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Zusammenfassung 
Im Laufe des letzten Jahrzehnts ist das Interesse an der Nanochemie gewachsen, insbesondere 

aufgrund der interessanten Eigenschaften der Nanomaterialien, die von der Grösse, Form 

sowie der Oberflächenstruktur bestimmt werden. Dabei haben metallische Nanopartikel für 

grosses Aufsehen gesorgt, da ihre Eigenschaften es ihnen ermöglicht, in verschiedenen 

naturwissenschaftlichen Disziplinen eingesetzt zu werden. Trotz der Tatsache, dass sich die 

Eigenschaften von metallischen Nanopartikeln von der Masse unterscheiden, bleiben einige 

Eigenschaften weiterhin unverändert, darunter die unendlich grosse Dielektrizitätskonstante, 

die in Metallen vorgefunden werden. Aus diesem Grunde wurden metallische Nanopartikel 

benutzt, um Verbundwerkstoffe mit Polymere als Matrix herzustellen. Aus diesen 

Verbundwerkstoffen sollen dielektrische Materialien mit hohen Dielektrizitätskonstanten 

hervorgehen, die für die Energiespeicherung oder für die Energieumwandlung eingesetzt 

werden sollen. 

Trotz der grossen Anzahl an Publikationen in den letzten Jahren, die sich mit der Herstellung 

von Verbundwerkstoffen mit hohen Dielektrizitätskonstanten befassen, gibt es weiterhin 

Verbesserungsmöglichkeiten für bestehende Materialien. Zum Beispiel werden in einigen 

Materialien weiterhin hohe dielektrische Verluste verzeichnet, und ausserdem führt die 

Nutzung von gewissen Füllmaterialien zu einer deutlichen Verschlechterung der 

mechanischen Eigenschaften, insbesondere mit zunehmendem Anteil des Füllmaterials. Dazu 

besitzen eine grosse Zahl von Verbundwerkstoffen keine gute Kontrolle über die Grösse und 

Form der Füllmaterialien sowie unzureichende Informationen bezüglich der 

Oberflächenbehandlung, die insgesamt zu weiteren Komplexitäten für das Verständnis der  

Materialeigenschaften beitragen. 

Diese Arbeit versucht, sich mit den genannten Problemen von Verbundwerkstoffen zu 

befassen. Aus diesem Grunde wurden Silbernanopartikel (AgNPs) als Füllmaterial eingesetzt, 

während Polydimethylsiloxan (PDMS) als Polymermatrix auserwählt wurde. Die Vorteile von 

Silbernanopartikeln sind ihre relativ leichte Herstellungsmöglichkeiten sowie ihre Resistenz 

gegenüber Korrosion und Oxidation. Die Herstellung von grossen Mengen Silbernanopartikel 

wurde durch die Durchführung der Polyolsynthese in einem segmentierendem Rohrreaktor 

(SFTR) ermöglicht. Die Silbernanopartikel wurden mit einer Siliziumdioxidschicht umgeben, 

um der Entwicklung von leitfähigen Pfaden innerhalb des Verbundwerkstoffs vorzubeugen. 

Die dielektrischen Eigenschaften von diesen „Core-shell“-Partikeln wurden zudem in 



Abhängigkeit von der Schalendicke untersucht. Die Siliziumdioxidschicht ermöglicht auch 

die Verbesserung der Kompatibilität zwischen den Partikeln und dem PDMS. Die Wahl von 

PDMS als Matrix erfolgte aufgrund ihrer guten elektromechanischen Eigenschaften wie etwa 

hohe Dehnbarkeit, niedrige Viskosität und elektrische Leitfähigkeit sowie tiefe Werte für den 

Verlustfakor (tan δ). 

Die hergestellten Verbundwerkstoffe haben im Vergleich zu PDMS höhere 

Dielektrizitätskonstanten. Ausserdem können die Materialien trotz des hohen Volumenanteils 

von Silber (20 vol%) weiterhin stark gedehnt werden (800 %). Andere Eigenschaften wie 

etwa die elektrische Leitfähigkeit oder der Verlustfaktor wurden niedrig gehalten, sodass die 

jeweiligen Materialien das Potential haben, als dielektrische Elastomere eingesetzt zu werden. 

 

Stichwörter: Silbernanopartikel, Polyolsynthese, Rohrreaktor, Öberflächenbehandlung, 

Verbundwerkstoffe, dielektrische Elastomere. 

 



Abstract 
Over the last decade, a growing interest in nanochemistry has emerged due to the interesting 

features of nanomaterials that vary with size, shape and surface structure. In particular, metal 

nanoparticles have received much attention due to their properties that enable their use in 

various scientific disciplines. Although metal nanoparticles exhibit a number of properties 

that differ from bulk, some properties, such as their infinite permittivity, remain unchanged. 

As a result, metal nanoparticles have also been used to prepare nanocomposites with polymers 

in order to provide dielectric materials featuring high permittivities which can be used for 

applications such as energy storage (capacitors) or as materials for the conversion of electrical 

energy into mechanical motion (actuators).  

Despite the large number of publications on the preparation of nanocomposites exhibiting 

high permittivities which have emerged over the years, there is still room for further 

improvement in the current materials properties. For instance, dielectric losses are still quite 

high in some materials, and the use of certain types of filler lead to a large deterioration in the 

mechanical properties of the nanocomposites, especially with increasing filler content. In 

addition, a large number of the fillers used for the preparation of the nanocomposites feature 

poor size and shape control as well as poorly defined surface properties thus adding to the 

complexity of understanding the resulting material properties. 

This work tries to address some of the current issues concerning the preparation of dielectric 

materials. Therefore, silver nanoparticles (AgNPs) were used as filler, while polydimethyl- 

siloxane (PDMS) was employed as the polymeric matrix. The advantages of using AgNPs as 

filler consist of their relative facile preparation, as well as the possibility of controlling their 

surface properties due to their resistance towards oxidation and corrosion. The possibility of 

preparing AgNPs in large amounts with control over the average size of the particles was 

realized by conducting the polyol synthesis of AgNPs in a Segmented Flow Tubular Reactor 

(SFTR). A SiO2 layer was grown around the AgNPs to prevent the loss of the insulating 

nature of the composite due to the formation of conductive pathways, and the thickness 

dependency of the dielectric properties of the core-shell particles was also investigated in this 

work. Furthermore, the SiO2 shell also provided the possibility of further surface 

functionalization, which was conducted in order to compatibilize the core-shell particles with 

the PDMS matrix. PDMS was chosen as the polymeric matrix due to its good 



electromechanical properties, which include high elasticity, low viscosity as well as low 

conductivity and low tangent losses (tan δ).  

The resulting nanocomposites featured enhanced permittivities compared to PDMS, while 

further optimization in the reaction conditions as well as in the processing procedure yielded 

nanocomposites with high flexibility that can undergo strains as high as 800 % at a silver 

content of 20 vol%. Other properties such as electric conductivity and the tan δ were kept low 

which emphasizes the potential of the nanocomposites to being used as flexible dielectric 

materials.  

 

Keywords: silver nanoparticles, polyol synthesis, segmented flow tubular reactor, surface 

functionalization, nanocomposites, dielectric elastomer. 
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Chapter 1: Introduction 

     1.1 General Overview on Electroactive Polymers (EAPs) 

The research community has shown a growing interest in the development of high 

dielectric permittivity (İ’) materials due to their multiple application fields in the electrical 

industry. They are commonly used for electronic applications such as in capacitors, gate 

dielectrics, memories, pulse power energy storage and electroactive materials.1–5 Non-

electronic applications of high İ’ materials include their use in biomedical imaging, non-

destructive testing, active vibration control and aerospace.6 

One of the fields where high İ’ materials find potential application is in the preparation of 

Electroactive polymers (EAPs). EAPs are a class of smart materials that have the ability to 

change their size and shape through the influence of an electric field. The concept of EAPs 

can be traced back to 1880 when Roentgen observed that a film made of natural rubber 

could change its shape by applying an electric field across it.7 Since the mid-1990s, the 

research on EAPs has been intensified by the scientific community, and novel polymeric 

materials featuring large amounts of deformations (also known as actuation) through the 

application of external forces have emerged over the years. The high standing of the EAP 

research can also be attributed by the fact that, compared to inorganic materials, polymers 

are lightweight and can be produced in various shapes at relatively low costs.8 As for now, 

applications of EAPs are being considered for loudspeakers, tunable optical elements,9 cell 

and tissue engineering,10 robotics11 and prosthetic devices.9,11–16 A more detailed list of 

applications for EAPs is reported elsewhere.5,17 The growing demand for EAPs and the 

need for interdisciplinary collaborations also led to the creation of the European Scientific 

Network for Artificial Muscles (ESNAM) in Europe, an organization consisting of both 

academic and industrial researchers.18 Global companies dealing with the development of 

EAPs are Artificial Muscle (USA), Danfoss PolyPower Eamex (Denmark/Japan), 
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Environmental Robots (USA), Optotune (Switzerland), Creganna-Micromuscle (Ireland) 

and Strategic Polymer Sciences.19 

In general, EAPs can be divided into the two subclasses: Ionic EAPs or electronic 

EAPs.19,20 Within the electronic EAPs, dielectric elastomers (DEs) have attracted 

significant interest due to their very large strains and high-power applications, which are 

properties of interest for the development of high performance actuators.5,8 Compared to 

the features of a mammalian skeletal muscle, DEs come close to mimicking their 

properties like strain and stress.21 With their proposal as actuators dating back to 1998, 

DEAs are electromechanical transducers which can transform electric energy into 

mechanical energy.22 The working principles of DEAs will be explained in this paragraph. 

A DEA consists of two electrodes separated by a dielectric elastomer film. The actuation in 

the electronic EAPs is induced by the application of a voltage difference between the 

electrodes (Fig. 1).17 This phenomenon leads to the buildup and accumulation of different 

charges on the opposing electrodes thus giving rise to Coulomb attraction between them. 

An electrostatic pressure p, also known as Maxwell stress, acts on the sandwiched film and 

causes it to be strained in thickness direction sz and expand in-plane due to the 

incompressible nature of the elastomer. The electrostatic pressure p acting on the film for a 

given voltage U can be calculated using equations Eq. 1 and Eq. 2, where İ0 = 8.85 x 10-12 

F∙m-1 is the vacuum permittivity, İr is the permittivity or dielectric constant of the material, 

Y the Young’s modulus  and d is the initial thickness of the elastomer. After switching off 

the voltage, the DEA will return to its unstrained state.8 

 

݌                                                                          =  ଴ሺ௎ௗሻଶ                                                  (Eq. 1)ߝ௥ߝ

 

�ݏ                                                       = −௣�                                                           (Eq. 2) 
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Fig. 1: Composition and working principle of DEA. Upon application of a voltage (right side) the 
film is compressed and elongated thus leading to the conversion of electrical energy into 
mechanical work. 

 

Apart from generating mechanical motion from electrical energy, the reverse scenario can 

be exploited for energy storage. The latter can be produced through the charging of the DE 

in the stretched state followed by its gradual relaxation into the original state.23 As a result, 

the tensile forces are reduced which leads to the thickening of the elastomer as it is 

released from the stretched state. This leads to the compression of like charges while 

opposite charges are brought further apart. This phenomenon leads to an increase in the 

voltage of the system. Overall, such dielectric elastomer generators (DEG) serve as 

capacitors, with some materials demonstrating energy densities as high as 400 mJ/g.24,25 

The widely used materials in DEAs and DEGs are silicones (PDMS) and acrylic VHB (of 

3 M) due to their ability to undergo large strains during deformation.26 A list of elastomers 

that have been used in DEAs or DEGs is shown in Tab. 1. 
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Despite the good attributes of current DEs, the biggest remaining challenge is the high 

driving (electric) field required for the actuation process (10 - 150 V/µm) which hampers 

their applications within the proximity of human bodies due to safety issues.17  

Eq. 1 illustrates that the film thickness as well as the other material properties such as the 

Young’s modulus and the relative permittivity İr require optimization in order to enhance 

the electromechanical properties of the DEAs. As generally suggested,20,29 the reduction of 

d and Y as well as the enhancement of İr are necessary to lower the electric fields required 

for the actuation. 

Conventional film formation techniques include dip coating and casting procedures, which 

also enable the formation of complex shapes. For thin films, spin coating is a commonly 

used method. Elastomeric films as thin as 1 µm with high uniformity have been prepared 

with this technique which effectively leads to the reduction of the driving voltage.27 The 

typical film thickness of polymer membranes used for DEAs is around 50 ȝm.30 

The Young’s modulus of elastomers can be reduced by reducing the amount of cross-linker 

in the system which leads to a lower cross-linking density.31,32 The lower cross-linking 

density allows the polymer chains to shear much easier as the chemical bonds between 

neighboring polymer chains is decreased. A detailed explanation on the relationship 

between the Y and the cross-linking density will be shown in the course of this chapter. 

Another solution is the use of plasticizers to soften the material.33 The increase in the 

plasticizer content has led to a decrease in Y of the silicone elastomer, while İr remained 

quasi unaffected by the increasing content of the plasticizer. Further softening of the 

material properties to improve the electromechanical properties has been reported for tri-

block copolymers using specific oil as the plasticizer.34 

Despite the feasibility of the mentioned strategies to improve the device performance, there 

are other obstacles that tend to occur along the way. For example, it is essential to lower 

the possibility of defects from occurring in the material.27 Defects within the structure can 

propagate through the straining of the material (either during the assembly of the device or 
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during the actual device performance) thus causing the premature destruction of the 

dielectric film.29 This phenomenon manifests itself more strongly in thin films than in 

thicker materials and leads to a shorter life-time of the device. As for the reduction of Y, 

the method is limited by the fact that a very soft material becomes difficult to process. The 

mere increase in plasticizer leads to a reduction of the maximum absolute achievable 

strains and therefore the amount of plasticizer has to be adjusted to an optimal level.33 The 

main motivation of this project is to enhance the dielectric properties of materials by 

exploiting the possibilities of increasing the permittivity İr of the material. Additionally, 

the materials should feature high degree of flexibility, which should manifest itself in the 

capability of the material to undergo large mechanical strains when subjected to external 

forces. The basic concepts and strategies towards the preparation of such high performance 

materials will be elucidated in the following chapters. 

 

1.2 Basic Principle of Elastomers 

Elastomers are amorphous polymers which exhibit a number of useful properties, including 

good electrical and thermal insulation as well as good mechanical properties.35 The good 

mechanical properties of elastomers manifest itself in their low Young’s modulus Y and 

their capability to undergo large mechanical strains through application of mechanical 

stress. The Young’s modulus Y is mathematically described by Hooke’s law which states 

that the deformation of an elastic material is proportional to the applied stress and hereby 

leads to 

 

                                                                  � = ௗ�ௗ௦                                                          (Eq. 3) 

 

where σ is the stress that results in the corresponding strain s of the material. For small 

strains, the Young’s modulus can also be calculated as Y = σ/s.35   
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Once released from the applied stress, the elastomer will return to its original 

configuration. A typical stress-strain curve is illustrated in Fig. 2. The stress-strain curve of 

an elastomer can be divided into three different regions a, b and c, which is typically 

observed for elastomers. The elastomer features a “hard” characteristic in the low strain 

region a, which manifests itself through the steep slope of the stress-strain curve. 

Thereafter, the material softens and the slope of the stress-strain curve decreases as it 

enters the region b. As the chains are stretched further, the slope of the curve increases 

again and the material undergoes strain-hardening.30  
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Fig. 2: Typical stress-strain curve for an elastomer (PDMS). 

 

 

The elastomer is produced by cross-linking the polymer chains under the formation of a 

network. The cross-linking can occur through the physical interaction between segments in 

the polymer chains or through the chemical reaction of the polymer chains with cross-

linker molecules which can be regarded as physical netpoints. Physical cross-linking is 
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found in thermoplastic polymers (e.g. thermoplastic polyurethane (TPU)) while chemical 

cross-linking is observed for another group of elastomers which include synthetic and 

natural rubbers, polydimethylsiloxane (PDMS, Fig. 3) and polyacrylates.36 For the cross-

linking process, also known as curing or vulcanization, the addition of other ingredients, 

including curing agents, activators or accelerators is essential for obtaining the elastomeric 

film.35  

 

 

 

 

Fig. 3: Structure of hydroxyl-terminated PDMS. 

 

In the case of PDMS, various methods have been applied to induce the chemical cross-

linking reaction and eventually yield an elastomer. The cross-linking of PDMS has been 

achieved through condensation reactions between the hydroxy end-groups of the PDMS 

chain and the cross-linker (e.g. tetraethoxysilane (TEOS)) catalyzed by organotin or 

organotitanium catalysts e.g. di-n-butyltin dilaureate (DBTDL, Fig. 4).31,37An alternative 

approach consists of the cross-linking via hydrosilylation. This method consists of an 

addition step involving the reaction of a hydrosilane group (Si-H) with the vinyl moiety in 

the presence of platinum catalyst (e.g. Karstedt’s catalyst, Fig. 5). In this case, it is essential 

for the PDMS to be equipped with either hydrosilane- or vinyl functional groups. The 

advantage of the hydrosilylation is that no side-products are formed unlike the 

condensation-based cross-linking where alcohols are produced.38 Additionally, only a very 

small material shrinkage is observed with this preparation method during the curing 

process.39 The cross-linking by hydrosilylation can be accelerated by UV-activation. As a 
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result, the cross-linking is accomplished after a few minutes.40 The thiol-ene addition is 

another UV-initiated reaction which has been exploited for the cross-linking of PDMS as 

the reaction occurs at high yields in a matter of minutes.41–44 

 

 

Fig. 4: Chemical structure of di-n-butyltin dilaureate DBTDL.37 

 

 

 

 

Fig. 5: Chemical structure of Karstedt’s catalyst.38 

 

From a thermodynamic point of view, the cause of the elasticity in elastomers is the change 

in the Helmholtz free energy H of the system during deformation which is given by: 

 

ܪ�                                                     = �ܷ − ܶ�ܵ                                               (Eq. 4) 
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Eq. 4 shows that H consists of two contributions: The internal energy U and the entropic 

term TdS. The force acting during the deformation is given by the derivative of H over the 

deformation length l. 

 

ܨ                                                           = డுడ௟                                                            (Eq. 5) 

 

The deformation of the elastomer leads to an ordering of the polymer chains by causing 

their alignment along the direction of the deformation. The elastomeric behavior is 

dominated by the entropic contribution in H as the change in entropy is larger than the 

change in the internal energy.45 The return of the elastomer into its original state upon 

release from external forces is attributed to the system’s objective to maximize its entropy. 

The calculation of the entropy change of the system ΔS has been conducted in previous 

works and will be briefly summarized in the following paragraph.46–49 The change of the 

entropy ΔS of the elastomer system is given as 

 

                                                 �ܵ = − ே௞ಳଶ ሺߣଶ + ଶఒమ − ͵ሻ                                            (Eq. 6) 

 

where kB is the Boltzmann constant, N the number of the polymer chains within the 

network and Ȝ the relative change in the length of the elastomer as a result of the 

deformation. The deformation of the elastomer by applying an external force induces a 

mechanical stress. The mechanical stress σ is defined as the ratio between the applied force 

F over a cross sectional area A. 
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                                                                � = ி஺                                                       (Eq. 7) 

 

The combination of Eq. 6 and Eq. 7 leads to the following expression: 

 

                                      � = ௡௞ಳ்௏ ቀߣ − ଵఒቁ = ߣ஻ܶሺ݇ߛ  − ଵఒሻ                                  (Eq. 8) 

 

Here, the quantity n/V defines the network density γ. The correlation between γ and Y can 

be obtained by using the relationship of the shear modulus G with Y given as  

 

                                                       � = ሺͳܩʹ +  ሻ                                                (Eq. 9)ߥ

 

where Ȟ = 0.5 for incompressible materials thus giving rise to Y = 3G. With the expression 

kBTγ = G, the expression for Y is given by 

 

                                                           � = ͵݇஻ܶߛ                                                 (Eq. 10) 

 

In an ideal elastomer, the polymer chains are interconnected by cross-linker molecules, and 

the mechanical properties can be tuned by the cross-linking density γ and the temperature T 

as depicted in Eq. 10. However, the real scenario is much more complex as structural 

defects are present within the entire network and are responsible for non-equilibrium 

mechanical properties of the network which manifests itself in the viscoelastic behavior of 

the elastomer.50 Examples for such structural defects are the presence of dangling and 
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unattached polymer chains as well as the entanglement of individual polymer chains thus 

giving rise to branched structures (Fig. 6). Both the dangling and branching of polymer 

chains are responsible for the extremely slow relaxation of the elastomer into its 

undeformed state. In the meanwhile, the effect of the unattached chains on the mechanical 

properties of the elastomer is more pronounced with increasing molecular weight.50  

 

 

Fig. 6: Schematic illustration of a real polymer network. The present structural defects are 
encircled. 

 

In conclusion, the prediction of the mechanical properties of elastomers is quite difficult as 

the presence of structural defects have the ability to influence the mechanical properties in 

a more or less pronounced way depending on their chemical structure. Therefore, 

knowledge on the chemical information of the system is essential in order to find 

arguments explaining the obtained mechanical parameters and their potential deviation 

from the predicted values observed in ideal elastomers which neglect the influence of 

structural defects. 
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1.3 Dielectric Properties of Materials 

Dielectric materials are electrical insulators which can be polarized by an external electric 

field. They are generally applied in capacitors which are devices used for energy storage. 

In the capacitor, the dielectric material is sandwiched by two opposing conductive plates. 

When a capacitor is subjected to an external field by the application of a voltage, opposite 

charges are built up in the area covered by the two opposing conductive plates due to the 

field-induced polarization and subsequent charge separation within the dielectric. This 

phenomenon gives rise to an internal electric field acting in the opposite direction. The 

resulting charge density φ which is found in the area A covered by the conductive plates 

with opposing charges Q is given by the expression 

 

                                                              � = ொ஺                                                  (Eq. 11) 

 

while the external electric field E induced by the applied voltage U is given by 

 

ܧ                                                                = ௎ௗ                                                  (Eq. 12) 

 

where d is the distance between the plates. The amount of accumulated charges on the 

capacitor plates is proportional to the applied voltage and the capacitance C of the 

dielectric material. As a result, C is also detrimental for the total energy Wel stored in the 

capacitor device. This gives rise to the two following expressions:  

 

                                                             ܳ = �ܷ                                                  (Eq. 13) 
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                                                  ௘ܹ௟ = ொమଶ஼ = ଵଶ �ܷଶ                                               (Eq. 14) 

 

The permittivity is a parameter which indicates the ability of a material to store electrical 

charge for a given volume.35 The permittivity İ is a complex number and is given by  

 

ߝ                                                           = ′ߝ −  (Eq. 15)                                                     ′′ߝ�

 

where İr’ and İr’’ are the real and imaginary parts of the permittivity. In an alternating 

electric field, both İ’ and İ’’ depend on the angular frequency � = ʹ�݂ (f being the 

ordinary frequency) of the oscillating electric field as the mobility of the charge carriers in 

the material responds to changes in the applied electric field.51 As a result, İ can also be 

written as  

 

ሺ�ሻߝ                                                   = ሺ�ሻ′ߝ −  ሺ�ሻ                                        (Eq. 16)′′ߝ�

 

The two parts of the complex permittivity i.e. İ’ and İ’’ can be used to define the 

dissipative energy losses of the dielectric system.52 For instance, the tangents of the loss 

angle (tan į) can be calculated as 

 

                                                              tan ߜ =  �′′�′                                                      (Eq. 17) 
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while the dielectric conductivity is given by 

 

                                                               � =  (Eq. 18)                                                       ′′ߝ�

 

Generally, it is a convention to use tan į, İ’’ and σ as parameters which describe the 

conductive and dissipative energy loss of a material. Therefore, they have to be kept as low 

as possible for DEs. The relative permittivity İr (or dielectric constant) describes the 

change of the electric field within the material compared to vacuum. This property is given 

as a dimensionless number and can be obtained from the permittivity İ by the expression 

below.52 

 

௥ߝ                                                      = ��బ = ′௥ߝ −  ௥′′                                           (Eq. 19)ߝ�

 

The relative permittivity İr is an essential parameter to quantify the ability of materials to 

serve as a dielectric in capacitors for energy storage. From this point on, we will simply 

refer to İr as “permittivity” or dielectric constant.  

 

The relationship between the permittivity and capacitance is given by 

 

௥ߝ                                                                 = ஼஼బ                                                        (Eq. 20) 
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where C0 is the capacitance of the capacitor in vacuum.35 Besides İr, the geometry of the 

capacitor is important to determine the capacitance. Considering the geometry of a parallel 

plate capacitor, the capacitance of the material is given by: 

 

                                                                � =  �ೝ�బ஺ௗ                                                    (Eq. 21) 

 

The performance of dielectric materials is limited by failure mechanisms which can be 

classified into the following categories: thermal, mechanical and electric breakdown.53 The 

electrical breakdown is a failure mechanism in capacitors which leads to the destruction of 

the insulating capability of the material through the resulting formation of conducting 

pathways. Each dielectric material features an electrical breakdown strength which is 

normally given by the breakdown electric field EB or by the corresponding voltage UB. In 

DEAs, the electric breakdown causes the failure of the device prior to reaching the 

mechanical limits of the materials. In polymers, the electric breakdown is dependent on 

their initial physico-chemical properties as well as on inhomogeneities and defects within 

the material which can cause secondary breakdown mechanisms.54 In order to increase the 

life-time of devices, the modification and improvement of current materials have been 

essential measures undertaken by various research groups. In DEAs, improvements in the 

breakdown strength of the devices include the pre-stretching of the actuator films,26,55,56 the 

use of self-clearing electrodes29,57 and by exploiting the effects of dielectric oil 

encapsulation. 58–60 

 

1.4. Polarization Mechanisms in Molecular Structures 

As stated earlier, the external electric field is responsible for the polarization of charges 

within the elastomer. The permittivity of a material is dependent on the polarization P of 

the material which can be described by the following equation (see next page):51 
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                                                          ܲ = ሺߝ − ͳሻߝ଴ܧ                                                 (Eq. 22) 

      

Principally, there are four polarization mechanisms that can be induced within a material 

by the application of an electric field. They are known as (1) electronic, (2) atomic, (3) 

interfacial, and (4) orientation polarization.35 The first two mechanisms are found in all 

materials and involve the displacement of electrons relative to the nucleus of the atoms and 

the separation of atomic nuclei from each other, respectively. The third mechanism has to 

be taken into account for inhomogenous materials (e.g. polymer blends) while the fourth 

mechanism occurs in polar molecules with a permanent dipole moment µ  and lead to a net 

orientation of the dipole along with the field. Permanent dipoles are present if the 

gravitational centers of positive and negative charges do not overlap within a molecule. 

The net orientation vanishes again in the absence of the external electric field. The 

Polarization P can be given by summing up the dipole moments within a given volume V 

as shown by Eq. 23. 

 

                                                               ܲ = ଵ௏ ∑  (Eq. 23)                                                     �ߤ

 

The polarizability α of an atom/molecule is the sum over all three polarization 

contributions.35  

The scalar quantity α of an atom/molecule is directly correlated to the permittivity and is 

defined by the Clausius-Mossotti equation as 

 

                                      ே�ଷ�బ = ሺ�ೝ−ଵሻሺ�ೝ+ଶሻ ேಲ�ଷ�బ  ݎ݋   = ሺ�ೝ−ଵሻெ�ሺ�ೝ+ଶሻఘ                                  (Eq. 24) 
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where N is the number of atoms or molecules per volume. The Clausius-Mossotti can also 

be written as a function of the molecular weight Mw and density ρ of the material to obtain 

the expression NAα/3İ0 which is also known as molar polarization. However, this equation 

assumes the dielectric to be perfect, homogenous and isotropic and is only valid for 

nonpolar or weakly polar dielectric materials in the absence of permanent dipoles.35,61 In 

the case of polar molecules, the effect of orientation polarization has to be considered and 

the term becomes 

  

                                                    
ேଷ�బ ሺ� + ఓమଷ௞ಳ்ሻ = ሺ�ೝ−ଵሻሺ�ೝ+ଶሻ                                         (Eq. 25) 

 

where µ  is the permanent dipole moment, kB the Boltzmann factor and T the temperature.51 

The equation is also well-known as the Debye formula. It has to be noted that the Debye 

formula is generally accepted for the treatment of dielectric gases. However, it assumes 

that dipoles do not interact and influence each other thus neglecting those shielding effects 

also known as internal reaction fields, which is only an accurate approximation for very 

dilute systems. The Clausius-Mossotti and Debye formula are based on Lorentz’s treatment 

of the problem where he considered a spherical cavity with polarization P in an infinitely 

extended media.62 In their theory, the orientation polarization is caused by a local electric 

field given as ܧ௅௢௖ = ܧ + ଵଷ ቀ ௉�బቁ.51 Onsager took the interactions of the dipoles with each 

other into account and defined the theory of reaction field where the polarization of the 

environment contributes to the enhancement of the permanent dipole moment of a 

molecule.63 Considering the same model used by Lorentz, the overall dipole moment m of 

the molecule can be described by ݉ = ߤ +  ௅௢௖. The contribution of the orientationܧ�

polarization to the dielectric function will be given by (see next page) 
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ߝ�                                                   = ௌߝ − ∞ߝ = ଵଷ�బ ܨ ఓమ௞ಳ் ே௏                                   (Eq. 26) 

where 

ܨ                                                             = ��ሺ�∞+ଶሻమଷሺଶ��+�∞ሻ                                                 (Eq. 27) 

 

The quantity (N/V) defines the density volume of dipoles and Δİ is the dielectric 

strength/intensity arising from the orientation polarization with ߝ௦ = limఠ→଴ ∞ߝ ሺ�ሻ and′ߝ = limఠ→∞  ,ሺ�ሻ.51 The Onsager formula holds for the treatment of non-associating′ߝ

polar liquids. However, it fails for associating liquids and a correlation factor g, also 

known as the Kirkwood-Fröhlich correlation factor, has to be introduced into the equation 

to give   

 

ௌߝ                                                     − ∞ߝ = ଵଷ�బ ݃ܨ ఓమ௞ಳ் ே௏                                         (Eq. 28) 

where  

                                                       ݃ = ⟨∑ ఓ೔ ∑ ఓೕ⟩ೕ೔ ேఓమ = ఓ೔೙�మఓమ                                           (Eq. 29) 

 

and µ2 gives the mean square dipole moment of non-interacting, isolated dipoles.64–66 

Depending on the orientation of the molecules to each other, g can obtain values below or 

above 1. To further simplify the problem, Kirkwood and Fröhlich considered a region with 

N* molecules and treated them while considering the remaining N-N* molecules as infinite 

continuum with İs characterizing their dielectric behavior.51,67                                               
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As a result, g can be written as 

 

                                                     ݃ = ⟨∑ ∑ ఓ೔ఓೕ⟩೔<ೕ�∗೔=భ ேఓమ + ͳ                                          (Eq. 30) 

 

A good statistical approximation requires N* to be chosen as high as possible. 

 

1.5. Enhancing the Permittivity of Elastomers 

After mentioning potential difficulties and disadvantages associated with the strategies 

involving the reduction of the Young’s modulus Y and the film thickness d (Fig. 1), the 

increase in the permittivity of the DE is the main guideline in this work in order to enhance 

their performance. Although existing elastomers exhibit good mechanical properties, their 

permittivity İr is rather low and offers room for further improvement (Tab. 1). The 

permittivity of the material can be enhanced by undertaking the following strategies: 

 

 

 attaching permanent dipoles onto existing polymer structures 

 

or 

 

 dispersing high permittivity fillers into the polymeric matrix 
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1.5.1 Enhancing the Permittivity through Molecular Dipoles 

As indicated by the Debye equation, an increase in the polarizability α and dipole moment 

of the compounds forming the DE consists is required in return for an enhancement in the 

permittivity. Eventually, this concept has defined the method of grafting polar substituents 

with permanent dipoles onto the backbone of existing, low permittivity polymers. Through 

the application of an external electric field, the randomly oriented dipoles on the polymer 

backbone will tend to align along the field direction. As a result, the polymers will 

experience strain and dimensional changes are produced Fig. 7. This feature makes “polar 

silicones” suitable materials as membranes for DEAs. Silicones, have been outstanding 

candidates for this approach due to their initial asset of having tunable mechanical 

properties through chemical modification steps and their ability to undergo chemical 

modification. The modifications of the silicone backbone generally requires the presence 

of vinyl groups in order to graft substituents which involves Pt-catalyzed hydrosilylation 

reactions.68–70 Other modification reactions were conducted with the thiol-ene44 or click 

chemistry.71 As shown in Tab. 1, fluorosilicones exhibit higher permittivities than the 

unmodified PDMS. The observation of the higher permittivity for fluorosilicones has been 

attributed to the asymmetric charge distribution in the molecule due to the high 

electronegativity of the fluorine atom.27 Kussmaul et al. reported the successful 

introduction of organic dipole molecules into the backbone of silicone (Fig. 8 and Fig. 

9).72,73 Effectively, the variation of the dipole content to 13.4 wt% led to an increase in the 

permittivity of the elastomers from 3 to 5.λ8, while the Young’s modulus decreased from 

1900 to 550 kPa as both the PDMS chain and the dipole molecule compete for the reaction 

with the cross-linker. This affected the network density and featured the decrease in the gel 

content of the compound. 
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Fig. 7: Schematic illustration of randomly oriented dipole molecules (left) and their realignment 

towards the direction of the applied electric field (right) in a DEA.44   

 

 

 

Fig. 8: Polymer network of PDMS with dipoles grafted onto the polymer backbone.  
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Fig. 9: Dipole molecule with vinyl functionality enabling the grafting onto PDMS.73 

 

Aside from grafting organic dipole molecules, functional groups such as chlorine and 

cyanopropyl groups can also serve as dipoles within the PDMS network. Madsen et al. 

reported the preparation of alkyl-chlorine siloxane copolymers which featured an increase 

in the permittivity compared to PDMS as well as low dielectric losses (< 0.001 at 100 

Hz).74 The alkyl-chlorine units are separated by dimethylsiloxane spacer units with 

different chain lengths. Despite the variation of the content of chloropropyl side-chains, the 

maximum permittivity observed just amounted to 4.7, which is still relatively low 

considering the permittivity of the reference PDMS in this study to be at 3.3. In 

comparison, the introduction of cyanopropyl groups has led to a larger increase in the 

permittivity of silicone. Racles et al. reported the preparation of silicones with tunable 

amounts of cyanopropyl side groups.32 This involves the preparation of the functionalized 

silicones through three (3) different methods involving cationic and anionic ring opening 

as well as copolymerization reactions. The grafting of the cyanopropyl groups onto the 

silicone was also conducted with the Pt-catalyzed hydrosylilation reaction as Si-H bonds 

are present in both the cycles and polymer backbone.  The obtained copolymers with 

cyanopropyl functionalities featured an increase in the permittivity from 2.4 to 6.5 by 

tuning the number of repeating units equipped with cyanopropyl groups from 0 to 23 % in 

relation to the total polymer repeating units. Furthermore, the reduction of the amount of 

cross-linker led to the formation of materials with a lower Y compared to commercial 

PDMS although the strain at break was lower for the modified material. Further 
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investigations in this subject provided PDMS modified up to 89 mol% with cyanopropyl 

groups exhibiting a permittivity  of 15.9 at 10 kHz.69 More recently, Dünki et al. have 

achieved the preparation of cyanopropyl-modified silicones by exploiting the thiol-ene 

addition reaction. The modified elastomers gave rise to good electromechanical properties 

by featuring a high permittivity (~ 10 at 10 kHz), a low Y (0.15 kPa) and a strain at failure 

amounting to 260 %.44 

 

1.5.2 Enhancing the Permittivity with the Introduction of High Permittivity 

Filler 

The other approach is based on the blending of high permittivity materials into a relatively 

low permittivity polymeric matrix. The blending of fillers showed significant changes in 

the electromechanical properties of the resulting composites. Different theoretical 

approaches to calculate the resulting permittivity values of mixtures have been made, 

including the volume-fraction average, the Maxwell-Garnett as well as the Bruggemann 

model. Those theoretical approaches to estimate the permittivity assumed simplified 

geometry and structure within the material in order to obtain models which can predict the 

permittivity values for the resulting composites. The effective permittivity İeff of the 

composite can be calculated by the volume-fraction average approach as 

 

௘௙௙ߝ                                                          = �ଵߝଵ + �ଶߝଶ                                          (Eq. 31) 

 

where İ1 and İ2 are the permittivities of the matrix and filler and �1 and �2 are the 

respective volume fractions of the components. A linear increase in İeff with increasing 

filler content is described by this model which, however, is not supported by conducted 
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experiments.75,76 However, the results from the volume-fraction average can still be used as 

an upper limit for İeff. 

The mean-field theory gives rise to more realistic models to describe the resulting 

permittivity of a binary mixture. The Maxwell-Garnett equation was obtained from the 

Clausius-Mossotti formula where the macroscopic permittivity İ and the polarizability α 

are interconnected.77 This model assumes the scenario of a spherical inclusions being 

surrounded by a continuous matrix consisting of polymer. The composite permittivity İeff 

can be calculated by: 

 

                                                     
�೐೑೑−�భ�೐೑೑−ଶ�భ = �ଶ �మ−�భ�మ+ଶ�భ                                              (Eq. 32) 

 

However, the Maxwell-Garnett equation only finds validity if the filler fraction approaches 

the conditions of infinite dilution ሺ�ଶ → Ͳሻ and multiple interactions between the spherical 

inclusions are neglected.78,79 Therefore the Maxwell-Garnett equation gives out values 

which could serve as lower limit of the composite permittivity. The Bruggeman model, 

which is also based on the mean field theory, describes the composition of the mixture as 

repeating unit cells consisting of spherical inclusions surrounded by the polymer matrix. In 

other words, the inclusions and their environment are treated symmetrically. The effective 

permittivity becomes                                 

 

                                            �ଵ ( �భ−�೐೑೑�భ+ଶ�೐೑೑) + �ଶ ( �మ−�೐೑೑�మ+ଶ�೐೑೑) = Ͳ                               (Eq. 33) 
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The model predicts the sharp increase of İeff at a filler content of around 20 vol% and 

above which is the region of the percolation threshold which has been mentioned by 

various reports dealing with the dispersion of high permittivity filler into a polymeric 

matrix.80,81 There are also existing models for the prediction of the composite permittivity 

of complex structures.  

For three-phase systems (e.g. core-shell type inclusions), Sihvola proposed the calculation 

of İeff by 

 

                                     
�೐೑೑−�భ�೐೑೑+ଶ�భ = ሺ�ଶ + �ଷሻ �మሺ�మ−�భሻ+�మ�భమሺ�య−�భሻ�మሺ�మ+మ�భሻ+�మ�భమሺ�య+మ�భሻ                     (Eq. 34) 

 

where ݐଵଶ = ଷ�మ�య+ଶ�మ . The subscripts 1, 2 and 3 in this equation refer here to the matrix and 

the two different filler components, respectively. The formula is useful to treat composites 

using fillers with layered compositions such as core-shell particles.  

So far, the models for the composite permittivity describe the behavior of spherical fillers. 

However, fillers which feature a deviation from the spherical shape lead to a different 

behavior in the resulting composite permittivity. Furthermore, their alignment within the 

material under the influence of an external electric field also has an impact on the 

composite permittivity.82 Overall, reports have shown that non-spherical filler with high 

aspect ratio lead to a higher increase in İeff compared to the use of spherical inclusions.6 

The dispersion of filler into the polymeric matrix also influences the mechanical properties 

of the resulting nanocomposites. In most cases, the Young’s modulus Y of the filler 

exceeds that of the matrix by orders of magnitude which leads to a deterioration of the 

mechanical properties with increasing filler content, although there are a few reports on the 

filler-induced increase of the composite permittivity without increasing Y as a result of 
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using softeners as additives.83,84 The increase in Y is a major drawback of this approach 

compared to the chemical modification of polymers with dipole molecules. However, 

higher values for İeff are feasible, a fact which is the main asset of this method. The 

estimation of the resulting Y of a binary mixture can be calculated by adding the two 

different moduli according to their volume fraction assuming the arrangement of stacks 

between the two components and their equal subjection to the applied force acting in stack 

direction.85,86 The resulting composite modulus Yeff can be calculated as 

 

                                                �௘௙௙ = �ଶ�ଶ + ሺͳ − �ଶሻ�ଵ                                         (Eq. 35) 

 

where Y1 and Y2 are the Young’s moduli of the matrix and filler, respectively, and �2 is the 

volume content of the filler. This equation, however, gives values for Yeff exceeding that of 

the actual composite at different filler content and can therefore be regarded as an upper 

limit for the calculation of Yeff.
86,87 In contrary, the orthogonal mixing rule assumes the 

perpendicular arrangement of the assumed stacking formation towards the applied force 

and Yeff can be calculated by: 

 

                                                        
ଵ �೐೑೑ = �మ�మ + ሺଵ−�మሻ�భ                                            (Eq. 36) 

 

The orthogonal mixing rule gives out values corresponding to the lower limit of Yeff with 

varying filler content. Further models that provide a more detailed and realistic estimation 

of the development of the composite modulus with varying filler content are featured in the 

report published by Bigg.88 It was eventually determined that the polymer-filler interaction 
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is decisive for the determination of the composite tensile strengths. The reinforcement of 

the materials through the use of filler is a direct result of a good adhesion of the polymer 

matrix to the inorganic filler which can be improved through the chemical modification of 

both the filler and the polymer.  

Throughout the years, numerous reports on nanocomposites with high permittivities have 

emerged. A wide variety of composite materials have been prepared and investigated, 

including phthalocyanine/polymer composites,89 ferroelectric ceramic/polymer     

composite,90–94 as well as conductive particle/polymer composites.80,95–98 Apart from 

PDMS, other polymeric matrices such as epoxy resin and poly(vinylidene 

difluoride)(PVDF) (Tab. 2) have been used for the preparation of high permittivity 

composites. Epoxy resin is commonly used in high voltage applications as insulating 

material and features good electrical and chemical properties as well as chemical 

stability.99 PVDF belongs to the class of ferroelectric polymers which exhibit a permanent 

electric polarization as a result of their non-centrosymmetric structure. Upon application of 

an electric field, the dipoles of PVDF will align along the field direction and can be 

maintained even in the absence of the electric field.20,27 The main motivation for the use of 

PVDF as polymeric matrix lies in the ability of producing large İeff values as a result of the 

combination of the high permittivity of both the matrix and the filler.100 However, PVDF is 

relatively stiff and is incapable of undergoing large strains as PDMS thus limiting its 

possibility of being used for the production of flexible composites.20 Therefore, the use of 

PDMS as matrix is attributed to their tunable mechanical properties. Despite the ability to 

obtain high permittivity values, the use of certain fillers exhibited some drawbacks in their 

application. Phthalocyanines have been praised for their high permittivity values, but 

thorough investigations have proven that the large İeff values are not a direct result of their 

intrinsic features but due to observed proton conductivity in the presence of water.101 

Ceramic powders such as BaTiO3 and TiO2 feature permittivity values of 1’700 and 80, 

respectively.102 As a result, BaTiO3 is very attractive for the preparation of high 

permittivity composites. However, a large amount of ceramic filler is required to reach a 

substantial increase in the İeff, which eventually leads to a deterioration of the mechanical 
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properties. By producing composites using ceramic BaTiO3 as filler with a content f ≥ 0.5, 

the material becomes increasingly brittle and breaks easily. For instance, a BaTiO3/epoxy 

composite using 70 vol% of filler only led to an İeff of 60, not particularly high considering 

the very high filler loading.90 Even the resulting composites with PVDF only gave 

moderate increases in the composite permittivity.103As a result, ceramics are unattractive as 

filler for the preparation of films where, apart from the increase of the permittivity, good 

mechanical properties such as a high degree of elasticity is desired.92 In particular, the use 

of conductive filler seems to have good perspectives. Having an infinite permittivity, they 

can lead to a significant enhancement of the resulting composite permittivity. Higher 

permittivity values were achieved with the use of conductive filler compared to the values 

obtained by using ceramic fillers (Tab. 2).  
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When using conductive filler, İeff increases linearly with the filler content until reaching 

the vicinity of the percolation threshold where a dramatic increase of the permittivity is 

usually observed. This behavior can be described by the power law given as 

 

                                                          
q

c

mr
eff

ff )( 



                                                 (Eq. 37) 

 

whereby İeff and İmr are the permittivity of the composite and of the polymer matrix 

respectively, fc is the percolation threshold fraction, f is the volume fraction of the filler, 

and q is a scaling constant.110 Metal particles,80,91,95,104,105,111–116 metal oxide particles,117 

carbon nanotubes (CNTs),107,118 graphene,106,119 and conductive polymers89,96,97 have 

already been used as conductive fillers and confirmed their ability to enhance İeff 

significantly. In particular, metal nanoparticles are interesting due to the feasibility of 

preparing them with defined sizes and shapes. A large number of publications on the 

synthesis of metal nanoparticles currently exist, which provides us with a large variety of 

methods to obtain and use them as high permittivity filler. The preparation of metal 

nanoparticles, together with further necessary steps to compatibilize them with the 

corresponding matrix, will be illustrated in the following subchapters. 

 

1.6 Synthesis of Metal Nanoparticles 

1.6.1 The Mechanisms Towards the Formation of Metal Nanoparticles 

In general, nanomaterials are objects that have, depending on their structure, at least one of 

their dimensions in the nanometer scale (1-100 nm, Fig. 10). They exhibit an array of 

interesting properties which differ from the corresponding bulk properties. While most of 

the bulk properties remain constant, the properties of nanomaterials vary with their size, 
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shape and surface structure.120 Particularly, metal nanoparticles have attracted significant 

interest from research groups around the world due to their wide range of application fields 

which include electronics,121–123  biomedicine,124–129 catalysis130–133 and photovoltaics.134,135 

As a result, the research on the preparation of metal nanoparticles has been intensified over 

the last decades, and it has since become an ultimate goal to develop synthesis methods 

which feature a control over the size and shape of nanomaterials. The preparation of 

nanomaterials can be conducted in the vapor-, liquid and solid-phase.136 The preparation of 

nanomaterials can generally be divided into two fundamental approaches: (a) top-down 

and (b) bottom-up approach (Fig. 10). While the top-down approach involves the 

formation of nanostructures by breaking down large structures, the bottom-up method 

deals with the formation of the nanostructures through the assembly of atoms or 

molecules.120 Basically, it is very difficult to generate nanoparticles of very small sizes 

with controlled shapes with the top-down approach. In contrary, the bottom-up approach is 

much more suitable for the size-and shape-controlled preparation of nanoparticles.137 

However, there are reported cases where both approaches have been able to produce high 

quality particles. For instance, Wang et al. reported the preparation of bismuth colloids 

with a size range of 100-600 nm using both approaches. In both cases, the particles were 

relatively monodisperse.138 For the bottom-up approach, the formation of nanoparticles 

involves the stages of nucleation and growth. The formation of metallic nanoparticles 

requires the generation of reduced metal species, which can be generated through the 

reduction of metal salts or precursors. The nucleation process is essential for the 

preparation of nanoparticles with defined shape. This process involves the initiation of a 

discontinuous phase transformation by a metastable system e.g. a supersaturated solution. 

The whole process of particle formation involving the nucleation and growth steps is 

illustrated in Fig. 11 which is the model described by LaMer.139 In the case of the 

preparation of metal nanoparticles via liquid phase chemistry, the supersaturated solution is 

generated by the increase in the concentration of metal atoms through the continuous 

reduction of their corresponding ionic species (Phase I). Nucleation can occur as soon as a 

minimum concentration of metal atoms Cmin is present in the solution (Phase II). Once a 

critical concentration of metal atoms has been reached, the atoms will separate out from 
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the solution through the formation of metal atom clusters thus leading to the establishment 

of  a new phase caused by the unstable supersaturated solution.120 As soon as the 

concentration of metal atoms decreases below the minimum critical supersaturation level, 

the nucleation process is terminated and further generation of metal atoms leads to the 

growth of the nanocrystals into larger particles (Phase III).  

Nucleation can occur through two different processes, namely homogenous or 

heterogeneous. The homogenous nucleation requires the in situ formation of seed particles 

thus enabling nucleation and growth to occur with the same chemical process in a one-pot 

reaction. At the other hand, the heterogeneous nucleation requires the addition of 

previously formed seeds into the reaction mixture. This step separates nucleation and 

growth into two different processes as the growth of the nanocrystals occurs through the 

addition of atoms on the preformed seeds.140  

 

 

Fig. 10: Overview of typical dimension ranges of nanoparticles and colloids, together with some 
representative colloidal systems.141 
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Fig. 11: LaMer model for the generation of nanocrystals involving the nucleation and growth 
stages.140 

 

The particle formation process involves changes in the free energy of the system which 

will be explained in this subchapter with detailed descriptions and corresponding 

equations.120  The classical theory of nucleation states that the changes in the free energy of 

the system occurring in the homogenous nucleation process is given by 

 

௥ܩ∆                                                = ௥௏௢௟௨௠௘ܩ∆ + ௥ூ௡௧௘௥௙�௖௘ܩ∆                                (Eq. 38) 

 

which can be written as 

௥ܩ∆ = Ͷ͵ ଷݎ� ∙ ௏ܩ∆ + Ͷ�ݎଶߛ 

                = − Ͷ͵ ଷݎ� ∙ ܴ݈ܶ݊ܵ௠ܸ + Ͷ�ݎଶߛ 
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where ΔGr is the change in free energy per unit volume between atoms in solution and bulk 

crystal, γ is the surface free energy per unit area, R is the ideal gas constant, T the reaction 

temperature, r the radius of the spherical metal cluster, Vm is the molar volume of bulk 

crystal while S stands for the supersaturation ratio which gives the ratio between metal 

species in solution to that in the equilibrium saturation at the corresponding temperature. 

When S > 1, the solution is supersaturated and leads to negative values for ΔGr. When 

plotting ΔGr as a function of the radius r, a minimum within the curve is observed thus 

giving rise to two critical parameters, rc and ΔGc. Both parameters can be calculated by the 

following equations: 

 

௖ݎ                                                             = ଶ�௏೘ோ்௟௡ௌ                                                       (Eq. 39) 

 

௖ܩ∆                                                           = ସగ�௥�మଷ                                                        ሺEq. 40) 

 

Metal clusters with a particle radius surpassing the critical radius rc are thermodynamically 

stable and can undergo further growth through the continuous reduction of metal atoms. 

Basically, Eq. 38 and Eq. 39 show that the supersaturation level S directly influences rc. A 

high value for S would lead to a decrease in rc, which would facilitate the nucleation 

process as the reduction in rc would enable small clusters to survive and experience further 

growth rather than undergoing dissolution. The surface energy γ can also be reduced 

through the attachment of surfactants or ligands in order to reduce rc. A small rc is essential 

for the preparation of monodisperse particles which also requires the clear separation of the 

nucleation and growth processes (Fig. 12). This requires the acceleration of the nucleation 

rate which can be conducted by reducing rc, subsequently leading to a reduction in ΔGc, and 

a high supersaturation ratio S.  
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By upholding these conditions, the nucleation rate J is enhanced which is given by: 

 

                                                        � = � ∙ exp ቀ− ∆ீ಴ோ் ቁ                                           ሺEq. 41) 

 

 

 

Fig. 12: LaMer model for the generation of nanocrystals involving the nucleation and growth 
stages. The product quality depending on the nucleation time is also depicted in the image.140 

 

Apart from ΔGc, a high temperature T can also lead to an enhancement in the nucleation 

rate. Another method of initiating a rapid nucleation is through the application of the hot-

injection method. The injection of the precursors into a hot solution induces a nucleation 

burst which leads to the growth of monodisperse nanocrystals. In comparison, the particles 

obtained from the slow addition of the precursor solution yielded a high polydispersity.142 

This method is commonly used for the preparation of semiconductor quantum dots.143,144 

To summarize, the particle quality depends on the ability to control the nucleation and 

growth phases. By reducing the nucleation time, both processes can be separated from each 



 

 

     1. Introduction  

 

37 

  

other.  This can be achieved by manipulating reaction parameters and by the variation of 

the preparation method.  

 

1.6.2 Preparation of Metal Nanoparticles: The Case of Silver 

Metal nanoparticle dispersions consisting of gold, silver or copper feature intensive colors 

which vary with the corresponding size of the particles. As a matter of fact, these metal 

nanoparticles are known to undergo strong and specific interactions with the 

electromagnetic radiation when the particle size is much  smaller than the wavelength of 

the incident light.145,146 This manifests itself in the observation of an intense and broad 

band absorption in the corresponding UV-vis spectra of the particle solution. The 

absorption band is referred to as surface plasmon resonance (SPR) which features the 

oscillation of the free conduction electrons under the generation of a dipole within the 

particle as a result of the interaction with the incident light (Fig. 13).146 The discovery of 

SPR dates back to the 19th century which was documented by Michael Faraday.147 When 

the frequency of the incident light corresponds to the frequency of the oscillation of the 

electrons, the resonance condition is satisfied and gives rise to the localized surface 

plasmon resonance (LSPR). 

Plasmonics have attracted the attention of research groups working on photovoltaics due to 

their ability to improve the performance of photovoltaic devices which includes the 

enhancement in absorption and the potential of reducing the physical thickness of solar 

photovoltaic absorbers layers.134 Quite recently, plasmonic polymer solar cells using metal 

nanoparticles achieved a power efficiency of 8.92 % and an external quantum efficiency of 

81.5 %, which were the highest values obtained for such devices at that time.148 
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Fig. 13: Schematic illustration of surface plasmon resonance (SPR). The free conduction electrons 
in the metal nanoparticles undergo oscillation as a result of the strong interaction with the incident 
light.146 

 

There is no doubt that the potential of metal nanoparticles as an essential component in 

photovoltaics contributed immensely to the current research activity on metal nanoparticle 

preparation. In particular, silver exhibits the greatest band intensity.145 Additionally, the 

cost of silver is cheaper than most of the other metals considered for plasmonic 

applications. The cost of silver amounts to ~ US$ 472.6 per kilogram, which is much lower 

compared to the price of gold or platinum (US$ 33’506 and US$ 42’570 per kilogram, 

respectively). Although aluminum is a cheaper alternative to silver, it features certain 

drawbacks such as few feasible nanostructures as well as the susceptibility to surface 

oxidation thus requiring surface passivation for stabilization.149 Apart from photovoltaics, 

silver nanostructures can also be used in other fields such as electronics,80,115,150 

biomedicine124–126 and photocatalysis.133,151,152 

The preparation of silver nanostructures can be divided into the two following categories: 

(a) conventional and (b) unconventional methods.145 The conventional method refers to the 

chemical synthesis of silver nanostructures, while the unconventional method is composed 

of a variety of preparation ways such as laser ablation, radiolysis, biosynthesis as well as 

vacuum evaporation. The following subchapter will only focus on a few methods involving 
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the chemical synthesis of the silver nanostructures. The main route consists of the chemical 

reduction of silver salts such as AgNO3,
153–155 Ag(OAc),156 AgClO4

157,158 or AgCO2CF3
159 

into their metallic form. 

 

1.6.2.1 Preparation of Silver Nanoparticles with Inorganic Reducing Agents 

Favored by its high reactivity and low toxicity, sodium boron hydride (NaBH4) is 

commonly used as reducing agent in Organic Chemistry. The first synthesis of AgNPs 

using sodium boron hydride was reported by Creighton and coworkers160 which gave 

particles in the size range of 1-10 nm. Compared to other methods, this method can only 

give small particles as a result of the strong reducing power of the boron hydride.161  

Hydrazine (N2H4) has also been used to generate AgNPs through the reduction of AgNO3. 

The reaction is conducted at room temperature using water as reaction medium. A basic 

pH   (~ 11) is required for obtaining a stable solution. Particle sizes between 10-50 nm are 

feasible with this method, but it is difficult to control the size polydispersity.162 Another 

drawback is the toxic nature of hydrazine, making future industrial applications of this 

method very unlikely. 

 

1.6.2.2 Preparation of Silver Nanoparticles with Organic Reducing Agents 

N,N-dimethylformamide (DMF) is well known for its high synthetic value due to its wide 

liquid temperature range, chemical and thermal stability (boiling point at 153 °C), high 

polarity and wide solubility range for organic and inorganic compounds.163 It has 

previously been reported that DMF can act as a powerful reductant to gold and silver 

salts.155,164 The first synthesis of AgNPs using DMF was pioneered by the group of Liz-

Marzan in 1999.155 It was shown that Ag+ ions can be reduced at room temperature, with 

the possibility of increasing the reduction rate at higher temperature. Carbamic acid is 

formed during the course upon reduction of the silver ions to metallic silver, which can 
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further decompose to carbon dioxide and dimethylamine at elevated temperatures (Fig. 

14). The use of capping agents ought to ensure the long term stability of the silver 

dispersion. So far, stabilizers in form of 3-(aminopropyl)trimethoxysilane (APTMS), 

poly(vinyl pyrrolidinone), tetrabutoxytitanate and macrocyclic thiols have been 

employed.165–167 With this method, the synthesis of nanoparticles with a size range of 5-30 

nm has been reported. 

 

 

Fig. 14: Proposed reaction mechanism for the preparation of AgNPs with DMF.155 

 

The Tollens reaction, or silver mirror reaction, is famous for the chemical deposition of 

silver mirrors on various substrates as well as a suitable method to detect aldehydes.149,168 

This method can also be applied for the synthesis of AgNPs.158,169 The advantage in this 

method lies in the mild preparative conditions as AgNPs are prepared at room temperature. 

Performed in aqueous medium, silver salts form the Tollens reagents, Ag(NH3)2OH, which 

is reduced by the sugar RCHO (Fig. 15).169 With this method, nanoparticle sizes ranging 

from 20-100 nm have been prepared so far.158,170 Despite the limited shape control 

associated with this method,158,171 the use of triazole sugar ligands have featured improved 

control over the reaction with enhanced size and shape control.172 

 

 

Fig. 15: Proposed reaction mechanism for the preparation of AgNPs with the Tollens reaction.149 
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In 2007, Hsu and coworkers reported the reduction of AgNO3 with formaldehyde (CH2O). 

In this method, organic bases such as triethylamine (TEA) and pyridine were used as 

reaction promoter.173 The mechanism is shown in Fig. 16. While using TEA in the reaction 

afforded particle sizes between 20-30 nm, the particle sizes obtained with pyridine were 

smaller (10-20 nm) which can be explained by the weaker basicity of pyridine thus slowing 

down the reduction rate. High pH values favor the aggregation of primary particles which 

lead to the formation of larger particles. This effect was observed by Liu and coworkers as 

they succeeded in varying the particle size between 40-2’000 nm by adjusting the reaction 

conditions, including the pH, the reaction temperature as well as the amount of 

stabilizer.174 

 

 

Fig. 16: Proposed reaction mechanism for the preparation of AgNPs through the reduction with 

formaldehyde.175 

 

The citrate synthesis, also known as Turkevich method, is a popular method to generate 

silver nanoparticles (AgNPs) and is still very commonly used due to its facile preparation 

manner. Back in 1951, Turkevich succeeded in preparing gold nanoparticles (AuNPs) 

through the reduction of chloroauric acid with sodium citrate in a boiling aqueous solution 

(Fig. 17).176 The citrate ions simultaneously act as stabilizer and reducing agent. Since 

then, the method has also been extended to the preparation of AgNPs.177 The outcome of 

the process mainly depends on the pH value of the solution since the reduction rate and the 

particle shape are influenced by this parameter. While high pH values favor the preparation 

of spherical and rod-like particles, low pH values lead to the formation of anisotropic 

shapes such as triangle and polygons.145,178 The formation of anisotropic nanowire 
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structures has also been achieved with this method.179 Overall, this method does not 

establish a defined control over the particle size and shape which effectively leads to the 

production of polydisperse particles (20-600 nm) with diverse shapes in a single batch 

reaction.149 Another disadvantage of this method is the use of high amounts of water which 

makes the scale-up of the reaction a rather difficult task.180 

 

 

Fig. 17: Proposed reaction mechanism for the preparation of AgNPs with the Turkevich method.179 

 

Although a variety of methods for the preparation of AgNPs has been presented, most of 

the reactions suffer from drawbacks including toxicity, limited size and shape control and 

feasibility as well as high dilution conditions, with the latter causing problems for the 

upscaling of the synthesis. However, those limitations can be circumvented through the use 

of the polyol synthesis. 

The polyol synthesis represents a very versatile way of generating silver nanostructures 

with varying sizes and morphologies.181,182 Extensive work on the polyol synthesis of 

silver nanostructures was conducted by the research group of Xia.181,182 The control over 

nucleation and growth process, which is crucial for the determination of quality and 

morphology of the resulting particles, can be achieved through varying reaction conditions 

such as temperature and concentration of reagents as well as the addition of additives and 

trace metal impurities.153,181–183 The type of seeds (formed from the growth of nuclei) 

present in the reaction mixture direct the future structure and morphology of the particles. 

The three different seeds structures which can grow into distinct morphologies of the silver 

nanostructures are classified as single crystal, singly- and multiply twinned seeds.181 In this 

process, a polyol (e.g. ethylene glycol (EG), propylene glycol (PG)) serves both as solvent 

and reductant while polymers such as poly(vinyl pyrrolidinone) (PVP),142,159,184,185 

polyacrylamide186 or polyacrylic acid (PAA)187 act as stabilizing agent. The stabilizers can 
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also direct the morphology of the nanostructures through preferential binding onto certain 

crystal facets. For instance, PVP is believed to undergo preferential binding to the {110} 

and {100} planes through the coordination of its carbonyl group onto the metal surface.140 

When the {111} planes are completely bounded by PVP, the deposition of metal atoms 

occurs on the {100} which leads to the formation of octahedrons. Considering the reverse 

scenario, the deposition will occur on the {111} site thus leading to the formation of 

nanocubes.188 At elevated temperatures, glycoaldehyde, which is the actual reductant of the 

Ag+ ions, is formed in the presence of oxygen (Fig. 18). The amount of glycoaldehyde is 

increased with increasing temperature thus affecting reduction kinetics.189 

 

 

Fig. 18: Proposed reaction mechanism for the preparation of AgNPs by the polyol process.149 

 

So far, this method is regarded as the most convenient way of preparing different types of 

silver nanostructures. In summary, the polyol synthesis exhibits the possibility to control 

the size and shape of the particles through the careful variation of the reaction conditions        

(Fig. 19).142,182,190 Furthermore, it has also demonstrated the potential of upscaling the 

reaction by using continuous production methods.191,192 As a direct result, the polyol 

synthesis is quite attractive to prepare large amounts of silver nanostructures, a feature 

which makes this method stand out from the other methods. 
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Fig. 19: TEM micrographs of different silver nanostructures: (a) Silver nanocubes (AgNCs), (b) 
silver nanowires (AgNWs) and (c) silver nanoparticles (AgNPs). 

 

1.7 Surface Functionalization of Metal Nanoparticles 

The surface functionalization of metal nanoparticles is often required to provide stability as 

well as compatibility of the resulting particles towards different media. In the case of the 

use of metal nanoparticles as conductive fillers for high permittivity materials, surface 

functionalization is essential due to the increasing dielectric loss and electrical conductivity 

at fc where the insulator-conductor transition occurs thus diminishing the filler’s prospect 

of being used for the preparation of high performance materials in spite of their high 

permittivities.80,81,104,193,194 At filler contents approaching fc, the possibility of agglomerated 

particles forming a percolation pathways increases thus leading to electric shortcuts (Fig. 

20). 

 

 

Fig. 20: Agglomeration of conductive particles within the polymeric matrix leading to percolation 
pathways (left) and insulated particles without agglomeration (right).96  
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In order to overcome these limitations and prevent electric shortcuts from occurring, the 

insulation of the particles prior to their dispersion into the matrix has become a common 

method to avoid electric breakdown due to agglomerated particles. For instance, Ni, Cu, 

and Al can undergo self-passivation in air which leads to the growth of an oxide shell on 

the surface.195–197 For noble metals, this process does not occur under ambient conditions 

due to their high reduction potential.198 Therefore, additional materials need to serve as 

surface coating. In the case of AuNPs and AgNPs, it is possible to coat them with silica 

(SiO2) with controllable shell thickness by using a modified Stöber method.170,199–203 Back 

in 1968, Stöber and coworkers reported the preparation of monodisperse SiO2 colloids with 

varying sizes through the hydrolysis of tetraethoxysilane (TEOS) which was catalyzed by 

ammonia.204 Silica colloids prepared with this method are depicted in Fig. 21. 

 

 

Fig. 21: Silica nanoparticles prepared with the Stöber method.204 

 

Further research conducted over the years enabled this method to be extended to the 

coating of colloids and particles. For example, the main motivation to coat noble metal 

nanoparticles with SiO2, in particular Ag and Au, is the control over their plasmonic 

properties by stabilizing the dielectric environment of the metal core and by controlling the 

interparticle distance through the silica shell thickness.205–207 The SiO2 shell also allows the 

deposition of other molecular structures such as quantum dots, dyes and     
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biomolecules.208–211 The silica-coating of the metal nanoparticles has initially been 

conducted in the presence of surface coupling agents such as 3-

(aminopropyl)trimethoxysilane (APTMS) or 16-mercaptohexadecanoic acid (MHA).212–214 

However, the coating process could be performed directly on particles prepared via the 

polyol synthesis which was investigated by Graf et al.215 Due to the alkaline conditions of 

the Stöber method, the enol tautomer of the PVP is predominant, and therefore the 

hydroxyl group serves as an anchoring group for the deposition of the hydrolyzed TEOS 

monomers which form the SiO2 shell (Fig. 22).199,216 This coating-procedure has been 

demonstrated for various particle morphologies, including nanowires and nanoprisms.214,217 

Metal colloids prepared by the Turkevich method could also be directly coated since the 

citrate ligand also serves as an interfacial layer essential for the growth of the SiO2 

shell.201,206,218 Various improvements in conducting the silica-coating have been reported 

throughout the years. The use of microwaves and the replacement of ammonia by other 

amine bases such as dimethylamine reduced the reaction time from hours to minutes and 

hindered the dissolution of Ag caused by the complexation with ammonia.218 Furthermore, 

the one-pot synthesis of Ag@SiO2 core-shell particles has been reported using micelle 

templates.213,219 The advantage of this method is the protection of the AgNPs from 

aggregation with the help of the micelles which provide stability, especially since particles 

below 50 nm are unstable and tend to agglomerate during the conventional Stöber 

method.204,220 

 

 

Fig. 22: Transformation of the PVP molecule to the enol conformation under basic conditions.215 
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Aside from silica, various other inorganic materials have also been used to coat metal 

colloids. The preparation of core-shell particles with titania (TiO2) has also been a hot 

topic in the research community due to the possibility of combining the properties of the 

two moieties. TiO2 is very attractive due to its chemical and thermal stability as well as its 

excellent electronic, optical and photocatalytic activity.221–223 Although numerous efforts 

on the  preparation of Ag@TiO2 core-shell particles exist,151,202,224–227 the obtained TiO2 

shells do not feature a well-defined uniformity and some of the reported synthesis routes 

are difficult to reproduce. While the Stöber method is used for the silica-coating, there are 

few existing reports on the preparation of TiO2 shells using this method.228 In one of the 

few reports on the titania-coating with the Stöber method, the TiO2 shells are produced 

through the hydrolysis and condensation of tetrabutyltitanate which was realized on the 

surface of Fe2O3 particles. In comparison to the silica-coating, the preparation of TiO2 

shells is quite difficult as the reaction kinetics of the hydrolysis/condensation of the titania 

precursor has to be controlled carefully in order to obtain core-shell structures with 

uniform TiO2 shells.228 

Other inorganic insulating shells which have also been demonstrated on metal cores 

include Al2O3, Fe3O4, Ni(OH)2, MnO, Eu2O3, CdS, ZnS, ZnO and ZrO2.
112,226,229–231 

While the insulation of metal nanoparticles has usually been achieved with inorganic 

materials, organic-based shell materials have also been successful in providing metal 

nanoparticles with an insulating layer. Shen and coworkers successfully insulated silver 

nanoparticles (AgNPs) with an organic shell and the produced Ag@C core-shell particles 

also featured a further advantage through the enhanced dispersibility in organic polymers. 

As a result, the organic shell facilitated the dispersion of the particles in order to form a 

homogenous composite. In direct comparison, surface treatment is generally required in 

order to enhance the compatibility of the core-shell particles with the matrix which is 

usually hydrophobic (e.g. PDMS). The shells could be tuned from 4-6 nm up to 8-10 nm. 

Qi and coworkers have used mercaptosuccinic acid (MSA) and dodecanoic acid (DDA) as 

a surfactant solution to prepare AgNPs which could be readily dispersed in epoxy in and 
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form composites. Other routes to equip metal nanoparticles with a surrounding organic 

shell include the preparation of polymer-coated metal nanoparticles either through the 

grafting of the polymers onto the surface or by conducting a surface-initiated 

polymerization. The organic shell could be tuned from 2-50 nm although some of the 

reported polymer shells are hydrophilic in nature and therefore do not facilitate the 

dispersion in hydrophobic media.232–238 Further treatment such as the cross-linking of the 

polymer chains dangling around the particles can provide additional stability to the 

particles towards agglomeration, especially at high temperatures where polymer desorption 

from the surface can occur.239 

 

1.8 Current State of Functionalized Metals/Polymer Nanocomposites 

Metal fillers allowed a large increase in the permittivity İeff of the resulting composites 

with different polymer matrices (Tab. 2). As mentioned, metals such as Cu and Al obtain 

an insulating layer through self-passivation which disables the formation of a percolation 

pathway, even at high filler content. The passivating oxide layers are relatively thin and 

therefore the dispersion of the filler still leads to large permittivity values for the resulting 

composite.197 However, the passivation does not seem to be a controlled reaction, and it is 

unclear whether further oxidation can occur with time which leads to the increase in the 

insulating layer. As a result, noble metal nanoparticles provide a better control which 

enables the precise control over the insulating shell surrounding them. In addition, noble 

metals offer the possibility of preparing different nanostructures, which can also be 

attractive for the investigation of the effects of the morphology on the composite 

properties. Silver nanostructures have already been used as filler for the preparation of high 

permittivity composites and gave high permittivity values upon reaching the percolation 

threshold. In the previous works involving the use of Ag as high permittivity filler, the 

main motivation for the preparation of the composites was their potential use as 

dielectrics/capacitors.1,80,114,240 The particles were insulated with various materials, 

including SiO2, Al2O3 and carbonaceous shells as stated in the previous subchapter. 
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Additional to the high permittivity values of the composites attributed to the use of Ag, the 

insulation of the particles also led to tan į values as low as 0.02 (Tab. 3).  While thinner 

shells provided higher permittivities, the thicker shells led to an increase in the breakdown 

field EB of the resulting composites.81 Ag was also used in the preparation of multiple-

phase composites in order to yield a further increase in the permittivity İeff of the 

composite. This was observed by the addition of Ag@SiO2 core-shell particles unto a 

BaTiO3/PVDF composite as the permittivity increased by more than 20 times in the 

presence of 20 vol% of the core-shell particles.150  

The previous works involving the use of AgNPs as filler demonstrate the preparation of 

high permittivity composites and are an inspiration for further investigations on the 

potential of Ag particles as high permittivity filler.  
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1.9 Goals of the Thesis 

The goal of this project is to provide a model system for the preparation of silicone 

elastomer composites blended with functionalized AgNPs as fillers with potential use in 

actuators and generators. Tab. 3 shows a number of composites where Ag is used as filler, 

but a number of them do not feature a control over the particles size, morphology and 

surface properties. Furthermore, the reported nanocomposites generally neglect the 

corresponding mechanical properties. This work will try to address the mentioned issues, 

and therefore each step towards the preparation of the nanocomposites will be subjected to 

investigations. The initial part of this project consists of the preparation and 

functionalization of AgNPs. Since the preparation of nanocomposites requires substantial 

amounts of filler, a reliable method to prepare AgNPs in high amounts with control over 

size and shape will also be sought. The purpose of the surface functionalization of the 

AgNPs is to provide them with an insulating layer followed by the hydrophobization of the 

surface in order to enhance compatibility with PDMS, the latter being chosen as the 

polymeric matrix material due to the possibility of obtaining flexible materials with it. The 

insulating shell can be both of inorganic and organic nature. After the functionalization of 

the particles, they will be used as filler in order to prepare nanocomposites with enhanced 

dielectric and mechanical properties. The preparation of the nanocomposites and 

subsequent film-formation will be conducted with the doctor blade method to yield thin 

elastic films (< 200 µm). Thereafter, the dielectric and mechanical properties of the 

resulting nanocomposites will be investigated by conducting mechanical tensile tests and 

by analyzing the dielectric properties via impedance spectroscopy in the range of 1-105 Hz. 

 

1.10 Structure of the Thesis 

Chapter 2 illustrates the attempts of preparing AgNPs of different sizes in a continuous 

fashion with the use of the Segmented Flow Tubular Reactor (SFTR) as an alternative 
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route to the conventional preparation of AgNPs with batch reactions which has also been 

used in this work. The goal is to develop a reliable and reproducible method to prepare 

AgNPs in large amounts with a good control over the product quality (particle size, 

morphology, particle size distribution).  

Chapter 3 deals with the investigation of the effects of the insulating silica (SiO2) shell 

thickness on the resulting permittivity of the core-shell particles. 

Chapter 4 shows the use of Ag@SiO2 core-shell particles (hydrophobized through the 

surface treatment with alkyl silanes) as filler for the preparation of nanocomposites with 

PDMS. The investigation of the dielectric and mechanical properties of the resulting 

nanocomposites is the key topic of this chapter, and steps towards the optimization of the 

nanocomposite properties are featured. 

Another alternative for the hydrophobization of the Ag@SiO2 core-shell particles is shown 

in Chapter 5. Here, the Ag@SiO2 core-shell particles are subjected to the surface-initiated 

atom transfer radical polymerization (SI-ATRP) which provides the possibility of 

conducting polymerizations on the particle surface. By polymerizing monomers such as 

methyl methacrylate (MMA), the particle surface is rendered hydrophobic and allows their 

redispersion in organic, non-polar solvents which would enhance their compatibility with 

hydrophobic media. 

The chapters were originally written as manuscripts for peer-reviewed journals, and 

therefore certain texts and references might be repeated in the process. While Chapters 2, 3 

and 4 have already been accepted for publication (J. Phys. Chem. C 2014, 118, 11093-

11103, RSC Adv. 2013, 3, 6964-6971 and J. Mater. Chem. A 2015, 3, 14675-14685), 

Chapter 5 is still outstanding. The appendix exhibits additional results, including the 

synthesis of AgNPs through the inverse miniemulsions technique as well as the dielectric 

properties of nanocomposites using different sizes of AgNPs (with constant SiO2 shell 

thickness). They are placed in the appendix as they were either aborted projects or do not 

give results substantial for publications. The arrangement of the chapters is mainly based 
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on the steps towards the preparation of the nanocomposites and do not necessarily 

correspond to the chronological order of events. 
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Chapter 2: Continuous Production of Tailored Silver   

Nanoparticles by Polyol Synthesis and Reaction Yield 

Measured by X-ray Absorption Spectroscopy: Towards a 

Growth Mechanism. 
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Abstract: In this paper two complementary topics are discussed: (i) the continuous 

production of silver nanoparticles (AgNPs) and (ii) the measurement of reaction yield by 

X-ray Absorption Near Edge Spectroscopy (XANES). The continuous polyol synthesis of 

AgNPs in grams amount and in the size range of 7-104 nm was carried out in the 

Segmented Flow Tubular Reactor (SFTR). Particle size was tailored by controlling the 

synthesis parameters such as temperature, reactant concentrations, and 

polyvinylpyrrolidone (PVP) molecular weight. The continuous production was tested for 4 

h and the product has shown constant particle size distribution over the whole production 

time. Reliable continuous production of 2.3 g∙h-1 of about 100 nm AgNPs can be achieved 

with a lab-scale SFTR. The produced particles were fully characterized with respect to 

size, size distribution and chemical purity. To better understand the growth mechanism, 

synchrotron-radiation high-resolution X-ray diffraction and X-ray absorption spectroscopy 

data were collected directly on the AgNPs suspension. In particular, from XANES 

experiments the conversion yield of Ag+ to Ag0 was measured. The results are consistent 

with a two steps process where PVP controls the particle nucleation while growth is 

ensured by thermally induced ethylene glycol oxidation. 

 

2.1. Introduction 

Over the last couple of decades, noble metal nanoparticles have attracted significant 

interest in science and industry due to their wide range of applications. Thanks to their 

interesting optical properties, AgNPs have gained a lot of attention in applications such as 

surface-enhanced Raman spectroscopy,1,2 optical sensing,3-5 electronics6 and plasmonic 

enhancement of absorption.7 Noble metal nanoparticles have also excellent surface 

properties that find application in catalysis8. AgNPs in the size range 20-50 nm are 

required for the preparation of conductive paste for ink-jet9-12 or screen printing13,14 as well 

as for joining of power electronics components.15-17 For these latter applications, a narrow 

particle size distribution is mandatory because few larger particles cause nozzle clogging 
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or defects in the conductive wires or joining layers. Excellent electrical and thermal 

properties, very close to the silver bulk values, are obtained upon sintering. When flexible 

organic substrates are used (e.g. polymeric films) the sintering temperature has to be as low 

as possible, ideally below 250 C. Sintering temperature decreases with particle size 

driving the technology toward AgNPs. Nevertheless, very high solid loads (> 50 wt%) are 

required in metal pastes in order to produce optimal electrical and thermal conductivities 

but such ultrafine particles are very difficult to retrieve quantitatively from the synthesis 

mother solution. Thus, a trade-off between a low sintering temperature and facile particle 

retrieving is for instance the use of larger particles (30-100 nm). 

Moreover, AgNPs are particularly interesting as conductive filler for the preparation of 

composite materials with high dielectric properties. Epoxy-based nanocomposites using Ag 

as filler with dielectric constants up to 300 have been reported so far.18,19 For this 

application, AgNPs with an average size up to 200 nm and narrow particle size distribution 

are of great interest.  

Liquid phase chemical reduction is a simple and popular method to prepare metal 

nanoparticles from salts, since no hazardous by-products are generated. Among these 

methods, the polyol synthesis, intensively investigated by Xia and co-workers,20,21 stands 

out as a convenient and environmentally friendly way to generate silver nanostructures.  

Different stabilizers have been used in the polyol synthesis, which include 

polyacrylamide,22 polyacrylic acid (PAA)23 and polyvinylpyrrolidinone (PVP).24 By tuning 

the synthesis parameters such as concentration,24 precursor addition rate and method, 

temperature25, average molecular weight of the stabilizer,26,27 reactant stoichiometry28, 29 or 

additives,30-33 size and shape of the nanocrystals can be controlled.  

One of the limitations in producing high quality AgNPs is the poor control of mixing 

conditions, stirring efficiency, temperature inhomogeneity, heating and cooling rates, in the 

batch type reactors used. This hampers the reproducibility and product quality and 
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uniformity.24,34,35 Despite the influence of the aforementioned parameters, good product 

quality may be obtained when working with low reactant concentrations; the product 

quality degradation, such as particle size distributions broadening, becomes very 

pronounced when attempting to scale up e.g. by increasing the reaction volume or 

increasing the precursor concentration. The preparation of AgNPs in batch conditions with 

different reaction volumes show the differing product properties and indicate that the 

reproducibility of the small scale reaction cannot be obtained by simply increasing the 

reaction volume (see Supporting Information). The heat transfer in a small volume is more 

efficient than in a large volume, and this affects the nucleation process. The batch reaction 

at smaller reaction volume yields smaller particles since there is a more rapid nucleation 

due to the faster heating of the reaction mixture. This also manifests itself on the better 

particle size distribution achieved in small scale reactions. Overall, the obtained yields of 

the reactions were around 70 %. The difficulty of the upscaling of the reaction can also be 

seen in ref. [24] where the best particle variation coefficient was obtained at a AgNO3 

concentration of around 31 mM. A further increase in the concentration, despite keeping the 

precursor ratio constant, led to a deterioration of the particle size distribution. A possibility 

to overcome scaling up problems is by multiplying or “numbering up” the small batch 

syntheses but can become cumbersome and expensive. An alternative is to use a 

continuous flow reactor. Few attempts for the continuous production of AgNPs have been 

reported in literature, mainly focused on small particle sizes (< 10 nm) prepared by 

microfluidic devices36-38 or in a tubular reactors39 and syringe pumps40 (semi-continuous):  

these papers deal with flow rates < 1 ml∙min-1, millimolar Ag concentrations and limited 

treated volumes, thus not suitable for a relatively large production (few g∙h-1). An 

interesting experimental work is reported by Nishioka38 et al., where AgNPs are produced 

in a tubular reactor heated in a microwave oven. The authors claim that by conventional 

heating in an oil bath, metal silver is deposited on the tubular reactor wall and the product 

quality deteriorates over time while by microwave heating the process is reliable over time. 

Similar fouling problems are reported by Lin and coworkers.40  
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In this work we present the continuous polyol synthesis of AgNPs in the size range 10-120 

nm using high precursor concentrations ([Ag+]  120 mM in the reaction mixture). The 

reaction was carried out in the Segmented Flow Tubular Reactor (SFTR)41 heated in a 

conventional oil bath. A prominent feature in this experimental set-up is that an inert and 

immiscible solvent is introduced into the system and separates the reaction mixture into 

identical micro-volumes before transporting them into the reactor. This principle avoids 

back-mixing of the reaction mixture and creates identical conditions for the produced 

micro-volumes in terms of heat transfer and residence time within the reactor. Moreover, 

as already shown for several precipitation reactions42,43 and here presented for the first time 

for AgNPs production, the immiscible fluid protects the internal tubular wall reactor 

allowing long production time without product quality deterioration or fouling. In this 

paper the effects of the reaction temperature and the average molecular weight of PVP on 

the resulting particle size and distribution are investigated. The products were fully 

characterized by Transmission Electron Microscopy (TEM), high resolution X-ray 

Diffraction (XRD), Thermogravimetric Analysis (TGA), Inductively Coupled Plasma 

Mass Spectrometry (ICP-MS), Dynamic Light Scattering (DLS), Ultraviolet-Visible 

Spectroscopy (UV-vis), and X-ray Disk Centrifuge Particle Size Analysis (Brookhaven 

Instrument, BI-XDC). 

Synchrotron radiation was used both for X-ray diffraction (XRD) and for X-ray absorption 

spectroscopy (XAS).  X-ray diffraction patterns were collected on dried powder as well as 

directly on the as prepared suspensions. X-ray Absorption Near Edge Spectroscopy 

(XANES) was used for the first time to directly measure the reaction yield. 

Additionally, a correlation between the major plasmon peak in the UV-vis spectra and the 

TEM particle size was identified. It is demonstrated that a series of relevant analytical data 

can be measured directly on the particle suspension. The combination of the applied 

analytical techniques allowed a growth mechanism to be proposed which can explain the 

experimental results obtained in the continuous production using the SFTR. 
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2.2. Experimental Section 

2.2.1. Continuous Segmented Flow Tubular Reactor (SFTR) 

A schematic view of the Continuous Segmented Flow Tubular Reactor (SFTR) is 

illustrated in Fig. 23. More details are published elsewhere.41-43 The SFTR is composed of 

a micromixer which ensures that the reactants are efficiently mixed, a segmenter, and a 

PTFE tubular reactor, placed in a thermostatic bath. Small suspension volumes (about 0.2 

cm3) are thus created, producing microdroplets or microreactors in an immiscible fluid (n-

dodecane, n-C12), where the reaction – in this case Ag+ reduction and Ag precipitation – 

takes place. This small volume ensures a high homogeneity of the droplets and each of 

them is facing the identical history (e.g., residence time and heat exchange) throughout the 

tube. 

 

 

Fig. 23: Schematic illustration of the SFTR. The two reactants are introduced separately into the 
system and pass through various systems (micromixer, segmenter) in order to produce reaction 
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microdroplets prior to going through the heated reactor where the formation of the particles occurs.  

The reaction or the precipitation occurs in the mixing chamber and/or induced by the rapid 

temperature change when the microreactors are heated in the thermostatic bath. According 

to fluid dynamic modelling, the temperature of the droplets reaches 95 % and 99 % of the 

bath temperature within 6 and 10 s, respectively.44 Fouling on the inner tubular reactor wall 

is avoided due to the immiscible fluid by forming a thin film on the tube surface42,45 and 

thus allowing long continuous process times (> 12 h). The residence time is determined by 

the pump flow rates and the tube length and adjusted according to the specific reaction 

kinetics. This is a steady-state process in which each step (mixing and reaction) is well 

separated, leading to a better control and reproducibility. If needed, after the tubular 

reactor, in the process line, a heat-exchanger can be placed to cool down the reacting 

mixture and quench the reaction. Finally, a separation unit or decanter allows the 

separation of the product from the immiscible fluid; the product – particle in suspension – 

is collected, while the immiscible fluid is recycled in the process for environmental and 

cost concerns. 

 

2.2.2 Polyol Synthesis of Silver Nanoparticles in the SFTR 

All chemicals were purchased from Sigma Aldrich and used as received. Ethylene glycol 

(EG) was distilled prior to use. A modified procedure from Xia and co-workers was 

applied for AgNPs synthesis.46 Two separate solutions of AgNO3 (0.236 M) and PVP 10: 

Mw = 10’000 g∙mol-1 or PVP 40: Mw = 40’000 g∙mol-1 (2.16 M in terms of repeating units) 

were prepared. PVP and AgNO3 were dissolved at 70 °C under sonication and at room 

temperature under magnetic stirring, respectively. In order to protect the AgNO3 solution 

from sunlight, the container was shielded off by wrapping aluminium foil around it. The 

two reactants were introduced into the reactor system by pumping with two HPLC pumps 

at a rate of 1.5 mL/min. After forming the reaction mixture in the micromixer, the micro-

volumes were made in the segmenter by passing through n-C12 at a speed of 24.8 mL/min. 
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In the experimental trial, the temperature range was kept between 120 and 150 °C. The 

residence time of the micro-volumes within the tube in the thermostatic bath was 12 min. 

In a second tubular section, the segmented suspension was cooled down. The silver sol was 

then collected in the decantation funnel and n-C12 separated. The theoretical AgNPs 

production (100 % yield) corresponds to 2.26 g AgNPs h-1.  

 

2.2.3. Materials and Methods 

Particles were characterized by TEM images (Philips CM30) measuring over 400 particles, 

DLS (Malvern Zetasized Nano ZS), BI-XDC (Brookhaven Instruments) and UV-vis (Cary 

50 Spectrophotometer). TGA was carried out with a Mettler Toledo TGA/SDTA 851e in 

the temperature range 25-500 C (heating rate 5 K min-1). About 20 mg of Ag powders 

were treated in Ar/O2 (20 % O2, 15 ml∙min-1) atmosphere. A second run under reducing 

atmosphere Ar/H2 (5 % H2, 10 mL∙min-1) was carried out on selected samples. Chemical 

analysis was carried out with an Agilent 7700x ICP-MS after digestion of the samples in 

HNO3 and dilution in milliQ water, using external calibration standards. XRD patterns and 

XANES measurements were done at the Swiss Light Source (SLS, Paul Scherrer Institut, 

Villigen PSI, Switzerland). XRD were collected at the Material Science beam line 

(X04SA), at 25 keV and using a 0.3 mm glass capillary.47 Cell parameters were calculated 

by Rietveld refinement using the GSAS (General Structural Analysis Software)48 and ICSD 

(Inorganic Crystal Structure Database).49 Crystallite sizes (dXRD) were estimated from the 

full path refinement using the GSAS (profile function #4).50 Moreover, diffraction patterns 

were collected directly on the as prepared suspension, through a liquid cell sample holder 

with 10 mm of optical path.  
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In order to understand the influence of the key parameters on the precipitation process, the 

reaction yield (Y) needs to be measured. Y is defined as 

 

                                                              � =  (Eq. 42)                                             ܶ݃�݊݋݃� 

 

where Ag୬୭ and AgT are the amount of AgNPs obtained and the overall amount of silver in 

the system, respectively. Experimentally we notice that when the reaction is complete (Y = 

100%) the as-prepared particle suspensions are stable over time with a shelf-time of 

several months.               For Y < 100 %, silver mirror was formed over time on the storing 

vessel because of the reducing environment and the unreacted Ag+. Thus, the overall 

amount of silver is: 

 

                                               �்݃ = �݃௡଴ + �݃௠଴ + �݃+                                       (Eq. 43) 

 

where Ag୫଴  and Ag+ are metal silver deposited on the vessel as mirror and the unreacted 

silver ions, respectively. 

The measurement of the reaction yield is not a trivial analytical problem to solve since: (i) 

it is not always possible to retrieve the solid quantitatively from the suspension; (ii) it is 

difficult to carry out chemical analysis on the supernatant because of the presence of 

residual particles in suspension; (iii) the chemical method, e.g. by titration with chlorine 

ions without AgNPs separation, may be affected by the nanoparticles interference. A 

different approach needs to be found out that (i) it is sensitive to the Ag+/Ag0 ratio,         
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(ii) does not require solid-liquid separation, (iii) can be carried out on the liquid suspension 

just after the synthesis, ideally on-line, when Ag୫଴ = Ͳ.  

Here, a novel approach to measure the reaction yield by X-ray Absorption Near Edge 

Spectroscopy (XANES) is presented. XANES is a direct method to quantify the oxidation 

state of the absorbing atom. By fitting (Linear Combination Fitting, see later in this 

section), the relative amount of Ag+ and Ag0 can be calculated. Thus, when Ag୫଴ = Ͳ, the 

reaction yield is calculated as 

 

                                                    � =  ቀͳ + ஺௚+஺௚೙బ ቁ−ଵ
                        (Eq. 44) 

 

In this paper, two Ag absorption edges were measured (K and L3) and compared in terms 

of analytical results and experimental requirements. 

The Ag L3-edge XANES spectra were collected at the PHOENIX beamline (X07MA). The 

beamline was equipped with a Si(111) monochromator tuned to the Ag L3-edge, assigned 

to 3351 eV using a thin Ag metal foil, also used as a standard for Ag0 specie. The 

experimental set-up closely follows the one reported in ref. [51]. The measurements were 

carried out in fluorescence mode, at room temperature in a 100 mbar He atmosphere. An 

appropriate sample concentration was chosen, in order to give the maximum contrast at the 

Ag-L3 edge and minimize the over-absorption effects. Actually, the as-synthetized 

suspensions were used without dilution because preliminary tests demonstrate that over-

absorption effects were negligible. To measure the incoming photon flux (I0), a polyester 

foil (Goodfellow), coated with 50 nm of Ni, was put into the beam at the exit of the 

focusing optics, thus behind the last aperture before the sample. The total electron yield 

generated on the foil by the beam served as measure of I0. 
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The Ag-K edge XANES spectra were collected at the Super-XAS beamline (X10DA). The 

intensity of the incident beam (I0) was measured with an argon filled ion chamber. The Ag+ 

standard and the sample suspensions were properly diluted in order to minimize hole-

effects and then placed in 1 mm glass capillaries. X-ray absorption data from the sample 

were measured in transmission mode. A second argon filled ion chamber was used to 

measure I1. A thin sample of Ag metal foil was used for calibration and also as a standard 

for Ag0 specie. The calibration measurement was made with a third argon filled ion 

chamber (I2) placed after I1. The position of the metal absorption edge (Ag, 25514 eV) 

could then be determined by placing the Ag metal standard between ion chambers I1 and I2 

and measuring the absorption coefficient of the metal standard. In both XAS experiments a 

solution of Ag+, stabilized with HNO3, was used as standard for Ag+ species. 

The XANES spectra were analysed by using the Linear Combination Fitting (LCF)52-55 

option available in ATHENA.56 With this method, the X-ray absorption spectrum is 

modelled by least squares fitting using linear combination of known species to fit the 

unknown spectrum. The underlying principle is the additive nature of the absorption from 

each species in the sample. The total absorption coefficient can be written as a sum of the 

chemical forms or species. Mathematically,  ii i STDfModel   where Model is the least 

square fit to the sample spectrum over a selected energy range, and fi is the scaling factors 

applied to each spectrum of the corresponding standard (STDi) across the energy range of 

the fit. The scaling factors obtained from LCF represent the fraction of each standard 

species in the unknown sample. The LC fit has been carried out in the energy range    

25400 – 25700 eV for the Ag-K edge and in the 3300 – 3450 eV range for the Ag-L3 edge. 

The relative weights of the two reference standards (Ag0 and Ag+) are allowed to vary from 

0 to 1, and the absorption edge energies, previously aligned, are kept fixed during the 

analysis. 

 



 

2. Continuous Production of Tailored Silver Nanoparticles by Polyol Synthesis and Reaction Yield 
Measured by X-ray Absorption Spectroscopy: Towards a Growth Mechanism. 

 

86 

  

2.3. Results 

Following a single droplet within the tubular reactor, a clear colour evolution occurs over 

time, from colourless transparent to pale transparent yellow to deep red or dark 

suspensions. The colour change is due to the well-known localized surface plasmon 

resonance spectra that highly depend upon their size, shape, and surrounding environment.  

The transparent solution indicates that no reduction occurs during mixing at room 

temperature, while the reaction starts, induced by the temperature, in the thermostatic bath. 

The colour change is thus due to the AgNPs nucleation and growth. Dark suspensions are 

obtained at high reaction yield and for rather large particle (> 60 nm).    

The collected products, in form of suspensions, were characterized both as suspension and 

as washed and dried powders. Tab. 4 summarizes the synthesis condition and the average 

particle size of the 7 series of samples produced. The samples were collected for about 30 

minutes of continuous production. At T= 120 °C and PVP 40k, the reaction does not occur. 

It is worth noting that, in the tested temperature conditions (≤ 150 C), if the process is 

carried out without PVP, the silver reduction does not occur. Fig. 24 shows representative 

TEM images of the samples G0, G1, G2, and G3 prepared with PVP 10k. The average 

particle size obtained ranged from 23(4), 25(4), 47(8) and 58(7) nm by conducting the 

experiments at temperature 120, 130, 140 and to 150 °C, respectively. In the parenthesis, 

the measured standard deviation of the particle population is reported, which evaluates the 

particle size distribution span. Fig. 25 show the products (samples G4, G5 and G7) 

obtained when PVP 40k was used. The particle sizes was 7(2), 79(15) and 104(20) nm for 

temperatures of 130, 140 and 150 °C, respectively. The particle size distribution measured 

from the TEM images are also reported as inset (Fig. 24 and Fig. 25). 
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Tab. 4: Summary of the polyol synthesis of AgNPs in the SFTR. In the parenthesis is reported the              
measured standard deviation of the particle population. 

aMean numerical diameter. In the parenthesis is reported the measured standard deviation of the  

particle population. 

 

Sample  Temperature 

(°C) 

PVP Mw 

(g∙mol-1) 

TEM 

size (nm) 

Mean 

diameter             

(nm)a
 

G0 120 10k 23 (4) 14 (4) 

G1 130 10k 25 (4) 20 (8) 

G2 140 10k 47 (8) 33 (12) 

G3 150 10k 58 (7) 56 (17) 

G4 130 40k 7 (2) 9 (2) 

G5 140 40k 79 (15) 107 (30) 

G7 150 40k 104 (20) 123 (32) 
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    Fig. 24: AgNPs prepared with PVP 10k: (a) G0, (b) G1, (c) G2 and (d) G3. 
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    Fig. 25: AgNPs prepared with PVP 40k: (a) G4, (b) G5 and (c) G7. 
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After washing, the surface plasmon bands in the visible region were measured by UV-Vis 

spectrometry. A batochromic shift of the major plasmon peak Ȝmax from 402 to 453 nm was 

observed as the average TEM diameter increases from 7 to 104 nm (Fig. 26 and Fig. 27). 

This correlation is shown in Fig. 26. The position of Ȝmax depends on the solvent used for 

the measurements.57 The presence of a second broad plasmon peak for the sample with 

particles of 23 nm diameter might be indicative for some occurring agglomeration, 

although the DLS spectrum (Fig. 28) and TEM images did not provide substantial proof 

for their existence. Nevertheless, particle agglomeration can be assumed, especially with 

decreasing particle size due to enhanced attractive forces acting between them. The 

shoulders evident on the UV-vis spectra of the sample G0 can also be explained either by 

the occurrence of non-spherical shapes within the particle population e.g. oblate spheroids. 

This effect is pronounced for small particle sizes, but vanishes at larger particle sizes due 

to the larger particle size distribution.58 

 

 

Fig. 26: UV-vis spectra of the AgNPs prepared with the SFTR. 
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Fig. 27: Correlation of the mean particle diameter (measured with TEM) with the position of the 
absorption maxima in the UV-vis spectra. 

 

 

Fig. 28: Particle size number distribution measured by DLS of the AgNPs prepared with the SFTR. 
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Fig. 29: Particle size number distribution measured by DLS of the AgNPs prepared during the long 
term reaction (L1). Particles were analysed at different reaction times.  

 

The synthesis reliability against time was conducted by producing AgNPs for about 4 h at 

150 °C using PVP 40k (sample L1, equivalent to sample G7). These synthesis conditions 

have been selected because complete reduction to Ag0 was obtained (see later in this 

section). Suspension aliquots were taken at regular times and DLS particle size 

distributions recorded. Fig. 29 shows the overlapping particle size distributions and Tab. 5 

shows the percentile diameters dn10, dn50 and dn90 against time. The mean particle diameter 

of the collective samples (all L1 aliquots) was measured by DLS, by TEM image, as well 

as by BI-XDC. Results are summarized in Tab. 6.  
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Tab. 5: Percentile Diameters measured with DLS for AgNPs (L1) prepared at 150 °C running over 
4 hours. 

Aliquot 

taken after 

reaction 

time (min) 

dn10 (nm) dn50 (nm) dn90 (nm) 

Mean 

diametera  

(nm) 

15 73 99 146 110 (27) 

30 76 104 154 112 (29) 

60 69 96 146 104 (30) 

120 71 95  139 105 (25) 

180 76 104 152 106 (30) 

240 72 98 147 101 (30) 

aMean numerical diameter. The measured standard deviation of the particle population is reported 

in parenthesis. 

 

Tab. 6: Mean diameter for AgNPs (L1) prepared at 150 °C running over 4 hours. In the parenthesis 
is reported the measured standard deviation of the particle population. 

 DLS dn50 

(nm) 

  TEM       

(nm) 

            XDC (nm) 

Particle size 100 (30)    87 (17)         91 (26) 

 

The reaction yield was determined on selected samples by XANES spectroscopy. Both the 

Ag L3-edge and K-edge XANES spectra have been collected. The normalized ȝ(E) data 

obtained for the two Ag species (Ag+ and Ag0) were linearly combined to fit the 
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normalized ȝ(E) data of selected samples using the Linear Combination Fitting (LCF) 

method.49-52 The low energy of the Ag-L3 edge (3351 eV) allows reducing the radiation 

damage on the samples during the measurements, but the interference from other edges 

(i.e. Ag-L2 at 3524 eV) cannot be excluded, limiting the energy range in which the samples 

can be measured. Moreover, the low energy of the Ag-L3 edge challenges the measurement 

from the point of view of the experimental set-up and materials needed for the optical 

windows. For these reasons, on selected samples, Ag-K edge (25514 eV) XANES spectra 

have been collected as well. In this case, because of the higher energy used, the beam 

damage is more probable, but the measurement can be much faster and the experimental 

setup as simple as a standard glass capillary.  

The percentage of Ag+ and Ag0, the corresponding errors, the goodness-of-fit (R-factor, i.e. 

a measure of mean square sum of the misfit at each data point), the calculated yield, and 

the gravimetric yield, which was measured by weighting the collected product after 3 

consecutive washing and centrifugation cycles, is reported in Tab. 7. The reported 

incertitude on the measurement is obtained from the ATHENA software and refers to the 

error on the LCF. Sample G7 and L1 are completely converted to Ag0 and the fitting is 

actually not necessary because their XANES spectra overlap the Ag metal standard. It is 

worth noting that the incertitude of the measurement technique has to be experimentally 

evaluated by ad-hoc trials. For the time being, based on our experience and the literature59-

61, the measurement incertitude can be estimate below 3 %.     

As example, Fig. 30 reports the normalized of Ag L3-edge and K-edge XANES spectra for 

the sample G3 and G4, respectively. The goodness-of-fit can also be seen from the little 

difference (plotted as green line) between the experimental and LC fitted data. 
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Fig. 30: Example of LC fit for (a) Sample G3 (Ag-L3) and (b) Sample G4 (Ag-K) edge XANES 
spectrum. Circles: experimental data; Red line: LC fit; Blue line: fraction of Ag+ making up the fit; 
Pink line: fraction of Ag0 making up the fit; Green line: Difference between experimental data and 
LC fit. 

 

Tab. 7: Summary of the amount of Ag+ and Ag0 of selected samples determined by XANES 
spectroscopy (L3-edge or K-edge). The yield is determined by (Eq. 42). 

 Ag0 

(%) 

Ag+ 

(%) 

R-

factor 

(%)* 

Yield 

XANES 

(%) 

Yield 

gravim. 

(%) 

G3 (L3-edge) 

G4 (K-edge) 

G5 (K-edge) 

G5 (L3-edge) 

G7 (L3-edge) 

L1 (L3-edge) 

74 ± 1 

57 ± 2 

92 ± 1 

93 ± 1 

> 97 

> 97 

25 ± 1 

41 ± 2 

 5 ± 1 

 6 ± 1 

- 

- 

0.002 

0.006 

0.002 

0.002 

- 

- 

75 ± 2 

58 ± 4 

95 ± 2 

94 ± 2 

> 97 

> 97 

73 ± 5 

n.d. 

89 ± 5 

89 ± 5 

95 ± 5 

95 ± 5 

* defined as  
 

1002

2








measured

calculatedmeasured

XANES

XANESXANES
R
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Tab. 7 reports the yield measured by the gravimetric method. In this case the product needs 

to be washed and retrieved by centrifuging for at least three times. This procedure was not 

possible for sample G4 because of the small particle size. The gravimetric yields are in 

good agreement with the XANES values, considering that a fraction of NPs can be lost 

during the washing and centrifugation treatments.       

The purity of selected solid samples, after centrifugation, washing, and drying were 

analyzed by ICP-MS and TGA. The chemical analysis carried out on samples G3 and G7 

showed no relevant contaminants (Fe  20 ppm; Na  5 ppm; Ni, Zn, Mo  2 ppm) and the 

Ag content were about 90 % and 97 %, respectively. These results are coherent with the 

TGA experiments which show that the weight loss against temperature (Fig. 31) may be 

attributed to organic residuals on the particle surface. The organics are completely burned 

out at about 280 C for samples L1 and G7. Sample G3 shows a different behaviour with a 

clear two-step weight loss. The reason of the second weight loss, which is completed at 

500 C, is under investigation, but could be ascribed to the lower molecular weight of PVP 

used in the synthesis. 

A subsequent thermal treatment under reducing conditions (5 % H2, balance Ar) up to 500 

C (not shown) was performed. The absence of weight changes confirm that the samples 

were not oxidized due to the thermal treatment carried out in air. 
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Fig. 31: TGA measurements conducted on the recovered powders from samples G3, G7 and L1. 

 

High resolution XRD patterns on powders where collected on selected samples (G3, G4, 

G5, G7). As example, Fig. 32 shows the powder diffraction pattern for sample G7. Organic 

residues, in agreement with the TGA experiments, gave a relevant background 

contribution. The best fit obtained by Rietveld refinement suggests the presence of two 

populations of crystallites of about 10 nm and 80 nm. The calculated crystallite size is 

smaller than the TEM particle size but in agreement with the multi-domain substructure of 

the particles (Fig. 24 and Fig. 25). The diffraction patterns do not show any crystalline 

secondary phases. Fig. 32 shows the diffraction patterns collected on the as prepared 

suspensions (G3, G4, G5) as well. In these cases, the peak broadening is a complex 

convolution of particle size and the liquid suspension thickness under analysis but the 

collected patterns show good signal-to-noise ratio. It can be seen that sample G4 has no 

diffraction peaks because the particles are both small (7 nm) and few (low conversion 

yield), while G3 and G5 (and G7, not showed) gave excellent signals. Again, no secondary 

phases were detected.      
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Fig. 32: Diffraction patterns collected on powder (G7) or on the as prepared suspension (G3, G4, 
G5) after background subtraction. 

 

2.4. Discussion 

Due to the evident colour change during the reaction progress (due the surface plasmon 

effect which strongly dependents on the Ag0 particle size), the drop-to-drop homogeneity 

can be easily verified along the tubular reactor. The constant and reproducible colour of the 

droplets is a clear demonstration of the system stability. However, in some cases, for 

instance when a small gas bubble was dosed by one pump at the beginning of an 

experimental trial, a droplet of different colour was immediately recognized in the tube due 

the chemical difference of that droplet with respect to the neighbours’ droplets.   

The powders produced over 4 h shows constant particle size distribution, demonstrating 

that the preparation of AgNPs can be extended for a long production time with constant 

product properties. 
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Thermogravimetric measurements and chemical analysis gave coherent results: the product 

consists of pure Ag and organic residues (about 3 wt%), most probably PVP on the 

particles surface. The organic residues are burned out at about 250 C. The overall metallic 

contaminants concentration is below 50 ppm.    

The particle size distributions of the produced samples were measured by several 

techniques and a general good agreement among the measurements were demonstrated. 

We can conclude that the most convenient method is DLS because (i) limited amount of 

product is needed, (ii) it is fast and (iii) inexpensive, and (iv) reliable results are obtained. 

The major drawback is that DLS is an offline method. Nevertheless, the correlation 

between TEM size and UV-Vis spectroscopy (Fig. 27) open the possibility to monitor 

particle size on-line using UV-Vis spectroscopy.  

The AgNPS conversion yield was measured from XANES spectra using both K and L3-

edges, giving comparable results (Sample G5, Tab. 4). The higher energy of the K-edge 

greatly simplifies the experimental set-up and the feasibility of the direct measurement of 

the reaction yield on the suspension was demonstrated (Fig. 30). Similarly, X-ray 

diffraction patterns of the powder may be efficiently measured from the suspension with a 

liquid sample holder cell, as demonstrated in Fig. 32. It turns out that these investigations 

may be carried out directly on the as prepared suspension, ideally in situ in the SFTR 

reactor. In principle, the most relevant particle formation parameters such as primary 

particle size by XRD (the crystallite size), secondary particle size by UV-vis spectroscopy 

(thanks to correlation with the TEM size) the particles, and conversion yield by XANES 

might be studied in situ and time-resolved, allowing the detailed kinetic study of particle 

formation.   

As shown in Tab. 4, average particle diameter can be tuned by changing the reaction 

temperature and the PVP average molecular weight. The effect of the temperature has also 

a relevant influence on the conversion yield and size: higher temperatures gave higher 

yields and bigger particle sizes. Moreover, the particle size distribution span remains 
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almost unchanged against yield. Such behaviour may be explained by a two stage process 

where nucleation and growth occur on two different times scales. It is plausible to consider 

that particle nucleation occurs only in a limited time frame at the beginning of the 

precipitation – which visually corresponds to the time frame from colourless solution to 

pale yellow suspension – producing a defined number of small particles. Then, this 

population of particles grow over time, consuming Ag+ ions, confirming that reduction to 

Ag0 occurs. The reducing agent is the in situ generated glycolaldehyde formed by 

oxidation of EG at elevated temperatures. It should be mentioned here that this oxidation 

process is strongly accelerated by the temperature.62 For this reason, at 130 C and 12 min 

of reaction time, the conversion yield is very low while at 150 C the reaction is 

quantitative for the same reaction time. 

Nucleation could be controlled by PVP.63 This hypothesis is supported by the fact that (i) 

tests carried out without PVP led to no precipitation of AgNPs at all, (ii) it is known that 

PVP acts both as stabilizer and reductant,64 and (iii) the particle size decreases with PVP 

molecular weight. Commercially available PVP are commonly terminated with hydroxyl  

(-OH) end-groups65. These terminal groups act as reducing agent: keeping constant the 

ratio between polymer repetition unit and silver, the number of terminal groups increases 

for shorter polymer backbone, i.e., PVP 10k has more hydroxyl groups compared to PVP 

40k. Thus, provided that the particles can grow (i.e., the temperature is high enough), PVP 

10k can produce more nuclei, (i.e., smaller particles) than PVP 40k. 

We conclude that our experimental results are coherent with a two sub-sequent steps: (i) 

nucleation, which is controlled by the amount of PVP terminal groups and (ii) particle 

growth, which is tuned by the temperature through its influence on the EG reduction 

potential. In order to consolidate these findings, a detailed experimental trial on 

precipitation kinetics is currently in progress. 



 

2. Continuous Production of Tailored Silver Nanoparticles by Polyol Synthesis and Reaction Yield 
Measured by X-ray Absorption Spectroscopy: Towards a Growth Mechanism. 

 

101 

  

2.5. Conclusions 

A novel method to prepare AgNPs in a continuous way has been presented. Here, the 

segmented flow kept in the reactor provides optimization beyond to state-of-the-art of 

continuous synthesis methods by creating more homogenous reaction conditions. The 

variation of the reaction temperature and the average molecular weight of the PVP lead to 

the systematic change in the average particle sizes and reaction yield. Our experimental 

data suggest that PVP is controlling the nucleation step while particle growth is tuned by 

the temperature through its influence on the EG reduction potential. 

Particle size and reaction yield data have been combined in order to outline a rational 

(nucleation and growth) formation path. The method to measure the reaction yield was one 

of the most relevant achievements of this experimental work. Yield was measured directly 

in the produced particle suspension by linear fit of XANES spectra. Synchrotron-light 

diffraction patterns were also collected from the suspension. Moreover, a clear correlation 

between TEM size and the major plasmon peak of the UV-Vis spectra has been identified. 

We have demonstrated that key parameters such as primary particle size, secondary 

particle size, and conversion yield may be investigated in situ and time-resolved. Thus, a 

comprehensive particle formation mechanism can be investigated. 

Finally, the potential of the SFTR to prepare high amounts of AgNPs over a long period 

was demonstrated by running the reaction for 4 h, obtaining constant particle size 

distribution with production rate > 2 g∙h-1. 
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2.8 Supporting information 

 

Experimental Part 

Three different batch reactions were performed at 150 °C with different reaction volumes 

(Tab. 8). Briefly, PVP 40 (Mw = 40’000 g/mol) was dissolved in ethylene glycol (EG) 

under sonication. Thereafter, AgNO3 solution in EG was added, the resulting mixture 

stirred at 25 °C for a minute before placing the reaction vessel into a preheated oil bath 

(150 °C). The reaction mixture was stirred for 1 h where color changes were observed 

(from yellow to olive). Then, the vessel was cooled in a water bath, the mixture diluted 

with acetone, centrifuged, decanted and further washed thrice with an EtOH/acetone 

mixture before redispersion in EtOH for further analysis. The yield of the reaction was 

determined by measuring the collected powder after washing and centrifugation followed 

by drying in vacuo. 

 

Tab. 8: Different batch reactions with constant AgNO3/PVP ratio performed at 150 °C. The 
reaction volume was varied for each reaction by a factor of 10. 

Entry m(AgNO3)/g m(PVP)/g V(EG)/mL Yield 
(%) 

Ag_1 0.02 0.12 1 72 ± 5 

Ag_2 0.2 1.2 10 72 ± 5 

Ag_3 2 12 100 68 ± 5 
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Fig. 33: DLS spectra of the samples Ag_1, Ag_2 and Ag_3. 

 

 

Fig. 34: UV-vis spectra of the samples Ag_1, Ag_2 and Ag_3. 
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Tab. 9: Percentile and mean diameters of the samples Ag_1, Ag_2 and Ag_3. 

Entry 
dn10 

(nm)a 
dn50  

(nm)a 
dn90 

(nm)a 

Mean 
diameter 

(nm)a 

TEM size 
(nm) 

Ag_1 66      88  129  94(24)   71(13) 

Ag_2 80    112  163  118(32)   79(21) 

Ag_3 92    125  174  127(31)   92(21) 

     

       a Mean numerical diameter. Mean value of 3 measurements, performed by DLS.  

 

 

Fig. 35: TEM micrographs of the samples (a) Ag_1, (b) Ag_2 and (c) Ag_3 with 
corresponding particle size distribution (PSD). 
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    Chapter 3: Dielectric Properties of Silver Nanoparticles  

Coated with Silica Shells of Different Thicknesses 

 

Declaration: The nanoparticles synthesis and functionalization as well as the microscopy 

analysis with TEM/SEM were conducted by Jose Enrico Q. Quinsaat, while the dielectric 

measurements of the particles that were pressed into pellets were conducted by Dr. Dorina 

Opris.  

 

Jose Enrico Q. Quinsaat1,2, Frank A. Nüesch1, Heinrich Hofmann2, Dorina M. Opris1* 

1Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory 

for Functional Polymers, Überlandstrasse 129, 8600 Dübendorf, Switzerland 

2Ecole Polytechnique Fédérale de Lausanne (EPFL), Materials Institute, Powder 

Technology Laboratory (LTP), 1015 Lausanne, Switzerland 

 

 

 

 

 

 

 



 

     3. Dielectric Properties of Silver Nanoparticles Coated with Silica Shells of Different Thicknesses 

 

114 

  

Abstract: Core/shell nanoparticles having metallic silver nanoparticle cores of ~ 38 nm in 

diameter and silica shells of different thicknesses ranging from ~3.6–20 nm were prepared. 

For the silica coating, a slightly modified Stöber method was used which allowed 

preparing grams of core/shell nanoparticles for the first time. The particles were 

characterized by UV-vis spectroscopy, dynamic light scattering, scanning electron 

microscopy, transmission electron microscopy, and energy-dispersive X-ray scattering. 

Their dielectric properties were measured as pellets in parallel-plate capacitors. It was 

found that the permittivity is much influenced by the silica shell thickness with an increase 

in permittivity for thinner shells. A shell thickness of 20 ± 2 nm allowed fabrication of 

capacitors which have similar characteristics to those of silica, thus, there is no influence of 

the metal core on the dielectric properties anymore. However, by decreasing the silica shell 

to 17 ± 2, 8 ± 1.5, and 6.6 ± 1.5 nm the permittivity at high frequencies is increasing from 

10, 34, to 41, respectively. The insulator to metal transition was observed for a silica shell 

thickness of 3.6 ± 1 nm. Functionalization of the silica surface with a hydrophobic coating 

removes surface adsorbed water as observed by the flat dielectric permittivity over a large 

frequency domain.  

 

3.1 Introduction 

Properties of metals change significantly when going from macroscopic to nanoparticle 

sizes.1 In the last couple of years, much development has been done with respect to the 

synthesis of metal nanoparticles and quite some understanding of how to prepare different 

shapes and sizes was achieved.2 Blending such nanoparticles in polymeric, ceramic 

matrices allowed fabrication of new materials with unprecedented properties which might 

find their way in optical, electrical, and magnetic applications. Materials with high 

dielectric permittivity (İ’) are of great interest for future electronic capacitors with high 

energy storage densities and low operating voltage.3 For such applications not only high İ’ 

is required, but also low conductivity and high breakdown field are desired properties. 
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These two properties have a direct impact on the device lifetime and also on the maximum 

energy density of the capacitor which is given by: 

                                                               �e = ଵଶ ɛ'ε଴Ebଶ                                                  (Eq. 45) 

 

Here, İ’ is the relative dielectric permittivity, Eb is the electric breakdown strength, and İ0 

the vacuum permittivity (8.85542 × 10-12 F/m).3 The energy loss due to dissipation by the 

dielectric material is given by 

 

                                                              tan'EfW                                                     (Eq. 46) 

 

where E is the electric field strength, f is the frequency, and tan į is the loss factor. Thus a 

low dielectric loss material will have a low energy loss, especially for high frequency 

applications.  

Several approaches have been used in order to produce materials with high İ’ which 

include blends with highly polarizable ceramic particles,4,5 polymers with polar functional 

groups,6 and composite materials with conductive fillers.7 

According to the percolation theory, the effective İ’ of composites increases rapidly at 

concentrations approaching the percolation threshold, when the conductive paths are 

hindered by a dielectric matrix.8 Various conductive fillers like metal particles, conjugated 

polymers, or carbon black have been used for percolative composites with polymers as 

matrix materials.9-13 However, although the reported İ’ values were high, the blended 

materials showed high dielectric loss due to agglomeration of the fillers leading to 

conductive pathways. Several approaches were used to overcome this limitation. For 
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example, Xu et al. used Al particles covered with an Al2O3 insulating shell, and obtained 

composites with low dielectric losses.14 Kempa et al. used silica coated conductive 

particles and observed that the shape and monodispersity of the nanoparticles strongly 

affect the dielectric properties of the composites. Li et al. used effective medium 

approximation of a composite made of three-phase material and showed that the effective 

İ’, the breakdown strength, and the electrical energy density are strongly affected by the 

microstructure of the nanocomposite and therefore must be carefully controlled.15  

From the literature, it became clear that in order to prepare reliable materials the 

percolation paths in composites containing conductive fillers should be avoided. This can 

be achieved by surrounding the particles with an insulating shell that precisely defines the 

minimum approach distance of twice the shell thickness (Fig. 36).16 

 

 

Fig. 36: Insulator shell (light grey) on conductive Ag nanoparticles (dark grey) defining the 
minimum distance between the cores as twice the shell thickness. 

 

Several approaches were already reported in the literature on how to prepare core/shell 

particles.17 The most common one uses wet chemistry on preformed cores including 

interfacial polymerization of the shell onto the core, controlled phase separation 

techniques, and heterocoagulation.18 Although high temperature formation of dielectric 

oxide shell is occasionally used, it is less attractive since the shell thickness is difficult to 

control.19 Another way of preparing core/shell particles is by using layer by layer 

deposition.20 Despite these advances in the synthesis of core/shell particles, a challenge 
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which still needs to be overcome is the up-scaling of the synthesis allowing preparation of 

sufficient material to be used for further investigations.  

Despite the large number of publications dealing with percolated materials, there is limited 

information on the İ’ of monodisperse metal nanoparticles coated with an insulator shell of 

different thicknesses and/or composites of such well-defined particles in a matrix.  

It is the aim of this work to prepare structurally well-defined core/shell particles having 

AgNP cores and silica as insulating shell (denoted as Ag@SiO2(x), where x is the silica 

shell thickness taken from TEM measurements) and measure their dielectric properties as a 

function of shell thickness. Apart from many studies that concentrate on optical 

measurements with Ag@SiO2 particles, dielectric measurements of such particles are not 

known. To be able to run such measurements large quantities of particles are required. 

Thus, a slightly modified Stöber method was developed that allowed us preparing grams of 

core/shell particles at higher concentrations as compared to the literature. The silica shells 

prevent the AgNPs from touching each other and also keep the AgNP cores at a defined 

minimum distance. The dielectric properties of such particles were measured for the first 

time in pellets in parallel-plate capacitors and the influence of the insulator shell thickness 

on the dielectric properties was investigated.  

 

3.2 Experimental Section 

3.2.1 Synthesis of Silver Nanoparticles (38 nm) 

The synthesis of the AgNPs was based on an existing protocol.21 A solution of polyvinyl 

pyrrolidinone (PVP) (40.5 g, 361 mmol) in ethylene glycol (EG, 0.3 L) was heated in a 

thermostat at 130°C for 30 min. Then, a solution of AgNO3 (6 g, 36 mmol) dissolved in 

EG (4 mL) and nanopure water (3 mL) was added via rapid injection and the mixture was 

stirred at 130°C for further 30 min. Afterwards, the mixture was  cooled, washed with 
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acetone, and centrifuged. The washing procedure was repeated twice before redispersion of 

the residue in ethanol (EtOH) (100 mL). AgNPs were prepared in 81% yield. 

 

3.2.2 Synthesis of Silica Coated Silver Nanoparticles Ag@SiO2(x nm) 

The encapsulation of the AgNPs with SiO2 was based on an existing protocol.22 From the 

above dispersion of AgNPs in ethanol, 5 ml was taken and diluted with ethanol to 31.5 ml 

in order to obtain a conc. of 46 mM AgNPs. This dispersion was treated with NH4OH 

(29 %, 1.3 mL) under gentle stirring (Tab. 10) at 25 °C followed by the dropwise addition 

of different concentrations of tetraethoxysilane (TEOS) in EtOH (3 mL) which was 

completed after 60 s (For concentrations see Tab. 10). The reaction mixture was stirred for 

further 20 h, then diluted with acetone, washed, centrifuged (4'000 rpm, 45 min) and 

decanted. The washing procedure was repeated 3 times. The residue was redispersed in 

MeOH for further analysis. The particles were dried in high vacuum at 25 °C for 8 h. 
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Tab. 10: The amount of reagents used for the coating of AgNPs with different thickness silica 
shell. 

aWhere x is the silica shell thickness and y is the deviation of the silica shell from TEM, stirring 
rate: b550 rpm, c500 rpm, and d400 rpm, e31.5 ml of 46 mM AgNP dispersed in ethanol was used. 

 

3.2.3 Synthesis of Hydrophobic Coating: (Ag@SiO2(17 nm)@alkylsilane) 

Ag@SiO2 (60 mg) was dispersed in EtOH (10 mL) and treated with dimethylamine 

(DMA) (40%, 166 µL, 1.34 mmol) under gentle stirring (500 rpm) followed by the 

dropwise addition of n-octyldimethylmethoxysilane (334 µL, 1.34 mmol) which was 

completed within a minute. The mixture was stirred for further 48 h, then diluted with 

acetone, washed, centrifuged (13’000 rpm, 25 min) and decanted followed by redispersion 

and further washing in isopropanol (13’000 rpm, 25 min) for 4 times. The particles were 

dried in high vacuum at 25 °C for 8 h. 

 

3.3 Materials and Methods 

All chemicals were purchased from Aldrich and used as received. 

The nanoparticles were observed by SEM on a Hitachi S-4800 and FEI NovaNanoSEM 

230, TEM were done with Philips CM30 TEM and JEOL 2200FS TEM/STEM, UV-vis 

absorption spectra were recorded with a Cary 50 spectrophotometer, DLS were done with a 

Sample 

Ag@SiO2(x ± y nm)a 

Vol % TEOS 
in EtOH              
[3 mL]e 

Particles 
size by 

TEM (nm) 

Particles 
size by 

DLS (nm) 

Ag@SiO2(20 ± 2 nm)b 20% 78 79 

Ag@SiO2(17 ± 2 nm)b 15% 72 72 

Ag@SiO2(8 ± 1.5 nm)c 8% 54 57 

Ag@SiO2(6.6 ± 1.5 nm)c 5% 51 54 

Ag@SiO2(3.6 ± 1 nm)d 2.5% 45 366 
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Malvern Zetasized Nano ZS, and 29Si NMR spectra were recorded with a Bruker Avance-

400 spectrometer. Image analysis was used for the TEM micrographs to estimate the 

particles size. The number of particles measured was about 400 for Ag core by using 

ImageJ and about 100 for the coated particles with the help of a ruler for Windows. 

Permittivity measurements were done in the frequency range of 100 Hz to 1 MHz using an 

HP 4284A LCR meter. The amplitude of the probing AC electric signal applied to the 

samples was 1 V. The permittivity was determined from the capacitance: dAC 0 , where 

A is the electrode area, d is the thickness of the capacitor, and İ0 is the vacuum permittivity. 

Before use, the samples were dried for 8 h at 2×10-2 mbar. Pellets were prepared by 

pressing at 3 tons (Ø = 3 mm) and were then covered with silver paste electrodes. Their 

microstructures were measured with SEM (see supporting information) All the samples 

were measured immediately after pellet preparation in order to avoid changes in the water 

content. 

 

3.4 Results 

3.4.1 Synthesis and Characterization of AgNPs Coated with SiO2 

A wide range of different shapes and sizes of AgNPs have been prepared including sphere, 

spheroid, cube, octahedron, tetrahedron, bipyramid, rod, and wire starting from cheap and 

readily available silver salts.23 For a general overview of the state of the art on the shape 

controlled syntheses of AgNPs the reader is referred to the excellent review article by Xia 

et al.24 The most common way for preparing AgNPs includes the reduction of silver salt by 

boron hydrides, polyols, or hydrogen.25 

We prepared AgNPs by reduction of AgNO3 with EG in the presence of PVP as capping 

agent at 130°C. The particles were stabilized by polyvinylpyrrolidone (PVP). The reactions 

were initially done on a small scale (0.2 g AgNO3), however in order to be able to make 

dielectric investigations of AgNPs, gram quantities are required. Thus, the possibility of 

up-scaling the synthesis was investigated. Since the reaction temperature influences 
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particles size, an accurate control of the temperature was required. In order to achieve this, 

a reactor heated with a thermostat was used. This setup enabled control within ± 1°C 

during the synthesis. Fig. 37 shows the TEM images of the prepared AgNPs on 6 g scale. 

By TEM it was found that the average particles size was about 38 ± 2 nm in diameter 

(particle diameter of majority of the particles is between 35-40 nm) and by DLS that they 

have a reasonable size distribution (0.2). 

 

 

Fig. 37: TEM images of AgNPs prepared by reduction of AgNO3 with ethylene glycol. The 
reaction was done starting with 6 g AgNO3. 

 

Silica is well known for its good insulator properties. Core/shell particles with SiO2 shell 

having controllable thickness were prepared by the Stöber method.26 This layer by layer 

technique was intensely used for example to prepare polystyrene-silica, gold-silica 

core/shell particles with controlled shell thickness from a few nanometers to several 

hundreds.27Ag particles28 and nanowires29 were also coated with amorphous silica shells of 

different thickness by using TEOS as silica precursor. We also used Stöber method for the 

silica coating of AgNPs. The silica shells not only hinder agglomeration of AgNPs and 
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enhance their stability, but also allow surface functionalization.30 In a typical synthesis, the 

AgNPs are dispersed at a certain concentration in ethanol and TEOS is hydrolyzed and 

deposited on the surface of the nanoparticles. A disadvantage of Stöber method is the high 

dilution required (typical concentration range from 0.01 mM to 1 mM) which made up-

scaling of the process unpractical. We therefore slightly modified the reaction conditions 

and systematically increased the concentration of AgNPs (46 mM) such that about 0.1 g of 

AgNPs per batch was coated. The strong contrast between the black silver core and the 

gray shell in the TEM images (Fig. 38) confirms that core/shell nanoparticles were formed. 

Despite the use of NH4OH which was thought to trigger the dissolution of the silver cores, 

no core-free silica shells were observed in the TEM images. In comparison, the use of 

DMA as catalyst for the hydrolysis of TEOS did not give uniform and spherical silica 

shells as suggested in the literature.31 Furthermore, the presence of the silica shell was 

confirmed by EDX done on the naked AgNPs and on the coated particles as shown in Fig. 

39. Only in the latter spectrum, silicon is detected. The Cu and C peaks correspond to the 

carbon-coated copper grid on which the particles were deposited for this test.  
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Fig. 38: TEM images of the AgNPs coated with a silica shell. The average diameters of AgNPs 
were 38 nm while the SiO2 shells were about 20 ± 2 nm (a); 17 ± 2 nm (b); 8 ± 1.5 nm (c); 6.6 ± 
1.5 nm (d); 3.6 ± 1 nm (e). 

 

 

Fig. 39: EDX of the naked AgNPs (a) and of the AgNPs coated with SiO2 (b). 
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The silica shell thickness could be varied by altering the initial TEOS concentration. The 

growth of very thin silica shells requires slow and careful addition of TEOS into the 

solution.32 The silica shell grown on the silver nanoparticles was quite uniform and also 

spherical in shape when the shell thickness was about 17 nm or higher, but was less 

uniform for the thinner shells. This effect was also observed by others. For example Yin et 

al. coated Ag nanowires and found that when a thin silica shell of about 2 nm was formed, 

the thickness of the shell varied considerably. Thicker shells were smoother and more 

uniform.29 It was also observed that the specific morphology of the particles is preserved in 

the coating process. Graf et al. used PVP adsorbed on various colloidal particles and 

coated these particles with silica shells of variable thickness. The length of the polymer 

used strongly influenced the homogeneity and the smoothness of the initial silica coating.33 

Fig. 38 shows TEM images of AgNPs with SiO2 shells of different thickness. Additionally, 

the TEM images clearly show that the SiO2 shell thickness can be changed by altering the 

amount of TEOS used. The surface plasmon resonance of AgNPs is sensitive to size, 

shape, and the dielectric material surrounding the nanoparticles. While the naked Ag 

particles give rise to a maximum absorption peak at Ȝmax = 415 nm, a small bathochromic 

shift (Fig. 40) with increasing the silica shell from 425 nm for 6.6 nm particles to 437 nm 

for 20 nm particles was observed. This can be explained by the change of the surrounding 

medium of the AgNPs, since silica possesses a higher refractive index than the solvent 

(MeOH). When the silica shell thickness was reduced to around 3.6 nm, the UV-vis 

spectrum featured broadened peaks. For the thicker shells, silica is completely covering the 

AgNPs. Because of the basic conditions, the surface hydroxyl groups are deprotonated and 

therefore electrostatic stabilization is the mechanism preventing agglomeration. The 

nanoparticles with thin and partial silica coating behave like conventional hard spheres in a 

Lennard-Jones potential and therefore aggregate. We assume that the surface coverage 

with silica is patchy and that agglomeration comes about by contact between particles at 

the surface parts which either have a very thin silica layer or are even free of silica. Then 

van der Waals forces are strong and result in agglomeration. Whether there is any residual 

PVP on the surface with little or no silica cannot be said at present. The size increases with 
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increasing the silica shell is also reflected by DLS and further confirms the coating (Fig. 

41). Interestingly, while almost all dispersed particles have similar sizes as those 

determined by TEM, the size of Ag@SiO2 (3.6 ± 1) with a TEM diameter of 45 nm 

appears much larger (Tab. 10) a sign for agglomerated particles. A direct comparison of 

our results with the literature is not possible since no DLS data are given for metal particles 

coated with a silica shell.  
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Fig. 40: UV-vis absorption spectra of AgNPs and of AgNPs coated with a silica shell recorded in 
MeOH. A small bathochromic shift can be seen with increasing shell thickness. 
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Fig. 41: Hydrodynamic diameter DH determined by DLS of AgNPs before and after coating with 
silica shell recorded in EtOH. An increase in particle size is observed with increasing shell 
thickness, except for Ag@SiO2 (3.6) the DH-value of which does not match single particle size. For 
explanations, see text. 

 

3.4.2 Dielectric Properties of Ag@SiO2 in Pressed Pellets 

The real part of the dielectric function İ’ of pressed pellets of powder samples composed of 

Ag@SiO2 nanoparticles were obtained by measuring the capacitance of the pellets using 

the sandwich architecture Ag/ Ag@SiO2 /Ag in the frequency range of 100 Hz to 1 MHz 

(see experimental part). The dielectric response of Ag@SiO2 pellets is given in Fig. 42. As 

expected, an increase in İ’ with decreasing shell thickness was observed at all frequencies. 

Concretely, for shell thicknesses of 20 ± 2, 17 ± 2, 8 ± 1.5, and 6.6 ± 1.5 nm İ’-values of 

4.6, 10, 34 and 41, respectively, were obtained (Fig. 42). AgNPs coated with a very thin 

insulating shell of about 3.6 ± 1 nm were conductive and it was not possible to run the 

dielectric measurement. For thicker shells, the İ’ of Ag@SiO2 pellets is almost constant at 

high frequencies but increases at lower frequencies. The reason for this might be due to the 

presence of traces of ions and residual water absorbed on the silica surface which is rather 

difficult to remove which would increase the ion conductivity at low frequencies.  



 

     3. Dielectric Properties of Silver Nanoparticles Coated with Silica Shells of Different Thicknesses 

 

127 

  

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
-1

10
0

10
1

10
2

10
-7

10
-6

10
-5

10
-4

P
e
rm

it
ti
vi

ty

Frequency [Hz]

Increased SiO2 shell thickness

D
ie

le
ct

ri
c
 l
o

ss

 [O

h
m

-1
m

-1
]

 Ag@SiO2(20)

 Ag@SiO2 (17)

 Ag@SiO2 (8)

 Ag@SiO2 (6.6)

 

Fig. 42: Permittivity, dielectric loss, and conductivity of AgNPs coated with silica shells of 
different thickness as function of frequency. 

 

In order to exclude traces of water which may have caused the İ’ values to scatter, the 

powder sample of AgNPs with a shell thickness of 17 ± 2 nm was hydrophobized with a 

silane reagent. The wettability test done in water/toluene as well as the presence of the 

signal at į = 13 ppm in the 29Si NMR spectrum characteristic for the Si-C are clear 

indications that the silylation was successfully achieved (see Supporting information). The 

dielectric properties of silylated sample showed İ’ values that remained constant even at 

lower frequencies (Fig. 43). As mentioned before, the rising permittivity of the non-

silylated nanoparticle samples is likely due to ionic impurity conduction which is favored 



 

     3. Dielectric Properties of Silver Nanoparticles Coated with Silica Shells of Different Thicknesses 

 

128 

  

by water adsorption in the porous nanoparticle film. Silylation creates a hydrophobic shell 

around the Ag nanoparticles and removes the water from the surface. At high frequencies, 

typically above 104 Hz, the ion conduction mechanism no longer contributes to the 

permittivity of the nanoporous samples. The difference between silylated and non-silylated 

samples in the high frequency region is rather small and is attributed to slightly different 

packing of the nanoparticle in the pellets and to the experimental uncertainty. Since the İ’ 

of air is rather low, and the air voids are filled by alkyl chains which have a İ’ of about 2, a 

slight increase in the İ’ should be observed for the hydrophobized sample. Such effect was 

observed by others. For example the permittivity of bulk TiO2 value of 80 decreased to 58 

for TiO2 nanoparticles due to the presence of voids.34 
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Fig. 43: The permittivity and conductivity of AgNPs coated with a 17 ± 2 nm silica shell and of a 
silica hydrophobized with a silane reagent. 

 

The dielectric loss increases with the thinning of silica shell (Fig. 42). This loss of charges 

is also reflected by the conductivity of the samples. The AC conductivity is given by             � =  where İ" is the imaginary part of the complex dielectric function İ’, İ0 is the ,′′ߝ଴ߝ��ʹ

permittivity of vacuum and � is the frequency. If the universal response function       �ሺ�ሻ= A�s is fitted to the measured AC conductivity (Fig. 42), a frequency exponent 

between 0.49 and 0.56 is obtained, depending on the thickness of the silica shell.35 A 

frequency exponent s < 1, is typical for non-Debye type relaxation caused by hopping or 

tunnelling of charges.36 The trend that s decreases with decreasing the silica shell thickness 

is characteristic for a system in which conductivity increases.37 Through the 
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hydrophobization of the silica surface the conductivity of the sample decreases 

significantly at all frequencies as compared to the sample where no hydrophobic coating 

was used. Hydrophobization of the silica surface is required not only to stabilize the 

dielectric properties of the Ag@SiO2 but it helps to compatibilize the particles with an 

organic matrix where such particles could be used as high İ’ filler. Further work is 

presently going in this direction. 

Our samples can be considered as percolating conductive particles held apart by the twice 

the thickness of the insulating shell. If we do not have water inclusion in our pellet 

samples, the voids can be considered to be filled with air. Therefore the calculation of the 

effective electrical permittivity of the samples amounts to calculation of highly 

concentrated core-shell particles in an air matrix (İm = 1). It is well known that only 

effective medium theories such as the one derived by Bruggemann can reasonably well 

describe non-dilute particle inclusion in a matrix.38 Here we applied an effective-medium 

theory that has been developed for two-phase random composites with an interfacial shell 

given by39 
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where İeff is the effective permittivity, İ1 the permittivity of the shell (İsilica = 3.9), İ2 the 

permittivity of the core İAg = 10000),40 İc the dielectric permittivity of the core-shell 

particles, α is the volume fraction of core in the core-shell particles 3
0 )( Rr , where r0 is 

the radius of Ag nanoparticles and R is the radius of the core-shell particles. For the 

calculations ideal spheres were used. Their closed-packed arrangement (hcp) leads to 

volume fraction F of 74 %. Given the deviation of the experimental particles from 

spherical structure it is difficult to indicate a precise packing density. From the SEM 

images of pellets (see Supporting information) we infer a tight packing. Therefore we have 

chosen the highest packing density that can be achieved with identical spheres. The 

calculated and measured effective permittivity as a function of shell thickness is displayed 

in Tab. 11. The measured values are clearly larger than the calculated ones which could be 

due to the failure of the model at the percolation limit, even though the theory proved to fit 

the permittivity of polymer composites with a volume fraction of BaTiO3 particles up to 

70% or might be due to traces of water that are rather hard to remove. 

 

Tab. 11: The calculated and measured İ’ for different silica thicknesses. 

Entry İeff’ calc.a İ’ measuredb 

Ag@SiO2(20) 3.9 4.6 

Ag@SiO2(17) 4.2 10 

Ag@SiO2(8) 6.9 34 

Ag@SiO2(6.6) 8.0 41 

Ag@SiO2(3.6) 13.5 conductive 

aİm=1 for air,ε’SiO2 = 3.9. bIn order to avoid ionic conductivity contributions, the 
permittivity at the frequency of 104 Hz is given. 

 



 

     3. Dielectric Properties of Silver Nanoparticles Coated with Silica Shells of Different Thicknesses 

 

132 

  

3.5 Conclusions 

We report an upscale of the synthesis of Ag nanoparticles of 38 nm size as well as their 

coating with a silica shell of different thicknesses by the Stöber method. The silica shell 

was varied from ~ 3.6 nm to ~ 20 nm. The core/shell structure of the prepared particles was 

clearly proven by using a combination of techniques: UV-vis, DLS, SEM, TEM, and EDX. 

Parallel-plate capacitors of pellets composed of pressed powder of Ag nanoparticles coated 

with different silica shells were made and the dielectric properties were investigated as 

function of the shell thickness. For a shell of 3.6 ± 1 nm, the insulator layer is too thin and 

the particles are conductive while increasing the shell thickness to 6.6 ± 1.5 nm, a shift 

from conductive to dielectric behaviour was observed. A further increase in the shell to     

20 ± 2 nm hides the presence of the metal core and the resulting particles behave similar to 

silica. The conductivity of the samples due to absorbed water on the silica surface can be 

reduced by hydrophobization of the surface with an alkyl silane. Such hydrophobized 

particles have high permittivity, small dielectric losses, and are ready dispersible in 

nonpolar solvents and are therefore attractive fillers particularly for polydimethylsiloxane 

material for transducer and more generally for large energy storage capacitors. 
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3.8 Supporting Information 

 

 

Fig. 44: Wettability test in water/toluene for the Ag@SiO2 (left) and that of hydrophobized 
with silane reagent (right). The hydrophobized particles are transferred in organic phase. 

 

 

Fig. 45: Solid-state 29Si CP-MAS NMR spectrum of silver nanoparticles coated with silica 
shell and surface functionalized with octyl chains showing the chemical shift for the silicon 
nucleus of the surface- bound alkyl chains at į = 13 ppm. 
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Fig. 46: SEM image of Ag@SiO2 (6.6 nm) powder in pressed pellet. The sample was 
measured in high vacuum mode using 3 kV and a TLD detector. 

 

 

Fig. 47: SEM image of Ag@SiO2 (6.6 nm) powder in pressed pellet. The sample was 
measured in low vacuum mode using 7 kV and a LVD detector. 
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Fig. 48: SEM image of Ag@SiO2 (6.6 nm) powder in pressed pellet. The sample was 
measured in low vacuum mode using 7 kV and a LVD detector. 
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Chapter 4: Highly Stretchable Dielectric Elastomer Composites      

Containing High Volume Fraction of Silver Nanoparticles 

(AgNPs) 
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measurements for the nanoparticles.  
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Abstract: The relative permittivity (İ') of a polymeric material can be significantly 

increased when blended with conductive fillers at concentrations approaching percolation 

threshold. However, reproducible synthesis of such composites is after decades of research 

still a major challenge and a bottleneck for their application. Difficulties arise in 

controlling size and shape of the filler as well as in its homogenous distribution within the 

composite. These parameters strongly affect the dielectric as well as the mechanical 

properties of the composite. While a substantial amount of literature is dealing with the 

influence of conductive filler on the dielectric properties of composites, little is known 

about their mechanical properties. It is therefore still an important goal to synthesize 

materials with simultaneously high İ' and good mechanical properties. Here, we report the 

synthesis of dielectric elastomers that combine key properties such as high flexibility and 

stretchability, high thermal stability, increased İ', low dielectric loss and conductivity. 

Such materials were prepared by solution processing using quasi-spherical silver 

nanoparticles (AgNPs) of defined size in a polydimethylsiloxane matrix (Mw = 692 kDa). 

To prevent percolation, the AgNPs were coated with a thin silica shell (< 4 nm). To 

increase their compatibility with the silicone matrix, these core/shell nanoparticles were 

passivated with a silane reagent. The insulating silica shell around the particles precisely 

defines the minimum approach distance between the cores as twice the shell thickness. The 

dielectric properties of those passivated particles (filler) were measured in pellets and 

found to have an almost frequency independent values of İ' = 90 and a very low loss factor 

tan į = 0.023 at high frequencies. When such particles were used as filler in a 

polydimethylsiloxane matrix, composites with low dielectric losses were obtained. A 

composite containing 31 vol% filler with İ' = 21 and a tan į = 0.03 at ~ 1 kHz was 

achieved. At a AgNPs volume fraction of 20%, the composite has a İ' = 5.9 at ~ 1 kHz, a 

dielectric strength of 13.4 V/µm, elastic modulus as low as 350 kPa at 100 % strain, and a 

strain at break of 800 %. Due to the high specific energy density per volume at low electric 

fields, these composites are attractive materials in applications involving low electric 

fields. 
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4.1 Introduction 

Next generation electronic devices require materials that combine elasticity with 

electronic, optoelectronic and thermal properties and open exciting challenges for material 

scientists.1 During the last couple of years, much research has been devoted to prepare 

elastomers that show increased permittivity (ε'), low dielectric losses (İ"), high dielectric 

strength (Eb) and high flexibility.2,3 Such elastomers are attractive dielectrics in dielectric 

elastomer transducers (DET) which are elastic capacitors that either elongate under a high 

electric field (actuator mode of operation) or harvest energy upon stretching and charging 

(generator mode of operation).4,5 The amount of energy harvested per cycle increases when 

materials with high strain at break, high İ', and high breakdown field are used.6 However, 

for certain application, in the vicinity of human body, high voltages should be avoided. 

High İ' materials are also attractive dielectric in capacitors.  

Cross-linked polydimethylsiloxanes elastomers (silicones) have excellent environmental 

properties, low glass transition temperature, and mechanical properties that do not change 

much with temperature and frequency and were intensively used by the DET community.7–

11 However, the İ' of silicones is lower than 3. Several approaches have been used to 

increase the İ' of a silicone by, for example, chemical modification with organic dipoles12–

14 or blending with conductive fillers15 as well as high İ' ceramics.16–19 Chemical 

modification of silicones with organic dipoles is a promising approach to increase İ' but 

other materials parameters such as flexibility, elasticity, elastic moduli, and strain at break, 

are also affected. Additionally, tedious synthetic steps have to be followed. Blends with 

ceramic fillers show also an increase in İ', however, a significant increase in İ' is obtained 

at volume fractions exceeding 50 vol% which, in turn, has a detrimental effect on elastic 

properties. Conductive filler composites look like a promising approach to high İ' materials 

since the İ' increases according to a power law as the filler concentration approaches a 

critical value corresponding to the percolation threshold (Eq. 50):20 

′௘௙௙ߝ                                                                 =  �೘ೝ′ ሺ௙�−௙ሻ೜                                            (Eq. 50) 
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whereby İeff'  and İmr’ are the permittivity of the composite and of the polymer matrix 

respectively, fc is the percolation threshold fraction, f is the volume fraction of the filler, 

and q is a scaling constant. Metal particles, metal oxide particles, carbon black, carbon 

nanotubes, and conductive polymers have been used as conductive fillers.6,21–26 

Conductive polymer fillers have the advantage of being lightweight and easy to prepare. 

However, when blended in a polymer matrix, the morphology of the filler is rather difficult 

to control and phase separation is often observed.27,28 Since permittivity is sensitive to the 

morphology, shape and size of the conductive filler, special care has be taken to control 

these parameters.29 In addition, the interfacial interaction shifts the percolation threshold 

toward lower volume fraction of nanoparticles and starts to be effective when the 

proportion between the radius of the nanoparticles and the thickness of the shell 

approaches a value of 10.30 If the filler has a large size or is agglomerated, and if its size is 

close to that of the film thickness, discharge between electrodes happens.31 In many cases, 

the addition of conductive nanoparticles enhances İ' but increases the dielectric losses, 

making the potential gain in İ' useless. Therefore, to synthesize composites with reliable 

and reproducible properties, the size of the filler and its dispersion in the composites must 

be carefully controlled.32 

Metal nanoparticles (MNPs) are easy to polarize and their shape and size can be precisely 

controlled and are therefore very good model systems. When applied as fillers in the above 

context, agglomeration of MNPs has to be avoided when dispersed into a matrix. Elsewise 

conductive paths can form which are detrimental to the properties. MNPs can be 

incorporated into a polymer matrix using in situ or ex situ approaches.33,34  In the former, 

the particles are formed through reduction or decomposition of a metal salt that was 

dispersed in polymer matrix.35 However, the morphology, the shape, and the size of the 

MNPs in the matrix is difficult to control and composites with rather low volume fraction 

of metal are formed.36,37 Furthermore, the residual components formed during 

reduction/decomposition of the metal source are either left in the composite or have to be 

removed by tedious swelling/extraction steps. We considered this approach therefore 
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unattractive for our goal. In the latter approach, preformed particles are blended into a 

polymer matrix. Here, the incompatibility and the agglomeration of the metal filler in the 

polymer matrix are problems that have to be overcome. Although there has been 

substantial amount of work devoted to the dielectric properties of MNPs polymer 

composites, fillers were used that were either polydisperse, or had large particles size and 

non-uniform shapes, as well as undefined/or no insulating coating. As mentioned above, 

such MNPs were not attractive for our purpose.  

Silver (Ag) has a high reduction potential and can be prepared in different size and shapes 

and was therefore selected for our investigations.38,39 Polymer composites containing silver 

nanoparticles (AgNPs) are known. Shen and coworkers used AgNPs coated with an 

organic shell as filler in an epoxy matrix.40 The organic shells were tuned from 4-6 nm up 

to 8-10 nm. They showed that nanocomposites with the particles surrounded by thinner 

shells featured a higher ε' than the nanocomposite with thicker shells. The rather low 

dielectric breakdown of the composites of less than 1 V/ȝm which is significantly lower as 

compared to the epoxy matrix used (30 V/ȝm), clearly shows the importance of the type 

and the thickness of the insulating shell used. Very important is also the influence of the 

volume content of MNPs on the mechanical properties of the resulting materials. 

Unfortunately, to the best of our knowledge, no detailed characterization of the mechanical 

properties of composites containing high vol% of metal filler exist. Furthermore, elastic 

composites containing high vol% of MNPs that show large reversible deformations are not 

known. 

It was thus a prime goal of the present work to provide robust access to metal particles that 

are not susceptible to chemical oxidation and which have defined size. The present work 

also aims to prepare surface-treated core/shell Ag/silica nanoparticles which we refer to as 

Ag@SiO2 and to use them as filler in polydimethylsiloxane (PDMS) matrix to create high-

profile composite materials that allowed us investigating the influence of the filler on the 

mechanical and dielectric properties of the composite. This would allow us elucidating 

how much the İ' can be increased and how other properties like dielectric loss, 

conductivity and dielectric breakdown are affected, keeping an eye also on the mechanical 
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properties. The preparation of large amounts of AgNPs was possible by using the polyol 

synthesis, while the silica coating was achieved by using an optimized Stöber method.41,42 

To ensure optimum performance of the composite, the compatibility of the Ag@SiO2 

particles with the PDMS matrix was significantly increased by treating the surface of the 

particles with hexamethyldisilazane (HMDS). Composites of surface-treated Ag@SiO2 

filler in PDMS were made by solution processing. The dielectric and mechanical properties 

of different vol% of Ag@SiO2 filler in PDMS were investigated for the first time.  

 

4.2 Experimental Section 

4.2.1 Materials and Methods 

AgNO3, poly(vinyl pyrrolidinone) (PVP), ethylene glycol (EG), 

octamethylcyclotetrasiloxane (D4), H2SO4, hexamethyldisilazane (HMDS), ammonia 

(NH4OH), and dibutyltindilaurate (Sn) catalysts were purchased from Aldrich and used as 

received. Linear hydroxyl end-functionalized polydimethylsiloxane (PDMS) (Mw = 139 

kDa) by ABCR (25-35 % mehylhydrosiloxane)-dimethylsiloxane-copolymer (AB109380) 

cross-linker by ABCR. Higher molecular weight hydroxyl end-functionalized 

polydimethylsiloxane (Mw = 692 kDa) was prepared according to the literature.43 

The nanoparticles were observed by SEM on a FEI NovaNanoSEM 230 using a BSED 

detector, TEM analysis were done with Philips CM30 TEM and JEOL 2200FS 

TEM/STEM, UV-vis absorption spectra were recorded with a Cary 50 spectrophotometer, 

DLS were done with a Malvern Zetasized Nano ZS, the thermogravimetric analysis (TGA) 

was conducted with a Perkin Elmer TGA7 at a heating rate of 20 °C min-1 under a He gas 

flow. In situ-XPS surface analysis are performed in a modified VG EscaLab spectrometer 

with the base pressure < 1 × 10−10 mbar. XPS spectra were collected with a SPECS 

PHOIBOS 100 analyzer using a non-monochromated X-ray source (Al Kαμ 1486.6 eV, 

twin anode Mg Kα/Al Kα). Image analysis was used for the TEM micrographs to estimate 

the particles size. The number of particles measured was about 400 for Ag core and about 
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100 for the coated particles with the help of a ruler for Windows. For the determination of 

the amount of silver in the composites, about 50 mg of material was transferred to a pre-

cleaned quartz vessel. Thereafter, 3 mL of nitric acid (65 %) and 1 mL of H2O2 (30 %) was 

added to the components. The contents were transferred into a microwave vessel which 

contained 5 mL of deionized water (Milli-Q-Quality) and 1 mL H2O2. The nanocomposite 

was decomposed in the microwave MLS 1200. The clear solution was transferred into a 15 

mL PP Centrifuge tube with deionized water and diluted to 10 mL. For the quantification 

of the silver content in the nanocomposite, the prepared solution was once again diluted by 

a factor of 100. Standard silver solutions containing 1, 2, 5, 10, 20 and 50 mg/L prepared 

from a commercially available 1 g/L silver standard solution were used for the calibration 

of the ICP-OES (Vista pro Varian). The particle dispersions in toluene were prepared with 

a tip sonicator (Sonics VCX-500 Model CV33). 

The microstructures of the films were measured with SEM on samples prepared by the 

freeze-breaking method in liquid nitrogen. Permittivity measurements were done in the 

frequency range of 1 Hz to 1 MHz using an Novocontrol Alpha-A Frequency Analyzer 

using a Hewlett Packard 16451B dielectric test fixture equipped with round electrodes. 

Prior to the measurements, Au electrodes with a thickness of 50 nm were sputtered on both 

sides of the films. The diameter of the electrodes was 12.5 mm (A series), 7 mm (B series) 

or 21 mm (B20). To ensure a good contact and a uniform “pressure” over the samples 

(because of the round electrode used), gold plates slightly smaller than the coated 

electrodes were used. No dependence of the dielectric properties with the electrode size 

was observed, which is supportive for homogenous materials. The amplitude of the 

probing ac electric signal applied to the samples was 1 V. The permittivity was determined 

from the capacitance: C = İİ0A/d, where A is the electrode area, d is the thickness of the 

capacitor, and İ0 is the vacuum permittivity.  

The tensile tests were performed using a Zwick Z010 tensile test machine with a crosshead 

speed of 500 mm/min. Tensile test specimens with a gauge width of 2 mm and a gauge 

length of 18 mm were prepared by die cutting. The strain was determined using a traverse 

moving sensor. The curves were averaged from 3 independent experiments. The tensile 
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modulus was determined from the slope of the stress-strain curves using a linear fit to the 

data points within 10% strain. Dynamic mechanical analysis was carried out on a RSA 3 

DMA from TA Instruments. Stripes of 10 mm wide, 24 mm long, and 58 µm thick were 

measured under a dynamic load of 2 g, at 1 % strain in the frequency range of 0.01 to 10 

Hz, at 26 °C, and 65% humidity. 

 

4.2.2 Synthesis of AgNPs 

In a 250 mL round-bottom flask, PVP (Mw = 40 kDa) was dissolved in EG (100 mL) under 

sonication. After complete dissolution of the polymer, the flask was stirred in an oil bath at 

130 °C for 30 min, then an aqueous solution of AgNO3 (2 mL, 1 g/mL) was injected 

rapidly and the reaction mixture was stirred further for 1 h at a speed of 900 rpm. The flask 

was later removed from the oil bath, cooled in a water bath and the reaction mixture was 

diluted with acetone, centrifuged at 5’000 rpm for 1 h and decanted. The resulting 

precipitate was further washed with acetone and water 3 times before redispersion in 

EtOH. The reaction was repeated 20 times and the products were redispersed in 1.5 L of 

EtOH. Yield: 14.2 g (57 %). 

 

4.2.3 Synthesis Ag@SiO2 Core-shell Particles  

The silica-coating was performed based on existing protocols of the modified Stöber 

method.41 From the stock solution of AgNPs prepared as described above, 200 mL was 

filled in a 1 L flask and diluted to 600 mL with EtOH. The suspension was treated with 

NH4OH (29 %, 25 mL) and with an ethanolic solution of TEOS (50 mL, 0.6 vol% TEOS) 

and stirred at 25 °C for 1λ h. The mixture was diluted with acetone, centrifuged at 5’000 

rpm for 30 min, decanted, and redissolved in EtOH. The products were washed with 

acetone for further 3 times before redispersion in EtOH. The reaction was performed 7 

times to obtain Ag@SiO2 core-shell particles with a very thin silica shell of 3.3 ± 0.7 nm 

(~ 100 particles measured).  
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4.2.4 Synthesis of Ag@SiO2@Si(CH3)3 

The ethanolic suspension of Ag@SiO2 core-shell particles was centrifuged. Most of the 

ethanol was removed by decantation and the residue was redispersed in anhydrous toluene 

(200 mL) and stirred at 500 rpm. To this suspension, hexamethyldisilazane (HMDS) (23 

mL) was added and stirred for 6 h. The particles were recovered by centrifugation, washed 

once again with toluene to obtain the surface-treated Ag@SiO2 core-shell particles. Yield: 

13.5 g (> 95 %). 

 

4.2.5 Synthesis of Composites of Series A 

The Ag@SiO2@Si(CH3)3, PDMS (Mw ~139 kDa), and (25-35 % mehylhydrosiloxane)-

dimethylsiloxane-copolymer cross-linker were mechanically mixed to a homogenous 

dispersion. Toluene was used to adjust the viscosity of the mixture. The dibutyltindilaurate 

was then added and films were prepared by doctor blading. The samples were aged for 

about one month before testing. For the amounts used please see Tab. 13. 

 

4.2.6 Synthesis of Composites of Series B  

The Ag@SiO2@Si(CH3)3 was first dispersed in toluene by using a tip sonication operated 

at a power of 40 % for at least 10 min. To this, PDMS (Mw = 692 kDa) and (25-35 % 

mehylhydrosiloxane)-dimethylsiloxane-copolymer cross-linker were added and a 

homogenous composite was made by mechanically mixing. The Sn-catalyst was then 

added and films were prepared by doctor blading. The samples were aged for about one 

month before testing. 

 

4.2.7 Synthesis of Composite B31 

The Ag@SiO2@Si(CH3)3 filler, PDMS (Mw = 692 kDa), and (25-35 % 

mehylhydrosiloxane)-dimethylsiloxane-copolymer cross-linker were mechanically mixed 
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to a homogenous dispersion using cyclohexane solvent to adjust the viscosity. After 

obtaining a good dispersion, the catalyst was added. Cyclohexane was selected as solvent, 

because it is more facile to be removed in high vacuum at room temperature and therefore 

the speed of cross-linking reaction is lowered. To avoid agglomeration of the particles, a 

sonicator bath was used during the evaporation. A sticky powder formed after the solvent 

evaporation which was pressed in pellets by using an IR press, heated at 80 °C for 5 h. 

Platinum electrodes were sputtered on the pellet before the dielectric measurements were 

done. 

 

4.3 Results and Discussion 

4.3.1 Synthesis and Characterization of the Filler Particles 

We selected Ag as metal source because AgNPs are stable against oxidation and can be 

prepared in different sizes and shapes. Since other metal nanoparticles such as aluminum, 

zinc, iron, nickel and copper form an insulating oxide layer when exposed to air, we did 

not consider using them because their dielectric properties might change in time or when 

exposed to elevated temperatures due to surface oxidation.44–48  

AgNPs were prepared by using the so called polyol synthesis. Briefly, an aqueous silver 

nitrate solution was injected into a preheated solution of poly(vinyl pyrrolidone) (PVP) 

stabilizer in ethylene glycol (EG) at 130°C for 60 min. The particles were purified by 

washing several times with ethanol/acetone. Fig. 49 shows the TEM images of the 

prepared AgNPs. The average particles size was 57 ± 10 nm and DLS confirmed a 

reasonable size distribution (Fig. 50 and Fig. 51). Dried particles kept in normal 

atmosphere for four months did not show any change in their chemical composition as 

proved by XRD and XPS spectra where no signals typical for silver oxide were observed 

(see Supp. Inform.). The particles have a cubic structure with peaks at 2θμ 38.1 (111), 44.3 

(200), 64.5 (220), 77.4 (311), and 81.5 (222) that are in agreement with the published data 

(see Supporting Information).49 The XPS analysis shows a peak at 368.2 eV due to metallic 
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silver. A small peak at 365.8 eV due to surface silver atoms surrounded by the PVP chain 

and no peak at 367.4 eV typical for silver oxide was observed. It can be concluded that the 

polyol synthesis, which is performed at temperatures exceeding 100 °C under normal 

atmosphere, does not lead to an oxidation of the silver surface neither during the synthesis 

nor during storage of the particles in the laboratory. 

 

 

Fig. 49a-b: TEM micrographs of AgNPs prepared by reduction of AgNO3 with ethylene 
glycol (left) and of their coating with a thin silica shell of about 3.3 nm (right). 

 

To avoid conductive paths through the material, AgNPs were surface-coated with an 

insulating shell prior blending. Instead of using an oxidation process, we used a hydrolysis 

step for the coating. We have recently showed that it is possible to synthesize AgNPs 

coated with a thin insulating silica shell and also to scale-up this procedure.50 Silica is an 

excellent insulator and has a good compatibility with the silicone matrix. A slightly 

modified so called Stöber method was used.51 Our previous investigations have shown that 

a silica shell thickness of less than 4 nm is optimal to avoid electrical conductivity and to 

increase İ' of the resulting nanocomposites concurrently.50 This coating was achieved by 

dispersing the AgNPs at a certain concentration in ethanol and let tetraethoxysilane 

(TEOS) to hydrolyze under basic conditions and deposit on the Ag surface. The silica-

coating is facilitated by the presence of residual PVP around the Ag cores since it serves as 
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an anchoring group for the growing SiO2 layer.51,52 The successful coating was proven by 

TEM, UV-vis, DLS and EDX. TEM images show a strong contrast between the black 

silver cores and the grey silica shell which clearly proves the formation of Ag@SiO2 

core/shell structures (Fig. 49). Further evidence for the coating is provided by surface 

plasmon resonance. Upon coating the AgNPs with a thin silica shell (3.3 ± 0.7 nm), a slight 

bathochromic shift of the absorption peak from Ȝ = 436 nm to Ȝ = 437 nm in the UV-vis 

spectra is observed (Tab. 12 and Fig. 50) as a result of the higher dielectric constant of 

SiO2 as the new medium compared to PVP/EtOH. DLS also confirms a slight increase in 

the hydrodynamic radius after the silica-coating of the particles (Fig. 51). Generally, the 

presence of the silicon peak in the EDX of the coated AgNPs further supports the presence 

of the silica shell (see Supporting Information). It is important to note that each individual 

AgNPs is coated with a silica shell of about the same thickness and also that no 

agglomeration of the AgNPs occurred during the coating. We can also confirm that the 

molecular weight of the PVP used for the synthesis is important for the functionalization of 

the particles with the silica shell.51 For example PVP of Mw = 40 kDa allowed formation of 

uniform silica shells as compared to PVP of Mw = 10 kDa where the silica shell was less 

uniform. This effect is even more pronounced when a very thin silica shell is desired. Thin 

uniform silica shells are more difficult to prepare than the thick shells. According to the 

literature, lower molecular weight PVP might even lead to the agglomeration of the core-

shell particles due to the lack of shielding off the silver cores from the attractive van der 

Waals forces.25 
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Fig. 50: UV-vis spectra of AgNPs (Δ) and silica-coated Ag@SiO2 core-shell particles (□) 
recorded in ethanol. 
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Fig. 51: DLS spectra of AgNPs (Δ) and silica-coated Ag@SiO2 core-shell particles (□) 
recorded in ethanol. 
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Tab. 12: Size and Ȝmax data of AgNPs and Ag@SiO2 obtained by TEM, DLS and UV-vis of 
the core-shell particles before and after the surface treatment with HMDS. 

Entry Sample TEM 

(nm) 

DLS 

(nm)a 

Ȝmax 

(nm) 

1 AgNPs  57(10) 60(24) 436 

2 Ag@SiO2  64(11) 68(27) 437 

3 Ag@SiO2@Si(CH3)3  - 68(26) 439 

 

a Mean numerical diameter. In the parenthesis is reported the measured standard deviation of the 

particle population. 

 

The silica surface is quite reactive and needs to be passivated by a hydrophobic layer prior 

to blending. Three different reagents were tried to achieve this: hexamethyldisilazane 

(HMDS), methoxy(dimethyl)octylsilane, and n-octyldimethylchlorosilane. HMDS was 

preferred since the resulting particles (Ag@SiO2@Si(CH3)3 ‒ filler) formed stable 

dispersions in toluene as can be seen in the wettability test (Fig. 52). Furthermore, the 

reaction occurs seemingly fast and does not require inert conditions.53 In addition to the 

wettability test, the increase in the carbon content in elemental analysis of the surface-

treated particles as compared to the starting one further confirms the functionalization. The 

elemental analysis data show an increase in the carbon content for the HMDS treated 

particles as compared to the silica coated one. The functionalized particles 

Ag@SiO2@Si(CH3)3 were kept wet in order to avoid their agglomeration. Tab. 12 

summarizes the sizes of the as prepared AgNPs, of Ag@SiO2, and of Ag@SiO2@Si(CH3)3 

obtained from TEM, DLS and UV-vis measurements. 

 

http://www.chemyq.com/En/xz/xz12/116817mbhpp.htm
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Fig. 52: Wetting test of Ag@SiO2 core-shell particles conducted in toluene/water mixture 
before (left) and after (right) surface functionalization with HMDS.  

 

4.3.2 Synthesis and Characterization of AgNP Composites 

Two series of composites were prepared and are named as Xy, where X represents the 

name of the series synthesized with PDMS of different Mw and y represents the Ag vol%. 

Since the particles were kept wet all the time, the amount of Ag in the composites was 

determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and 

is given as y in the samples’ code. As matrix, a commercial and a home-made hydroxyl 

end-functionalized polydimethylsiloxane (PDMS) Mw = 139 kDa (for Series A) and Mw = 

692 kDa (for series B) were used, respectively. These PDMS polymers were cross-linked 

via a condensation reaction of the hydroxyl end-groups with the hydrosilane groups of   

(25-35 % methylhydrosiloxane)-dimethylsiloxane-copolymer cross-linker (CL) (see 

Experimental Section). Different volumes of highly concentrated filler solution in toluene 

were dispersed in PDMS matrix. To these mixtures the CL and the Sn-catalyst were added. 

Films were prepared by doctor blade technique. Depending on the Ag volume fraction the 

color of the composites changes from brown (below 10-15 vol%) to grey (> 15 %). Tab. 13 

gives an overview of the reagents used for the synthesis of materials of series A and B. 

The use of organotin catalyst is also known as Room Temperature Vulcanization 

(RTV) or ‘cold vulcanization’ which allows the formation of elastomers in about 24 

h.54 Nevertheless, the samples were aged for 1 month prior to performing the 

mechanical measurements to ensure the complete evaporation of residual toluene 

and to allow sufficient time for the finalization of the condensation reactions. Our 
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attempts to use a silicone matrix that is cross-linked via a hydrosilylation which 

requires shorter reaction time at elevated temperatures were not successful. 

The Scanning electron microscopy (SEM) images were recorded with a backscatter 

electron detector (BSED) which is designed to illustrate differences in molecular densities. 

Here, the particles are featured as small bright spots due to their higher scattering intensity 

compared to the PDMS matrix (Fig. 53). The present particle agglomerates within the 

nanocomposites are depicted as large, bright ensembles. SEM images of the samples A 

prepared by freeze-breaking in liquid nitrogen illustrate that even at a low Ag vol% some 

agglomeration can be observed, while with increasing Ag vol% more agglomerates with 

dimensions reaching tens of microns were observed. Films of the series B feature a better 

dispersion of the filler with fewer agglomerates.  

 

 

Fig. 53a-g: SEM images of the freeze-broken Ag/PDMS nanocomposites of series A 
containing 5, 12, 18, 25 vol% and Ag (a-d) and of series B containing 9, 14, and 20 vol% 
Ag (e-g). Some present agglomerates are shown in the red circles. The scale bar is 50 ȝm. 
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The mechanical properties of the composites were studied by tensile tests. The results are 

summarized in Tab. 14. The stress-strain curves, averaged from three independent tests are 

shown in Fig. 54. Material A5 shows an elastic behavior, while material A25 retains 

flexibility but it is plastically deformed. The strain at break decreases with increasing 

amount of Ag from about 52 % for A5 to 8.8 % for A25. As expected, an increase in the 

stiffness of the materials with increasing the Ag vol% was observed.  
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Fig. 54: Stress–strain curves of the composites of series A containing different vol% of Ag 
and of the neat matrix. The vol% of Ag was determined after the films were cross-linked by 
using ICP-OES. 

 

It is well known that the mechanical properties of an elastomer are affected by both the 

molecular weight of the polymer as well as the amount of cross-linker used. Therefore, to 

further improve the elastic properties of the composites, a hydroxyl end-functionalized 

PDMS of a high molecular weight (Mw = 692 kDa, GPC) was used which allowed us the 

synthesis of composites of series B. This polymer was synthesized by cationic ring-

opening polymerization of octamethylcyclotetrasiloxane (D4) in the presence of H2SO4.
43 

Highly stretchable and flexible materials with strain at break much higher as compared to 

the matrix formed (Fig. 54). As expected an increase in the elastic moduli at all strains with 

increasing the amount of filler used was observed. The influence of the filler on the 
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mechanical properties is more pronounced in the low strain regime, while with increasing 

the strain, the filler influence is less pronounced (see Fig. 55 insert and Tab. 13). Two 

composites with 20 vol% Ag but different amount of cross-linker were first prepared 

(stiffB20 and B20) (for the amounts used, please see Tab. 13). Composite stiffB20 has a strain 

at break of 270 % and elastic moduli at low strains in the 6 MPs regime. For composite B20 

the amount of cross-linker used was reduced to half. Composite B20 despite of its high Ag 

vol% content, shows excellent elastic properties with a strain at break as high as 800 % and 

moduli of elasticity as low as 350 kPa at 100 % strain. The Ag vol% content was further 

reduced for materials B14 and B9. These composite show a slightly increase in the strain at 

break and decrease in the elastic moduli as compared to B20. Composites B14 and B20 were 

further subjected to extension-relaxation cycles. An initial load of 0.01 N was used. Fig. 56 

shows the behavior of a freshly prepared specimen in its first five cycles of extension-

relaxation to a maximum of 50 % strain. As can be seen, for the second extension-

relaxation cycle the stress required on reloading is reduced as compared to the initial 

loading and the hysteresis observed for the subsequent cycles was rather low.  
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Tab. 13: The amount of components used for the synthesis of the matrix and of 
materials of series A and B. 

Entry PDMS 

[g] 

CL 

[µL]c) 

Density ρ 

[g/cm3] 

V(toluene) 

[mL] 

 

A0 1.9a) 800 0.λλ 2  

A5 0.9a) 380 1.52 1.3  

A12 0.8a) 340 2.21 2.8  

A18 0.7a) 295 2.λ4 3.5  

A25 0.4a) 168 3.66 2.9   

stiffB20 0.15b) 32 3.05 3  

B20 0.15b) 16 3.05 3  

B14 0.15b) 16 2.46 3  

B9 0.15b) 16 1.83 3  

B0 0.3 32 0.98 3.5  

Hydroxyl end-functionalized PDMSs were used: a) Mw = 139 kDa and b) Mw =692 
kDa. c) For all composites a solution of Sn-catalyst in toluene (50 wt%) was used and 
the proportion between cross-linker/catalyst was 4. Toluene was used to adjust the 
viscosity of the composites. The amount of Ag contained in the composite was 
determined after cross-linking by ICP-OES. 
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Fig. 55: Stress-strain curves of the matrix B0, 
stiffB20, B20, B14, and B9; the enlargement for 

the low strains (insert); and photos of B20 in its relaxed and strained form (bottom) (the 
scale bar represents 1 cm).  

 

The same sample was subjected to successively higher strains from 50% up to 450% 

followed by the return to the original gauge length (see Supporting Information). A 

strong dependence of the stress-strain curves upon increasing the strain level was 

observed. This stress softening phenomenon is typical for filled rubber materials and 

is known as the Mullins effect. Different mechanisms have been proposed to explain 

this effect including reorganization of the polymer network, reorganization of the 

filler-filler networks, and/or the detachment of the polymer network from the 

filler.55 
Material B20 was aged for 5 days at 150 °C and its stress-strain and the cyclic 

relaxation behavior was compared with that of a B20 sample aged at 25 °C for 10 days (see 

Supporting Information). The elastic properties were only slightly affected by the 

temperature. Material B20 is slightly stiffer after this aging and the strain at break 

decreased, but the elastic property is retained. The cyclic tests show some differences for 

the first strain-release cycle and a small difference between the cycles at the used strain. 
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The hysteresis loop at the first strain-release cycle is more pronounced for the sample that 

was aged at elevated temperatures (see Supporting Information). Additionally, dynamic 

mechanical analysis has been carried out on B20 (Fig. 56 right). The elastic modulus 

measured at low strains (1%) and at 0.01 Hz was 2.4 MPa while by increasing the 

frequency to 0.1 Hz an increase in the elastic modulus to 3.4 MPa was observed. The 

viscoelastic losses (tan į) are rather low (tan į < 0.2 at all frequencies) and further support 

the good elastic properties of B20. Silicones are generally characterized by a pronounced 

thermal stability and a single weight loss step at high temperatures. It has been 

demonstrated that PDMS degrades through the depolymerisation of PDMS to give cyclic 

oligomeric siloxanes.56,57 The silicone matrix used by us (B0) is stable up to 400 °C where 

it starts to decompose (Fig. 57). The decomposition of the composites of series B proceeds 

in one step and the degradation of the polymer is shifted to values above 500 °C. The 

incorporation of filler to the PDMS restricts the chain mobility and therefore the 

degradation of the nanocomposites  is delayed compared to the pure silicone rubber.58,59 

An increase in the amount of filler does not lead to a further change in the thermal 

properties of the nanocomposites. As expected, the amount of residue left due to the 

Ag@SiO2 filler increases with increasing the Ag vol% and clearly shows that the 

composites have high filler content. The amount of residue roughly corresponds to the 

amount of Ag@SiO2 used. 
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Fig. 56: Cyclic stress-strain relaxation curves of B14 at 50 % strain (left) and dynamic 
mechanical analysis for B20 at different frequencies (right).  
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Fig. 57: TGA curves of composites B and of the matrix under helium. 

 

4.3.3 Dielectric Properties of the Filler and Composites 

The dielectric properties of the filler, matrix, and composites were measured using an 

impedance spectrometer in a frequency range from 1 Hz to 106 Hz at 1 V amplitude at 

room temperature (Fig. 58). The dielectric properties of the pure filler were measured in 

pellet that was obtained by pressing the dried particles using an IR press. Two platinum 

electrodes were sputtered on both sides. An almost constant frequency dependent İr' with a 

value of about 90 at 103 Hz and rather low loss factor tan į at high frequencies was 

observed (see Tab. 14, Fig. 58). Furthermore, the low conductivity at low frequency of 

9×10-11 S/cm is supportive for a core/shell structure. The composites of series A show an 

expected increase in İ' with the Ag vol% from 3 for the silicone matrix to 4.4 for 5%, to 

5.6 for 12% and reaches a max value of 7.8 for 18 %. The dielectric losses and also the 

conductivity slightly increase with increasing the amount of filler, but remain at low values 

characteristic for dielectric materials. For example, all composites have a conductivity that 

is lower than 3 × 10-13 S/cm at low frequencies. A further increase in the AgNPs volume 

fraction to 25 % results in inhomogeneous films with a rough surface, therefore 

complicating the accurate measurement of film thickness.60 As mentioned above, for series 
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B, a PDMS of a higher molecular weight was used. The concentration of silver was varied 

between 9 and 31 vol% Ag. High quality films were prepared for concentrations up to 20 

% by the doctor blade technique. However, a further increase in the concentration of the 

filler resulted in non-homogenous films. To nevertheless find how the dielectric properties 

are changing when the filler vol% approaches the concentration where the particles are 

percolating (this “mechanical” percolation should not be confused with the conductive 

percolation), a different strategy was used (see Experimental Section) which allowed us the 

synthesis of B31. The dielectric properties of series B are similar to those of series A. Also 

here, composites with very low conductivity and low dielectric losses were obtained. 

Composite B31 with a Ag vol% of 31 % has a permittivity as high as 21, a low loss factor 

of 0.03 at 1 kHz with a value for the permittivity that remains almost constant with the 

frequency. A value of İ' = 5.9 for B20 which is also highly stretchable. It was reported 

before that the conductive filler/insulator composites show a percolation like increase in 

the İ', however a linear increase in the permittivity with increasing the Ag vol% was 

observed in our case (see Supporting Information). The increase in the İ' for the two series 

is slightly different. This might be due to the different ways of dispersing the filler in the 

polymer matrix: mechanical mixing for series A while tip sonication was used for series B. 

Through the dispersion of the filler by mechanical mixing, agglomerates in the size of tens 

of microns are still present within the matrix (Fig. 53) while when the sonicator tip was 

used to disperse the particles, more homogenous dispersion of the particles within the 

matrix was observed. The particles within the agglomerates are in closer proximity to each 

other, resulting in a collective response to the electric field from the present short-range 

order of the particles, which is absent in a well dispersed, agglomerate-free system.61 It has 

also been reported elsewhere that the presence of agglomerates within the nanocomposite 

leads to higher İ' values compared to the well dispersed system, as a direct result of 

moisture inclusion as well as specific effects resulting from the agglomerated structure.62 

The breakdown field of the resulting composites was also measured (see Tab. 14 and 

Supporting Information). The breakdown experiments were conducted using a setup 

similar to that described by Kollosche63 and also in capacitor devices that had round 

electrodes (Ø = 8 mm). It should be also mentioned here that no actuation of the materials 
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was observed when conducting the breakdown measurement. The dielectric breakdowns 

are higher for series B as compare to series A which are supportive for a better dispersion 

of the filler in the composites of series B as well as the increase in the molecular weight of 

the polymer matrix.60,64 A decrease in the breakdown field with increasing Ag vol% was 

observed from 23.1 V/ȝm for B9 to 13.4 V/ȝm for B20. The dielectric breakdown of a 

material is strongly affected by the elastic moduli.65 The dielectric breakdown of our 

composites is significantly higher as compared to the epoxy composites containing AgNPs 

coated with an organic shell,40 despite that herein a soft matrix was used. 
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Fig. 58: Permittivity, tan į, and conductivity as function of frequency for series A (left) and 
series B and the filler (right).  

 

As mentioned in the introduction, dielectric elastomers with increased permittivity can find 

applications in dielectric elastomer generator (DEG) for energy harvesting.66 For this 

purpose, the DEG undergo a working cycle which involves: (a) stretching the area, (b) 

charging, (c) mechanical relaxation followed by (d) energy harvesting.5,6 The output of the 

system is quantified by the specific energy density per volume ΔW/Vol (Eq. 51) The 

specific energy density per volume of the nanocomposites for a corresponding electric field 

is shown in Fig. 59. The parameter ΔW/Vol is limited by the electric breakdown field EB 

of the nanocomposites and can be calculated by6 
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where, İ0 is the vacuum permittivity and smax is the maximum strain at break for the 

corresponding elastomers. As shown in Fig. 59, the breakdown field of the nanocomposites 

is lower as compared to the silicone matrix and despite of the increase in the permittivity 

and the high strain at break, the maximum amount of energy that can be harvested with 

these composites is lower as compared to the silicone matrix. For example at an electric 

field of 20 V/ȝm the maximum amount of energy per cycle increases from 5.2 mJ/cm3 for 

the B0 silicone matrix, to 8.2 mJ/cm3 for B9 and to 10 mJ/cm3 for B14. Therefore, these 

nanocomposites might be useful as dielectric in energy harvester operated at low electric 

fields. 

0 20 40 60
0

20

40

60


W

/V
o
l 
(m

J
/c

m
3
)

E (V/m)

 B
0

 B
9

 B
14

 B
20

 

Fig. 59: Specific energy density per volume at a given electric field. 
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4.4 Conclusions and Outlook 

Core/shell Ag/silica nanoparticles with Ag core of 57 nm surrounded by a thin silica shell 

of  ~ 4 nm and passivated by a trimethylsilyl layer show a İ' = 90 very low dielectric 

losses. These particles were used as filler in a polydimethylsiloxane matrix to synthesize 

composites with different Ag vol%. It was shown that by a careful selection of matrix and 

cross-linker amount, it is possible to prepare materials with concentrations of filler as high 

as 20 vol% that have an elastic modulus as low as 350 kPa at 100 % strain and a strain at 

break as high as 800 %. The stress relaxation tests show a minor hysteresis from the first to 

the second cycle and almost no hysteresis for the subsequent cycles. Additionally, 

composites with increased İ', low dielectric losses, and high dielectric breakdowns were 

obtained. An increase in the ε' with increasing the vol% of Ag was observed. For example, 

a composite containing 31 vol% filler has a İ' = 21 and a loss factor of 0.03 at ~ 1 kHz. The 

low dielectric losses of these materials are supportive of a good encapsulation of the 

metallic Ag in an insulating silica shell. A composite containing 20 vol% AgNPs has a İ' = 

5.9 at ~ 1 kHz, a dielectric strength of 13.4 V/µm. Because of the increased permittivity 

and high strain at break, these materials might find application as dielectric in energy 

harvesting devices operated at low electric fields. Furthermore, since the Ag core can in 

principle be replaced by other metals, the described procedure can be used for the synthesis 

of other polymer/metal composites and suggests a broad applicability of the method that 

would allow the synthesis of other functional materials. 

 

4.5 Acknowledgements 

We gratefully acknowledge D. Schreier and Dr. Y. Arroyo for helping with the TEM and 

SEM measurements, S. Dünki for the DMA measurements, B. Fischer for the TGA 

measurements, A. Wichser for helping with the ICP-OES measurements (all Empa) and M. 

Schneider from the Micro-laboratory of the Laboratory for Organic Chemistry (ETH 

Zurich) for elemental analysis measurements. We thank B. Sinnet from Eawag for helping 



 

 

            4. Highly Stretchable Dielectric Elastomer Composites Containing High Volume Fraction of AgNPs 

 

171 

 

with DLS measurement. DMO thanks Dr. Racles from PPI for her kind support with the 

Sciex project. We also gratefully acknowledge Swiss National Science Foundation 

(SNF132101), Sciex (12.192), and Swiss Federal Laboratories for Materials Science and 

Technology (Empa, Dübendorf) for financial support. 

 

4.6 References 

(1)  Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; 
Ly, T. H.; Vu, Q. A.; Yun, M.; et al. Transferred Wrinkled Al2O3 for Highly Stretchable 
and Transparent Graphene-Carbon Nanotube Transistors. Nat. Mater. 2013, 12, 403–409. 

(2)  Brochu, P.; Pei, Q. Advances in Dielectric Elastomers for Actuators and Artificial 
Muscles. Macromol. Rapid Commun. 2010, 31, 10–36. 

(3)  Biggs, J.; Danielmeier, K.; Hitzbleck, J.; Krause, J.; Kridl, T.; Nowak, S.; Orselli, E.; 
Quan, X.; Schapeler, D.; Sutherland, W.; et al. Electroactive Polymers: Developments of 
and Perspectives for Dielectric Elastomers. Angew. Chemie - Int. Ed. 2013, 52, 9409–9421. 

(4)  Dielectric Elastomers as Electromechanical Transducers; Carpi, F.; De Rossi, D.; 
Kornbluh, R.; Pelrine, R.; Sommer-Larsen, P., Eds.; Elsevier: Amsterdam, 2008. 

(5)  Pelrine, R.; Kornbluh, R. D.; Eckerle, J.; Jeuck, P.; Oh, S.; Pei, Q.; Stanford, S. 
Dielectric Elastomers: Generator Mode Fundamentals and Applications. SPIE’s 8th Annu. 
Int. Symp. Smart Struct. Mater. 2001, 4329, 148–156. 

(6)  Molberg, M.; Crespy, D.; Rupper, P.; Nüesch, F.; Månson, J.-A. E.; Löwe, C.; Opris, 
D. M. High Breakdown Field Dielectric Elastomer Actuators Using Encapsulated 
Polyaniline as High Dielectric Constant Filler. Adv. Funct. Mater. 2010, 20, 3280–3291. 

(7)  Stoyanov, H.; Brochu, P.; Niu, X.; Della Gaspera, E.; Pei, Q. Dielectric Elastomer 
Transducers with Enhanced Force Output and Work Density. Appl. Phys. Lett. 2012, 100, 
2010–2013. 

(8)  Goswami, K.; Skov, A. L.; Daugaard, A. E. UV-Cured, Platinum-Free, Soft 
Poly(dimethylsiloxane) Networks. Chem. - A Eur. J. 2014, 20, 9230–9233. 

(9)  Bejenariu, A. G.; Yu, L.; Skov, A. L. Low Moduli Elastomers with Low Viscous 
Dissipation. Soft Matter 2012, 8, 3917-3923. 



 

 

            4. Highly Stretchable Dielectric Elastomer Composites Containing High Volume Fraction of AgNPs 

 

172 

 

(10) Galantini, F.; Carpi, F.; Gallone, G. Effects of Plasticization of a Soft Silicone for 
Dielectric Elastomer Actuation. Smart Mater. Struct. 2013, 22, 104020. 

(11) Madsen, F. B.; Yu, L.; Daugaard, A. E.; Hvilsted, S.; Skov, A. L. A New Soft 
Dielectric Silicone Elastomer Matrix with High Mechanical Integrity and Low Losses. 
RSC Adv. 2015, 5, 10254–10259. 

(12) Kussmaul, B.; Risse, S.; Kofod, G.; Waché, R.; Wegener, M.; McCarthy, D. N.; 
Krüger, H.; Gerhard, R. Enhancement Of Dielectric Permittivity And Electromechanical 
Response In Silicone Elastomers: Molecular Grafting Of Organic Dipoles To The 
Macromolecular Network. Adv. Funct. Mater. 2011, 21, 4589–4594. 

(13) Madsen, F. B.; Dimitrov, I.; Daugaard, A. E.; Hvilsted, S.; Skov, A. L. Novel Cross-
Linkers for PDMS Networks for Controlled and Well Distributed Grafting of 
Functionalities by Click Chemistry. Polym. Chem. 2013, 4, 1700–1707. 

(14) Racles, C.; Cazacu, M.; Fischer, B.; Opris, D. M. Synthesis and Characterization of 
Silicones Containing Cyanopropyl Groups and Their Use in Dielectric Elastomer 
Actuators. Smart Mater. Struct. 2013, 22, 104004. 

(15) Gallone, G.; Carpi, F.; De Rossi, D.; Levita, G.; Marchetti, A. Dielectric Constant 
Enhancement in a Silicone Elastomer Filled with Lead Magnesium Niobate-Lead Titanate. 
Mater. Sci. Eng. C 2007, 27, 110–116. 

(16) Carpi, F.; Gallone, G.; Galantini, F.; De Rossi, D. Silicone-Poly(hexylthiophene) 
Blends as Elastomers with Enhanced Electromechanical Transduction Properties. Adv. 
Funct. Mater. 2008, 18, 235–241. 

(17) Hu, W.; Zhang, S. N.; Niu, X.; Liu, C.; Pei, Q. 40_An Aluminum Nanoparticle–
acrylate Copolymer Nanocomposite as a Dielectric Elastomer with a High Dielectric 
Constant. J. Mater. Chem. C 2014, 2, 1658–1666. 

(18) Galantini, F.; Bianchi, S.; Castelvetro, V.; Anguillesi, I.; Gallone, G. Properties of a 
Dielectric Elastomer Actuator Modified by Dispersion of Functionalised Carbon 
Nanotubes. Adv. Sci. Technol. 2012, 79, 41–46. 

(19) Goswami, K.; Daugaard, A. E.; Skov, A. L. Dielectric Properties of Ultraviolet Cured 
Poly(dimethyl Siloxane) Sub-Percolative Composites Containing Percolative Amounts of 
Multi-Walled Carbon Nanotubes. RSC Adv. 2015, 5, 12792–12799. 

(20) Grannan, D. M.; Garland, J. C.; Tanner, D. B. Critical Behavior of the Dielectric 
Constant of a Random Composite near the Percolation Threshold. Phys. Rev. Lett. 1981, 
46, 375–379. 



 

 

            4. Highly Stretchable Dielectric Elastomer Composites Containing High Volume Fraction of AgNPs 

 

173 

 

(21) Dang, Z.-M.; Wang, L.; Yin, Y.; Zhang, Q.; Lei, Q.-Q. Giant Dielectric Permittivities 
in Functionalized Carbon-Nanotube/ Electroactive-Polymer Nanocomposites. Adv. Mater. 
2007, 19, 852–857. 

(22) Yang, X. H.; Fu, H. T.; Wong, K.; Jiang, X. C.; Yu, A. B. Hybrid Ag@TiO2 Core-
Shell Nanostructures with Highly Enhanced Photocatalytic Performance. Nanotechnology 
2013, 24, 415601. 

(23) Berdel, K.; Member, S. S.; Rivas, J. G. J.; Bolívar, P. H.; Maagt, P. De; Member, S. 
S.; Kurz, H. Temperature Dependence of the Permittivity and Loss Tangent of High-
Permittivity Materials at Terahertz Frequencies. IEEE Trans.Microwav. Theor. 2005, 53, 
1266–1271. 

(24) Nelson, J. K.; Linhardt, R. J.; Schadler, L. S.; Hillborg, H. Effect of High Aspect 
Ratio Filler on Dielectric Properties of Polymer Composites: A Study on Barium Titanate 
Fibers and Graphene Platelets. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 960–967. 

(25) Romasanta, L. J.; Hernández, M.; López-Manchado, M. A.; Verdejo, R. 
Functionalised Graphene Sheets as Effective High Dielectric Constant Fillers. Nanoscale 
Res. Lett. 2011, 6, 508. 

(26) Zhou, Y.; Chen, Y.; Wang, H.; Wong, C. P. Creation of a Multilayer Aluminum 
Coating Structure Nanoparticle Polyimide Filler for Electronic Applications. Mater. Lett. 
2014, 119, 64–67. 

(27) Opris, D. M.; Crespy, D.; Löwe, C.; Molberg, M.; Nüesch, F. Phtalocyanine and 
Encapsulated Polyaniline Nanoparticles as Fillers for Dielectric Elastomers. Proc. SPIE, 
Electroact. Polym. Actuators Devices (EAPAD)Electroactive Polym. Actuators Devices 
2009, 7287, 72870L – 72870L – 8. 

(28) Huang, C.; Zhang, Q. M.; Su, J. High-Dielectric-Constant All-Polymer Percolative 
Composites. Appl. Phys. Lett. 2003, 82, 3502–3504. 

(29) Kempa, T.; Carnahan, D.; Olek, M.; Correa, M.; Giersig, M.; Cross, M.; Benham, G.; 
Sennett, M.; Ren, Z.; Kempa, K. Dielectric Media Based on Isolated Metallic 
Nanostructures. J. Appl. Phys. 2005, 98, 3–6. 

(30) Li, J. Y.; Zhang, L.; Ducharme, S. Electric Energy Density of Dielectric 
Nanocomposites. Appl. Phys. Lett. 2007, 90, 28–31. 

(31) Qi, L.; Lee, B. I.; Chen, S.; Samuels, W. D.; Exarhos, G. J. High-Dielectric-Constant 
Silver-Epoxy Composites as Embedded Dielectrics. Adv. Mater. 2005, 17, 1777–1781. 



 

 

            4. Highly Stretchable Dielectric Elastomer Composites Containing High Volume Fraction of AgNPs 

 

174 

 

(32) Guo, N.; DiBenedetto, S. A.; Tewari, P.; Lanagan, M. T.; Ratner, M. A.; Marks, T. J. 
Nanoparticle, Size, Shape, and Interfacial Effects on Leakage Current Density, 
Permittivity, and Breakdown Strength of Metal Oxide−Polyolefin Nanocompositesμ 
Experiment and Theory. Chem. Mater. 2010, 22, 1567–1578. 

(33) Grubbs, R. B. Hybrid Metal-Polymer Composites from Functional Block Copolymers. 
J. Polym. Sci. Part A Polym. Chem. 2005, 43, 4323–4336. 

(34) Pastoriza-Santos, I.; Pérez-Juste, J.; Kickelbick, G.; Liz-Marzán, L. M. Optically 
Active Poly(dimethylsiloxane) Elastomer Films Through Doping with Gold Nanoparticles. 
J. Nanosci. Nanotechnol. 6, 453–458. 

(35) Lu, J.; Moon, K.-S.; Wong, C. P. Silver/polymer Nanocomposite as a High-K 
Polymer Matrix for Dielectric Composites with Improved Dielectric Performance. J. 
Mater. Chem. 2008, 18, 4821–4826. 

(36) Ellison, J.; Wykoff, G.; Paul, A.; Mohseni, R.; Vasiliev, A. Efficient Dispersion of 
Coated Silver Nanoparticles in the Polymer Matrix. Colloids Surfaces A Physicochem. 
Eng. Asp. 2014, 447, 67–70. 

(37) Hoppe, C. E.; Rodríguez-Abreu, C.; Lazzari, M.; López-Quintela, M. A.; Solans, C. 
One-Pot Preparation of Gold-Elastomer Nanocomposites Using PDMS-Graft-PEO 
Copolymer Micelles as Nanoreactors. Phys. Status Solidi 2008, 205, 1455–1459. 

(38) Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Shape-Controlled Synthesis of Metal 
Nanostructures: The Case of Silver. Chem. - A Eur. J. 2005, 11, 454–463. 

(39) Kim, D.; Jeong, S.; Moon, J. Synthesis of Silver Nanoparticles Using the Polyol 
Process and the Influence of Precursor Injection. Nanotechnology 2006, 17, 4019–4024. 

(40) Shen, Y.; Lin, Y.; Li, M.; Nan, C.-W. High Dielectric Performance of Polymer 
Composite Films Induced by a Percolating Interparticle Barrier Layer. Adv. Mater. 2007, 
19, 1418–1422. 

(41) Baida, H.; Billaud, P.; Marhaba, S.; Christofilos, D.; Cottancin, E.; Crut, A.; Lermé, 
J.; Maioli, P.; Pellarin, M.; Broyer, M.; et al. Quantitative Determination of the Size 
Dependence of Surface Plasmon Resonance Damping in Single Ag@SiO2 Nanoparticles. 
Nano Lett. 2009, 9, 3463–3469. 

(42) Guerrero-Martínez, A.; Pérez-Juste, J.; Liz-Marzán, L. M. Recent Progress on Silica 
Coating of Nanoparticles and Related Nanomaterials. Adv. Mater. 2010, 22, 1182–1195. 

(43) Cazacu, M.; Racles, C.; Vlad, A.; Antohe, M.; Forna, N. Silicone-Based Composite 
for Relining of Removable Dental Prosthesis. J. Compos. Mater. 2009, 43, 2045–2055. 



 

 

            4. Highly Stretchable Dielectric Elastomer Composites Containing High Volume Fraction of AgNPs 

 

175 

 

(44) Xu, J.; Wong, C. P. Low-Loss Percolative Dielectric Composite. Appl. Phys. Lett. 
2005, 87, 082907. 

(45) Putson, C.; Jaaoh, D.; Meauma, N.; Muensit, N. Effect of Micro- and Nano-Particle 
Fillers at Low Percolation Threshold on the Dielectric and Mechanical Properties of 
Polyurethane/Copper Composites. J. Inorg. Organomet. Polym. Mater. 2012, 22, 1300–
1307. 

(46) Zhang, Y.; Wang, Y.; Deng, Y.; Li, M.; Bai, J. Enhanced Dielectric Properties of 
Ferroelectric Polymer Composites Induced by Metal-Semiconductor Zn-ZnO Core-Shell 
Structure. ACS Appl. Mater. Interfaces 2012, 4, 65–68. 

(47) Lucchini, M. A.; Testino, A.; Ludwig, C.; Kambolis, A.; El-Kazzi, M.; Cervellino, A.; 
Riani, P.; Canepa, F. Continuous Synthesis of Nickel Nanopowders: Characterization, 
Process Optimization, and Catalytic Properties. Appl. Catal. B Environ. 2014, 156-157, 
404–415. 

(48) Park, B. K.; Jeong, S.; Kim, D.; Moon, J.; Lim, S.; Kim, J. S. Synthesis and Size 
Control of Monodisperse Copper Nanoparticles by Polyol Method. J. Colloid Interface Sci. 
2007, 311, 417–424. 

(49) Liu, C.; Yang, X.; Yuan, H.; Zhou, Z.; Xiao, D. Preparation of Silver Nanoparticle 
and Its Application to the Determination of Ct -DNA. Sensors 2007, 7, 708–718. 

(50) Quinsaat, J. E. Q.; Nüesch, F. A.; Hofmann, H.; Opris, D. M. Dielectric Properties of 
Silver Nanoparticles Coated with Silica Shells of Different Thicknesses. RSC Adv. 2013, 3, 
6964–6971. 

(51) Graf, C.; Vossen, D. L. J.; Imhof, A.; van Blaaderen, A. A General Method To Coat 
Colloidal Particles with Silica. Langmuir 2003, 19, 6693–6700. 

(52) Liu, S.; Han, M.-Y. Silica-Coated Metal Nanoparticles. Chem. Asian J. 2010, 5, 36–
45. 

(53) Gun’ko, V.; Vedamuthu, M.; Henderson, G.; Blitz, J. Mechanism and Kinetics of 
Hexamethyldisilazane Reaction with a Fumed Silica Surface. J. Colloid Interface Sci. 
2000, 228, 157–170. 

(54) Cervantes, J.; Zárraga, R.; Salazar-Hernández, C. Organotin Catalysts in 
Organosilicon Chemistry. Appl. Organomet. Chem. 2012, 26, 157–163. 

(55) Boyce, M. C.; Yeh, O.; Socrate, S.; Kear, K.; Shaw, K. Micromechanics of Cyclic 
Softening in Thermoplastic Vulcanizates. J. Mech. Phys. Solids 2001, 49, 1343–1360. 



 

 

            4. Highly Stretchable Dielectric Elastomer Composites Containing High Volume Fraction of AgNPs 

 

176 

 

(56) Grassie, N. .; Macfarlane, I. G. . The Thermal Degradation of Polysiloxanes-I. Eur. 
Polym. J. 1978, 14, 875–884. 

(57) Lewicki, J. P.; Liggat, J. J.; Patel, M. The Thermal Degradation Behaviour of 
Polydimethylsiloxane/montmorillonite Nanocomposites. Polym. Degrad. Stab. 2009, 94, 
1548–1557. 

(58) Silva, V. P.; Gonçalves, M. C.; Yoshida, I. V. P. Biogenic Silica Short Fibers as 
Alternative Reinforcing Fillers of Silicone Rubbers. J. Appl. Polym. Sci. 2006, 101, 290–
299. 

(59) Norkhairunnisa, M.; Azizan, A.; Mariatti, M.; Ismail, H.; Sim, L. Thermal Stability 
and Electrical Behavior of Polydimethylsiloxane Nanocomposites with Carbon Nanotubes 
and Carbon Black Fillers. J. Compos. Mater. 2011, 46, 903–910. 

(60) Calebrese, C.; Hui, L.; Schadler, L.; Nelson, J. A Review on the Importance of 
Nanocomposite Processing to Enhance Electrical Insulation. IEEE Trans. Dielectr. Electr. 
Insul. 2011, 18, 938–945. 

(61) Tan, Q.; Cao, Y.; Irwin, P. DC Breakdown in Polyetherimide Composites and 
Implication for Structural Engineering. 2007 IEEE Int. Conf. Solid Dielectr. 2007, 411–
414. 

(62) Kurimoto, M.; Okubo, H.; Kato, K.; Hanai, M.; Hoshina, Y.; Takei, M.; Hayakawa, 
N. Dielectric Properties of Epoxy/alumina Nanocomposite Influenced by Control of 
Micrometric Agglomerates. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 662–670. 

(63) Kollosche, M.; Kofod, G. Electrical Failure in Blends of Chemically Identical, Soft 
Thermoplastic Elastomers with Different Elastic Stiffness. Appl. Phys. Lett. 2010, 96, 12–
15. 

(64) Claude, J.; Lu, Y.; Wang, Q. Effect of Molecular Weight on the Dielectric Breakdown 
Strength of Ferroelectric Poly(vinylidene Fluoride-Chlorotrifluoroethylene)s. Appl. Phys. 
Lett. 2007, 91, 2–5. 

(65) Stark, K. H.; Garton, C. G. Electric Strength of Irradiated Polyethene. Nature 1955, 
175, 642–643. 

(66) R. Kornbluh, R. Pelrine, Q. Pei, R. Heydt, S. Stanford, S. Oh and J. Eckerle, Proc. 
SPIE Smart Struct. Mater. 2002, 4698, 254–270. 

 

 



 

 

            4. Highly Stretchable Dielectric Elastomer Composites Containing High Volume Fraction of AgNPs 

 

177 

 

4.7 Supporting Information  

 
Highly stretchable dielectric elastomers composites containing high silver 

nanoparticles volume fraction 

 

Jose Enrico Q. Quinsaat, Mihaela Alexandru, Frank A. Nüesch, Heinrich Hofmann, 
Andreas Borgschulte, and Dorina M. Opris*  
 
J. E. Q. Quinsaat, Dr. M. Alexandru, Prof. Frank A. Nüesch, Dr. D. M. Opris  

Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for 

Functional Polymers, Überlandstrasse 129, 8600 Dübendorf, Switzerland  

E-mail: dorina.opris@empa.ch 

 

J. E. Q. Quinsaat, Prof. H. Hofmann, Prof. F. A. Nüesch, Ecole Polytechnique Fédérale de 

Lausanne (EPFL), Materials Institute, 1015 Lausanne, Switzerland 

Dr. A. Borgschulte, Swiss Federal Laboratories for Materials Science and Technology (Empa), 

Laboratory for Hydrogen and Energy, Überlandstrasse 129, 8600 Dübendorf, Switzerland 

 

40 60 80
0.0

0.3

0.6

F
re

q
u

e
n

cy
 (

a
. 

u
.)

Size (nm)

 AgNPs
 Ag@SiO

2

 

Fig. 60: Size distribution of AgNPs and Ag@SiO2 core-shell. The sizes were determined through 
TEM image analysis. 
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Fig. 61: XRD pattern of the AgNPs prepared by polyol synthesis at 130 °C. The typical cubic silver 
diffraction was observed. 

 

   

Fig. 62: TEM micrographs of the Ag@SiO2 produced via upscaling through the addition of 0.6 
vol% ethanolic TEOS solution into the reaction mixture. 
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Fig. 63: TEM micrographs of the AgNPs (left) and Ag@SiO2 core-shell particles (right) and their 
corresponding EDX spectrum below. 

 

Sample Elemental analysis 

C 
[%] 

H 
[%] 

N 
[%] 

Ag@SiO2  1.11 0.19 0.24 

Ag@SiO2@Si(CH3)3  1.75 0.28 0.33 

 

Fig. 64: Elemental analysis of the core-shell particles before and after surface treatment with 
HMDS. 
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Fig. 65: XPS spectra of AgNPs prepared with the polyol synthesis at 130 °C. The peak indicative 
for the oxidized silver species is missing.  
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Fig. 66: The mechanical properties of B20 aged at room temperature for 10 days and at 150 °C for 5 
days: the cyclic (left) and the stress-strain (right) tests.  
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Fig. 67: The strain reloading stress-strain curves after initial strain excursions of 50, 75, 100, all the 

way up to 450 % for B14. 
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Fig. 68: Permittivity as function of filler content of the composite of series A and B.  
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Fig. 69: Breakdown field EB as function of filler content of the composite of series A (red) and B 
(black). The averaged values are depicted with error bars and were obtained from the 
measurements using the electrodes with an area of 1 mm2. 

 

 

Fig. 70: Electrodes used for breakdown strength measurements and the overall set-up of the system 
(from left to right). 
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Fig. 71: The setup used for measuring the dielectric properties. 

 

The thicknesses of the samples used for the dielectric measurements were below 50 µm 

and were measured using a Heidenhein high accuracy gage. The samples were measured 

using Hewlett Packard 16451B dielectric test fixture equipped with round electrodes (left). 

To ensure a good contact and a uniform “pressure” over the samples (because of the round 

electrode used), gold plates slightly smaller than the coated electrodes were used. The 

setup shown above (left), allows a tender touch of the sample by the top electrode that is 

connected to a micrometer. So, there should be no displacement or pressure in the samples. 

The sample coated with 21 mm electrode was also measured using the setup with which 

the Novocontrol Alpha-A Frequency Analyzer is equipped (right) and the dielectric results 

were similar to those obtained using the other setup. Because rather thin samples were 

used, which were coated with conductive layers of defined surface, even when the right 

setup was used and more pressure was applied to the sample by screwing, no change in the 

permittivity was observed.  
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Chapter 5: Surface Hydrophobization of Silver 

Nanoparticles (AgNPs) through Surface-initiated Atom 

Transfer Radical Polymerization (SI-ATRP) 
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Abstract: This work describes the preparation of poly(methyl methacrylate) (PMMA)-

coated Ag@SiO2 core-shell particles by conducting a Surface-initiated Atom Transfer 

Radical Polymerization (SI-ATRP).  Prior to conducting the polymerization, Silver 

nanoparticles (AgNPs) formed by the polyol synthesis were subjected to preliminary 

surface functionalization which includes the encapsulation in an insulating SiO2 shell. The 

growth of an additional organic PMMA shell yields inorganic/organic core-shell particles 

with an enhanced dispersibility in non-polar solvents. 

 

5.1 Introduction 

Silver Nanoparticles (AgNPs) are widely employed in different scientific fields due to their 

array of properties. The current application fields of AgNPs include biology,1–3 optics,4–6 

catalysis7,8 and electronics.9–12 The properties of AgNPs depend on both their size and 

shape, and it is essential to gain control over them in order to tune their properties. While 

the continuous preparation of AgNPs in flow reactors have enabled the control over the 

size and distribution of the particles,13–16 the polyol synthesis has established itself as a 

reliable and facile method to prepare different silver nanostructures which includes wires, 

cubes, spheres, bipyramids and triangles.17 The surface functionalization is essential for 

both the stability and further use of AgNPs in different application fields. Inorganic 

materials such as TiO2 and SiO2 have been used to encapsulate the AgNPs with an oxide 

layer in order to give core-shell particles. While Ag@TiO2 particles are exploited for their 

resulting photocatalytic activity,18–20 Ag@SiO2 have been prepared in order to control their 

plasmonic properties.21–23 Furthermore, Ag@SiO2 core-shell particles also feature good 

dielectric properties with both low conductivities and dielectric losses.24,25 Previous studies 

on the dielectric properties of the core-shell particles revealed the control over the 

dielectric properties with the variation of the silica shell thickness.26 Therefore, core-shell 

particles are promising candidates to be used as high permittivity filler for the preparation 

of materials with enhanced dielectric properties. However, the SiO2 shell is highly 

hydrophilic and has to be rendered hydrophobic in order to compatibilize it with matrices 
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such as polydimethylsiloxane (PDMS), polyacrylates or polyolefins. Hybrid 

organic/inorganic nanocomposites find potential applications in optics, electronics and 

biomedicine.27,28 Although surface hydrophobization can be achieved with alkyl silanes29–

32 or by emulsion polymerization,33 this work exploits the possibility of growing an outer 

polymer layer on the core-shell particles by conducting a Surface-initiated (SI) Atom 

Transfer Radical Polymerization (ATRP).34,35 SI-ATRP has previously been used to 

prepare organic/inorganic hybrid particles. In most of the cases, the growth of polymers 

such as polystyrenes, polymethacrylates and polyacrylonitriles has been demonstrated on 

SiO2 particles or Si-surfaces.36–38 Apart from SiO2 nanoparticles, SI-ATRP has also been 

demonstrated on metal surfaces and particles such as Au, where a thiol-functionalized 

ATRP-initiator was grafted directly on the particle surface.39–44 The resulting hybrid 

particles featured good dispersability and thus compatibility in hydrophobic media as well 

as high mechanical and thermal stability.27,36,45 These features are the targeted properties of 

the polymer (PMMA)-coated Ag@SiO2 core-shell particles which were prepared in this 

work (Fig. 72 and Fig. 73).  

 

 

Fig. 72: General scheme towards the preparation of PMMA-coated Ag@SiO2 core-shell 
particles. 
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5.2 Experimental Section 

5.2.1 Materials and Methods 

AgNO3, poly(vinyl pyrrolidinone) (PVP), ethylene glycol (EG), tetrahydrofurane 

(THF), ethanol (EtOH), methanol (MeOH), α-bromoisobutyryl bromide, ammonia 

(29 % solution, NH4OH), triethylamine (TEA), tetraethoxysilane (TEOS), 

aminopropyl triethoxysilane (APTES), CuCl, N,N’,N’’,N’’-

pentamethyldiethylenetriamine (PMDETA), ascorbic acid, ethyl-α-bromo 

isobutyrate (2-(EiB)Br), methyl methacrylate (MMA) were purchased from Aldrich. 

While EG and MMA were distilled prior use, all other chemicals were used as 

received. Monomer conversion in the polymerization reaction was monitored and 

analyzed with a Bruker Avance III 400 NMR spectrometer using a 5 mm BBO Prodigy™ 

CryoProbe at 400.18, 100.63 and 79.50 MHz, respectively. Gel permeation 

chromatography (GPC) measurements were done with an Agilent 1100/PSS 

WinGPC 8.1 system in tetrahydrofurane calibrated with poly(methyl methacrylate) 

(PMMA) standards (Polymer Standards Service). Prior to the analysis by GPC, the 

polymers were subjected to cycles of purification which consists of dissolving them 

in THF followed by the precipitation in MeOH. The nanoparticles were observed with 

TEM using a Philips CM30 TEM. For the observation of PMMA-coated core-shell 

particles, the TEM grid was stained with 2 wt% aqueous solution of phosphotungstic acid. 

UV-vis absorption spectra were recorded with a Cary 50 spectrophotometer, DLS 

measurements were done with a Malvern Zetasized Nano ZS, the thermogravimetric 

analysis (TGA) was conducted with a Perkin Elmer TGA7 at a heating rate of 20 °C min-1 

under a helium gas flow. The number of particles measured for the statistical determination 

of the particle size was about 400 for Ag core and about 120-150 for the SiO2 and PMMA-

coated particles with the help of the software Imagej and a ruler for Windows, respectively.  
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5.2.2 Synthesis of AgNPs 

In a 100 mL round-bottom flask, PVP (6 g, 54 mmol, Mw = 40 kDa) was dissolved in EG 

(50 mL) under sonication. After complete dissolution of the polymer, the flask was stirred 

in an oil bath at 140 °C for 30 min, then an aqueous solution of AgNO3 (1 mL, 1 g/mL) 

was injected rapidly and the reaction mixture was stirred further for 1 h at a speed of 900 

rpm. The flask was later removed from the oil bath, cooled in a water bath and the reaction 

mixture was diluted with acetone, centrifuged at 5’000 rpm for 0.5 h and decanted. The 

resulting precipitate was further washed with acetone and water 3 times before redispersion 

in EtOH. The reaction was repeated 18 times and the particles were redispersed in 400 mL 

of EtOH. Yield: 9.26 g (82 %). Size: 59 ± 22 nm. 

 

5.2.3 Synthesis of Ag@SiO2 Core-shell Particles  

The silica-coating was performed based on existing protocols of the modified Stöber 

method.26 For the silica-coating, 2 x 190 mL of the AgNPs dispersion in EtOH was 

transferred each in a 2 L flask, diluted with EtOH (600 mL) and treated with NH4OH (29 

%, 21.25 mL), ethanolic TEOS solution (2.2 vol%, 45 mL) and stirred at 25 °C for 16 h. 

The mixture was diluted with acetone, centrifuged and decanted. The particles were 

redispersed in EtOH and the washing procedure was repeated thrice in order to obtain the 

core-shell particles (8 g) which were redispersed in EtOH (250 mL). Size: 65 ± 14 nm. 

 

5.2.4 Synthesis of APTES-Br 

APTES-Br was prepared according to a previous protocol.46 A mixture containing APTES 

(10 mL, 43 mmol) and triethylamine (7.8 mL, 57 mmol) in dry THF (200 mL) was treated 

dropwise with α-bromoisobutyryl bromide (5.55 mL, 51 mmol) at 0 °C. After completing 

the addition, the mixture was stirred at 0 °C for further 30 min, and then warmed to 25 °C 

and stirred overnight. The mixture was filtered, concentrated in vacuo to give APTES-Br 
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(13.1 g, 86 %) as yellow oil. 1H NMR (CDCl3, 400 MHz): 0.6-0.7 (m, 2H, SiCH2), 1.25 (t, 

9H, CH3CH2OSi), 1.63-1.73 (m, 2H, CH2), 2.00 (s, 6H, CCH3), 3.3 (q, 2H, CH2N). 3.85 (q, 

6H, CH2CH3), 6.9 (s, 1H, NH). 

 

5.2.5 Synthesis of Initiator-coated Ag@SiO2 Core-shell Particles (Ag@SiO2@Br) 

The Ag@SiO2 core-shell particles (230 mL out of the 250 mL stock solution) were 

transferred to a 500 mL round bottom flask, stirred at 25 °C and treated with triethylamine 

(5.4 mL, 39.1 mmol) and a mixture of APTES-Br (5.4 g, 14.6 mmol) in EtOH (20 mL). 

The mixture was stirred for 2 days, then diluted with acetone, centrifuged and decanted. 

The residue was redispersed in EtOH, diluted with acetone, centrifuged and decanted. The 

washing cycle was repeated 6× in order to obtain the initiator-coated core-shell particles 

(6.4 g, 80 %) which were redispersed in EtOH (100 mL). 

 

5.2.6 Surface-initiated (SI) ATRP on Initiator Coated Ag@SiO2 Core-shell 

Particles 

The initiator-coated Ag@SiO2 core-shell particles (4 g, ~ 0.54 mmol APTES-Br grafted on 

the surface), MMA (35.7 mL, 336 mmol), 2-(EiB)Br (55 µL, 0.35 mmol) in DMF (10 mL) 

were transferred to a 250 mL Schlenk flask, and subjected to three freeze-dry-pump-thaw 

cycles. In a separate flask, a solution of CuCl (80 mg, 0.80 mmol), PMDETA (210 µL, 1 

mmol), and ascorbic acid (44 mg, 0.25 mmol) in DMF (15 mL) was degassed with Ar for 

30 min and then transferred to the Schlenk flask containing the particles via a cannula. The 

flask was then placed in a preheated oil bath and stirred at 70 °C. During the reaction, 

aliquots were taken after defined time intervals. The reaction was terminated after 7 h by 

exposing the reaction to air followed by cooling the reaction mixture down to room 

temperature. The mixture was dissolved in acetone, centrifuged and decanted. The washing 

procedure was repeated 7 times until no free polymer chain was detected in the mother 

liquor. Eventually, PMMA-coated core-shell particles (1.8 g) were obtained after the 
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purification process.  

5.3 Results and Discussion 

5.3.1 Synthesis of AgNPs and Surface Functionalization with SiO2 

The AgNPs were prepared by the polyol synthesis, an established method to prepare 

nanoparticles in relatively large amounts per batch reaction.26 The average particle 

diameter was 59 nm (Fig. 73). The silica-coating was conducted with a modified Stöber 

method to give core-shell particles in gram quantities with a thin SiO2-shell of ~ 3 nm (Fig. 

73).19,21,26 The subsequent change in the dielectric medium of the AgNPs (from PVP/EtOH 

to SiO2) led to a bathochromic shift from 434 to 443 nm in the corresponding UV-vis 

spectra (Fig. 74). As previously investigated, it is essential to keep the SiO2-shell very thin 

in order to preserve the metallic character of the core-shell particles e.g. the dielectric 

constant.26 However, the thin silica shell seemed to be insufficient in stabilizing the AgNPs 

from forming some agglomerates which can be attributed to the strong van der Waals 

interactions acting between the cores. The formation of some agglomerates between the 

particles is indicated by the broadening of the peaks in the UV-vis spectra although DLS 

does not detect it.  

 

5.3.2 Surface-initiated (SI) ATRP on the Ag@SiO2 Core-shell Particles 

Although the direct growth of polymers on gold nanoparticles (AuNPs) functionalized with 

thiol-terminated initiators has previously been reported, a main drawback of this approach 

is the relatively weak Au-S bond (~ 40 kcal/mol) which can undergo bond dissociation at 

temperatures > 60 °C.40 In comparison, the Ag-S bond dissociation energy amounts               

52 kcal/mol, which is a bit higher than the Au-S bond energy but will also undergo the 

same fate at high temperatures.47 Since the polymerization has to be conducted at ambient 

temperatures in order to circumvent this issue, the choice of polymerizable monomers 

becomes limited. To overcome this problem the APTES-Br initiator was chemically 

grafted to the silica surface of the Ag@SiO2 core-shell particles. The SiO2 shell serves as a 
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protection barrier for the AgNPs towards agglomeration as a result of electrostatic 

stabilization and allows chemical functionalization of the surface through the presence of 

the hydroxyl groups. 

   

    

Fig. 73: TEM micrographs of AgNPs (a), Ag@SiO2 (b), APTES-Br (c) and PMMA-coated 
Ag@SiO2 core-shell particles (d). 
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Fig. 74: UV-vis spectra of AgNPs, Ag@SiO2 and APTES-Br coated Ag@SiO2 core-shell particles. 
The spectra were recorded in EtOH. 

 

Similarly, Au@SiO2@PMMA particles have been prepared in the same fashion by Matsui 

et al.48 Such a three-layered hybrid particle assembly has been used by Liang et al. to 

produce hairy hybrid microrattles upon etching away the intermediate SiO2 layer.49 

Eventually, the Au core is trapped in a hollow cavity surrounded by a polymeric shell 

consisting either of poly(ethylene glycol) (PEG) or poly(N-isopropylacrylamide). As 

reported earlier, the use of NH4OH as alkaline catalyst for the initiator fixation induces 

agglomeration, and therefore TEA was used for this procedure to minimize the risk, and 

despite the broadened UV-vis signal for the APTES-Br coated core-shell particles (Fig. 74) 

which is indicative for some agglomeration formation, the DLS measurements and TEM 

micrographs do not support this findings (Fig. 73 and Fig. 75).50 TEA can deprotonate the 

silanol groups thus enabling the alkoxysilane initiators to attach onto the SiO2 surface.51–53 

The immobilization of the initiator on the particle surface was verified by elemental 

analysis which determined the Br content to be 1.08 wt%, thus giving about 125 µmol of 
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Br/g of nanoparticle. By assuming a spherical shape of the core-shell particles and a silanol 

group density of 5/nm2,54 the initiator density becomes around 7-8 molecules/nm2 which is 

higher than the reported in the literature and the theoretically possible grafting densities, 

but could be attributed to the formation of multilayered networks of the APTES-Br on the 

surface.50,55 However, the calculated polymer chain density was ~ 0.1 chains/nm2, a value 

which is smaller than the ones reported previously (see TGA spectra).44,50 The SI-ATRP 

was performed at 70 °C in order to control the molecular weight distribution of the 

polymers as well as to prevent potential effects of the present copper salts in the solution 

on the morphology of the AgNPs.56 Free “sacrificial” initiator (2-(EiB)Br) was introduced 

in order to achieve control over the polymerization through the accumulation of sufficient 

amounts of Cu(II) species via radical termination.50,57 The use of CuCl in this work rather 

than CuBr was attributed to the fact that ATRP reactions conducted with CuBr generally 

led to higher polymer dispersion index (PDI) compared to the reactions which employed 

CuCl catalyst.58,59 The polymerization was terminated after 7 h, which led to an overall 

monomer conversion of 46 %. An increase in the particle size as a result of the growing 

insulating layer was observed in both the TEM micrographs as well as in the DLS spectra 

of the corresponding particles at each functionalization stage (Fig. 73 and Fig. 75). 

Unfortunately, it was difficult to differentiate the SiO2- and PMMA-shell from each other 

due to the amorphous nature and poor electron density featured by both entities, but an 

increase in the size of the core-shell particles after the polymerization was observed in the 

corresponding TEM micrographs (Fig. 73) although the size of the PMMA-coated core-

shell particles is much lower than the value obtained from the DLS measurements (Tab. 

15). This can be explained by the fact that the hydrodynamic diameter of the particles is 

larger in solution due to the swelling of the tethered polymer chains in organic solvents. A 

similar observation was made by Ohno et al. where the hydrodynamic diameter DH of the 

particles obtained from DLS measurements surpasses the size determined from the TEM 

micrographs.50  In contrast, the polymers collapse in the dry state and form compact core-

shell structures thus leading to the smaller particle size observed by TEM. Additionally, 

some chains might undergo interdigitation as a result of attractive forces occurring between 

them thus leading to a compression of the PMMA shell.48  
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Fig. 75: DLS spectra of AgNPs, Ag@SiO2, APTES-Br and PMMA-coated Ag@SiO2 core-shell 
particles recorded in EtOH.  

 

Concerning the image analysis performed on the TEM micrographs of the 

Ag@SiO2@PMMA core-shell particles, the average diameter of the particles was 

increased by ~ 20 nm, therefore the resulting polymer shell composed of PMMA chains in 

the dry state  is estimated to be around 10 nm thick (Fig. 76). An overview of the 

determined parameters for the particles after each functionalization step is shown in Tab. 

15. The corresponding UV-vis spectrum of the PMMA-coated core-shell particles was 

recorded in THF due to its enhanced solubility in non-polar solvents and is shown in Fig. 

77. For comparison reasons, the spectrum of the APTES-Br coated core-shell particles was 

also recorded in THF. After the polymerization on the APTES-Br coated core-shell 

particles, the maximum absorption peak Ȝmax initially experiences a blue shifting from 457 

to 455 nm which could be explained by the increase in the interparticle distance through 

the growing of the polymer chains as well as the change in the dielectric medium of the 

particles (İPMMA < İSiO2).
60 The narrower peaks of the PMMA-coated Ag@SiO2 core-shell 
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particles compared to the uncoated counterpart in the UV-vis spectra could be indicative 

for a better dispersion of the particles in THF as a result of rendering the surface 

hydrophobic. With increasing polymerization time, Ȝmax experiences a small bathochromic 

shift from 455 to 460 nm which might be caused by the enhanced interactions of the 

particles as a result of the previously mentioned interdigitation of the polymers attributed 

to the increase in the molecular weight. Despite the steric repulsion between the dangling 

polymer chains, they might be able to form tight ensembles with each other due to the 

entanglement/interdigitation caused by hydrophobic/hydrophobic interactions. This can 

manifest itself in the broadening of the UV-vis spectra (Fig. 77) after 7h of polymerization. 
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Fig. 76: Particle size distribution of AgNPs, Ag@SiO2 core-shell particles and PMMA-coated 
Ag@SiO2 core-shell particles obtained from the image analysis of TEM micrographs. 
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Tab. 15: Determined size parameters of AgNPs, Ag@SiO2 core-shell particles (before                                
and after immobilization of APTES-Br) and PMMA-coated Ag@SiO2 core-shell particles. 

 Size (TEM) Size (DLS)a Ȝmax 

AgNPs 59 (22)    75 (29)b 434b 

Ag@SiO2 65 (14)    83 (35)b 443b 

Ag@SiO2@Br -    86 (32)b 453b 

Ag@SiO2@PMMA 84 (16)   342 (99)c 460c 

a Mean numerical diameter. In the parenthesis is reported the measured standard deviation of the 
particle population 

b measured in EtOH 

c measured in THF 
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Fig. 77: UV-vis spectra of APTES-Br coated Ag@SiO2 core-shell particles and PMMA-coated 
Ag@SiO2 core-shell obtained from the aliquots taken after a prescribed amount of time. The 
spectra were recorded in THF. 
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In Fig. 78, water/toluene extraction tests of the particles after each corresponding 

functionalization step are illustrated. The particles remained hydrophilic even after the 

immobilization of the APTES-Br initiator which is in agreement with the literature.51  

 

 

Fig. 78: Water/toluene extraction tests of AgNPs (a), Ag@SiO2 (b), APTES-Br -coated Ag@SiO2 
(c) and PMMA-coated Ag@SiO2 core-shell particles (d). The organic phase is above the aqueous 
phase. 

 

As expected, the grafting of PMMA on the initiator-coated Ag@SiO2 core-shell particles 

led to a transfer of the particles into the hydrophobic phase due to the hydrophobic 

polymer chains on the surface. The PMMA-coated core-shell particles were dispersible in 

a variety of organic solvents which includes toluene, THF and acetone. In order to control 

and analyze the polymerization, aliquots were taken out of the reaction solution after 

defined time intervals. The reaction was terminated after a monomer conversion of 46 % 

(Fig. 79). 
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Fig. 79: Semi-logarithmic plot of the monomer conversion versus the polymerization reaction time. 

 

It is well known that the molecular weight and molecular weight distribution of polymers 

formed by ATRP on surfaces are basically identical to the values obtained from polymers 

that were prepared with free initiators.44,61 Therefore, the characteristics of the isolated 

polymer formed from the reaction of the free, “sacrificial” initiator should be 

representative for the grafted polymers. GPC measurements gave a molecular weight Mn = 

100’000 g/mol for the free polymer after 7 h of polymerization (Fig. 80 and Fig. 81). 

Unfortunately, the PDI deteriorated in the course of the polymerization reaction, namely 

from 1.6 to 2.6 despite the careful choice of reaction parameters. This might be the direct 

result of the deterioration of the stirring of the reaction mixture due to the increased 

viscosity of the system during the course of the reaction. This affected the uniform heat 

transfer within the system, especially for a large reaction volume where such effects 

become more pronounced as was the case here. The TGA measurements under He 

atmosphere were performed for Ag@SiO2, APTES-Br, and PMMA-coated Ag@SiO2 core-

shell particles. The results shown in Fig. 82 illustrate the increase in the amount of 

decomposed materials and the decrease in residual mass with each functionalization step 

due to the degradation of the organic components. The TGA curve of the PMMA-coated 
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core-shell particles show different stages of degradation, a feature observed for the 

decomposition of PMMA prepared through radical initiation. The different stages of 

decomposition are a result of different polymer degradation mechanisms found in PMMA 

which are described elsewhere.62–65 Overall, the residual mass after the degradation of 

PMMA-coated Ag@SiO2 core-shell particles is about 79.9 wt%, indicating a polymer 

content of 14.2 wt% by taking the residual mass of APTES-Br functionalized core-shell 

particles after thermal degradation into account (Fig. 82). In volumetric terms, the Ag 

content in the core-shell particles is still around 20-30 vol%, and is within the vicinity of 

the percolation threshold described for Ag-based nanocomposites.10,66 
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Fig. 80: Molecular weight (Mn) of free, sacrificial PMMA obtained from GPC measurements of 
aliquots taken after a prescribed amount of reaction time. 
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Fig. 81: The development of the molecular weight Mn and the polymer dispersity index (PDI) with 
time. 
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Fig.  82: TGA curves of Ag@SiO2, APTES-Br and PMMA-coated Ag@SiO2 core-shell particles. 
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5.4 Conclusion and Outlook 

In summary, PMMA-coated Ag@SiO2 core-shell particles which exhibit enhanced 

solubility in organic, non-polar solvents have been prepared in gram scale. They can serve 

as an alternative set of core-shell particles to be used for the preparation of nanocomposites 

with a hydrophobic polymer matrix. The enhanced dispersibility of the particles can lead to 

a homogenous dispersion of the particles into the polymer matrix and avoid the formation 

of micron-sized agglomerates which are likely to occur when the particles are dispersed 

into an incompatible matrix. Further work on the improvement of the PDI of the resulting 

polymers will be on the agenda. The dielectric properties of the filler as well as those of 

their resulting nanocomposites will be examined in the near future. 
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6. Conclusions  

The polyol synthesis enabled the preparation of AgNPs in large quantities which was 

essential for the preparation of nanocomposites with PDMS. Although the preparation of 

AgNPs in gram scale could be achieved with traditional batch reactions, the SFTR 

provided the possibility of preparing large amounts of the AgNPs with an enhanced control 

over the particle size and distribution at a production rate of around 2 g/h at a conversion 

of almost 100 %. The tests with the SFTR showed that it was possible to prepare AgNPs 

with sizes ranging from 7-104 nm by tuning the reaction parameters. The synthesis of 

AgNPs with the SFTR, which was applied and accomplished in the course of this project, 

will replace the conventional batch synthesis of AgNPs in the future stages of this work. 

The encapsulation of the AgNPs with a SiO2 shell was possible by performing a modified 

Stöber method at silver concentrations of ~ 50 mM. The dielectric properties of the 

Ag@SiO2 core-shell particles depended heavily on the thickness of the insulating shell. 

While a SiO2 shell thickness of ~ 3 nm (Ag core ~ 38 nm) was too thin to prevent the 

AgNPs from forming a percolation pathway, the growth of the SiO2 shell to 20 nm led to 

dielectric properties similar to pure SiO2 (İ’ ~ 3.9). Between those two thickness values, 

the permittivity of the core-shell particles increased with decreasing SiO2 shell thickness 

and reached a maximum permittivity İ’ ~ 41. Therefore, a very thin SiO2 is essential to 

obtain a maximum enhancement in the resulting permittivity of the core-shell particles 

although the insulation should still be ensured. Therefore, the SiO2 shell was kept at 4 nm 

for the other projects of this work. 

The preparation of Ag@SiO2 core-shell particles allowed further surface functionalization 

due to the presence of the hydroxyl-groups on the particle surface. Since the particles will 

be dispersed into hydrophobic PDMS, the core-shell particles were rendered hydrophobic 

through the grafting of alkyl silanes or by growing polymers on the surface though the SI-

ATRP. The hydrophobicity of the functionalized core-shell particles was observed through 

their enhanced dispersion in non-polar solvents. The surface treatment is also essential in 



 

  

             6. Conclusions 

 

210 

 

order to reduce the possibility of water adsorption on the surface which can influence the 

dielectric measurements. 

The resulting set of nanocomposites of the functionalized Ag@SiO2 core-shell particles 

with PDMS (Mw ~ 13λ’000 g/mol) denoted as series A in Chapter 4 featured enhanced 

dielectric properties with increasing filler content, with a maximum of permittivity of 7.8 

at 18 vol% Ag. However, an increase in the Young’s modulus Y as well as a decrease in 

the strain-at-break values were observed with the increase in the Ag content in the 

nanocomposites, and therefore further modifications were applied by (i) using an 

ultrasonicator tip for the dispersion of the filler and (ii) by using PDMS with a higher 

molecular weight (Mw ~ 6λ2’000 g/mol). The nanocomposites with the high molecular 

weight PDMS featured high elasticity, but the permittivities exhibited by this new series of 

nanocomposites (series B) were lower than the nanocomposites of the series A at Ag 

contents exceeding 15 vol%. This can be explained by the better dispersion of the particles 

in series B which leads to larger interparticle distances, while the nanocomposites of series 

A feature the presence of large agglomerates (tens of microns) which give larger 

permittivities as a result of the closer proximity of the particles to each other. This effect is 

particularly pronounced with increasing filler contents as the nanocomposite A18 (18 vol% 

Ag) has a larger permittivity than the nanocomposite B20 (20 vol% Ag). However, the 

nanocomposites of series B featured lower values for tan į as well as higher breakdown 

strengths EB in comparison to the nanocomposites of series A. The sample B20 was 

subjected to actuator tests, but did not reveal any strain in thickness direction which can be 

attributed to the relatively high Young’s modulus Y of the nanocomposites compared to 

conventional actuator membranes. In summary, functionalized Ag@SiO2 core-shell 

particles have been used as high permittivity filler in nanocomposites. The nanocomposites 

show a modest increase in permittivity, but rather low tan į values and low electric 

conductivities attributed to both the PDMS matrix and the effective insulation of the 

AgNPs. The surrounding SiO2 serves both as an insulating material that prevents the Ag 

particles from percolating and as an effective interface to enhance the compatibility of the 

Ag with the PDMS matrix upon undergoing surface treatment. 
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7. Outlook 

Despite the remarkable elastic properties observed for the nanocomposites, there is still 

room for further improvement. The permittivities of the nanocomposites are still relatively 

low despite the high filler content. A potential increase in the permittivity can be expected 

from the use of anisotropic structures, for example silver nanowires (AgNWs) or silver 

nanorods (AgNRs). Preliminary experiments using AgNWs coated with thin SiO2 shells as 

filler were performed by a co-worker, and the nanocomposites featured slightly higher 

permittivities compared to the values observed for the nanocomposites using the AgNPs at 

the corresponding volume fraction of Ag. However, a further increase in the content of 

AgNWs led to the formation of conductive pathways, and the resulting nanocomposites 

exhibited electrical conductivity. Perhaps, the use of AgNRs can lead to higher 

enhancements in the composite permittivity in comparison to the use of AgNPs, but the 

preparation of this particular nanostructure still remains a challenge. Further increase in the 

permittivity can be achieved by replacing the silica insulator shell with a material that has a 

higher permittivity (e.g. TiO2). The high strains that were achieved with the 

nanocomposites using functionalized AgNPs emphasizes their potential for energy 

harvesting, but the low breakdown strength is still a limiting factor for their potential 

application. The optimization of this parameter is essential and would enhance their ability 

to store energy thus eventually paving the way for their effective use as a novel dielectric 

elastomer generator (DEG). 
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8. Appendix 

A1. Preparation of Silver Nanoparticles by Inverse Miniemulsions 

(Water-in-Oil System) 

An alternative route for the preparation of AgNPs is the synthesis via inverse 

miniemulsions. In this scenario, water droplets are dispersed in an oil phase.1,2 The 

resulting particles would be hydrophobic in nature and could be readily dispersed in 

hydrophobic media. The variation of the water/surfactant molar ratio (ω), which is the 

critical parameter in this system, can lead to the variation of the average particle size due to 

the control of the size of the water droplets where the particles are effectively formed.3 In 

general terms, this synthesis method yields AgNPs with a narrow size distribution. In this 

study, ω, the reactant concentrations, and the type of continuous phase was varied and the 

formed particles were characterized. The hydrophobic phase consisted of hexadecane 

(Entries 1-6, Tab. 16) or octamethylcyclotetrasiloxane (D4, Entries 7-8, Tab. 16), Span 85 

(Fig. 83) was used as a surfactant, while formaldehyde (CH2O, 37 wt%) was the reducing 

agent in this reaction.  

 

                               

Fig. 83: Structure of Span 85 (left) and D4 (right). 
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Briefly, the surfactant was dissolved in the organic phase and the aqueous AgNO3 and 

formaldehyde solutions were added consecutively followed by the treatment of the 

resulting mixture with the tip sonicator (Sonics VCX-500 Model CV33) for around 10 min. 

The mixture was stirred overnight at 25 °C in order to observe an increase in the intensity 

of the color of the mixture as a result of the surface plasmons which are indicative for the 

formation of AgNPs. TEM, DLS and UV-vis spectra (Fig. 84, Fig. 85, Fig. 86 and Fig. 87) 

show that the formed particles are quite small in size and do not vary significantly with the 

variation of reaction parameters (Tab. 16). An interesting feature observed with this 

preparation method is the periodic arrangement of the AgNPs with constant interparticle 

distance as a result of the steric stabilization offered by the surfactant. When the amount of 

Span 85 was decreased, the control over the interparticle distance deteriorated and the 

periodic arrangement of the nanoparticles is perturbed as a result of the increase in the 

particle size distribution. However, no clear trend in the average particle size was 

established through the variation of the reactand concentration while keeping the 

AgNO3/Span 85 mass ratio constant. The decrease AgNO3/Span 85 mass ratio led to the 

slight decrease in the average particle size (Entries 1 and 2 in Tab. 16) as a result of the 

formation of more stabilized water droplets due to the larger availability of the surfactant 

in the mixture.3 At the other hand, an increase in ω subsequently led to an increase in the 

particle size (Entries 4 and 6 in Tab. 16) along with an increase in the particle size 

distribution. This was also observed in the case where D4 was used as the continuous 

phase. The use of D4 was motivated by the possibility of polymerizing D4 in order to yield 

PDMS with the AgNPs blended in situ. However, the AgNPs were not stable at elevated 

temperatures and agglomerated at the polymerization temperature of 110 °C. A further 

decrease in the surfactant concentration led to the destabilization of the miniemulsions 

system followed by the phase separation. Overall, due to the limited particle sizes feasible, 

the low reaction yield (< 5-10 %) as well as the difficulty of isolating the particles from 

hexadecane or D4, this preparation method was found unsuitable for the preparation of 

AgNPs for our purposes, and therefore no further optimization of this reaction was 

pursued. Eventually, the focus shifted to the polyol synthesis of the silver nanostructures 

due to the advantages associated with this reaction as mentioned in Chapter 1. 
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Fig. 84: TEM Micrographs of the samples 1-6 and the particle size distribution inserted in the 
images. 
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Fig. 85: TEM Micrographs of the samples 7 and 8 and the particle size distribution inserted in the 
images. 
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Fig. 86: DLS spectra of AgNPs (Tab. 16, samples 1-8) which were prepared by reverse 
miniemulsions measured in toluene. 
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Fig. 87: UV-vis spectra of AgNPs (Tab. 16, samples 1-8) which were prepared by the inverse 
miniemulsions technique measured in hexadecane. 
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A2. The Preparation of Ag/PDMS Nanocomposites with Varying Particle 

Size and their Resulting Dielectric Properties 

 

The effect of the particle size on the resulting composite permittivity has also been 

investigated in this work. For this purpose, different sets of AgNPs with average particle 

diameters ranging from 25 to 76 nm were prepared (Fig. 88) and subjected to the surface 

functionalization with SiO2 and HMDS as illustrated in Chapters 3 and 4. As the 

designated preparation method, the polyol synthesis was used in order to prepare the 

AgNPs intended to be used as high permittivity filler. While the AgNPs stabilized by 

PVP10 (Mw ~ 10’000 g/mol) were prepared in a continuous fashion with the SFTR, the 

AgNPs with the average diameter of 76 nm stabilized by PVP40 (Mw  ~ 40’000 g/mol) 

were prepared by performing multiple batch reactions. The reason for the deviation of the 

preparation method is the high viscosity of the mixture of PVP40 in EG which prevented a 

smooth introduction of the stabilizer into the SFTR (not the same as in Chapter 2). 

However, the particle sizes feasible with the SFTR through the use of PVP10 as stabilizer 

were limited to below 50 nm (even at a reaction temperature of 160 °C). Therefore, the 

polyol synthesis involving the use of PVP40 was conducted in traditional batch reactions 

in order to obtain AgNPs larger than 50 nm (similar reaction conditions as in Chapter 4, 

reaction temperature was 150 °C) while the particles below 50 nm were prepared with the 

SFTR at a reactor temperature 140, 150 and 160 °C, respectively. The reaction conditions 

are similar to those reported in Chapter 2, although another SFTR was used for this series 

of experiments which explains the deviation in the obtained particle sizes compared to the 

ones reported in Chapter 2. The AgNPs were characterized by DLS, TEM and UV-vis 

spectroscopy and the measurements show a clear trend with the varying particle size (Fig. 

88, Fig. 89 and Fig. 90). The purified AgNPs were then subjected to the modified Stöber 

method in order to insulate them with a thin SiO2 shell (~ 4 nm, Fig. 91).4 However, the 

UV-vis spectra show the presence of shoulders at larger wavelengths for the particles with 

sizes below 50 nm. These could indicate the presence of either agglomerates or the 
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presence of particles which deviate from the spherical shape. The latter effect is more 

pronounced for particles with small diameters, but disappears for larger particles as a result 

of the larger particle size distribution.5 The agglomerates could have been formed through 

the high reaction temperatures as a result of the low steric repulsions offered by the PVP10 

compared to PVP40 where the longer polymer chains can perhaps offer a better steric 

stabilization of the particles towards agglomeration. The preparation of the particles with 

the SFTR was conducted for a couple of hours in order to generate sufficient particles, and 

initially the reaction mixture was collected in a vessel cooled in an ice bath. Possibly, the 

ice water was insufficient for the quenching/cooling of the incoming reaction mixture and 

therefore, there might have been some agglomeration ongoing in the vessel where the 

products are both collected and cooled simultaneously. Further modifications of this set-up 

are still ongoing and will be on the future agenda which will consist of the continuous 

cooling of the collecting vessel with a cooling medium.  The silica-coating was performed 

with a modified Stöber method and led to the successful coating of the AgNPs with a SiO2 

shell thickness of ~ 4 nm. However, the surface passivation with SiO2 also led to the 

formation of multiple silver cores within a SiO2 carpet. This effect is present in the silica-

coating of AgNPs with a diameter of 25 nm and manifests itself in the appearance of a 

broad shoulder at larger wavelengths as well as the large particle size obtained from the 

DLS measurement (Fig. 92 and Fig. 93). It has been claimed elsewhere that particles below 

50 nm are unstable during the Stöber process and are thus susceptible to undergo 

agglomeration.6 
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Fig. 88a-d: TEM micrographs and size distribution (inserted) of the different AgNPs. 
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Fig. 89: UV-vis spectra of AgNPs of different sizes recorded in EtOH. 
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Fig. 90: DLS spectra of AgNPs of different sizes recorded in EtOH. 
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Fig. 91a-d: TEM micrographs of the different Ag@SiO2 core-shell particles. The diameter of the 
AgNPs as well as the thickness of the SiO2 shell is mentioned in parenthesis.  
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Fig. 92: UV-vis spectra of Ag@SiO2 core-shell particles (~ 4 nm thick SiO2 shell) of 
different core sizes recorded in EtOH. 

 

0 200 400
0.0

0.5

1.0

 Ag(25)@SiO
2
(4)

 Ag(39)@SiO
2
(4.5)

 Ag(48)@SiO
2
(4)

 Ag(76)@SiO
2
(3.9)

C
u

m
u

la
ti
v
e

 N
u

m
b

e
r 

F
ra

c
ti
o

n

Size (nm)

 

Fig. 93: DLS spectra of Ag@SiO2 core-shell particles (~ 4 nm thick SiO2 shell) of different core 
sizes recorded in EtOH. 
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After the surface hydrophobization of the Ag@SiO2 core-shell particles through the 

reaction with HMDS, the core-shell particles were used as filler for the preparation of 

nanocomposites with high molecular weight PDMS. The nanocomposites were prepared 

and characterized according to the procedure reported in Chapter 4. The essential 

components for the preparation of the nanocomposites using functionalized Ag@SiO2 

core-shell particles are listed in Tab. 18. 

 

Tab. 18: Composition of the nanocomposites using functionalized Ag@SiO2@Si(CH3)3 core-
shell particles as high permittivity filler. The particles used for the composites were: S1 (C-
series), S2 (D-series), S3 (E-series) and S4 (F-series). 

No. Ag 
content  
(vol%) 

m(PDMS)/ga V(CL)/ȝLb V(cat)/ȝLc  

 

C1 27 0.15 16 4 

C2 23 0.15 16 4 

C3 7.2 0.15 16 4 

C4 3.1 0.15 16 4 

 D1d 19 0.15 16 4 

D2 11 0.15 16 4 

D3 10 0.15 16 4 

 E1d 21 0.15 16 4 

E2 15 0.15 16 4 

Fd 15 0.15 16 4 

 a Mw ~ 6λ2’00 g/mol; b (25-35 % mehylhydrosiloxane)-dimethylsiloxane-copolymer 

 c 50 wt% dibutyltindilaurate in toluene; d Cross-linking was inhibited. 
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The dielectric properties of the nanocomposites are featured in Tab. 19, Fig. 94 and Fig. 

95. It has to be mentioned that the nanocomposites were measured in the absence of 

sputtered Au electrodes, which therefore may have led to relatively low permittivity values 

due to the presence of air voids which affect the measurements. However, the results of the 

measurements can still give information on the potential effects of the Ag core dimensions 

on the dielectric properties of the resulting nanocomposites. The rise in the permittivity 

with increasing filler content is observed for all fillers used in this work. However, the size 

of the AgNPs has a profound effect on the feasible composite permittivity (Fig. 94). It 

becomes evident that the decrease in the size of the AgNPs leads to larger permittivities 

compared to the nanocomposites using filler with large AgNPs at the same corresponding 

Ag content. A similar observation has been reported for BaTiO3/PVDF composites where 

the permittivity decreased with increasing particle diameter. A plausible explanation for 

this observation could be the facilitated dipole orientation for smaller BaTiO3 as well as the 

great deal of phase interphases between the matrix and the small BaTiO3 particles i.e. a 

larger interfacial volume to which the amount of polarization is proportional to.7 This 

eventually leads to a large contribution in the resulting permittivity from the interfacial 

polarization, and thus to higher composite permittivities. However, this effect is more 

pronounced at low frequencies (0-100 Hz) and the size effect fades away with increasing 

frequency.8 Another report states that the surface to volume ratio of the particles increases 

with decreasing particle size at unaltered volume fraction of particles in the composite 

system. This leads to higher multipole interactions between the neighboring particles and 

causes polarization enhancement.9  

The drawback of using small AgNPs (< 50 nm) is the inhibition of the cross-linking 

reaction at Ag contents ≥ 15 vol%. It is possible that the mobility of the polymer chains or 

the cross-linker is reduced by the presence of large amounts of core-shell particles, and this 

inhibition of the cross-linking reaction is more pronounced for smaller particles due to 

their ability of optimizing the occupation of a given volume which eventually serves as an 

obstacle towards the cross-linking in the nanocomposite. For a given vol% of Ag, there are 

quantitatively more particles in the nanocomposite when using smaller particles compared 
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to the scenario where larger particles are used. The heating of these nanocomposites in an 

oven was an alternative method to obtain cross-linking. However, this treatment did not 

lead to the formation of cross-linked elastomers. The addition of further cross-linker or 

catalyst could perhaps lead to a cross-linking of the films, but this step is associated with 

an increase in the cross-linker density or a subsequent decrease in the flexibility of the 

materials as well as the increase in the tin content, respectively. The effect of the latter has 

yet been investigated. The mentioned changes would render it difficult to compare the 

mechanical properties of the elastomers with each other. Therefore it was essential to 

remain consistent with the procedure of preparing the nanocomposites. In direct contrast, 

the inhibited cross-linking at high filler content does not occur in the nanocomposites using 

AgNPs with a core size of 76 nm, and even the nanocomposites with Ag contents 

exceeding 20 vol% still exhibit elastomeric properties, although the mechanical properties 

deteriorate as a result of the increase in the Young’s modulus Y (Tab. 19). Presently, the Y 

values of the nanocomposites depicted in this Chapter are already 2-10 times higher than 

the Y of the pure PDMS elastomer prepared with the same reaction conditions (Chapter 4, 

sample B0), and the potential application of such nanocomposites as membrane materials 

for DEAs requires low values for Y in order to achieve high actuated strains in thickness 

direction. The values for tan į as well as the composite conductivities remained low for all 

nanocomposites. Surprisingly, the former decreases with increasing filler. However, tan į 

is expected to increase with increasing filler content. There is no apparent size dependency 

of tan į on the particle size as shown in Fig. 95, which is also supported by literature 

results.10,11 
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Fig. 94: The permittivity of the Ag@SiO2/PDMS nanocomposites with varying Ag core and filler 
content. 
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Fig. 95: The tan į values of the Ag@SiO2/PDMS nanocomposites with varying Ag core and filler 

content. 
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In conclusion, the permittivity shows a degree of dependency on the size of the Ag core, 

and the rise in the permittivity is more pronounced with decreasing core diameter. 

However, the preparation of flexible nanocomposites is limited to Ag contents ≤ 15 vol% 

(core diameter < 50 nm) as the film formation is inhibited by the introduction of large 

amounts of particles. Particles with Ag core > 50 nm enable the film formation even at 

large Ag contents, but the increase in the permittivity is relatively low. 
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