k

m
)m (4)

Figure 5 shows the utilization as a function of the number

of machines and for various values of k. For a fixed value

of k, the utilization reduces with an increasing number of

machines due to a greater probability of machines being left

idle but is asymptotic to a lower bound. The lower bound is

simply:

lim
m→∞

ρ(m,k) = 1−
1

ek
(5)

It therefore suffices to pick a value for k large enough to

approach 100% utilization regardless of the number of ma-

chines. For example, using k = 5 means that the utilization

cannot drop below 99.3%.

6.6 Fault tolerance

The fact that all graph computation state is stored in the

vertex values, combined with the synchronous nature of the

computation, allows Chaos to tolerate transient machine fail-

ures in a simple and efficient manner. At every barrier at the

end of a scatter or gather phase, the vertex values are check-

pointed by means of a 2-phase protocol [11] that makes sure

that the new values are completely stored before the old val-

ues are removed.



Comput.

Engine

Storage

Engine

Network (0MQ threads)

NIC

Chaos (process)

Local storage

Full bisection 

bandwidth Network

Chaos Chaos

...

Figure 6: Architecture of Chaos.

In its current implementation Chaos does not support recov-

ery from storage failures, although such support could easily

be added by replicating the vertex sets.

7. Implementation

Chaos is written in C++ and amounts to approximately

15’000 lines of code. Figure 6 shows the high-level archi-

tecture and typical deployment of Chaos.

We run the computation engine and the storage engine on

each machine in separate threads within the same process.

We use /0MQ [3] on top of TCP sockets for message-oriented

communication between computation and storage engines,

assuming a full bisection bandwidth network between the

machines. We tune the number of /0MQ threads for optimal

performance.

The storage engines provide a simple interface to the local

ext4 [23] file system. Unlike X-Stream, which uses direct

I/O, Chaos uses pagecache-mediated access to the storage

devices. On each machine, for each streaming partition, the

vertex, edge and update set correspond to a separate file. A

read or write causes the file pointer to be advanced. The file

pointer is reset to the beginning of the file at the end of each

iteration. This provides a very simple implementation of the

requirement that edges or updates are read only once during

an iteration. The chunk corresponds to a 4MB block in the

file, leading to good sequentiality and performance.

8. Experimental environment and

benchmarks

We evaluate Chaos on a rack with 32 16-core machines, each

equipped with 32 GB of main memory, a 480GB SSD and 2

6TB magnetic disks (arranged in RAID 0). Unless otherwise

noted, the experiments use the SSDs as storage devices. The

machines are connected through 40 GigE links to a top-of-

rack switch. The SSDs and disks provide bandwidth in the

Algorithm X-Stream Chaos

Breadth-First Search (BFS) 497s 594s

Weakly Connected Comp. (WCC) 729s 995s

Min. Cost Spanning Trees (MCST) 1239s 2129s

Maximal Independent Sets (MIS) 983s 944s

Single Source Shortest Paths (SSSP) 2688s 3243s

Pagerank (PR) 884s 1358s

Strongly Connected Comp. (SCC) 1689s 1962s

Conductance (Cond) 123s 273s

Sparse Matrix Vector Mult. (SpMV) 206s 508s

Belief Propagation (BP) 601s 610s

Table 1: Algorithms, single-machine runtime for X-Stream

and Chaos, SSD. The first five algorithms require an undirected

graph while the remaining ones run on a directed graph.

range of 400MB/s and 200MB/s, respectively, well within

the capacity of the 40 GigE interface on the machine.

We use the same set of algorithms as used by X-Stream [31]

to demonstrate that all the single machine algorithms used

in the evaluation of X-Stream can be scaled to our cluster.

Table 1 presents the complete set of algorithms, as well as

the X-Stream runtime and the single machine Chaos run-

time for an RMAT-27 graph. As can be seen, the single-

machine runtimes are similar but not exactly the same. In

principle, Chaos running on a single machine is equivalent

to X-Stream. The two systems have, however, different code

bases and, in places, different implementation strategies. In

particular, Chaos uses a client-server model for I/O, to facil-

itate distribution, and pagecache-mediated storage access, to

simplify I/O for variable-sized objects.

We use a combination of synthetic RMAT graphs [9] and the

real-world Data Commons dataset [4]. RMAT graphs can be

scaled in size easily: a scale-n RMAT graph has 2n vertices

and 2n+4 edges. In other words, the size of the vertex and

edge sets doubles with each increment in the scale factor. We

use the newer 2014 version of the Data Commons graph that

encompasses 1.7 billion webpages and 64 billion hyperlinks

between them.

Input to the computation consists of an unsorted edge list,

with each edge represented by its source and target vertex

and an optional weight. If necessary, we convert directed

to undirected graphs by adding a reverse edge. Graphs with

fewer than 232 vertices are represented in compact format,

with 4 bytes for each vertex and for the weight, if any.

Graphs with more vertices are represented in non-compact

format, using 8 bytes instead. A scale-32 graph with weights

on the edges thus results in 768 GB of input data. The input

of the unweighted Data Commons graph is 1 TB.

All results report the wall-clock time to go from the unsorted

edge list, randomly distributed over all storage devices, to

the final vertex state, recorded on storage. All results there-

fore include pre-processing time.



 0

 0.5

 1

 1.5

 2

 2.5

BFS
W

C
C
M

C
ST

M
IS

SSSP

SC
C

PR C
ond

SpM
V

BP

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Algorithms

m=1
m=2

m=4
m=8

m=16
m=32

Figure 7: Runtime normalized to 1-machine runtime.

Weak scaling, RMAT-27 to RMAT-32, SSD.

9. Scaling results

9.1 Weak scaling

In the weak scaling experiment we run RMAT-27 on one

machine, and then double the size for each doubling of

the number of machines, ending up with RMAT-32 on 32

machines.

Figure 7 shows the runtime results for these experiments,

normalized to the runtime of a single machine. In this ex-

periment, Chaos takes on average 1.61X the time taken by a

single machine to solve a problem 32X the size on a single

machine. The fastest algorithm (Cond) takes 0.97X, while

the slowest (MCST) takes 2.29X.

The differences in scaling between algorithms result from a

combination of characteristics of the algorithms, including

the fact that the algorithm itself may not scale perfectly, the

degree of load imbalance in the absence of stealing, and

the size of the vertex sets. One interesting special case is

Conductance, where the scaling factor is slightly smaller

than 1. This somewhat surprising behavior is the result of

the fact that with a larger number of machines the updates fit

in the buffer cache and do not require storage accesses.

9.2 Strong scaling

In this experiment we run all algorithms on 1 to 32 machines

on the RMAT-27 graph. Figure 8 shows the runtime, again

normalized to the runtime on one machine. For this RMAT

graph, 32 machines provide on average a speedup of about

13X over a single machine. The fastest algorithm (Cond)

runs 23X faster and the slowest (MCST) 8X. The results are

somewhat inferior to the weak scaling results, because of the

small size of the graph.

To illustrate this, we perform a strong scaling experiment

on the much larger Data Commons graph. This graph does

 0

 0.5

 1

BFS
W

C
C
M

C
ST

M
IS

SSSP

SC
C

PR C
ond

SpM
V

BP

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Algorithms

m=1
m=2

m=4
m=8

m=16
m=32

Figure 8: Runtime normalized to 1-machine runtime.

Strong scaling, RMAT-27, SSD .

 0

 0.5

 1

BFS
PR

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Algorithms

m=1
m=2

m=4
m=8

m=16
m=32

Figure 9: Runtime normalized to 1-machine runtime.

Strong scaling, Data Commons, RAID0-HDD.

not fit on a single SSD, so we use HDDs. Furthermore,

given the long running times, we only present results for

two representative algorithms, BFS and Pagerank. Figure 9

shows the runtimes on 1 to 32 machines, normalized to the

single-machine runtime. Using 32 machines Chaos provides

a speedup of 20 for BFS and 18.5 for Pagerank.

9.3 Capacity scaling

We use RMAT-36 with 250 billion vertices and 1 trillion

edges to demonstrate that we can scale to very large graphs.

This graph requires 16TB of input data, stored on HDDs.

Chaos finds a breadth-first order of the vertices of the graph

in a little over 9 hours. Similarly, Chaos runs 5 iterations of

PR in 19 hours. These experiments require I/O in the range

of 214 TB for BFS and 395 TB for PR, and the Chaos store is

able to provide an aggregate of 7 GB/s from the 64 magnetic

disks running in orchestration.



 1

 3

1 2 4 8 16 32

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Machines

BFS p=16
BFS p=12
BFS p=8

PR p=16
PR p=12
PR p=8

Figure 10: Runtime for Chaos with different number

of CPU cores, normalized to 1-machine runtime with

cores=16.

 1

 3

1 2 4 8 16 32

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Machines

BFS SSD
BFS HDD

PR SSD
PR HDD

Figure 11: Runtime for Chaos with SSD and HDD, nor-

malized to 1-machine runtime with SSD.

9.4 Scaling limitations

We evaluate the limitations to scaling Chaos with respect to

the specific processor, storage bandwidth, and network links

available.

Figure 10 presents the results of running BFS and PR as we

vary the number of CPU cores available to Chaos. As can

be seen, the system performs adequately even with half the

CPU cores available. It is nevertheless worth pointing out

that Chaos requires a minimum number of cores to maintain

good network throughput.

Figure 11 compares the performance of BFS and PR when

running from SSDs and HDDs. The HDD bandwidth is

2X less than the SSD bandwidth. Chaos scales as expected

regardless of the bandwidth, but the application takes time

inversely proportional to the available bandwidth.

Figure 12 looks into the performance impact of a slower net-

work by using a 1GigE interface to connect all machines in-

 1

 3

 5

 7

 9

1 2 4 8 16 32

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Machines

BFS 40G
BFS 1G

PR 40G
PR 1G

Figure 12: Runtime for Chaos with 1GigE and 40GigE,

normalized to 1-machine runtime.

 0

 1

N
o checkpoint

C
heckpoint

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Machines

PR
BFS

Figure 13: Chaos vs. Chaos with checkpointing enabled

(32 machines, RMAT-35, HDD, normalized to Chaos run-

time).

stead of the faster 40GigE. The throughput achieved by the

1GigE interface is approximately 1/4th of the disk band-

width. In other words, the network is the performance bot-

tleneck. We conclude from these results that Chaos does not

scale as well in such a situation, highlighting the need for

network links which are faster (or at least as fast) as the stor-

age bandwidth per machine.

9.5 Checkpointing

For large graph analytics problems, Chaos provides the abil-

ity to checkpoint state. Figure 13 shows the runtime over-

head for checkpoints on a scale 36 graph for BFS and PR.

As can be seen, the overhead is under 6% even though the

executions write hundreds of terabytes of data to the Chaos

store.



 1

 2

 4

 8

 16

 32

 64

 128

1 2 4 8 16 32

N
o
rm

a
liz

e
d
 A

g
g
r.

 B
a
n
d
w

id
th

Machines

BFS
WCC
MCST
MIS

SSSP
SCC
PR
Cond.

SpMV
BP
max

Figure 14: Aggregate bandwidth normalized to 1-machine

bandwidth and maximum theoretical aggregate bandwidth.

10. Evaluation of design decisions

Chaos is based on three synergistic principles: no attempt

to achieve locality, dynamic instead of static load balancing,

and simple partitioning. In this section we evaluate the ef-

fect of these design decisions. All discussion in this section

is based on the weak scaling experiments. The effect of the

design decisions for other experiments is similar and not re-

peated here. For some experiments we only show the results

of BFS and Pagerank as representative algorithms.

10.1 No locality

Instead of seeking locality, Chaos spreads all graph data

uniformly randomly across all storage devices and uses a

randomized procedure to choose from which machine to

read or to which machine to write data.

Figure 14 shows the aggregate bandwidth obtained as seen

by all computation engines during the weak scaling experi-

ment. The figure also shows the maximum bandwidth of the

storage devices, measured by fio [5].

Two conclusions can be drawn from these results. First, the

aggregate bandwidth achieved by Chaos scales linearly with

the number of machines. Second, the bandwidth achieved by

Chaos is within 3 percent of the available storage bandwidth,

the bottleneck resource in the system.

We also evaluate a couple of more detailed design choices in

terms of storage access, namely the randomized selection of

storage device and the batching designed to keep all storage

devices busy.

Figure 15 compares the runtime for Pagerank on 1 to 32

machines for Chaos to a design where a centralized entity

selects the storage device for reading and writing a chunk. In

short, all read and writes go through the centralized entity,

which maintains a directory of where each chunk of each

vertex, edge or update set is located. As can be seen, the

 1

 3

 5

1 2 4 8 16 32

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Machines

BFS
BFS Centralized
PR
PR Centralized

Figure 15: Chaos vs. centralized chunk directory (weak

scaling, RMAT-27 to -32, SSD).

 0

 0.5

 1

 1.5

 2

BFS
W

C
C
M

C
ST

M
IS

SSSP

SC
C

PR C
ond

SpM
V

BP

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Algorithms

φk=1
φk=2
φk=3

φk=5
φk=10
φk=16

φk=32

Figure 16: Runtime as a function of batch factor (32 ma-

chines, RMAT-32, SSD) normalized to Chaos (φk = 10).

running time with Chaos increases more slowly as a function

of the number of machines than with the centralized entity,

which increasingly becomes a bottleneck.

Next we evaluate the efficacy of batching in our disk selec-

tion strategy. Figure 16 shows the effect of increasing the

window size of outstanding requests on performance. We

measured the latency to the SSD to be approximately equal

to that on the 40 GigE network. This means φ = 2 (Equa-

tion 3). The graph shows a clear sweet spot at φk= 10, which

corresponds to k = 5. This means an utilization of 99.56%

with 32 machines (Equation 4), indicating that the devices

are near saturation. The experiment therefore agrees with

theory. Further, Equation 5 tells us that even if we increase

the number of machines in the deployment, this choice of

settings means that we cannot drop below 99.3% given a

fixed latency on the network. The increased runtime past this

choice of settings can be attributed to increased queuing de-

lays and incast congestion.



 0

 0.2

 0.4

 0.6

 0.8

 1

BFS
W

C
C
M

C
ST

M
IS

SSSP

SC
C

PR C
ond

SpM
V

BP

F
ra

c
ti
o
n
 o

f 
R

u
n
ti
m

e

Benchmark

gp,master==me
gp,master!=me
copy

merge
merge wait
barrier

Figure 17: Breakdown of runtime (32 machines, RMAT-

32, SSD).

10.2 Dynamic load balancing

Chaos balances the load between different computation en-

gines by randomized work stealing.

Figure 17 shows a breakdown of the runtime of the weak

scaling experiments at 32 machines in three categories:

graph processing time, idle time, and time spent copying

and merging. The first category represents useful work, bro-

ken down further into processing time for the partitions for

which the machine is the master and processing time for

partitions initially assigned to other machines. The idle time

reflects load imbalance, and the copying and merging time

represents the overhead of achieving load balance.

The results are somewhat different for different algorithms.

The processing time ranges from 74 to 87 percent with

an average of 83 percent. The idle time is very low for

all algorithms, below 4 percent. The cost of copying and

merging varies considerably, from 0 to 22 percent with an

average of 14 percent. Most of the idle time occurs at barriers

between phases. Overall, we conclude from Figure 17 that

load balancing is very good, but comes at a certain cost for

some of the algorithms.

Next, we evaluate the quality of the decisions made by the

stealing criterion we describe in Section 5.3. To do this, we

introduce a factor α in Equation 2 as follows:

V

B
+

D

B(H + 1)
< α

D

BH

Varying the factor α allows us to explore a range of strate-

gies.

• No stealing: α = 0

• Less aggressive stealing: α = 0.8

• Chaos default: α = 1

 0

 1

 2

 3

BFS α=0

BFS α=0.8

BFS α=1.0

BFS α=1.2

BFS α=∞

PR
 α=0

PR
 α=0.8

PR
 α=1.0

PR
 α=1.2

PR
 α=∞

F
ra

c
ti
o
n
 o

f 
R

u
n
ti
m

e

Benchmark

gp,master==me
gp,master!=me
copy

merge
merge wait
barrier

Figure 18: Breakdown of runtime with work-stealing bias.

32 machines, RMAT-32, normalized to α = 1.

• More aggressive stealing: α = 1.2

• Always steal: α = ∞

Figure 18 shows the running times for BFS and Pagerank.

The results clearly show that Chaos (with α=1) obtains the

best performance - providing support to the reasoning of

Section 5.4.

As additional evidence for the need for dynamic load bal-

ancing, we compare the performance of Chaos to that of Gi-

raph [6], an open-source implementation of Pregel, recently

augmented with support for out-of-core graphs. Giraph uses

a random partitioning of the vertices to distribute the graph

across machines, without any attempt to perform any dy-

namic load balancing (similar to the experiment reported in

Figure 18, with α equal to zero).

Out-of-core Giraph is an order of magnitude slower than

Chaos in runtime, apparently largely due to engineering is-

sues (in particular, JVM overheads in Giraph). To elimi-

nate these differences and to focus on scalability, Figure 19

shows the runtime of both Chaos and Giraph on Pagerank

on RMAT-27, normalized to the single-machine runtime for

each system. The results clearly confirm that the static parti-

tions in Giraph severely affect scalability.

10.3 Partitioning for sequentiality rather than for

locality and load balance

An important question to ask is whether it would have been

better to expend pre-processing time to generate high-quality

partitions to avoid load imbalance in the first place instead of

paying the cost of dynamic load balancing. To answer this

question, we compare, for each algorithm and for 32 ma-

chines, the worst-case dynamic load balancing cost across all

machines to the time required to initially partition the graph.

We use Powergraph’s [13] grid partitioning algorithm, which

requires the graph to be in memory. We lack the necessary

main memory in our cluster to fit the RMAT scale-32 graph,



 1

 2

 4

 8

 16

 32

 64

 128

1 2 4 8 16 32

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Machines

RMAT, Pagerank

Giraph Chaos

Figure 19: Runtime for Chaos and Giraph, normalized to

the 1-machine runtime of each system.

 0

 0.1

 0.2

BFS
W

C
C
M

C
ST

M
IS

SSSP

SC
C

PR C
ond

SpM
V

BPR
e
b
a
la

n
c
e
/P

a
rt

it
io

n
in

g
 T

im
e

Benchmark

Figure 20: Runtime for Chaos dynamic load balancing vs.

PowerGraph static partitioning (RMAT-27)

that Chaos uses on 32 machines. We therefore run the Power-

graph grid partitioning algorithm on a smaller graph (RMAT

scale-27), and assume that the partitioning time for Power-

graph scales perfectly with graph size. As Figure 20 shows,

Chaos dynamic load balancing out-of-core takes only a tenth

of the time required by Powergraph to partition the graph in

memory. From this comparison, carried out in circumstances

highly favorable to partitioning, it is clear that dynamic load

balancing in Chaos is more efficient than upfront partitioning

in Powergraph. Chaos therefore achieves its goal of provid-

ing high performance graph processing, while avoiding the

need for high-quality partitions.

11. Related Work

In recent years a large number of graph processing systems

have been proposed [10, 13, 14, 16–18, 21, 25, 26, 28, 30–

32, 34]. We mention here only those most closely related to

our work. We also mention some general-purpose distributed

systems techniques from which we draw.

11.1 Distributed in-memory systems

Pregel [21] and its open-source implementation Giraph [6]

follow an edge-cut approach. They partition the vertices of a

graph and place each partition on a different machine, poten-

tially leading to severe load imbalance. Mizan [17] addresses

this problem by migrating vertices between iterations in the

hope of obtaining better load balance in the next iteration.

Chaos addresses load imbalance within each iteration, by

allowing more than one machine to work on a partition, if

needed. Pregel optimizes network traffic by aggregating up-

dates to the same vertex. While this optimization is also pos-

sible in Chaos, we find that the cost of merging the updates

to the same vertex outweighs the benefits from reduced net-

work traffic.

Powergraph proposes the GAS model, and PowerLyra [10]

introduces a simpler variant, which we adopt in Chaos. Pow-

ergraph [13] introduces the vertex-cut approach, partitioning

the set of edges across machines and replicating vertices on

machine that have an attached edge. PowerLyra improves

on Powergraph by treating high- and low-degree nodes dif-

ferently, reducing communication and replication. Both sys-

tems require lengthy pre-processing times. Also, in both sys-

tems, each partition is assigned to exactly one machine. In

contrast, Chaos performs only minimal pre-processing, and

allows multiple machines to work on the same partition.

Finally, a recent graph processing system called GraM [33]

has shown how a graph with a trillion edges can be handled

in the main memory of the machines in a cluster. Chaos

represents a different approach where the graph is too large

to be held in memory. Thus, while Chaos is slower than

GrAM it requires only a fraction of the amount of main

memory to process a similarly sized graph.

11.2 Single-machine out-of-core systems

GraphChi [18] was one of the first systems to propose graph

processing from secondary storage. It uses the concept of

parallel sliding windows to achieve sequential secondary

storage access. X-Stream [31] improves on GraphChi by

using streaming partitions to provide better sequentiality.

In recent work, GridGraph [34] further improves on both

GraphChi and X-Stream by reducing the amount of I/O

necessary. Chaos extends out-of-core graph processing to

clusters.

11.3 Distributed systems techniques

The work on flat datacenter storage (FDS) [27] shows how

one could take our assumption of local storage bandwidth

being the same as remote storage bandwidth and scale it out

to an entire datacenter. Chaos is the first graph processing

system that exploits this property but at the smaller scale of

a rack of machines. Also, unlike FDS (and similar systems



such as CORFU [7]), we leverage the order-independence of

our workload to remove the central bottleneck of a meta-data

server.

The batching in Chaos is inspired by power-of-two schedul-

ing [24], although the goal is quite different. Power-of-two

scheduling aims to find the least loaded servers in order to

achieve load balance. Chaos aims to prevent storage engines

from becoming idle.

12. Conclusion

Chaos is a system for processing graphs from the aggre-

gate secondary storage of a cluster. It extends the reach of

small clusters to graph problems with edges in the order of

trillions. With very limited pre-processing, Chaos achieves

sequential storage access, computational load balance and

I/O load balance through the application of three synergistic

techniques: streaming partitions adapted for parallel execu-

tion, flat storage without a centralized meta-data server, and

work stealing, allowing several machines to work on a single

partition.

We have demonstrated, through strong and weak scaling

experiments, that Chaos scales on a cluster of 32 machines,

and outperforms Giraph extended to out-of-core graphs by

at least an order of magnitude. We have also quantified

the dependence of Chaos’ performance on various design

decisions and environmental parameters.

Acknowledgments: We would like to thank our anony-

mous reviewers, shepherd Michael Swift, Rong Chen, Pe-

ter Peresini, Diego Didona and Kristina Spirovska for their

feedback that improved this work. We would also like to

thank Florin Dinu for his feedback, help in setting up the

cluster and for motivating us to keep working on graph pro-

cessing.

References

[1] http://www.graph500.org/results_jun_2014

[2] https://www.facebook.com/

notes/facebook-engineering/

scaling-apache-giraph-to-a-trillion-edges/

10151617006153920

[3] http://zeromq.org/

[4] http://webdatacommons.org/hyperlinkgraph/

[5] http://freecode.com/projects/fio

[6] http://giraph.apache.org/

[7] BALAKRISHNAN, M., MALKHI, D., PRABHAKARAN, V.,

WOBBER, T., WEI, M., AND DAVIS, J. D. CORFU: A

shared log design for flash clusters. In Proceedings of the

conference on Networked Systems Design and Implementation

(2012), USENIX Association.

[8] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling mul-

tithreaded computations by work stealing. Journal of the ACM

(JACM) 46, 5 (1999), 720–748.

[9] CHAKRABARTI, D., ZHAN, Y., AND FALOUTSOS, C. R-

MAT: A recursive model for graph mining. In Proceedings of

the SIAM International Conference on Data Mining (2004),

SIAM.

[10] CHEN, R., SHI, J., CHEN, Y., AND CHEN, H. PowerLyra:

Differentiated graph computation and partitioning on skewed

graphs. In Proceedings of the European Conference on Com-

puter Systems (2015), ACM, pp. 1:1–1:15.

[11] ELNOZAHY, E. N., JOHNSON, D. B., AND ZWAENEPOEL,

W. The performance of consistent checkpointing. In Pro-

ceedings of the Symposium on Reliable Distributed Systems

(1992), IEEE, pp. 39–47.

[12] GAREY, M. R., JOHNSON, D. S., AND STOCKMEYER, L.

Some simplified NP-complete graph problems. Theoretical

computer science 1, 3 (1976), 237–267.

[13] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND

GUESTRIN, C. Powergraph: distributed graph-parallel com-

putation on natural graphs. In Proceedings of the Conference

on Operating Systems Design and Implementation (2012),

USENIX Association, pp. 17–30.

[14] GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,

FRANKLIN, M. J., AND STOICA, I. GraphX: Graph process-

ing in a distributed dataflow framework. In Proceedings of the

Conference on Operating Systems Design and Implementation

(2014), USENIX Association, pp. 599–613.

[15] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA,

S., KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND

SENGUPTA, S. VL2: A scalable and flexible data center

network. SIGCOMM Comput. Commun. Rev. 39, 4, 51–62.

[16] HAN, W.-S., LEE, S., PARK, K., LEE, J.-H., KIM, M.-S.,

KIM, J., AND YU, H. Turbograph: a fast parallel graph engine

handling billion-scale graphs in a single PC. In Proceedings

of the International Conference on Knowledge Discovery and

Data Mining (2013), ACM, pp. 77–85.

[17] KHAYYAT, Z., AWARA, K., ALONAZI, A., JAMJOOM, H.,

WILLIAMS, D., AND KALNIS, P. Mizan: A system for dy-

namic load balancing in large-scale graph processing. In Pro-

ceedings of the European Conference on Computer Systems

(2013), ACM, pp. 169–182.

[18] KYROLA, A., AND BLELLOCH, G. GraphChi: Large-scale

graph computation on just a PC. In Proceedings of the Con-

ference on Operating Systems Design and Implementation

(2012), USENIX Association.

[19] LITTLE, J. D. A proof for the queuing formula: L = λW .

Operations Research 9, 3 (May 1961), 383–387.

[20] LUMSDAINE, A., GREGOR, D., HENDRICKSON, B., AND

BERRY, J. Challenges in parallel graph processing. Parallel

Processing Letters 17, 1 (2007), 5–20.

[21] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,

J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:

a system for large-scale graph processing. In Proceedings of

the International Conference on Management of Data (2010),

ACM, pp. 135–146.

http://www.graph500.org/results_jun_2014
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
http://zeromq.org/
http://webdatacommons.org/hyperlinkgraph/
http://freecode.com/projects/fio
http://giraph.apache.org/


[22] MALICEVIC, J., ROY, A., AND ZWAENEPOEL, W. Scale-

up graph processing in the cloud: Challenges and solutions.

In Proceedings of the International Workshop on Cloud Data

and Platforms (2014), ACM, pp. 5:1–5:6.

[23] MATHUR, A., CAO, M., BHATTACHARYA, S., DILGER, A.,

TOMAS, A., AND VIVIER, L. The new ext4 filesystem:

current status and future plans. In Proceedings of the Linux

Symposium (2007), vol. 2, pp. 21–33.

[24] MITZENMACHER, M. The power of two choices in ran-

domized load balancing. Trans. Parallel Distrib. Syst. 12, 10

(2001).

[25] NELSON, J., HOLT, B., MYERS, B., BRIGGS, P., CEZE,

L., KAHAN, S., AND OSKIN, M. Latency-tolerant software

distributed shared memory. In Proceedings of the Usenix

Annual Technical Conference (2015), USENIX Association,

pp. 291–305.

[26] NGUYEN, D., LENHARTH, A., AND PINGALI, K. A

lightweight infrastructure for graph analytics. In Proceedings

of the Symposium on Operating Systems Principles (2013),

ACM, pp. 456–471.

[27] NIGHTINGALE, E. B., ELSON, J., FAN, J., HOFMANN, O.,

HOWELL, J., AND SUZUE, Y. Flat datacenter storage. In

Proceedings of the Conference on Operating Systems Design

and Implementation (2012), USENIX Association, pp. 1–15.

[28] NILAKANT, K., DALIBARD, V., ROY, A., AND YONEKI, E.

PrefEdge: SSD prefetcher for large-scale graph traversal. In

Proceedings of the International Conference on Systems and

Storage (2014), ACM, pp. 4:1–4:12.

[29] NIRANJAN MYSORE, R., PAMBORIS, A., FARRINGTON,

N., HUANG, N., MIRI, P., RADHAKRISHNAN, S., SUBRA-

MANYA, V., AND VAHDAT, A. PortLand: A scalable fault-

tolerant layer 2 data center network fabric. In Proceedings of

the ACM SIGCOMM 2009 Conference on Data Communica-

tion (2009), ACM, pp. 39–50.

[30] PEARCE, R., GOKHALE, M., AND AMATO, N. M. Mul-

tithreaded asynchronous graph traversal for in-memory and

semi-external memory. In Proceedings of the International

conference for High Performance Computing, Networking,

Storage and Analysis (2010), IEEE Computer Society, pp. 1–

11.

[31] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL, W. X-

stream: Edge-centric graph processing using streaming par-

titions. In Proceedings of the ACM symposium on Operating

Systems Principles (2013), ACM, pp. 472–488.

[32] WANG, K., XU, G., SU, Z., AND LIU, Y. D. Graphq: Graph

query processing with abstraction refinement: Scalable and

programmable analytics over very large graphs on a single PC.

In Proceedings of the Usenix Annual Technical Conference

(2015), USENIX Association, pp. 387–401.

[33] WU, M., YANG, F., XUE, J., XIAO, W., MIAO, Y., WEI,

L., LIN, H., DAI, Y., AND ZHOU, L. GraM: Scaling graph

computation to the trillions. In Proceedings of the Symposium

on Cloud Computing (2015), ACM.

[34] ZHU, X., HAN, W., AND CHEN, W. GridGraph: Large-scale

graph processing on a single machine using 2-level hierarchi-

cal partitioning. In Proceedings of the Usenix Annual Techni-

cal Conference (2015), USENIX Association, pp. 375–386.


	Introduction
	Programming Model
	Streaming Partitions
	Design overview
	Computation sub-system
	Scatter phase
	The gather phase
	Work stealing
	To steal or not to steal

	Storage sub-system
	Stored data structures and their access patterns
	Chunks
	Edge and update sets
	Vertex sets
	Keeping all storage engines busy
	Fault tolerance

	Implementation
	Experimental environment and benchmarks
	Scaling results
	Weak scaling
	Strong scaling
	Capacity scaling
	Scaling limitations
	Checkpointing

	Evaluation of design decisions
	No locality
	Dynamic load balancing
	Partitioning for sequentiality rather than for locality and load balance

	Related Work
	Distributed in-memory systems
	Single-machine out-of-core systems
	Distributed systems techniques

	Conclusion

