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Abstract

The respiratory rate is an important vital sign that needs
to be monitored continuously in clinical and non-clinical
health monitoring applications. It is commonly estimated
from electrocardiogram (ECG)-derived respiratory wave-
forms such as the respiratory sinus arrhythmia (RSA) and
the ECG R peak amplitudes (RPA). Current methods com-
bine respiratory information from these two waveforms but
produce large delays in estimating the respiratory rate. In
this work, the powers of the outputs of a bank of order-3
FIR notch filters were used in a recursive scheme to esti-
mate in real-time, and with a small delay, the respiratory
rate from the RSA and the RPA waveforms simultaneously.
The algorithm was tested on the public Physionet Fanta-
sia data set and compared to the state-of-the-art in terms
of estimation accuracy and delay. It was shown that the
proposed method provides more accurate estimates with
smaller delays than those of the state-of-the-art.

1. Introduction

The respiratory rate is an important physiological indi-
cator. It is unfortunately not easily recorded in a contin-
uous manner in clinical situations because of the incon-
venience of the recording apparatus [1, 2]. Furthermore,
with the advent of portable health monitoring systems such
as smart-shirts, producing a robust and real-time estimate
of the respiratory rate is gaining interest for non-clinical
applications [3, 4]. The respiratory rate can be estimated
from the electrocardiogram (ECG), as the respiration mod-
ulates different aspects of the cardiac activity through neu-
ral, physical and reflex processes [5]. ECG-derived respi-
ratory (EDR) waveforms are commonly used to estimate
the respiratory rate [6, 7]. In particular, the respiratory si-
nus arrhythmia (RSA) waveform, which is the modulation
of the cardiac rhythm by the respiration, and the R-peak
amplitudes (RPA) waveform, which is the modulation of
the ECG amplitude by the respiration, are often used to this
end [5]. The combination of several EDR waveforms has
been proposed as well in a scheme considering the most

dominant spectral peak of all the EDR waveforms as the
respiratory rate [7]. However, one major shortcoming of
spectral methods is the need to perform computations in
a time-window, which introduces long delays in real-time
monitoring. Recently, the adaptive multi-signal oscillator-
based band pass filtering (W-OSC) algorithm was pro-
posed as an instantaneous and real-time method of esti-
mating the respiratory rate from two EDR waveforms [6].
This algorithm has a delay of about 10 seconds in tracking
the respiratory rate on the Physionet Fantasia data set [8,9].
The goal of the present study was to propose a frequency
estimation algorithm, capable of processing with low de-
lay and resources multiple EDR waveforms to estimate the
respiratory rate. The proposed algorithm uses a bank of
order-3 FIR notch filters to probe for the main frequency
of the inputs by using the power of the filter outputs in a
combined and recursive scheme. Given the inherent low
delay of the chosen FIR filters, the developed method is a
good candidate in estimating the real-time respiratory rate
in health monitoring endeavors. The algorithm was evalu-
ated on the Physionet Fantasia data set and compared to the
W-OSC algorithm in terms of estimation error and delay.

2. Methods

2.1. Data

Data set: The Physionet Fantasia data set was used to eval-
uate the algorithm. This data set contains 2-hour long
simultaneous recordings of the single-lead ECG and the
spontaneous respiration (pneumography) acquired from 20
young (21-34 years) and 20 elderly (68-85 years) subjects.
The subjects lay supine and watched the “Fantasia” movie
while their physiological signals were being recorded. All
signals have a sampling rate of 250 Hz.

ECG-derived respiratory waveforms: The ECG R peaks
were extracted with a classic extrema-detection method.
The R peak-to-peak time series was created and re-
sampled uniformly at 4 Hz using cubic spline interpola-
tion. The RSA waveform was created by band-pass filter-
ing the re-sampled R peak-to-peak series within the respi-
ratory frequencies, i.e., between 0.1-0.5 Hz, using a Butter-
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worth filter. The R peak amplitudes were also re-sampled
similarly to the R peak-to-peak series and filtered in the
same manner to obtain the RPA waveform [6]. The pro-
posed respiratory rate estimation algorithm was applied to
the RSA and the RPA, and its estimate was compared to
a reference respiratory rate computed from the respiration
signal.

Reference respiratory rate: The respiration signal was
re-sampled at 4 Hz similarly to the RSA and the RPA and
high pass filtered above 0.1 Hz using a Butterworth filter.
Its instantaneous frequency was computed as the mean out-
put of several classic frequency estimation methods, simi-
larly to [6].

2.2. Algorithm

The output of a notch filter is smallest for an oscillation
at the notch frequency. The main idea behind the presented
algorithm is to use a bank of notch filters to probe the in-
put signal for its main frequency. Small filter output pow-
ers indicate the notch frequencies to which the dominant
frequency is close. Therefore, they are used in a weighted
sum of the notch frequencies to estimate the dominant fre-
quency of the input. As this scheme was designed to be
low-delay, it was chosen to use order-3 FIR notch filters
characterized by a pair of complex-conjugate zeros with
transfer functions H:

H(z) = 1− 2z−1 cos(2πfi) + z−2, (1)

where fi is a discrete frequency from a given frequency
band fb = [f1, ...fN ], with N the number of discrete fre-
quencies. The magnitude response of several such filters is
shown in Figure 1. At sample n, the output of the ith filter
is:

yi[n] = u[n]− 2u[n− 1] cos(2πfi) + u[n− 2], (2)

where u[n] is the input signal. When the main frequency
content of u is close to fi, then the output of the notch
filter, i.e., yi, is small. The output power was computed in
a recursive manner, for each filter output, with a forgetting
factor 0 < δ < 1 as:

Pi[n] = δPi[n− 1] + (1− δ)c2i [n], (3)

where ci is a normalized criterion computed from the
power of the filter output with respect to the power of the
filter input as:

ci[n] = yi[n]/
√
U [n], (4)

with
U [n] = δU [n− 1] + (1− δ)u2[n], (5)
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Figure 1. FIR notch filters with transfer functions accord-
ing to (1).

the recursive estimate of the mean squared-value of the in-
put. The set of Pi with i = 1, ...N were used to compute
a set of weights. For each input uj , j = 1, ...Nsig with
Nsig the number of input signals, (3) yields one set of Pi.
In order to obtain a single weight per frequency fi, the Pi

values were averaged across the inputs j = 1, ...Nsig to
create the weights wi:

wi[n] =
1

Nsig

Nsig∑
j=1

Pi,j [n]. (6)

Note that the contributions of the different signals do not
depend on their respective absolute powers, due to the nor-
malization in (4). It was necessary to scale the weights to
give more importance to frequencies yielding small powers
and little-to-no importance to those with larger powers. To
this end, an exponential weight dissociation scheme was
employed, resulting in the new weights Wi:

Wi[n] = exp(−γ[n]wi[n]), (7)

where γ is a weight dissociation parameter. It was set
to the minimum value of Pi,j [n] at every sample γ[n] =
mini=1,...N (Pi,j [n]).

The final frequency estimate was computed as the
weighted sum of the notch frequencies of the filter bank:

f [n] =

∑N
i=1Wi[n]fi∑N
i=1Wi[n]

. (8)

2.3. Evaluation

The presented algorithm was applied to the RSA and
the RPA as input signals with fb = [0, 0.2], δ = 0.95 and



N = 50, which provides a reasonable resolution in the res-
piratory frequency band. The sensitivity of the proposed
algorithm to its parameters δ and N was qualitatively in-
vestigated on several case records. Systematic evaluation
of the algorithm and comparison to the W-OSC results was
performed on the entire data set. The parameters of the W-
OSC algorithm were set as follows: β = 0.95, δ = 0.95
and µ = 0.95, which yield a good compromise between
the filter bandwidth and the adaptation capability of the al-
gorithm [6]. The initial frequency was set to f0 = 0 as the
proposed algorithm does not require an initial frequency.

The estimation error, in terms of the mean absolute er-
ror (MAE) in breaths-per-minute (bpm) and the estimation
delay (in seconds) of the two algorithms were computed.
The estimation delay was evaluated by computing the cor-
relation of the estimate and the reference respiratory rate
for various delay values by means of the Pearson correla-
tion coefficient. The delay yielding the largest correlation
was selected as the optimal delay for each record.

3. Results

Illustrative example: Examples of the RSA and RPA
waveforms extracted from the ECG are shown in Fig-
ure 2 (a). The respiratory rate estimated by the proposed
method, the W-OSC estimate and the reference respira-
tory rate are presented in Figure 2 (b). It can be seen that
the estimate of the proposed method is more accurate and
follows the reference rate with less delay. For example,
around t = 220 s, there is a marked increase in the refer-
ence, which is followed a little later in time by the estimate
of the proposed method and even later by the W-OSC es-
timate. In some portions, the proposed method does not
exhibit any delay, such as around t = 280 s. The presence
of delay was not systematic and depends on local signal
characteristics.

Sensitivity analysis: The sensitivity of the algorithm to δ
and N was qualitatively assessed on a portion of the data
set. Figure 3 shows estimates computed with different val-
ues of δ ranging from 0.9 to 0.99. Figure 4 shows esti-
mates computed with different values of N ranging from
20 to 80. For a value of δ closer to 1, the estimate was
less variable but also followed changes in the frequency in
more slowly. The value of N did not have a large effect on
the estimate. In fact, estimates with N = 50 and N = 80
were visually the same.

Overall results: The mean values of estimation errors and
delays for both algorithms over the entire data set are re-
ported in Table 1. For both the young and elderly popu-
lations, the proposed method yielded lower errors than the
W-OSC method. For the proposed method, similarly to the
W-OSC, the errors for the young population were smaller
than those for the elderly. In terms of estimation delay,
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Figure 2. (a) The RSA and RPA, (b) the respiratory rate
estimate of the proposed algorithm, that of the W-OSC
method and the reference respiratory rate.

the proposed method presented on average half that of the
W-OSC. There was no marked difference between the de-
lay in the young and elderly estimates for the proposed
method.
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Figure 3. The estimate of the proposed method for several
values of the parameter δ. N = 50, fb = [0, 0.2].

4. Discussion and Conclusions

Although no systematic testing was performed to assess
the algorithm sensitivity to its parameters δ and N , quali-
tative assessment indicated that the parameter δ had a large
influence on the estimate variability but the parameter N
did not have a marked effect on the estimate, meaning that
the number of discrete frequencies does not need to be very
high to achieve acceptable resolution in the estimate. The
estimate computed with N = 20 was slightly more quan-
tized than those computed with N = 50 and N = 80
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Figure 4. The estimate of the proposed method for several
values of the parameter N . δ = 0.95, fb = [0, 0.2].

Table 1. MAE (bpm) and estimation delay (s) of the pro-
posed algorithm and the W-OSC algorithm over the Fanta-
sia data set.

Young Elderly
MAE Delay MAE Delay

W-OSC 2.65 10.75 3.17 9.5
proposed 2.63 5.25 3.11 5.25

but between the later two, there was no marked difference.
However, larger values of N require more computations.
Small values of δ resulted in large variations in the esti-
mate. Large values prevented the fast adaptation of the
estimate to the changes in the input. It was necessary, for
each parameter, to select a value providing an acceptable
compromise. With the empirically chosen parameters, on
the Fantasia data set, the proposed algorithm was better
in terms of accuracy than the W-OSC algorithm, although
not drastically. In terms of estimation delay, the proposed
algorithm provided estimates with half the delay of the W-
OSC algorithm. This decrease in delay is due to the fact
that there are less recursive computations in the proposed
algorithm, which uses short FIR notch filters compared to
the W-OSC, which uses an IIR band-pass filter. In the pro-
posed algorithm, only the weights of the discrete frequency
values serving as filter centers are computed in a recursive
manner. In the W-OSC method, however, both the filter
central frequency and the weights of the various inputs are
computed in a recursive manner. It must be noted that to
reduce the total delay of the real-time implementation, lin-
ear interpolation must be used instead of cubic spline in-
terpolation in the re-sampling of the EDRs.

In this paper, evaluation was directly performed on a set
of real data. A detailed study of the proposed algorithm in

terms of the estimation bias and variance and their sensi-
tivity to the algorithm parameters must be carried out on
simulated data.

This algorithm is a promising tool to provide easily
computed, accurate real-time respiratory rate estimates
from a single-lead ECG in a clinical setting and also on
portable health monitoring platforms.
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