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Abstract—We study a modification of the orthogonal matching pursuit
(OMP) for estimating sparse multipath channels. The reflectors that
generate the multipath components are not ideal; rather, they act as
filters, so that the returned pulses are reshaped and widened. To deal
with this, we introduce unknown filters into the OMP, and then search
for the best filtered set of atoms, together with the optimal set of filters.
Our algorithm extends naturally to unknown pulses lying in any known
subspace. We show how this observation allows us to reconstruct sums
of Gaussians with unknown widths.

I. INTRODUCTION

The OMP aims to decompose a signal into a linear combination
of a few atoms. One assumes that the data vector x to decompose is
a sparse sum of the dictionary atoms—columns of Φ—corrupted by
additive errors,

x = Φd+ e. (1)

We can use OMP to estimate the structure of a sparse multipath chan-
nel: a probing pulse is emitted and the received signal is a convolution
of the channel response and the probing pulse. The channel response
is assumed to be a collection of Dirac delta functions, so that the
resulting waveform is a sum of shifted and scaled pulses. Examples
of applications are in wireless communications [1], [2] and in room
acoustics [3].

A limiting factor is that (1) inaccurately models the error. Reflec-
tions are not only delays, because reflectors (e.g. walls) are never
perfect; they are frequency selective, acting as linear filters with
short impulse responses. Successive reflections become longer, and
the error e is structured. We propose to modify the standard OMP to
account for this filtering: at every iteration, we select the atom that
is best correlated with the residual response, while allowing it to be
filtered by any unknown finite impulse response (FIR) filter of fixed
length. We demonstrate numerically that this outperforms OMP in
channel estimation, simply because it respects physics.

II. OMP WITH UNKNOWN FILTERS

Denote by φ(n) the emitted pulse of length N , and by x(n) the
measured signal. Our signal model is

x(n) =

K∑
k=1

αk[φ ∗ hk](n− nk) =

[
φ ∗

K∑
k=1

αkhk( · − nk)

]
(n),

where hk denotes the filter corresponding to the kth multipath
component, and nk is the delay of the kth multipath component.
We assume all hk to be relatively short FIR filters, of length at most
M . The sequence h(n) =

∑K
k=1 αkhk(n−nk) is the sought impulse

response.
Let r(i)n denote the nth segment of x(i) (in ith iteration) of length

L
def
= N + M − 1, that is, r(i)n

def
= [x(n), . . . , x(n + L − 1)]T .

In standard OMP, we choose the next atom according to mi =
argmax |〈r(i)n , φ〉|. We propose to change this rule so as to jointly
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Fig. 1. An illustration of the proposed algorithm, and a comparison with the
standard OMP. The emitted pulse (A) is convolved repeatedly with a random
FIR filter (B), so that every successive pulse is longer than the previous. The
last two delays are overlapping (C). The residuals (D) after 4 iterations for the
OMP (red), and for the proposed algorithm (blue) suggest that the proposed
algorithm performs better than the OMP. Detected atoms are shown above in
green shades for the proposed algorithm (filtered), and below in orange shades
for the ordinary OMP. Clearly, the OMP fails to detect the delays correctly.
Length of the unknown filter was fixed to 50 (thus the last pulse—after three
“reflections”—was filtered by a filter of length ≈ 150).

find the best atom (best delay) and the best filter, making sure that
the filtered atom is normalized,

mi = argmax
n, g,φ∗g 6=0

∣∣∣〈r(i)n ,ΦMg/‖ΦMg‖
〉∣∣∣ . (2)

Here, ΦM is the Toeplitz (convolution) matrix corresponding to φ(n)
and g is the length-M unknown filter.

Lemma 1. The optimal delay (index of the optimal atom) is

mi = argmax
n

〈 r(i)n ,PΦM r
(i)
n 〉, (3)

and the corresponding optimal filter is g(i) = Φ†Mrmi/‖PΦM rmi‖,
where PΦM denotes the orthogonal projection onto the range of ΦM .

In the algorithm, we first initialize the residual to r(0) = x.
In ith iteration, we select the best new filtered atom by the rule
(3). We compute the optimal filter g(i) and construct the current
approximation basis matrix Ψ from the atoms detected thus far,
with appropriate filtering. The jth column of Ψ(i) corresponds
to [φ ∗ g(j)](n − nj). In the established notation we can write



Ψ(i) = [ψ1, · · · , ψi], where

ψj
def
= [01×nj , [ΦMg

(j)]T , 01×(T−L−nj)]
T (4)

The approximation in the ith iteration (i.e., the current denoised
version) is computed as the projection of the signal onto the current
basis,

x(i) = PΨ(i)x, r(i) = x− x(i). (5)

The described procedure is outlined in Algorithm 1. Fig. 1 illustrates
how the proposed algorithm obviates the shortcomings of the ordinary
OMP in channel estimation.

Algorithm 1 OMP with Unknown Filters
1: function OMP-UF(x, ΦM , K)
2: r(0) ← x, Ψ(0) ← [ ], i← 0 . Initialize
3: repeat
4: i← i+ 1
5: mi ← argmaxn

〈
r
(i)
n ,PΦM r

(i)
n

〉
. Best tap

6: gi ← Φ†Mrmi / ‖PΦM rmi‖ . Optimal filter
7: Ψ(i) ← [Ψ(i−1) | ψ(i)] . Equation (4)
8: r(i) ← x− PΨ(i)x . New residual
9: until i = K

10: return {mi} , {ΦMgi} , {gi}
11: end function

III. FROM SHIFT-INVARIANT TO A GENERAL SUBSPACE

Note that the pulse shape φ(n) enters the algorithm only through
the projection operator PΦM . There is nothing special about the
Toeplitz structure of ΦM ; instead of the subspace of the shifts of
φ(n), we could look at any subspace.

Some interesting parametric signal classes can be approximated as
living in a low-dimensional subspace. A good example are Gaussian
pulses of varying widths. Consider the following set of signals:

F =
{
x 7→ fσ(x) = e−

1
2
(x/σ)2 : σ ∈ [σ1, σ2]

}
. (6)

For a wide range of widths σ, F can be approximated by a low-
dimensional subspace. A simple way one could find such a subspace
is by PCA-like procedure. Suppose we discretize x into a grid of sam-
pling instants x = [x1, . . . , xP ], and similarly discretize the range of
widths into σ = [σ1, . . . , σQ]. Define fσ

def
= [fσ(x1), . . . , fσ(xP )]

T ,
and let F = [fσ1 , . . . ,fσQ ]. It turns out that we can obtain a
good approximation of F in the subspace spanned the dominant
eigenvectors of FF T , as illustrated in Fig. 2.

Imagine now that the received signal is of the form

x(n) =

K∑
k=1

αkfσk (nT − tk), (7)

where T is the sampling period, and that we seek to estimate the
delays tk. To do that, we can use the exact same algorithm we
proposed for the case of unknown filters, but instead of searching
for an unknown filter, we search for unknown basis expansion
coefficients (which in turn can be mapped to the width of the pulse).

In Fig. 2 we demonstrate the effectiveness of the proposed algo-
rithm for Gaussian pulses of unknown widths.
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Fig. 2. Approximation of Gaussian pulses in a linear subspace. (A) original
(exact) pulses with σ ∈ [1, 10]; (B) approximation of the pulses from (A) in
a 5-dimensional linear subspace; (C) error signal [(B) - (A)].
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Fig. 3. Illustration of the proposed algorithm applied to Gaussian pulses of
unknown widths. (A) the received signal composed of four pulses, with two
overlapping pulses shown explicitly in green; (B) residuals for the proposed
algorithm (blue) and for the standard OMP (red) with an average pulse (σ =
5). In (B) we also show the detected pulses for the two algorithms (above for
the proposed algorithm, and below for the OMP). The OMP completely fails
to recover the first (narrow) pulse.

IV. CONCLUSION

We demonstrated a variation of the OMP for sparse channel
estimation, which takes into account the unknown filtering of the
multipath components by the non-ideal reflectors. Initial numerical
simulations show that the proposed scheme is more effective than the
OMP for filtered pulses. Our algorithm generalizes straightforwardly
to the case when the pulses live in a known subspace. This is useful
for recovering mixtures of unknown pulses from known parametric
signal classes. Future work will focus on convergence analysis and
comparisons in terms of the performance in channel equalization and
acoustic echo cancellation.
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