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Abstract— In this article we address the automatic synthesis
of controllers for the coordinated movement of multiple mobile
robots, as a canonical example of cooperative robotic behavior.
We use five distributed noise-resistant variations of Particle
Swarm Optimization (PSO) to learn in simulation a set of 50
weights of an artificial neural network. They differ on the way
the particles are allocated and evaluated on the robots, and on
how the PSO neighborhood is implemented. In addition, we
use a centralized approach that allows for benchmarking with
the distributed versions. Regardless of the learning approach,
each robot measures locally and individually the performance
of the group using exclusively on-board resources. Results show
that four of the distributed variations obtain similar fitnesses
as the centralized version, and are always able to learn. The
other distributed variation fails to properly learn on some of
the runs, and results in lower fitness when it succeeds. We test
systematically the controllers learned in simulation in real robot
experiments.

I. INTRODUCTION

This article tackles the high-dimensional synthesis and op-
timization of controllers for cooperative behaviors carried out
by resource-constrained robots. Evaluative machine-learning
techniques are an alternative to human design that may allow
to fully exploit the platforms’ limited sensing capabilities,
cope with discontinuities and nonlinearities, as well as deal
with noise in the performance evaluations [1]–[5].

As in our previous works [6], [7], the cooperative task
chosen is a loosely-coordinated collective movement or
flocking [8]–[11], in which a group of robots move together.
Some researchers have shown that it is possible to use
learning techniques to generate cooperative behaviors [2],
[3], [12], [13]. Mataric [12] and Parker [13] addressed the
topic of learning in multi-robot teams using a small number
of parameters per robot, as opposed to the large search space
addressed in this paper.

The aim of this paper is to distribute the learning of a
large parameter space by testing several candidate solutions
in parallel on the available robotic resources. Such an ap-
proach allows the distributed robotic system to increase its
robustness to failure of individual robots and speed up the
overall learning process [14].

In our previous attempt in this direction [7], the distributed
learning of cooperative tasks did not match the performance
of the centralized approach in terms of both average and
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standard deviation between learning runs. In this article, we
explore five different distributed variations of Particle Swarm
Optimization (PSO) [15], in order to make the distributed
version competitive in the learning of cooperative tasks.
These variations explore different ways of allocating the can-
didate solutions among the robots and sharing information
among particles.

Moreover, as in the previous attempt [7], we compare
the performances of our distributed versions to a centralized
implementation. In this context, it is worth noting that the
distributed learning approaches result in heterogeneous con-
trollers (robots run different controllers), while the central-
ized implementation synthesizes homogeneous controllers
(every robot runs the same controller).

We have designed a local performance metric that can
be evaluated by each robot while leading to the desired
cooperative behavior. We augmented the local performance
metric from [6], considering only collision avoidance and
attraction to neighboring flockmates, to enforce the three
Reynolds’ flocking rules [16] by adding a factor that reflects
the alignment with neighboring flockmates.

It should be mentioned that the task as implemented in
this article is harder than those from other works in that the
robots are not physically connected to each other [2], they
are required not only to aggregate but also move together [3],
and there is no environmental template or goal to guide
their movement [1]. In the case of [2] and [3] learning has
been done only in a centralized manner, using homogeneous
controllers and a global performance metric.

Some researchers have used population-based optimiza-
tion techniques to improve the performance of manually
designed flocking controllers, using PSO [17], Genetic Algo-
rithms [18], or Evolutionary Strategies [19]. In these works
the controllers are homogeneous or only the controller of a
single robot is optimized, so the allocation problem studied
in our paper is not addressed by them. Lee and Myung [20]
used a distributed version of PSO for online optimization of
the individual trajectories of robots running model predictive
control for flocking by using parallel instances of PSO for
each robot, which is similar to one of the allocation variations
explored in our paper. Our approach in this article differs
with these previous works in that our behaviors are generated
by a highly plastic artificial neural network and not by a
specific flocking controller.

The rest of this article is organized as follows. In Section II
we describe the robotic platform, the control architecture,
the fitness metric, and the learning algorithms proposed. In
Section III we present the different experiments performed
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Fig. 1. A Khepera III robot expanded with the relative positioning extension
board, used in the flocking experiments.

and discuss the results obtained both in simulation and with
real robots. Lastly, Section IV draws the conclusions of this
work and formulates some prospective investigation topics.

II. METHODOLOGY

Different variations of PSO are used in this article in
order to learn flocking behaviors in a distributed manner. The
learning problem for PSO is to choose a set of parameters
of an underlying robotic controller such that a given fitness
metric is maximized. The learning process is performed
completely in simulation using four robots, while the learned
solutions are tested both in simulation and using real robots.

A. Experimental Platform

The experimental platform used is the Khepera III mo-
bile robot, a differential wheeled vehicle with a diameter
of 12 cm. Its sensing capabilities are augmented with a
relative positioning system [21], which calculates range and
bearing to nearby robots based on the strength of infrared
signals. The system also communicates the ID of the robot,
allowing to estimate also the heading of neighboring robots
by exchanging the bearings between a pair of robots. In
our experiments, this communication is implemented using
the IEEE 802.11 wireless standard and UDP messages.
The Khepera III has two wheel encoders, which are used
to estimate the trajectory followed by the robots for the
fitness calculations. A Khepera III equipped with the relative
positioning system can be seen in Fig. 1.

Simulations are performed in Webots [22], a high-fidelity
submicroscopic simulator that models dynamical effects such
as friction and inertia. In this context, by submicroscopic
we mean that it provides a higher level of detail than
usual microscopic simulators, faithfully reproducing intra-
robot modules (e.g., individual sensors and actuators). The
simulator has a built-in relative positioning system that gives
information about the distance and direction to neighboring
robots within line-of-sight, mimicking the one used in the
real robots.

B. Control Architecture

The controller used is an artificial neural network with
nine inputs, a hidden layer of four units with sigmoidal
activation functions, and two output units also with sigmoidal
activation (see Fig. 2). The sigmoidal activation function
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Fig. 2. Diagram of the neural network controller. In red are the inputs,
yellow the hidden layer with sigmoidal outputs, in blue the sigmoidal outputs
which control the motor speed, and in gray the bias input. σ(x) indicates
sigmoidal output.

used is σ(x) = 2
1+e−x − 1. The output neurons also have as

input a connection from a constant bias speed, a recurrent
connection from its own output, and a lateral connection from
the other neuron’s output. The controller uses only local, on-
board measurements. Its inputs are the range and bearing
measurements and the heading average among the robots,
while the outputs determine the two wheel speeds. The total
number of weights of the controller to be optimized by the
PSO algorithm is 50 (36 from the inputs to the hidden layer,
eight from the hidden layer to the output neurons, four from
the recurrent connections, and two from the bias speeds).

The eight range and bearing inputs (rb sect k) are ob-
tained by dividing the bearing into eight sectors of π/4rad,
and calculating the activation of each sector by taking the
minimum range value measured in that sector and dividing
it by the maximum possible range, which is 3.3 meters. The
first sector covers the bearing [0,π/4)rad. The ninth input
corresponds to the average of the headings among all the
neighboring robots, in the robot’s own coordinate system and
normalized to the interval [-1,1]. The use of a single averaged
input instead of one input per robot allows the controller to
generalize to any number of robots.

C. Fitness Function

The fitness function, calculated individually and locally
by each robot using exclusively on-board resources, esti-
mates the performance of the group of flocking robots. It
is composed of three factors: movement, alignment, and
compactness. The fitness function rewards robots that move
as far as possible from their initial positions, align their
headings, and stay close to each other without colliding. All
the factors are normalized to the interval [0,1].

The movement factor ( f1) is the normalized distance
between the initial and the final positions of the center of
mass of the group of robots (see Eq. 1). The normalization



constant (Dmax) is the maximum distance that a robot can
travel in one evaluation, i.e., the robot’s maximum speed
multiplied by the evaluation time. This factor is estimated
using the odometry of the robot, by means of the wheel
encoders, and the relative position to neighboring robots.
If a neighboring robot position can not be estimated (due
to occlusions or limited range of the relative positioning
system), the last absolute position where the robot was seen
is used as final position.

f1 =
|~xc(t f )−~xc(t0)|

Dmax
(1)

The alignment factor ( f2) quantifies the heading difference
between two robots (Hdi f f ) averaged between the robot and
each of its neighbors, and during the evaluation time. It has
a maximum value of 1 when all the robots are aligned and
tends to 0 when robots are not aligned. It is defined as:

f2 = 1−
1

Neval

Neval

∑
k=1

(
1

Nneigh

Nneigh

∑
j=1

abs(Hdi f f j,k)/π) (2)

where Neval is the number of time steps in the evaluation
period, Nneigh is number of neighboring robots and Hdi f f j,k

is the difference of heading to neighboring robot j at time
step k. The heading difference is calculated using the relative
positioning system and communication. These measurements
might be affected by occlusions and range limitations. If for
a time step no neighbor is seen then Hdi f f is set to π for
that time instant, representing alignment worst case.

The compactness factor ( f3) estimates the desired robot to
robot distance within the group of robots. It is calculated
as the average over the evaluation time and over each
neighboring robot of the inter-robot fitness:

f3 =
1

Neval

Neval

∑
k=1

(
1

Nneigh

Nneigh

∑
j=1

f itinter j,k ) (3)

where Neval is the number of time steps in the evaluation
period, Nneigh is number of neighbors, and f itinter j,k is the
inter-robot fitness between the robot and its neighbor j at
time step k. We define the inter-robot fitness between two
robots as a function of the distance between them, as shown
in Fig. 3. The fitness is maximum at the desired inter-
robot distance of 0.4m, and it is zero when the robots are
closer than 0.2m (slightly larger than the robots’ diameter)
or further apart than 0.6m. It rewards that robots stay close
to each other without colliding, implementing two of the
Reynolds’ rules. The inter-robot distance is measured using
the relative positioning system, so it is affected by occlusions.
If for a time step a neighbor is not detected then the inter-
robot fitness to that robot is set to 0 for that time instant.

The fitness function is obtained by aggregating the three
factors using the generalized aggregation function described
by Zhang et al. [23]:

F =

(

ω1 f s
1 +ω2 f s

2 +ω3 f s
3

ω1 +ω2 +ω3

)
1
s

(4)

0 0.5 1 1.5 2
0

0.5

1

distance [m]

fit
ne

ss
 in

te
r−

ro
bo

t

Fig. 3. Inter-robot fitness as a function of the distance between two robots.

where fi are the fitness factors, ωi their corresponding
aggregation weights, and s is the degree of compensation
or trade-off strategy (higher s means that a high value for
a certain factor can compensate for lower values in the
others). For all experiments in this article we set the degree
of compensation s tending to zero, simplifying Eq. 4 to:

F = lim
s→0

(

ω1 f s
1 +ω2 f s

2 +ω3 f s
3

ω1 +ω2 +ω3

)
1
s

= ( f ω1
1 f ω2

2 f ω3
3 )

1
ω1+ω2+ω3

(5)
Since the three factors ( fi) are in the interval [0,1], the

fitness function F will also be in the same range. The
aggregation weights used in this article are: ω1 = 0.4, ω2 =
0.5, and ω3 = 0.1.

In our previous work [24], we showed that the fitness
evaluations for learning a simpler robotic task had a large
standard deviation, and that performing re-evaluations was
an effective way of dealing with this challenge in the
learning. Given the more complex behavior to be learned
in this article and the difficulties encountered while doing
so, we decided to perform multiple internal evaluations of
the fitness and average them in order to make the learning
more robust. Concretely, each candidate solution is evaluated
Neval = 4 times during 45s and its performance averaged
before consideration by the noise-resistant PSO algorithms:

F ′ =
1

Neval

Neval

∑
i=1

Fi (6)

D. Learning Algorithm

The different PSO algorithms studied in this paper are
all based on the noise-resistant version introduced by Pugh
et al. [25]. This baseline algorithm works by re-evaluating
personal best positions and aggregating them with the pre-
vious evaluations, by performing a regular average at each
iteration of the algorithm. The pseudocode for the algorithm
is presented in Fig. 4.

Each particle position represents a set of weights of
the neural controller, with each weight corresponding to
one dimension. The optimization process for PSO becomes
choosing the set of weights from the controller such that
the fitness function F as defined in Eq. 5 is maximized.
Particle evaluations consist of a group of robots moving for
a fixed time. As defined in Eq. 7, the movement of particle
i in dimension j depends on three components: the velocity
at the previous step weighted by an inertia coefficient w, a
randomized attraction to its personal best x∗i, j weighted by



1: Initialize particles
2: for Ni iterations do
3: for Np particles do
4: Update particle position
5: Evaluate particle
6: Re-evaluate personal best
7: Aggregate with previous best
8: Share personal best
9: end for

10: end for

Fig. 4. Common noise-resistant PSO algorithm.

TABLE I

PSO PARAMETER VALUES

Parameter Value
Number of robots Nrob 4
Population size Np 52 / 13
Iterations Ni 400
Evaluation span te 4x45 s
Re-evaluations Nre 1
Personal weight wp 2.0
Neighborhood weight wn 2.0
Dimension D 50
Inertia w 0.8
Vmax 20

wp, and a randomized attraction to the neighborhood’s best
x∗i′, j weighted by wn. rand() is a random number drawn from
a uniform distribution between 0 and 1.

vi, j := wI · vi, j +wp · rand() · (x∗i, j − xi, j)

+wn · rand() · (x∗i′, j − xi, j) (7)

xi, j := xi, j + vi, j (8)

At the end of each iteration each particle shares its
personal best position with its neighborhood. By default,
this neighborhood is implemented as a ring topology with
one neighbor on each side. Here, neighborhood refers to
the PSO algorithm, not to the physical location of robots
typically influencing relative positioning and communication.
We will explore different variations of this topology, and
describe them in Section II-E. Particles’ positions and ve-
locities are initialized randomly with a uniform distribution
in the [−20,20] interval, and their maximum velocity is also
limited to that interval. The PSO algorithmic parameters are
set following the guidelines for limited-time adaptation we
presented in our previous work [26] and are shown in Table I.
Since the dimension of the search space is 50 and four robots
are used, we round up to 52 particles in order to have a
multiple of the number of robots used which is four.

E. Algorithmic Variations

In this article we explore six variations of the noise-
resistant PSO algorithm. They differ on the way the particles
are allocated and evaluated on the robots, and on how
the neighborhood is implemented. In distributed PSO we

Fig. 5. PSO ring topology indicating the particle number. The neighborhood
of Pi is {Pi−1, Pi, Pi+1}.

need to evaluate Np particles ({P1,P2, . . . ,PNp}) representing
Np candidate solutions, by testing them on Nrob robots
({R1,R2, . . . ,RNrob}). At each iteration we need to evaluate
both the current position (~xi) of each particle Pi, as well
as the historical personal best position (~x∗i ). In our case the
performance of each position is obtained by carrying out
Neval single evaluations (Fi). Our problem here is how to
allocate in an appropriate manner the Np particles into the
Nrob robots for every single evaluation, so that the distributed
PSO obtains good solutions.

At the end of each iteration the personal best solution
(~x∗i ) of each particle Pi is shared with other particles. The
sharing topology studied in this article is an undirected ring
graph with a neighborhood size of 3, so each particle Pi

shares information with itself and the two other particles.
For instance, in the most simple case, this ring is static (see
Fig. 5), so on every iteration the neighborhood of Pi is the
own particle and the two adjacent particles (Pi−1, Pi, and
Pi+1).

The first studied variation of the particle allocation and
neighborhood topology is a centralized version, which is
used as a reference, while the remaining five distributed
implementations are the focus of this paper. In the centralized
version each particle is evaluated at the same time in all the
robots. The distributed versions allocate a different candidate
solution to each robot, and evaluate the fitness independently
and individually on each robot. They allow to speed up the
learning by a factor equal to the number of robots available
in the system. These variations of the PSO algorithm are
described in the following paragraphs.

• central. Each particle is evaluated concurrently on every
robot. Since each robot has a different local evaluation
of the group performance, the fitness reported to the
algorithm is calculated as the average of the individual
fitnesses. The neighborhood ring topology is static, i.e.,
each particle has always the same two neighbors. The
number of particles used is always 13, one fourth of the
52 particles in the distributed variations. It allows for
fair comparison between the algorithms, equalizing the
total evaluation time between centralized and distributed
versions.

• alloc-seq. It distributes sequentially a different candidate



solution to each robot: P1 assigned to R1, P2 to R2,
P3 to R3, P4 to R4, P5 to R1, P6 to R2, ..., and PNp

to R4. This implies that each particle is evaluated
always on the same robot. In addition, each particle
is always evaluated together with the same other three
particles, in the same group. Particles {P1, . . . ,P4} are
evaluated together, and so are {P5, . . . ,P8}, . . . , and
{PNp−3, . . . ,PNp}. In the static ring topology used, the
neighborhood of Pi is Pi+1 and Pi−1. As a result, in each
group of four particles that are evaluated concurrently
on the four robots, two of them have a neighborhood
entirely within the same evaluation group, while each of
the other two has one neighbor from another evaluation
group. It corresponds to the algorithmic variation that
we used in our previous work [7].

• alloc-robot. It allocates the particles assigning them
in blocks to each robot: {P1, . . . ,PNp/4} to R1,
{PNp/4+1, . . . ,P2Np/4} to R2, . . . , and {P3Np/4+1, . . . ,PNp}
to R4. The concurrent evaluation has to take place
on each robot at the same time, so Pi is evaluated
always together with Pi+Np/4, Pi+2Np/4, and Pi+3Np/4.
The neighborhood used is the same static ring topology
as in previous cases. Given the particle allocation, all
the particles that are evaluated on a robot Ri except
two have as neighborhood particles evaluated also in
robot Ri. The two remaining particles have one neighbor
evaluated on the same robot and a second in a different
one. This promotes better specialization and adaptation
in specific robots, since there is more flow of intra-robot
information within the PSO algorithm. As opposed
to alloc-seq, there is no neighborhood with particles
evaluated at the same time.

• alloc-rand. Particles are allocated in a random order
and on random robots at each single evaluation (Fi).
This allocation generates Np/Nrob parallel evaluations of
different combinations of Nrob particles, obtaining one
evaluation for each particle in each single evaluation. At
each single evaluation (Fi) a new random allocation is
generated. Therefore, each particle is randomly tested
together with any other three particles, and in any of
the robots. This allows to discriminate good from bad
candidate solutions at the same time they are tested in
parallel, since each particle is eventually evaluated with
many others, and its fitness averaged. The neighborhood
used is also the static ring topology, so besides the ran-
dom allocation each particle always shares it personal
best with the same two particles.

• neigh-rand. The particles are allocated sequentially in
the same manner as in alloc-seq. The difference here
is the neighborhood, which has a dynamic randomly
generated ring topology. At each iteration a new random
ring is defined, and each particle shares its personal best
with two other particles. As in alloc-seq, each particle
is always evaluated with the same three particles and
on the same robot (allowing potential adaptation to the
hardware), but it shares information with any particle.

• parallel. It consists of Nrob parallel PSO implementa-

tions, each of them allocating particles on a different
robot. Each evaluation is performed in parallel on the
four robots working together. It is an extreme case
of alloc-robot, in which all the particles evaluated on
a robot share information only with other particles
evaluated on the same robot. As in alloc-robot, each
particle is always evaluated together with the same three
particles and on the same robot. The total number of
particles used by the Nrob parallel PSO implementations
is Np, Np/Nrob per parallel PSO.

In central there is homogeneity in the controllers, all
robots run the same candidate solution when they are evalu-
ated. A posteriori tests are then performed running the best
solution on every robot. On the other hand, in the distributed
versions, during the learning process the controllers are
heterogeneous, each robot runs a different set of weights. In
alloc-seq, alloc-robot, neigh-rand, and parallel each particle
is always evaluated on the same robot and together with the
same group of particles. Therefore, when testing the best con-
troller resulting from these learning approaches, we find the
particle with the best fitness and test it together with the other
three particles used during the learning evaluations. However,
this is not possible for alloc-rand, since particles are always
evaluated in different combinations. Thus, we propose two
testing approaches: homogeneous and heterogeneous. In the
first, the best solution is replicated on the four robots. In the
second, the four best ranked solutions are assigned to the
four robots.

In alloc-seq, alloc-robot, neigh-rand and parallel, the
fitness tends to evaluate all the particles in the group of robots
with a very similar performance, although the controllers
could be very different. This problem is partially solved in
the alloc-rand variation.

III. EXPERIMENTS AND RESULTS

The learning process is performed completely in simu-
lation with the six algorithmic variants described in Sec-
tion II-E. Since PSO is a stochastic optimization method,
we perform 20 optimization runs for each of these learning
schemes.

Each evaluation during the learning process has a duration
of 45s and takes place in an unbounded arena. Four robots
are placed forming a square of side length equal to two robot
diameters with random orientations. The performance metric
is calculated by the robots using only their internal measure-
ments (simulated range and bearing and wheel encoders, both
with added noise).

Figure 6 shows the progress of the learning for the six con-
figurations discussed in this article. The centralized approach
is the fastest to learn, in the sense that it achieves a high
fitness in fewer iterations than the other configurations. The
distributed approaches could benefit from more iterations
to further improve their performance since the slope of the
curve is not completely flat at the 400th iteration.

The first four configurations, namely central, alloc-seq,
alloc-robot, and alloc-rand, show a low standard deviation
between learning runs. neigh-random has a larger standard
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Fig. 6. Progress of the learning in simulation for the six configurations: (a) central, (b) alloc-seq, (c) alloc-robot, (d) alloc-rand, (e) neigh-rand, (f)
parallel. The blue curve shows the average of the 20 runs, and the error bars represent the standard deviation.

deviation in the intial iterations but it decreases as the
learning progresses. On the other hand, parallel has a fairly
constant standard deviation during the whole process.

After the learning process is finished, the fitness of the
best solution at the last iteration from each of the 20 learning
runs is evaluated systematically in simulation, running 100
experiments of 60s for each solution. Figure 7 presents box-
plots of the performances of these evaluations in simulation.
Figures 7b to 7h show the result for each of the 20 individual
runs, while Fig. 7a aggregates the results of the 20 runs for
each configuration.

It is clear from Fig. 7a and 7b that the centralized
approach achieves the highest performance and the lowest
variance. Therefore, it serves as a baseline to compare all
the distributed approaches.

The sequential approach (Fig. 7c) performs significantly
worse than all the other distributed approaches on average,
has a higher variance, and presents a small number of runs
that perform very poorly. In this approach, the solution
sharing is done mostly among particles that are evaluated
at the same time in the same group. We hypothesise that
this may cause an early convergence within each evaluation
group to a solution that might not necessarily be the best one.
In other words, because of the limited inter-evaluation group
sharing there might be less exploration which may cause
stagnation. In the remaining four distributed approaches, all
particles share solutions with other particles that they are not
evaluated with, and they achieve a higher fitness and smaller
variance than the sequential approach.

In particular, the parallel learning approach (Fig. 7h)
represents the extreme case where there is absolutely no

sharing of solutions within the same evaluation group, i.e.,
each robot is running a completely independent instance of
the learning algorithm, and it achieves the highest median
performance of all the distributed configurations. The lack
of sharing suggests that this approach could be used to
do learning on a subset of robots while the others run
pre-learned or manual controllers, or even employ different
learning algorithms on each robot.

As mentioned in Section II-E, in the case of random
allocation there is no fixed evaluation group, so during testing
we used two ways to select the best group: homogeneous
and heterogeneous. It is interesting to note that the homo-
geneous approach alloc-rand-hom where the best solution is
replicated in the four robots (Fig. 7f) performs significantly
worse than the heterogeneous alloc-rand-het which uses the
top four best-ranked solutions (Fig. 7e). This effect may
be caused by specialization: the best solution could, for
example, learn to move straight while the others follow.
Therefore, it would obtain a higher fitness when tested with
the three followers, but a poor one when the leader is
replicated on the four robots.

In order to validate the results obtained in simulation,
we selected the controller with the highest median for each
learning approach and tested it on real robots. We discarded
alloc-rand-hom due to its low performance compared to
alloc-rand-het. We run 20 experiments for each solution.
The initial positions and number of robots were the same as
used for learning in simulation, but the evaluation time was
reduced to 15s due to space constraints in the laboratory.
The fitness function was computed on each robot using only
its on-board resources. In order to do fair comparisons due
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Fig. 7. (a) Performance in simulation for the different configurations aggregating results from 20 runs. (b) - (h) Performance in simulation for the 20
individual runs of (b) central, (c) alloc-seq, (d) alloc-robot, (e) alloc-rand-het, (f) alloc-rand-hom,(g) neigh-rand, (h) parallel. The box represents the upper
and lower quartiles, the line across the middle marks the median, and the crosses show outliers for 400 evaluations (100 experiments evaluated by four
robots) of each controller.
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Fig. 8. Evaluation in simulation and with real robots for experiments of 15s
for the selected controllers. The -s suffix refers to experiments conducted
in simulation, while -r refers to those with real robots.

to the difference in the evaluation time, we also tested the
selected controllers in simulation for 15s. The results are
shown in Fig. 8.

The performances for 15s runs are generally lower than for
60s runs since the initial stage of aggregation and alignment
of the robots represents a larger fraction of the total time.
Four controllers, namely central, alloc-seq, alloc-rand-het,
and alloc-rand, perform very similarly in simulation and in
reality. There is a significant difference in performance for
alloc-robot and parallel due to inaccuracies in the model of
the robot in simulation. In particular, we observed that during
real robot experiments with these two controllers the robots’
wifi cards got stuck with one another, while in simulation
this card is not modeled accurately enough, and the robots
do not get stuck.

An example of a relevant trajectory for each learning

variation is shown in Fig. 9, taken from the controllers with
highest median. The trajectories observed in the selected
controllers learned with central, alloc-robot, neigh-rand and
parallel are in general very straight and robots maintain the
group cohesiveness. The selected controller from alloc-seq
fails to maintain cohesiveness in some evaluations, resulting
sometimes in a split into two subgroups, which might later
regroup. The trajectories from the selected controller using
alloc-rand-het are not always completely straight, resulting
sometimes in curvilinear paths. These trajectories reflect that
the presented local fitness measured individually on each
robot allows generating the desired cooperative behavior.

IV. CONCLUSION AND FUTURE WORK

In this paper we have explored five distributed variations
of noise resistant PSO with the aim of improving the learning
of cooperative behaviors in a distributed manner. The most
intuitive approach, which consists of sequentially assigning
particles to each robot and evaluating them, cannot always
learn correctly, and has the lowest median fitness across
all the variations. The remaining four variations are always
able to learn and have similar fitness to the centralized
baseline approach. In these four variations, particles share
solutions with particles they are not evaluated with, while
the sequential variation mostly shares solutions with particles
evaluated together. In all variations, we employed a local
metric evaluated individually on each robot using on-board
resources.

As continuation of this work, we would like to study fur-
ther variations in the neighborhood topology, for instance by
changing the number of neighbors. We also want to exploit
and study the specialization capabilities by modifying the
role of certain robots or changing their sensing capabilities.
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Fig. 9. Example of trajectories of robot flocking in simulation during 60s for selected controllers from: (a) central, (b) alloc-seq, (c) alloc-robot, (d)
alloc-rand-het, (e) neigh-rand, (f) parallel. The initial positions are marked with a circle, while the final positions are marked with a cross.

In addition, we would like to test the learned controllers
on a larger set of robots in order to study experimentally the
scalability, and on a reduced set of robots (two or three) to
test the robustness of the controllers.

Finally, we want to implement more advanced ways of
dealing with noisy fitness functions, such as PSO based
on Optimal Computing Budget Allocation (OCBA) [27],
adapting them to the distributed learning of cooperative
behaviors.
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