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ABSTRACT
Microchannel liquid cooling has been proposed since the late
2000s as a viable enabler for 3D integration of microproces-
sors to continue scaling of computing power in the face of
increasingly reduced returns from CMOS technology scal-
ing. Thermal and electrical demonstrations of microchannel
liquid-cooled heat sinks on the back side of IC dies exist in
the literature and the compatibility of its fabrication with
the existing CMOS process has been shown. This compati-
bility also gives rise to the prospect of building of nearly an
infinite variety of channel networks with no additional man-
ufacturing cost. This ICCAD 2015 problem aims to identify
methods to optimize such microchannel fluid networks, and
to evaluate impact of different cooling networks on different
computing architectures floorplans.

Categories and Subject Descriptors
1 [System-level CAD]: Dark Silicon and Power/Thermal
Considerations

Keywords
Liquid-cooling, 3D ICs, Temperature-aware design

1. INTRODUCTION
Interlayer single-phase liquid cooling has been proposed

as an effective cooling mechanism for the high-heat dissi-
pated in high-performance 3D-stacked processing architec-
tures [1]. Single-phase fluid, such as water, is injected into
micro-scale channels (also called micro-channels) that are
etched between two consecutive vertical tiers to carry the
heat out from different layers in the 3D stack. This cooling
mechanism has already been proven to be much more effec-
tive than conventional air-cooling in order to remove very
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high on-chip temperature and cool the computing system
much faster (several orders of magnitude of improvement).
Modeling methods for thermal simulation of ICs with mi-
crochannels already exist in in the literature [2]. These tools
and methods are useful for evaluating designs.

However, the culminating point of the development of
technologies and modeling methods is the realization of a
scalable design method and optimizer for such inter-layer
microchannel liquid-cooled heat sinks. Such optimizers must
have at their heart the minimization of cooling energy expen-
ditures if this technology is to be seen as a viable tool to ad-
dress the challenges of dark silicon. Indeed a one-design-fits-
all approach of using uniform micro-channels can easily lead
to overcooling, which is not an energy-efficient operation,
or non-uniform cooling that increases on-chip thermal gra-
dients giving rise to reliability issues and shorter lifetimes.
Thus, it is fundamental to optimize several parameters, such
as the pressure drop across the channels, the number of fluid
inlet and outlet ports, and the fluid network, to achieve opti-
mized cooling in terms of energy efficiency, thermal gradient
and peak temperature.

There have also been studies to optimize straight channels
both at design-time employing methods such as modulating
channel-widths [3] or by modifying heat conduction paths
by judicious placement of TSVs [4]. There have also been
methods proposed to address efficient run-time operation
of liquid-cooled microchannels [5]. However, these methods
do not take advantage of the nearly endless possibilities of
designing microfluidic networks using the existing CMOS
process with no additional manufacturing cost. Customized
fluidic networks can be potentially created tailored to cool
specific parts of a microprocessor utilizing the minimum pos-
sible cooling energy. Some initial studies in this direction,
using four-port fluidic packages were explored in [6]. How-
ever, a systematic optimizing tool to create a customized
microfluidic network doesn’t exist.

The goal of this ICCAD 2015 problem is to bridge this gap
in our knowledge by encouraging the contestants to evaluate
the impact of different cooling networks on different com-
puting architectures floorplans, when subjected to specific
thermal performance requirements. We hope to motivate
further research insights in liquid-based cooling, and poten-
tially attract even more industrial and academic interest in
this field through this contest.

2. THE ICCAD-2015 CONTEST OVERVIEW
The main objective of this problem is to find an optimized

cooling network that minimizes a specific cost function while
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Table 1: Terms used in the problem definition
fi Floorplan of layer i in the target 3D

stacked architecture

mji Architectural module j in the ith layer
CNi Cooling network layer i in the target

3D stack
Tmax(mji) Peak temperature observed in module mji

∆P Pressure drop observed in the entire
cooling network

V̇ Inlet flow rate

subjected to design and physical constraints. Before unfold-
ing the target problem, we need to define several terms to
avoid ambiguity. These terms are list in Table 1.
To reflect various operating conditions we have created

a set of problems, which we elaborate in the following sec-
tions. As general definition, given a certain N-layer 3D-
stacked computing architecture defined by floorplan F =
{f1, f2, , fN}, where each layer i ⊂ [1, N ] consists of a set
of j modules Mi = {m1i,m2i, ...,mji}, provide the set of
N−1 cooling network layers CN = {CN1, CN2, ..., CNN−1}
(cooling network layer CNi is placed between stacked layers
i and i+ 1) that is a solution of:

1. MinT: minimizing the peak temperature (Tmax) and
thermal gradient (∆Tmax), subject to pressure drop
constrain (∆P ≤ Pmax).

2. MinCE: minimizing cooling energy (E = ∆P · V̇ )
subject to a given maximum peak temperature and
peak thermal gradient.

Based on the problem definition, we will provide differ-
ent case studies, where each case study will have the input
defined as follows:

• Number of layers in the targeted 3D stack (i.e., the
number N).

• The floorplan of each layer in the targeted 3D stack
(F ).

• The power traces of each component in the 3D stack
(M = {M1,M2, ,MN}).

• The list of interlayer floorplan (FIL = {fil1, fil2, ...
, filN−1}), where each element of this list shows the
locations where a microchannel placement is infeasible.

In addition to the mentioned inputs, we fix the channel
width to the following value for all test cases:

• Channel width= 100µm.

Various teams will use the mentioned inputs to provide
the following list of outputs, which are used for evaluation:

• The applied pressure drop to inject the fluid to the
cooling network (∆P ) .

• The layout of the different cooling networks in the 3D
stack (CN).

• The location of inlet and outlet ports.

Figure 1: Schematic 3D diagram of an example 2-
tier stack.

Figure 2: Template of a 11X11 Fluid-Network: 0 =
silicon, 1= Fluid, -1=TSV (fixed), 2=inlet, 3=out-
let.

Example: As an illustrative example, we provide the inputs
of a 2-tier stack, which is depicted in Fig. 1. The inputs for
this example is as follows:

N = 2
F = {f1, f2}
f1 = {m11 : [(0, 0), (L,W )]}
f2 = {m12 : [(0, 0), (L/2,W )],m22 :
[(L/2, 0), (L/W/2)],m32 : [(L/2,W/2), [L,W )]}
P (M2) = {(0; 0; 0), (P1 : P2;P3), (P1;P2/2;P3)

, (P1/2; 0;P3/2), (0; 0; 0)}
FIL = {fil1}
fil1 = {[L1,W1], [L2,W2], , [Lk,Wk]}

2.1 Evaluation Methodology
The proposed solutions by the different teams working in

the competition, which is defined by the output list in the
previous section, will be assessed based on:

1. Finding a feasible solution

2. Meeting the problem constraints

3. Minimizing the relevant metric to each problem

Detailed rules regarding the format of the problem state-
ments provided, the mode of solving and the solutions ob-
tained are as follows:

Rule #1: In order to help the contestants use an existing
thermal model for performing their design evaluations, the
description of the problem 3D stack, the floorplan and the



Figure 3: Fluid-Network Example 1 and the result-
ing Pressure-Flow Diagram

Figure 4: Fluid-Network Example 2 and the result-
ing Pressure-Flow Diagram

heat inputs will be given in the same format as the 3D-
ICE input files (.stk and .flp). Please refer to the 3D-ICE
User Guide available at [7]. Divide your cavity layer into
square cells (from top-view) of 100µm. For a chip size of
10.1mmX10.1mm, this would give a grid of 101X101 cells.
Note that some of the channel description part of the .stk
file will be skipped in the input definition as it is part of the
solution that you must compute.
Rule #2: Specify your solution fluid-network map solu-

tion in an excel file using an array of 0’s and 1’s. 0 indicates
there is silicon in the cell, and 1 indicates channel/liquid.
For the purpose of illustration, a 11X11 grid example tem-
plate for a fluid-network representing a cavity layer is shown
below in Fig. 2.
Rule #3: A 2D array of alternating cells cannot have

fluid and have a -1 by default- to account for TSV fabrica-
tion. This is specified in the template using bold -1’s in cells
filled with brown background (Fig. 2).
Rule #4: The table in the excel file will be visualized in

the same orientation as the top-view of the physical device.
That is, the bottom-left (south-west) corner of the table
will correspond to origin. The origin point and the cardinal
directions considered are shown in Fig. 2. This is the same
convention that is used for the input heat-flux map provided
in the problem, and in the 3D-ICE model.
Rule #5: Your solution must have at least one inlet and

one outlet. The inlet and outlets can only be at the edges of
the microchannel layer. The edge fluid cells corresponding
to inlet and outlet are specified using 2’s and 3’s respectively
(see Examples 1-4, Fig. 3-6).
Rule #6: There can be multiple inlets and outlets along

all four edges of your solution. However, to reduce the com-
plexity of the packaging, for each side, there can be at most
one ”continuous” inlet and outlet, as illustrated in Example
3. There should be at least one traceable fluidic path from
the inlet to the outlet of the system. If there are multiple
channel layers in the problem, the inlet and outlet patterns

Figure 5: Fluid-Network Example 1 and the result-
ing Pressure-Flow Diagram

Figure 6: Fluid-Network Example 1 and the result-
ing Pressure-Flow Diagram

across the multiple layers must be identical. The individ-
ual fluid networks within each channel layer can however be
different.

Rule #7: Provide your final solution excel file for each
problem (separately), after you name the file in the following
format:
<TeamID> ProblemA <testcase#>.xls
where <TeamID> refers to your Team Identification as you
have been assigned by the ICCAD 2015 registration process
<testcase#> refers to the serial number of the problem test
case.

If there are multiple channel layers in a given test case,
provide them as separate .xls files in the following format
(channel layer counted from bottom to top):
<TeamID> ProblemA <testcase#> <channellayer#>.xls

Rule #8: Along with your solution excel file, you must
also provide ONE value of pressure drop between the inlet
and outlet of your system (even if you have multiple inlets
and outlets in the cavity, the pressure drop between each of
them must be identical).

Rule #9: To all teams: please provide all your excel
sheet submissions (named according to the rules) for all test
cases in a SINGLE folder and all the pressure drops corre-
sponding to each test case in a SINGLE text file inside the
same folder.

Hints:

1. First, You must solve the flow rates into and out of
each fluid cell from/to neighboring fluid cells based on
the discretization above, and using the formula below
(for simplicity of modeling, we assume Darcy-Weisbach
friction factor for developed laminar flow):

Here, subscript i, i + 1 refer to the pressure drop be-
tween two neighboring cells with indices i and i + 1,
and the flow rate from cell i to the neighboring cell
i+1 (please note that the indices are only illustrative,



and do not refer to which direction we are moving from
the current cell to the neighboring cell- could be north,
south, east or west). The value of the k or the method
to compute is provided for each test case separately.
Please see the test case description pdfs.

Essentially, you must construct and solve a simple ”pressure-
flow network” problem which looks like a resistive net-
work where Pressures are voltage and flow rates are
currents, according to the above formula and get all
local flow rate for each fluid-fluid interface of each fluid
cell in your network (see Examples 1-3). Describing an
arbitrary network of microchannels here can be eas-
ily accomplished using Graph Theory, by building an
”Directed Incidence matrix” Z where the rows indicate
all the liquid cells/nodes and the columns containing
+1/-1/0 indicate the presence/absence of a connection
between 2 nodes (channel) and the assumed direction
of flow (https://reference.wolfram.com/language/
ref/IncidenceMatrix.html). This matrix Z would es-
sentially give the relationship between the pressures
in each cell/node (with respect to the reference pres-
sure at the inlet) and the pressure drops across each
edges/channel segments as follows:

By combining this matrix Z with the known linear rela-
tionship between pressure drop across each ”edge” and
the flow rate between them (Equation 1 above), you
can easily solve the flow rates in the entire network
using sparse matrix inversion.

2. Once the local fluid flow rates and directions are com-
puted, you could tweak the 3D-ICE (4RM) model based
on the same discretization of 100µm × 100µm for all
layers. This will require some minor coding of the 3D-
ICE program (if you plan to use it). For each fluid-solid
interface in your problem, use the following formula to
calculate the local convective conductance term in the
equivalent thermal RC grid construction (see [7] for
more details):

Ainterface refers to the area of the wall interface of
the fluid cell towards a particular neighboring solid
cell. The value of/the method to compute the heat
transfer coefficient hconv will be provided for each test
case separately. For simplicity of modeling, we assume
Shah-London heat transfer correlation for fully devel-
oped laminar flow in all our problems.

3. Once you build the channel network flow rate and the
heat transfer models as described above, your system
model is ready. Now you use this model to search the
design space of channel networks (by respecting the
various constraints) using any method you like (Gradi-
ent descent methods, Monte-Carlo, Simulated Anneal-
ing, Genetic algorithms etc.) for an optimal design.

4. As a first attempt, if building the channel network
model is too complex, you could simplify in various
ways. For example, in the new heat transfer model,
you could only consider the vertical thermal resistances
and neglect the North-South-East-West resistances in
the first pass, since bulk of the heat enters the channels
from the Top and the Bottom. The optimal channel
solution you obtain would be pretty close to the one
you would find if you included these lateral resistances

in a network. Once you find this approximate solution,
you can refine your search to find the exact one.

5. There have been works done in the past on finding op-
timal microfluidic networks to minimize various cost
functions, similar to this problem. Some of them are [8,
9, 10]. You could adapt the principles described in
these papers to find the optimal design for this prob-
lem.

3. CONCLUSIONS
We hope that based on the submissions of the contestants,

novel algorithms for searching the vast design-space of mi-
crofluidic channel networks can be identified, reinvigorating
the research in the field of microchannel liquid cooling for
3D ICs and its implications for computer-aided design.
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