
Automatic Generation of Inexact Digital Circuits
by Gate-level Pruning

Jeremy Schlachter, Vincent Camus, Christian Enz
Integrated Circuits Laboratory (ICLAB)

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

jeremy.schlachter@epfl.ch

Krishna V. Palem
Department of Computer Science,

Rice University
Houston, TX 77005, USA

Abstract—Inexact or approximate circuits show great ability
to reduce power consumption at the cost of occasional errors in
comparison to their conventional counterparts. Even though the
benefits of such circuits have been proven for many applications,
they are not wide spread owing to the absence of a clear design
methodology and the required CAD tools. In this regard, this
paper presents a methodology to automatically generate inexact
circuits starting from a conventional design by adding only one
small step in the digital design flow. Further, this paper also
demonstrates that achieving pruning at gate-level can lead to
substantial savings in terms of power consumption, critical path
delay and silicon area. An order of magnitude area and power
savings is demonstrated for a 64-bit gate-level pruned high-speed
adder for a 10 % relative error magnitude.

I. INTRODUCTION

In the past three decades, technology scaling has been
leading the improvements of digital circuits. The well-known
Moore’s law has enabled the number of transistors in a dense
integrated circuit to be multiplied every two years by a factor
of two. However, it won’t be possible to reduce transistor sizes
indefinitely due to fundamental physical limitations. In fact,
those limits have already started to appear as the complexity
of deeply scaled processes is continuously increasing, making
it more and more challenging to reach new technology nodes.
In addition, process variations have increased drastically with
scaling, forcing to design circuits with large safety margins, at
the cost of performance and power efficiency.

Knowing the predicted end of Moore’s law, researchers
started studying how to continue improving circuits by other
means than scaling. In this perspective, inexact or approximate
circuits have been gaining a lot of interest [1]. For the past few
years, circuits wherein erroneous computations can occasionally
happen appeared increasingly in the literature. In particular,
it has been proven in [2] that reducing or deleting the safety
margins by means of voltage over-scaling, can lead to a drastic
reduction of the power consumption, at the cost of a low
overhead error monitoring and correction system.

The approach adopted in this paper is slightly different and
was first introduced in [3]: for some applications exactness can
be traded against power, area and delay savings without any
error monitoring and correction circuitry overhead. In some
cases, such as video or audio processing where the final output

This work is funded by the Swiss National Science Foundation under grant
number 200021 144418.

is interpreted by human senses, a small amount of error may
not even affect the end-user.

A lot of works published in the literature are exploiting
the trade-off between energy consumed and accuracy. In
the early stages of inexact computing, VLSI systems were
taking advantage of the quadratic energy savings allowed by
voltage over-scaling [2]. Later on, many works have been
focusing on complexity reduction. Gupta et. al presented various
approximations of the full adder cell [4] allowing power savings
of up to 60 %. In [5], the authors present an under-designed
multiplier achieving up to 45 % energy savings. This complexity
reduction served as a basis to create inexact arithmetic circuits
such as adders [4], [6] and multipliers [7]. However, these
computational blocks have been tested empirically, and all
present different amounts of errors. Hence, it is not clear
from a designer point of view, how these approximate adder
and multiplier cells should be instantiated in a circuit. This
problem was initially addressed by Lingamneni et. al with
the Probabilistic pruning approach [8], where some adders’
propagate and generate blocks were simply removed, leading
to substantial area, power and delay savings. The amount of
error introduced by those circuits was simply proportional to
the number of pruned circuit elements. In [8], the probabilistic
pruning process was mostly done by hand, whereas this paper
proposes a systematic pruning methodology resulting in the
following improvements:

• A simple method to automatically generate inexact
versions of a conventional exact circuit with increasing
amount of error, adding only one design step in the
CAD digital flow.

• Significant improvements compared to former tech-
niques are obtained by achieving pruning at gate-level.
For example, for a 64-bit high speed adder with 10 %
relative error magnitude, this finer granularity allows
to reduce power consumption, critical path delay and
silicon area by a factor 7.82, 1.07 and 21, respectively.

• The gate-level pruning can be applied to any arithmetic
unit, independently of the architecture.

This paper is organized as follows: section II presents the
methodology and the tools developed to automatically prune
circuits at the gate level, and section III shows the possible
savings allowed by this technique on various adders and
multipliers.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148014632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In 6 In 5 In 4 In 3 In 2 In 1

AND OR NOT NOT XOR

AND OR OR AND

Out 4 Out 3 Out 2 Out 1

1248

12
12

244
88

1
1

264
4

8
8

8 20 4 8 4 1

20212223

Fig. 1. Directed acyclic graph representation of a gate level netlist and the
associated significance attribution

II. AUTOMATIC CIRCUIT PRUNING

Probabilistic pruning is a design technique that consists of
removing circuits blocks and their associated wires in order
to trade exactness of computation against power, area and
delay savings without any overhead. The amount of pruning is
dictated by the application’s error tolerance. A formal definition
of probabilistic pruning, as well as the proof of concept, have
already been addressed in [8]. The following paragraphs only
expose the key points necessary to build an automatic gate-level
pruning tool using existing CAD software.

A. Significance and activity based pruning

A circuit can be represented by a directed acyclic graph as
depicted in Fig. 1, where the nodes are components such as
gates, and whose edges are wires. The decision to prune a node
is based on two criteria: the significance, which is a structural
parameter, and the activity or toggle count. The nodes with the
lowest significance-activity product (SAP) are pruned first. By
doing so, the error magnitude grows with the amount of pruning.
Alternatively, depending on the application’s requirement, the
designer may choose to prune nodes according to the activity
only, in order to minimize the error rate.

The activity of each wire is extracted from the .SAIF file
(Switching Activity Interchange Format) obtained through gate-
level hardware simulations. This file contains the toggle count
(TC) of each wire, as well as the time spent at the logic levels
0 and 1 (T0 and T1) respectively. Note that to get an accurate
activity estimation, the system should be simulated with an
input stimulus representative of the real operation of the circuit.

The significance of each primary output is set by the
designer depending on the application’s requirement. The
experiments performed on adders and multipliers in this paper
assume a weighted significance attribution, where each bit
position has a significance 2 times higher than the previous
when moving from the LSB to the MSB. Reverse topological
graph traversal is then performed to compute each nodes’
significances as follows:

σi =
∑

σdesc(i) (1)

where σi is the significance of the node i and σdesc(i) is the
significance of the direct descendants of node i. An example
of weighted significance attribution is shown in Fig. 1.

Technology 
library

Synthesis
Hardware 
simulation

Exact design
Inexact design 1
Inexact design 2
...

SAP 
calculation

Wire Pruning

Initial design
.v

.vhd

.lib

Gate-level 
netlist

Switching 
activity

Ranked nodes
.txt

Modified 
netlist

Error
estimates

.v
.vhd

.saif

.vcd

Fig. 2. Functional diagram of the automatic pruning tool

B. Node pruning

Once the nodes are ranked according to their significance-
activity product, the gate-level netlist is modified in order to
remove unessential nodes from the design. For the sake of
simplicity, and in order to maximize the use of the existing
EDA tools, the probabilistic pruner does not literally remove
the gates form the netlist, but it disconnects the corresponding
wires. Gates whose outputs are unconnected will automatically
be removed by the synthesis tool. However, leaving gate inputs
unconnected would fail the re-synthesis of the design. For this
reason, and in order to minimize the error, those inputs are set
to 0 if they statistically spend most of the time at 0. Otherwise
they are connected to 1. The synthesis of the modified netlist
therefore improves the design in two ways:

• One or more gates having their outputs unconnected
are removed, allowing direct area, power and delay
savings.

• Gates having their inputs set to 1 or 0 can then be
replaceyd by lower complexity ones.

Furthermore, the resulting circuit is optimized for the timing
and area constraints set by the designer. Fig. 2 shows the
functional diagram of the presented pruning tool. The initial
design is synthesized and mapped to a technology in order to
get the gate level netlist. This netlist then enters a pruning loop
composed of four steps:

1) Hardware simulation to monitor the activity of the
circuit and to check if the amount of error introduced
by the pruned netlist can still fit the application.

2) The significance-activity product is calculated de-
pending of the designer’s requirements (weighted or
uniform pruning).

3) Wires are pruned according to the ranking of the
nodes.

4) Re-synthesis of the netlist is performed in order to
remove or replace non-essential gates.

Synthesis and hardware simulations are performed using
existing software, whereas scripting languages are used for
SAP calculation and wire pruning. This framework outputs all
the gate-level netlists ranked by growing order of inexactness,
i.e., by decreasing energy-delay-area product. A significant
advantage of the proposed tool and methodology is that they can
be embedded in an existing standard digital flow, making them
fully compatible with any synthesizable HDL code. Moreover,
that same flow can be used indifferently for inexact ASIC or
FPGA design.



10
−4

10
−3

10
−2

10
−1

10
0

10
10

2

4

6

8

10

12

Pruned 64−bit high frequency adder

Relative error magnitude (percentage)

N
or

m
al

iz
ed

 G
ai

ns
 (

co
nv

en
tio

na
l/p

ru
ne

d)

 

 

delay

energy

area

(a)

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0.8

1

1.2

1.4

1.6

1.8

2
Pruned 64−bit low power adder

Relative error magnitude (percentage)

N
or

m
al

iz
ed

 G
ai

ns
 (

co
nv

en
tio

na
l/p

ru
ne

d)

 

 

delay

energy

area

(b)

Fig. 3. Energy, delay and area savings for pruned adders implemented in
UMC 65 nm technology

III. APPLICATION OF GATE LEVEL PRUNING ON
ARITHMETIC CIRCUITS

In the previous work [8], probabilistic pruning was done
by hand on various 64-bit adders such as Kogge-stone, Han-
Carlson, etc. However, it is very rare that the designer selects
one of these specific architecture. In fact, HDL languages offer
the power of functional descriptions, meaning that a designer
does not have to dig into the details of low-level structural
descriptions. As an example, an adder or a multiplier can easily
be described using the standard sum and product instruction.
At synthesis time, the functional description is automatically
mapped to hardware with an optimal architecture under the
given constraints. This decision is usually taken by the synthesis
tool according to the user-specified design constraints. One
of the key strength of the proposed tool is that it is able to
prune any digital circuit even those produced by high-level
behavioral description, the only condition being that the HDL
code is synthesizable.

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

50

100

Maximum error and error rate for pruned 64−bit high frequency adder

Relative error magnitude (percentage)

E
rr

or
 r

at
e 

(%
)

 

 

Error rate

Maximum error

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
110

−15

10
−10

10
−5

10
0

10
5

M
ax

im
um

 e
rr

or
 (

%
)

Fig. 4. Error characteristics of a pruned 64-bit high speed adder implemented
in UMC 65 nm technology

TABLE I. COMPARISON OF THE TWO PRUNING TECHNIQUES FOR 10 %
RELATIVE ERROR MAGNITUDE

Pruning technique Area gains Energy Gains Delay Gains EDAP Gains
Gate-level 21X 7.82X 1.07X 175X

Previous work [8] 1.8X 1.8X 2.3X 7.5X

Hence, significant gains improvements are shown thanks
to the gate-level pruning, and the demonstration is made that
this CAD framework is able to prune circuits described using
the standards sum and product HDL operands, allowing the
synthesis tool to select the more appropriate architecture.

A. Error characteristics

In order to get an accurate error characterization of
arithmetic circuits, extensive simulations need to be performed.
Thus, a 64-bit adder would have to be simulated with 2128

different input combinations which is a cumbersome process.
Moreover, the simulation time would need to be multiplied by
the number of inexact netlists generated by the pruning tool.
Hence, simulating arithmetic circuits with a set of one million
uniformly distributed random inputs allows to estimate the
error characteristics of each inexact design within a reasonable
simulation time. In the specific case of adders and multipliers
where the outputs of the circuit are weighted, the relative error
magnitude (REM) is calculated as

REM =
1

K

K∑
k=1

∣∣∣∣Ok −O′k
Ok

∣∣∣∣ , (2)

where K is the total number of computations, Ok are the exact
results and O′k are the approximate results provided by the
pruned circuit.

B. Pruned adders

Fig. 3 shows the savings of pruned 64-bit adders, for the two
extreme points of the design space, namely high frequency and
low power. Here, the synthesis tool selects the best architecture
for the given constraints, providing an optimized netlist. It is
shown Fig. 3(a) that allowing an accuracy degradation of 10%
can lead to factor 7.82, 21 and 1.07 savings in terms of power,



10
−4

10
−3

10
−2

10
−1

10
0

10
1

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
Pruned 16−bit high frequency multiplier

Relative error magnitude (percentage)

N
or

m
al

iz
ed

 G
ai

ns
 (

co
nv

en
tio

na
l/p

ru
ne

d)

 

 

delay

energy
area

(a)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

1

1.02

1.04

1.06

1.08

1.1

Pruned 16−bit low power multiplier

Relative error magnitude (percentage)

N
or

m
al

iz
ed

 G
ai

ns
 (

co
nv

en
tio

na
l/p

ru
ne

d)

 

 

delay

energy

area

(b)

Fig. 5. Energy, delay and area savings for pruned multipliers implemented
in UMC 65 nm technology

area and critical path delay, respectively. Table I compares
the normalized gains for different granularities of pruning
and shows that the gate-level technique allows significant
improvements compared to the previous work [8]. Indeed,
a highly parallel adder (i.e. high frequency) is an optimal
target for the pruning tool due to high hardware redundancy.
In contrast, a low power synthesis outputs a serial, low area
architecture such as the ripple carry adder. Removing a small
part of this adder rapidly breaks the carry chain and increases
the relative error magnitude. As a consequence, for a given
relative error magnitude, the pruning technique allows higher
savings for parallel architectures rather than for serial ones.
Thus, pruning any other adder in the design space would result
in gains in-between those obtained for the two extreme design
points, i.e. high frequency and low power.

Unfortunately, those huge savings come at a certain cost,
Fig 4 plots the error rate and the maximum error, versus relative
error magnitude for the high frequency 64-bit adder. As soon as
one ore more LSBs outputs’ are pruned, the error rate rapidly
reaches 100%, however the magnitude of those error can remain
as low as 10−10%. A special care should be taken when using

highly pruned arithmetic units, for instance, for a 10% relative
error magnitude, where the savings are huge, the maximum
error can be as high as 104% which for some application may
be clearly prohibited. However the error magnitude is bigger
than 104% only twice over the set of one million random
inputs.

C. Pruned multipliers

Using the same pruning tools on a 16-bit high frequency
multiplier shows savings up to 1.3 x in energy and 1.25 x in area
(Figure 5). These lower savings can be explained by the fact
that an error can propagate in a multiplicative path. In addition
to that, pruning is applied on a lower bit-width hardware, giving
less margin to this technique. Again, pruning is more efficient
on high frequency multipliers than low power ones.

IV. CONCLUSION

This paper presented how to automatically generate inexact
circuits using gate-level pruning. The proposed methodology
and tools are in a large proportion built on existing software and
can hence be fully integrated in a standard digital design flow,
compatible with any synthesizable design. As a consequence,
this work should help designers to trade accuracy for power,
area and delay savings for a wide range of applications.
Simulations have been showing that the possible savings mostly
depend on the targeted circuit. For pruned adders, power
consumption and silicon area can be reduced by approximately
one order of magnitude at the cost of 10 % relative error
magnitude while multipliers show lower, but non-negligible
savings: up to 25 % energy and area reduction. However
those huge savings must be nuanced as the maximum errors
could limit the use of those highly pruned circuits in many
applications.

REFERENCES

[1] K. Palem, A. Lingamneni, C. Enz, and C. Piguet, “Why design reliable
chips when faulty ones are even better,” in ESSCIRC (ESSCIRC), 2013
Proceedings of the, Sept 2013, pp. 255–258.

[2] D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma, S. Pant, C. Tokunaga,
S. Das, and D. Bull, “Razor II: In Situ Error Detection and Correction
for PVT and SER Tolerance,” in Solid-State Circuits Conference, 2008.
ISSCC 2008. Digest of Technical Papers. IEEE International, Feb 2008,
pp. 400–622.

[3] S. Cheemalavagu, P. Korkmaz, and K. V. Palem, “Ultra low-energy
computing via probabilistic algorithms and devices: CMOS device
primitives and the energy-probability relationship,” in Proc. of The 2004
International Conference on Solid State Devices and Materials, 2004, pp.
402–403.

[4] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“IMPACT: IMPrecise adders for low-power approximate computing,”
in Low Power Electronics and Design (ISLPED) 2011 International
Symposium on, Aug 2011, pp. 409–414.

[5] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading Accuracy for Power
with an Underdesigned Multiplier Architecture,” in VLSI Design (VLSI
Design), 2011 24th International Conference on, Jan 2011, pp. 346–351.

[6] H. Mahdiani, A. Ahmadi, S. Fakhraie, and C. Lucas, “Bio-Inspired
Imprecise Computational Blocks for Efficient VLSI Implementation of
Soft-Computing Applications,” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 57, no. 4, pp. 850–862, April 2010.

[7] K. Bhardwaj and P. Mane, “ACMA: Accuracy-configurable multiplier
architecture for error-resilient System-on-Chip,” in Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), 2013 8th Interna-
tional Workshop on, July 2013, pp. 1–6.

[8] A. Lingamneni, C. Enz, J. L. Nagel, K. Palem, and C. Piguet, “Energy
parsimonious circuit design through probabilistic pruning,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2011, March
2011, pp. 1–6.


