
A Data-Driven Approach in Designing RST Controllers with H∞

performance via Convex Optimization

Achille Nicoletti, Zlatko Emedi and Alireza Karimi

Abstract— In this paper, a new method for designing robust
fixed-order H∞ discrete-time controllers is presented. The
controller structure is a two-degree of freedom polynomial
controller of the RST-type. A data-driven approach is imple-
mented for the design process in order to capture the unmodeled
dynamics that may exist with parametric models. The H∞

robust performance condition can be represented by a set
of convex constraints with respect to the parameters of the
RST controllers. A convex optimization algorithm can then be
implemented to obtain these parameters. The proposed method
is applied to a multi-axis torsional system where the goal is to
control the position of the disks with variable inertias.

I. INTRODUCTION

In many of today’s complex industrial applications, it is

difficult to model a process with extreme precision. For such

processes, a high-order model is typically required to capture

the dynamics of a system; however, high order models

lead to high order controllers with numerical implementa-

tion problems. Therefore, in practice, low-order models are

preferred in order to simplify the controller design process.

However, low-order models possess unmodeled dynamics

that can hinder the performance of a controller. Robust

controller design methods use the uncertainty models as

weighting filters to ensure the stability and performance of

the closed-loop system. This in turn increases the controller

order which is equal to the order of the plant model and

the uncertainty weighting filter. In data-driven methods, the

plant model is represented by a set of data; thus there are

no unmodeled dynamics and the controller order can be

chosen independently of the plant model complexity. The

data-driven approach can be realized in two manners: using

time-domain or frequency-domain data. In this paper, the

frequency-domain approach will be utilized for the controller

design scheme.

The field of frequency-domain controller design tech-

niques continues to spark the interest of many researchers.

In [1], a controller is designed in the frequency-domain by

considering a least-squares optimization approach; however,

in this method, it is not evident on how to predefine the

structure of a stabilizing controller. A data-driven design

method that guarantees the stability of a closed-loop system

by setting gain and phase margin constraints in the Nyquist

diagram has been addressed in [2]. Despite the simplicity and

advantages of this method, it cannot be applied to unstable

plants. Moreover, the constraints are conservative and may

lead to a controller that inhibits the system performance.
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A robust frequency-domain control design method has been

established in [3]; this method, however, requires a solution

to a non-linear optimization problem.

Robust control methods are continually addressed within

the control system community. Many research papers and

books have been devoted to developing new algorithms in

designing robust controllers that reduce the conservatism

associated with uncertainty modeling. Robust controller de-

sign methods belonging to the H∞ control framework min-

imizes the H∞ norm of a weighted closed-loop sensitivity

function. An H∞ loop-shaping method to design stabilizing

controllers has been examined in [4]. However, a non-convex

optimization algorithm is required to obtain a solution. Gen-

erally, it is desired to acquire a convex optimization problem

since convex problems are computationally tractable. A con-

vex approximation of the H∞ criterion has been discussed

in [5] and [6] where convex constraints are imposed on the

Nyquist diagram. The controller is linearly parameterized

(the denominator is fixed) and a desired open loop trans-

fer function is used to convexify the H∞ constraints. An

extension to this method has been presented in [7], where

a single-input-single-output (SISO) controller is represented

in a rational form (and thus allowing the numerator and

denominator of a controller to be optimized separately). This

method gives the necessary and sufficient conditions for the

existence of a robust controller for systems represented by a

frequency response function.

The RST controller structure is an effective discrete-

time two-degree of freedom polynomial controller where the

tracking and regulation characteristics of a closed-loop sys-

tem can be formulated independently [8]. Various methods

and applications of the RST controller design methodology

have been addressed in [9], [10], [11], and [12]. However,

in these previous applications, the controllers were devised

based on the knowledge of the dynamic model of the physical

system. A frequency domain approach in designing the RST

controllers has been discussed in [13]. In this approach, a

convex optimization algorithm was formulated by consider-

ing a convex approximation of the H∞ criterion. However,

in order to preserve convexity, this method required one of

the controller terms (R) to be fixed a priori.

The proposed method in this paper is an extension of

[13] and [7], where an RST controller will be designed by

formulating a convex optimization problem in the frequency

domain. In [13], the controller R was fixed with an integra-

tor1, while S and T where linearly parameterized. However,

1Note that the variable names for R and S are interchanged in [13]
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with the methodology presented in this paper, the R, S and

T controllers can each be linearly parameterized, and thus

introduces more degrees of freedom which improves the H∞

performance. Moreover, new convex constraints are imposed

in order to guarantee that the closed-loop system remains sta-

ble while attaining the desired tracking performance without

the need to specify a desired open-loop transfer function.

This paper is organized as follows: In section (II), the class

of models, controllers and control objectives are defined.

Section (III) will discuss the control design methodology

and stability conditions of the proposed method for the RST

controller structure. Convex conditions will be formulated

based on the H∞ criterion. Section (IV) will demonstrate

the effectiveness of the method by applying the proposed

design scheme to a multi-axis torsional system. Finally the

concluding remarks are given in Section (V).

Notation: In order to avoid the risk of any confusion,

the notation for the symbols employed in this paper will be

defined here.

R : the set of all real numbers.

Z : the set of all positive integers including zero.

Re{·} : the real part of a complex variable.

Im{·} : the imaginary part of a complex variable.

a⊤ : the transpose of the vector a.

z : variable used to represent the complex fre-

quency domain of discrete-time systems.

s : variable used to represent the complex fre-

quency domain of continuous-time systems.

II. PROBLEM FORMULATION

A. Class of models

Let us begin by considering the frequency response func-

tion (FRF) of a discrete-time SISO plant given as

G(e−jω) = N(e−jω)M−1(e−jω), ∀ω ∈ Ω (1)

where Ω ∈ [0, π]. N(e−jω) and M(e−jω) must be FRF’s

of bounded analytic functions outside the unit circle. For

stable plants, a trivial choice is N(e−jω) = G(e−jω) and

M(e−jω) = 1. For unstable plants, N(e−jω) and M(e−jω)
can be obtained, in a data-driven setting, by considering

the acquired data of a closed-loop system with a stabilizing

controller. If N(e−jω) represents the FRF of the transfer

function from the reference input to the output, andM(e−jω)
represents the FRF of the transfer function from the reference

input to the controller output, then the FRF of the plant model

can be obtained as asserted in (1).

In general, a set G that represents a plant model containing

k FRF models can be defined:

G = {Gi(e
−jω); i = 1, . . . , k; ∀ω ∈ Ω} (2)

These FRF’s can be determined by considering the frequency

response of a parametric model or from a set of input/output

data. For simplicity, one model from the set G will be

considered, and the subscript i will be omitted. However, in

general, the design procedures outlined in this paper can be
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Fig. 1. RST controller structure

applied to the multi-model case. In section (IV), the proposed

method is applied on a torsional apparatus with multi-model

uncertainty.

B. Class of controllers

The controller structure that will be considered will be of

the RST-type, as shown in Fig.1. The RST controllers are

linearly parameterized in the variables rk, sk, and tk; they

are each polynomials in z which can be expressed as:

R(z−1) = r0 + r1z
−1 + · · ·+ rnr

z−nr (3)

S(z−1) = 1 + s1z
−1 + · · ·+ sns

z−ns (4)

T (z−1) = t0 + t1z
−1 + · · ·+ tnr

z−nr (5)

where {nr, ns, nt} ∈ Z. These controllers can also be

represented in vector form as R(z−1, ρ) = ρ⊤RφR(z
−1),

S(z−1, ρ) = ρ⊤S φS(z
−1) and T (z−1, ρ) = ρ⊤T φT (z

−1),
where

ρ⊤R = [r0, r1, . . . , rnr
]; φ⊤R(z

−1)= [1, z−1, . . . , z−nr ] (6)

ρ⊤S = [1, s1, . . . , sns
]; φ⊤S (z

−1)= [1, z−1, . . . , z−ns ] (7)

ρ⊤T = [t0, t1, . . . , tnt
]; φ⊤T (z

−1)= [1, z−1, . . . , z−nt ] (8)

C. Process Definitions

Since the design techniques introduced in this paper be-

long to the H∞ framework, it is appropriate to consider the

various sensitivity functions associated with the controller

structure shown in Fig. 1. Some of the sensitivity functions

for this process can be asserted as follows:

S0(z
−1, ρ) =

M(z−1)S(z−1, ρ)

ψ(z−1, ρ)
(9)

Si(z
−1, ρ) =

N(z−1)S(z−1, ρ)

ψ(z−1, ρ)
(10)

T (z−1, ρ) =
N(z−1)T (z−1, ρ)

ψ(z−1, ρ)
(11)

U(z−1, ρ) =
M(z−1)T (z−1, ρ)

ψ(z−1, ρ)
(12)

V(z−1, ρ) = −
N(z−1)R(z−1, ρ)

ψ(z−1, ρ)
(13)

E(z−1, ρ) =
ψ(z−1, ρ)−N(z−1)T (z−1, ρ)

ψ(z−1, ρ)
(14)

where ψ(z−1, ρ) = M(z−1)S(z−1, ρ) + N(z−1)R(z−1, ρ)
and S0(z

−1, ρ) is the transfer function between do and

y, Si(z
−1, ρ) is the transfer function between di and y,
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T (z−1, ρ) is the transfer function between r and y, U(z−1, ρ)
is the transfer function between r and u, V(z−1, ρ) is the

transfer function between v and y, and E(z−1, ρ) is the

transfer function between r and the tracking error signal

r − y. Note that all of the sensitivity functions are stable

if the zeros of ψ(z−1, ρ) lie within the unit circle. Based

on the internal model principle, the controller may contain

the disturbance model to achieve a zero steady-state error.

Therefore, the controllers may be pre-multiplied with any

arbitrary function that actualizes the desired performance.

For example, if it is desired to reject a step disturbance at the

output, then S(z−1, ρ) can be pre-multiplied with (1− z−1)
(which represents the integral action of the controller).

III. H∞ PERFORMANCE VIA CONVEX OPTIMIZATION

A. Preliminary Design Specifications

Suppose that it is desired to shape a particular sensitivity

function. Consider, for example, the sensitivity function from

do to y, expressed as S0(z
−1, ρ). Given a stable weighting

filter W1 with a bounded infinity norm, a necessary and

sufficient condition for achieving nominal performance is

given by [14]:

‖W1S0‖∞ < γ (15)

where {γ ∈ R | γ > 0}. In general, this condition can be

extended to any of the sensitivity functions asserted in section

(II-C). This condition can also be expressed as follows:

|W1(e
−jω)S0(e

−jω , ρ)| < γ; ∀ω ∈ Ω (16)

For notation purposes, the dependency in e−jω will be

omitted, and will only be reiterated when deemed necessary.

The dependency on ρ will continue to be highlighted. Notice

that (16) can also be written as

γ−1|W1MS(ρ)| < |ψ(ρ)|; ∀ω ∈ Ω (17)

where ψ(ρ) = MS(ρ) + NR(ρ). It is desired to minimize

the upper bound γ such that the H∞ performance condition

is satisfied. Therefore, the following optimization problem

can be considered:

minimize
{ρR,ρS ,ρT }∈R

γ

subject to: γ−1|W1MS(ρ)| < |ψ(ρ)|

∀ω ∈ Ω

(18)

Notice that (18) is both a non-linear and non-convex opti-

mization problem.

Remark Note that the controller T (z−1, ρ) was not con-

sidered in the optimization problem (18) since S0(z
−1, ρ) is

independent of T (z−1, ρ). One of the benefits of implement-

ing the RST controller is that the tracking performance can

be specified independently from the regulation requirements,

and thus the controller T (z−1, ρ) can be designed once

R(z−1, ρ) and S(z−1, ρ) have been obtained. If tracking

performance is crucial for the design, one may consider

minimizing γ for ‖W2E‖∞ < γ, where W2 is also a stable

transfer function with a bounded infinity norm.

MS(ρ) +NR(ρ)

γ−1|W1MS(ρ)|

Im

Re

Fig. 2. The H∞ constraint in (15) can be represented as a circle in the
complex plane. The constraint ensures that the circle will never encircle the
origin for any frequency point in Ω.

Consider a circle in the complex plane which is centered

at MS(ρ) + NR(ρ) and has radius γ−1|W1MS(ρ)|. The

constraint in (17) ensures that for any frequency point in

Ω, the circle associated with this frequency point will not

encircle the origin. Figure 2 displays the graphical interpre-

tation of this condition. According to [7], for each ω ∈ Ω
there exists a complex number f(e−jω) which can rotate the

disk in Fig. 2 such that it lays on the right hand side of the

imaginary axis:

Re{Z(ρ)f(e−jω)} > 0; ∀ω ∈ Ω (19)

where Z(ρ) = ψ(ρ)− γ−1|W1MS(ρ)|. In [15], it is shown

that f(e−jω) can be approximated arbitrarily well by the

frequency response of a finite order transfer function if and

only if

[ψ(ρ)− γ−1
0 |W1MS(ρ)|]−1

is analytic in the right half plane for all γ0 > γ. Based

on (19) and on the results established in [7], the following

theorem can be formulated:

Theorem 1 Given γ > 0, the performance criterion in (15)

is satisfied if and only if there exist polynomials R(z−1, ρ)
and S(z−1, ρ) such that

γ−1|W1MS(ρ)| < Re{ψ(ρ)} ∀ω ∈ Ω (20)

where ψ(ρ) =MS(ρ) +NR(ρ).

Proof: The proof of a similar theorem has been

formally documented in [7]2.

In certain design strategies, it may sometimes be desired

to track different reference signals with no steady-state error,

such as a step or a ramp input. For the torsional system that

will be addressed in this paper, it will be desired to track

a step input. Minimization of the error sensitivity function

is a soft constraint, and may not lead to the ideal tracking

2This proof was established by assuming a unity feedback system with a
rational controller structure K = XY −1 in the feedforward loop. For the
RST controller structure used in this paper, the controller R is equivalent
to X and S is equivalent to Y .
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performance. Therefore it is advantageous to consider condi-

tions that ensure proper tracking of a step input by imposing

hard convex constraints. Note that in an RST structure, the

existence of an integrator in the open-loop transfer function

does not guarantee a zero steady-state error for tracking a

step input. The necessary and sufficient condition for a zero

steady-state error is recalled in the following lemma.

Lemma 1 Suppose that the reference signal is a step

function given as r(z−1) = A(1 − z−1)−1, where A is

the amplitude of the step function. Additionally, suppose

that the controller S(z−1, ρ) possesses an integrator (i.e.,

S(z−1, ρ) = (1 − z−1)S′(z−1, ρ), where S′(z−1, ρ) is

linearly parameterized). A necessary and sufficient condition

to obtain a zero steady-state error for a step input is

R(1, ρ) = T (1, ρ) 6= 0 (21)

Proof: The proof for this condition can be estab-

lished by using the final value theorem. For perfect tracking

of an arbitrary reference signal r(k), it is required that

limk→∞[r(k)− y(k)] = 0, or

lim
z→1

(1− z−1)r(z−1)[1− T (z−1, ρ)] = 0 (22)

For a step input, the condition for achieving a zero steady-

state error can be expressed as

lim
z→1

[1− T (z−1, ρ)] = 0 (23)

By substituting (11) into (23) (and noting that S(z−1, ρ) =
(1− z−1)S′(z−1, ρ)), one can arrive to the following condi-

tion:

lim
z→1

N(z−1)[R(z−1, ρ)− T (z−1, ρ)]

M(z−1)S(z−1, ρ) +N(z−1)R(z−1, ρ)

=
R(1, ρ)− T (1, ρ)

R(1, ρ)
= 0 (24)

which evidently leads to the condition asserted in (21).

B. Convex Optimization via Semi-Definite Programming

Suppose that it is desired to achieve proper tracking

performance and zero steady-state error for a step reference

input. Moreover, it is desired that the sensitivity function

U(z−1, ρ) in (12) be shaped to limit the control efforts.

As a result, the infinity norm of W2E and W3U should

be minimized where W2 is a lowpass filter with a cut off

frequency close to the desired bandwidth and W3 is a high

pass filter to attenuate the control efforts at high frequencies.

By utilizing the equality constraint in (21), one can formalize

an optimization problem to obtain the admissible R(ρ), S(ρ),
and T (ρ) controllers as follows:

minimize
{ρR,ρS ,ρT }∈R

γ

subject to: γ−1|W2[ψ(ρ)−NT (ρ)]| < Re{ψ(ρ)}

γ−1|W3MT (ρ)| < Re{ψ(ρ)}

R(1, ρ) = T (1, ρ) 6= 0

∀ω ∈ Ω
(25)

Fig. 3. Torsional apparatus (ECP model 205a) used for the experimental
analysis. The three disks are comprised of block masses which can be added
or removed to alter the inertia of each disk (and thus alter the dynamics of
the system). Each disk is vertically suspended on a spring with a variable
spring constant. The actuator is located on the bottom of the device.

The optimization problem in (25) is quasi-convex since

the objective function (γ) is being multiplied with the opti-

mization parameters of S(ρ) in one of the constraints. One

solution is to implement an iterative bisection algorithm in

order to convexify the optimization problem. In this method,

an iterative approach is implemented in order to obtain an

asymptotically convergent solution.

Remark In the bisection method, an initial value is assigned

for γ such that γi = 0.5(γmin + γmax) to solve the opti-

mization problem, where γmin and γmax are the minimum

and maximum bounds set for γ. If the problem is feasible

for γi, then γi+1 = 0.5(γmin + γi), and the solution to the

optimization problem in (25) is recalculated with γi+1. If the

problem is infeasible for γi, then γi+1 = 0.5(γmax + γi).
This process is repeated until a solution is obtained within

a given tolerance.

The problem in (25) is known as a semi-infinite pro-

gramming (SIP) problem since there are a finite number of

optimization variables and an infinite number of constraints.

To solve this problem, the optimization algorithm can be

converted to a semi-definite programming (SDP) problem.

A predefined frequency space can be implemented in order

to solve a finite number of constraints. This frequency grid

can be predefined in a variety of manners (see [16], [17]).

IV. EXPERIMENTAL ANALYSIS

In order to demonstrate the effectiveness of the proposed

method, an RST controller will be designed for a multi-

model torsional apparatus (ECP Model 205a), as shown in

Fig.3. This system contains three disks with variable inertias

suspended vertically on anti-friction ball bearings. The disks

are connected through a non-rigid cable with an adjustable

spring constant. The actuator (a high torque brushless motor

with a 2 Nm rating) is located at the bottom of the apparatus

and is directly connected to the bottom disk via a rigid

timing belt. The position of the disks are measured with

a high resolution encoder (16, 000 count/rev) and is used
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Fig. 4. Time-domain response of the closed-loop system with a PRBS
excitation signal (shown only for the system configuration with two block
masses on the top disk): the PRBS reference input r(t) with a register
length of 511 (solid-blue); control output u(t) (solid-red); output response
y(t) (solid-black).

as feedback to control the closed-loop system. For this

experiment, the dynamics of the apparatus will be altered

by varying the inertias of the top disk.

An RST controller will be designed for various inertial

configurations. Three different configurations will be con-

sidered for this design; the bottom disk and the middle disk

will possess fixed inertias, while the inertia for the top disk

will be varied. The inertia is varied by altering the number

of block masses that are arranged on the disk.

The input to the system is the current of the actuator and

the output is the position of the third disk. Therefore, the

plant model has an integrator and is not stable; thus it is

required to obtain the FRF’s of the various configurations

in a closed-loop structure. As asserted in Section (II-A), a

stabilizing controller must be used to obtain N(e−jω) and

M(e−jω). For this plant, a PID controller was designed to

stabilize the closed-loop system. A reference input with a

pseudo-random binary sequence (PRBS) is implemented to

excite the closed-loop system with a sampling frequency of

25 Hz. The time-domain signals for the reference input

r(t), control output u(t), and output y(t) for this system

are depicted in Fig.4 (for brevity, the figure shown is for

one of the configurations). The FRF of N(e−jω) is then

obtained with the spectral analysis command in MATLAB

(i.e., spa(·)) by using the time-domain data of r(t) and

y(t). Similarly, the FRF of M(e−jω) is obtained in a similar

fashion by using the time-domain data of r(t) and u(t).
The FRF of the plant model can then be described as

G(e−jω) = N(e−jω)M−1(e−jω). The FRF’s for each of

the three configurations are shown in Fig. 5.

It will be desired to minimize the tracking error and

to reject a step disturbance at the output. In order to

achieve these specifications, an integrator will be included

in S⋆(z−1, ρ) (i.e., S⋆(z−1, ρ) = (1 − z−1)S(z−1, ρ)).
Additionally, a weight will be designated to limit the control

effort. Therefore, the optimization problem formulated in

(25) will be implemented for this design scheme. The RST

controllers will each be linearly parameterized as in (3), (4),

(5) with nr = ns = nt = 8. Thus the following optimization

10
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Fig. 5. FRF’s of the plant model obtained from the closed-loop time-domain
response of each system configuration. The loads on the bottom and middle
disk are fixed while the load on the top disk is varied: FRF with one block
mass on the top disk (solid-blue); FRF with two block masses on the top
disk (solid-green); FRF with four block masses on the top disk (solid-red).

problem will be considered:

minimize
{ρR,ρS ,ρT }∈R

γ

subject to:

γ−1|W2(e
−jωk)[ψ⋆

i (e
−jωk , ρ)−Ni(e

−jωk)T (e−jωk , ρ)]|

− Re{ψ⋆
i (e

−jωk , ρ)} < 0

γ−1|W3(e
−jωk)Mi(e

−jωk)T (e−jωk , ρ)|

− Re{ψ⋆
i (e

−jωk , ρ)} < 0

R(1, ρ) = T (1, ρ) 6= 0

for i = 1, 2, 3 and k = 1, . . . , q
(26)

where

ψ⋆
i (e

−jωk , ρ) =Mi(e
−jωk)S⋆(e−jωk , ρ)

+Ni(e
−jωk)R(e−jωk , ρ)

A. Weighting filter selection

The weighting filter W2 will be chosen based on the fact

that Ed + Td = 1, where Ed is the desired error sensitivity

function and Td is the desired complementary sensitivity

function (i.e., the closed-loop transfer function). Td is chosen

as a first order transfer function such that the step response

will have a time constant of 1 s (which corresponds to

a closed-loop bandwidth of ωb = 1 rad/s). The transfer

function which satisfies these requirements can be formulated

as

Td(s) =
ωb

s+ ωb

(27)

Since Ed = 1 − Td, an appropriate filter for the error

sensitivity function can be devised as

W2(s) =
s+ ωb

s
(28)

It will be desired to minimize the control effort at high fre-

quencies; therefore, a viable choice for the control weighting

function W3 is

W3(s) =
s+ ωu/Mu

ωu

(29)
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Fig. 6. Step response for each load configuration: response with one block
mass on the top disk (solid-blue); response with two block masses on the
top disk (solid-green); response with four block masses on the top disk
(solid-red).

where Mu is the maximum controller gain, and ωu is the

controller bandwidth [18]. For the torsional system consid-

ered in this paper, an appropriate choice for these parameters

are Mu = 103 and ωu = 3 rad/s.

B. Experimental results

The optimization problem in (26) is solved by considering

a logarithmically spaced frequency grid with q = 400 points.

The SDPT3 software package is used in conjunction with

Matlab to solve the optimization problem. The solution

obtained from the bisection algorithm produces the following

controllers:

R(z−1) = 34.19− 113.7z−1 + 160z−2

− 100.3z−3 − 10.66z−4 + 60.08z−5

− 32.94z−6 − 2.093z−7 + 5.542z−8

S⋆(z−1) = 1 + 0.3538z−1 + 0.2304z−2 − 0.07627z−3

− 0.2845z−4 − 0.2575z−5 − 0.08136z−6

− 0.1705z−7 − 0.2921z−8 − 0.422z−9

T (z−1) = 0.00942 + 0.01295z−1 + 0.01548z−2

+ 0.01646z−3 + 0.01116z−4 + 0.01683z−5

+ 0.01491z−6 + 0.01329z−7 + 0.01008z−8

The optimal value of γ obtained from the optimization

is γopt = 2.228. The step responses obtained for each

of the inertial configurations are depicted in Fig. 6. From

the multi-model step responses, it can be observed that the

system is stable and robust to the dynamic variations of

the torsional apparatus. Moreover, the load variations do

not significantly impact the tracking performance (which is

expected, since the same weighting filter was used in the

multi-model optimization problem). The closed-loop FRF’s

of all three system configurations are shown in Fig. 7. It

can be observed that the achieved closed-loop bandwidth for

all three configurations is approximately 1 rad/s, which is

the bandwidth that was specified to form the weighting filter

W2(s). This confirms the feasibility of the solution obtained

from the optimization problem in (26).
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Fig. 7. Closed-loop frequency response functions of all three system
configurations: closed-loop FRF with one block mass on the top disk (solid-
blue); closed-loop FRF with two block masses on the top disk (solid-green);
closed-loop FRF with four block masses on the top disk (solid-red).

V. CONCLUSION

In this paper, a new method has been proposed to design

robust controllers with H∞ performance. The RST con-

troller structure possesses many practical advantages, such

as its two-degree of freedom design capabilities and the

fact that it can be easily implemented. A frequency-domain

approach has been used in order to avoid the problem of

unmodeled dynamics associated with parametric models. A

convex optimization problem is constructed based on the

H∞ criterion thanks to the process of linearly parameterizing

the RST controllers. This controller design method has been

employed to design a robust RST controller to control the

disk position of a coupled torsional apparatus. A multi-model

optimization approach was considered to design a controller

for various loads; the design proved to be robust to the

dynamic variations of the system. For further research, it

will be desired to establish an optimal frequency gridding

process, and compare how different gridding schemes can

improve the solution to the optimization problem.
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