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Abstract—Mobile Wireless Sensor Networks (WSNs) hold the
potential to constitute a real game changer for our understanding
of urban air pollution, through a significant augmentation of
spatial resolution in measurement. However, temporal drift, cross-
sensitivity and effects caused by varying environmental conditions
(e.g., temperature) in low-cost chemical sensors (typically used in
mobile WSNs) pose a tough challenge for reliable calibration.
Based on state-of-the-art rendezvous calibration methods, we
propose a novel model-based method for automatically estimating
the baseline and gain characteristics of low-cost chemical sensors
taking temporal drift and temperature dependencies of the sen-
sors into account. The performance of our algorithm is evaluated
using data gathered by our long-term mobile sensor network
deployment, developed within the Nano-Tera.ch OpenSense II
project' in Lausanne, Switzerland. We show that, in a realistic
context of sparse and irregular rendezvous events, our method
consistently improves rendezvous calibration performance for
single-hop online calibration.

I. INTRODUCTION

The traditional method for monitoring air quality in urban
settings is the use of high fidelity static stations located at
selected sites. The high cost of the instrumentation used in
these stations significantly limits their numbers, leading to very
sparse monitoring networks. For example, the Swiss National
Air Pollution Network (NABEL) uses a total of 16 stations
for the whole country. This in turn limits the ability of the
monitoring network to capture spatial heterogeneity of the
pollution field which can be significant, particularly in urban
settings.

WSNs employing low-cost sensing platforms have the
potential of increasing the spatial resolution of measurement.
Over the past decade there has been a growing interest in
air quality monitoring using this type of platforms. This is
reflected in a growing number of research projects aimed at
high density air quality monitoring using static [1], [2], [3],
or mobile WSNs [4], [5]. In this work we focus specifically
on mobile networks which are particularly interesting as they
permit covering a larger area with fewer sensor nodes.

Advances in sensor technology have led to a significant
increase in the range of miniaturized, relatively cheap sensors
commercially available for measuring various air quality
parameters. However, the measurement quality of these sensors
is typically much lower than that of traditional instrumentation.
The most widely used chemical sensors for WSNs applications

'Nano-Tera.ch OpenSense II: http://opensense.epfl.ch

are either electrochemical or metal-oxide. Both of these
classes of sensors suffer from temporal drift, different degrees
of cross-sensitivity, and temperature, humidity or pressure
dependence. Factory calibration is usually not provided, since
the actual performance of the sensors will greatly depend
on specific electronic integration and application domain, the
latter determining the temperature, humidity and pressure in
operational conditions.

The different options for performing the calibrations can
be broadly classified as offline, or online methods. The
first class includes one-off initial calibration methods, by
experimental evaluation with a parallel reference instrument
before deployment [6], [7]. The success of this type of
methods depends on the ability of the experimental set-up
to re-create the variability of all the relevant influencing
parameters. While this might be feasible, although not trivial, for
characterizing cross-sensitivities and the effect of environmental
parameters, accurately capturing temporal drift behavior can
imply impractically long experiments. An option for dealing
with this issue would be replacing the one-off calibration
scheme with a periodic offline calibration, but when considering
large scale deployments this would be too time-consuming to
be practical.

Online calibration algorithms are automatic methods for
estimating the sensor calibration parameters during deployment.
To state the problem, consider a set of low-cost mobile
sensor nodes each having its own specific characteristics in
terms of temporal drift, cross sensitivity to other modalities,
and environmental parameter dependencies. The question is
how to calibrate them in order to have consistently accurate
measurements. Mobile WSNs provide an opportunity for
performing this type of calibration by leveraging spatiotemporal
encounters between pairs of sensor nodes, called rendezvous,
and using the measurements gathered within these events to
improve the calibration parameter estimate. If no reference
signal is available this type of methods can provide a relative
calibration of the network (i.e., ensuring consistency between
sensor nodes). If rendezvous with a reference station are
available, these methods can also provide an absolute calibration.
In this paper, we assume that there is at least one reference
sensing station which the mobile sensors encounter from time
to time. Using the measurements taken by the sensors and the
reference station, a statistical regression method can potentially
provide a calibration function. In this paper, we study how to
integrate the characteristics of the sensors in terms of time-drift
and temperature dependencies into models to be used in the
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calibration process and what is the subsequent impact on the
calibration performance.

Pioneering contributions to the field of online rendezvous
calibration are the works of Hasenfratz et al [8] and Saukh
et al [9], [10]. In [8], the authors introduce and compare
three types of online algorithms (forward, backward, and
instant calibration) based on least squares temporal-weighted
regression of calibration tuples (i.e. pairs of reference and
raw sensor measurements). They evaluate the performance
of these algorithms by considering both simulated and real
measurements, with uniformly distributed simulated rendezvous
events. In [9], Saukh et al give a rigorous definition for
rendezvous events and introduce the concept of rendezvous
connection graphs, studying their properties in the context of
sensor fault detection and sensor calibration. More recently, in
[10], the authors address the problem of error accumulation in
multi-hop calibration algorithms that use ordinary least squares
regression, and propose the use of geometric mean regression
as a better alternative to the former method.

Both [9] and [10] consider a linear relationship between
sensor readings and the targeted concentration level, using only
two parameters: the sensor’s baseline and its gain. Based on this
assumption, the proposed algorithms attempt to estimate these
parameters directly, and assume them to be close to constant
between calibration cycles. The sensor model considered in
[8] is a generalized polynomial relating sensor readings to
gas concentrations. The effect of environmental parameters or
the temporal drift are not included in the model, although the
latter is taken into account by the weighing mechanism of the
proposed calibration algorithms.

We propose a different approach to the calibration problem
by placing a direct focus on the sensor model selection and its
impact on calibration performance. In particular, we consider
models of varying complexity for electrochemical sensors and
systematically evaluate them, based on long-term measurement
series recorded within the Nano-Tera.ch OpenSense II project.
We propose a sliding-window model-based rendezvous calibra-
tion algorithm and evaluate its performance for different sensor
models and different assumptions on the calibration window
size. Using realistically emulated rendezvous, we show that, in
the context of sparse rendezvous events and assuming relatively
predictable sensor behavior, there is a significant performance
benefit in the use of more complex sensor models.

II. THE SENSOR MODEL

The general form for a model describing the behavior of a
chemical sensor can be expressed as:

s(t) = f(t,y(t),x(t), w(t), e(t)) (D
where:
e { represents the time variable
e  s(t) is the sensor reading

e y(t) is the true concentration value of the targeted
chemical

e x(¢) is the vector of chemical signals to which the
Sensor is cross-sensitive

Fig. 1. Two OpenSense II sensor nodes deployed in parallel besides Lausanne
NABEL station.

e wi(t) is the vector of environmental parameters (e.g.,
temperature, relative humidity, etc.) which have an
effect on the sensor

e ¢(t) is a zero-mean independent noise.

As most chemical sensors are designed to have a linear
dependence on y(t), we introduce the baseline and gain
functions b(-), g(-), and re-write Eq. 1 as:

s(t) = b(t, w(t)) +g(t, w(t) - y(t) + fa (£, x(t), w(t)) + e(t) (2)

Furthermore, if the sensor has a good selectivity for the
targeted chemical, then f,(-) can be dropped, leading to:

s(t) = b(t, w(t)) + g(t, w(t)) - y(t) +e(t) 3)

In this case, calibrating the sensor means obtaining the
estimates b(-), g(-) of the sensor baseline and gain, in order
to infer the targeted chemical concentration:

(1) = (s(t) = b(t, w(t)))/g(t, w(t)) “4)

In previous work on rendezvous calibration, the gain and
bias functions were considered to be constant between calibra-
tion cycles [8], [10]. The significance of this assumption on
calibration performance depends on the inter-play between the
degree of sensitivity to environmental factors, drift dynamics,
and the frequency of rendezvous events with a reference station.
To investigate this, we focused on studying one of the sensors
used in the OpenSense II project, namely the City Technology
A3CO carbon monoxide sensor [11].

The A3CO is a highly selective 4-electrode electrochemical
sensor, which means that the general model structure in Eq. 3
can be assumed. As is the case with other electrochemical
sensors, temperature variations can affect both the sensor gain
and its baseline. Despite the fact that the sensor’s forth electrode
is meant to compensate for temperature effects on the baseline,
its use does not completely eliminate temperature influence.
The sensor is also sensitive to pressure variations. While this
might be a problem when using pump-driven sampling, for
the passive sampling system considered in this work, this was
not an issue. Finally, the sensor manufacturer states that there
is no significant effect of humidity variation on the sensor
performance, which was confirmed by our experiments.

To derive a list of the candidate sensor models we have used
data from sensor nodes deployed for long periods at the NABEL
station in Lausanne (see Fig. 1), whose time series are used for
ground truth purpose. These deployments were done in multiple



Fig. 2. Our sensor node anchored to a Lausanne bus.

stages, the first prototype station being installed in June, 2010.

Apart from the A3CO readings and the NABEL reference for
CO, we also record with our node the temperature and relative
humidity. Based on the sensor specifications and our analysis
of the collected time series, we propose the following candidate
sensor models of increasing complexity, which include explicit
consideration of temporal drift and dependence on temperature
(denoted as T'(t)):

my @ s(t) = po + p1-y(t) &)
ma:s(t) =po+p1-y(t)+p2-t (6)
ms @ s(t) = po+p1-y(t) +p2-t+ps- T(t) 7

ma :s(t) =po+ (p1+p2-T()) - y(t) +ps-t+pa-T(t) (8)
ms 2 s(t) =po+pi-y(t) +p2/(ps +1) +pa-T(t)  (9)
me : 8(t) = po+(p1+p2-T(t)) y(t)+ps/(pa+t)+ps-T(t) (10)

III. MODEL-BASED RENDEZVOUS CALIBRATION

In this section, we propose a model-based rendezvous
calibration algorithm. Its working principle is simple and similar
to the forward calibration algorithm described in [8], as it
also uses rendezvous data tuples gathered within a certain
time window to obtain the calibration parameters at a given
time. The main distinctive features comes from the fact that
instead of weighing measurement tuples based on their age and
regressing directly for the calibration parameters, our algorithm
first estimates the sensor model parameters.

We use a more restrictive definition for a rendezvous than
the one presented in [9]: two stations are considered to have
had a rendezvous event only if they are present at the same
time on the same street link (i.e. on the same segment of a
street, between two junctions). The justification for opting for
street-link instead of disk-based rendezvous can be found in
[12], where we discuss the fact that in an urban environment
measurement correlations are based on traffic flows through the
street network more than on the geographic distance. In this
work, for simplicity, we only consider single-hop calibration,
i.e. calibration exclusively with the reference NABEL station.

IV. EVALUATION

To evaluate the performance of the proposed calibration
method and its sensitivity to sensor model choice and calibration
window size, we devise the following set-up: we use one of the
static sensor nodes deployed at the NABEL station as a mock
mobile station and we simulate rendezvous events based on
realistic probability functions. The advantage of this approach
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Fig. 3. Empirical cumulative distribution function for inter-rendezvous periods
(left) and probability mass function of rendezvous duration (right) are derived
from the OpenSense II mobile sensor network

is that the ground truth is known throughout the experiment,
allowing us to calculate the performance of the algorithm also
between calibration cycles. Furthermore, this set-up allows us
to isolate the performance evaluation of the algorithm from
currently not modeled effects of platform mobility.

Unlike the scenario described in [8], the NABEL station
in Lausanne is not located on a regular bus route, and the
rendezvous with it are therefore sparse and irregular. To derive
realistic probability functions for sampling our simulated events,
we have used the mobility data generated by the OpenSense II
bus nodes (see Fig. 2) since their deployment, approximately
22 months ago. Considering only rendezvous events between
one bus and the reference station, we calculated the empirical
cumulative distributed function of the inter-rendezvous period
and also the probability mass function of the length, or duration,
of one rendezvous (see Fig. 3). Based on these functions we
simulate realistic rendezvous sequences for our deployment.

Before applying the calibration algorithm, we first tested
the quality of each of the models presented in Section II, by
fitting them through least squares regression on the time series
gathered from our nodes deployed near the NABEL station. We
evaluated their performance through a 10-fold cross-validation
technique. The model fitting was done both on the full time
range, but also on decreasing temporal sections (i.e. monthly,
weekly, daily). The performance metric used was the Root Mean
Squared Error (RMSE) of the calibrated series. An exemplar
result is presented in Fig. 4 for the sensor which was the longest
continuously deployed at NABEL (approximately 10 months).

For the complete time range, the more complex models
outperformed the simpler ones, although adding a temperature
effect to the gain in models m4 and mg did not produce a
significant improvement, and they were subsequently discarded.
As the temporal calibration window is reduced, the benefit of
the more complex models is gradually lost, and while for the
monthly and weekly scales having at least an explicit temporal
component still brings a marginal benefit, this disappears
completely at the daily scale. This performance trend is
justifiable by the fact that, at shorter time scales, the temperature
excursion is also limited, making it more difficult to accurately
estimate its impact. Looking at the temporal drift, an interesting
aspect is the fact that, at the monthly scale, the hyperbolic
models perform worse than the linear ones. This is most
probably due to the fact that a hyperbola is harder to estimate
than a line when reducing the number of regression samples.

We ran the calibration algorithm, varying the calibration
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Fig. 4. Results of fitting the 6 sensor models on different time scales, using
sensor data gathered over 10 months near the reference NABEL station. 90%
of all available data is used for fitting the models, and 10% for validation.

2 months 1 month

8 months 1 week 1day

RMSE (ppb)
(=] (=]
N w
—
RMSE (ppb)
[=7]
m3 —ll |
mod -

m1 i
M2 - o e

-
—
A
1=
i
—
—l
s |
M
m3 il
mb i - -

mitp-- - - -
m2dH. -

Fig. 5. Evaluation of model-based rendezvous calibration algorithm for
the four selected models using calibration windows of different sizes. The
performance drops, particularly for short calibration windows because of the
rendezvous distribution.

window from one day to 8 months and using all models except
my and mg. For each combination of the set-up parameters
we performed 100 randomized runs. The results of these
experiments are shown in Fig. 5. Due to the scarcity of data, for
the short calibration windows the complex algorithms perform

poorly, but as the window increases the situation is reversed.

In fact, the performance obtained by complex algorithms with
wide calibration windows is superior to the one obtained by
the simplest model on short windows. The main drawback of
using the complex models is the necessary size of the window
in itself, which implies that the system needs to wait for a
long time before being able to do the first calibration. One
practical solution to this problem is of course, to use both types
of models: the less complex ones during the early phase of the
deployment and the more complex one as it matures.

These results are, of course, relevant for a scenario of sparse
rendezvous events and the performance of the algorithm will
tend to the regression results presented in Fig. 4, as rendezvous
become more frequent.

V. CONCLUSION

In this paper, we proposed a model-based approach to
online rendezvous calibration of mobile air quality monitoring
networks. We started by studying the long-term performance of
the electrochemical sensors used in the OpenSense II project
for monitoring carbon monoxide, and derived models with
increasing levels of complexity. These included models that
explicitly take into account temporal drift and temperature
effects. We then evaluated the ability of each of these models to
approximate the sensor behavior at different temporal scales and
found that the more complex models are more accurate when
considering relatively large temporal scales. As the temporal

scale is reduced, the benefit of the more complex models is
gradually lost, and while for the monthly and weekly scales
having at least an explicit temporal component still brings a
marginal benefit, this disappears completely at the daily scale.

We subsequently proposed and implemented a sliding-
window single-hop rendezvous calibration algorithm based on
the selected models. We evaluated its performance for different
models and varying calibration window sizes, with a set-up
that used realistically simulated rendezvous sequences and real
measurement data from a static station. Our results suggest that
the complexity of the model should be carefully chosen as a
function of the temporal distribution of calibration opportunities.
While in this work our approach was heuristic, we are interested
in the further development of statistical methods that would
be able to tune the model complexity in order to maximize
calibration performance.
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