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Abstract. At each generation of an ant algorithm, each ant builds a
solution step by step by adding an element to it. Each choice is based on
the greedy force (short term profit or heuristic information) and the trail
system (central memory which collects information during the search
process). Usually, all the ants of the population have the same char-
acteristics and behaviors. In contrast in this paper, a new type of ant
metaheuristic is proposed. It relies on the use of ants with different per-
sonalities. Such a method has been adapted to the well-known vehicle
routing problem, and the obtained average results are very encouraging.
On one benchmark instance, new best results have been found.

Keywords: Evolutionary Metaheuristics, Ant Algorithms, Vehicle Rout-
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1 Introduction

As exposed in [29], modern methods for solving complex optimization prob-
lems are often divided into exact methods and metaheuristic methods. An exact
method guarantees that an optimal solution is obtained in a finite amount of
time. However, for a large number of applications and most real-life optimization
problems, which are typically NP-hard, such methods need a prohibitive amount
of time to find an optimal solution. For these difficult problems, it is preferable to
quickly find a satisfying solution. If solution quality is not a dominant concern,
then a simple heuristic can be employed, but if quality plays a critical role, then a
more advanced metaheuristic procedure is recommended. There are mainly two
classes of metaheuristics: local search and population based methods. The for-
mer type of algorithm works on a single solution (e.g., descent local search, tabu
search, variable neighborhood search), whereas the latter makes a population
of (pieces of) solutions evolve (e.g., genetic algorithms, ant colonies, adaptive
memory algorithms). The reader interested in a recent book on metaheuristics
is referred to [16].

As presented in [20, 30], in most ant algorithms, the role of each ant is to build a
solution step by step. At each step, an ant adds an element to the current partial
solution. Each decision or move m is based on two ingredients: the greedy force
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GF (m) (short-term profit) and the trail Tr(m) (information obtained from other
ants). The probability pi(m) that ant i chooses decision m is given by Equation
(1), where α and β are parameters, and Mi is the set of admissible decisions
that ant i can make.

pi(m) =
GF (m)α · Tr(m)β∑

m′∈Mi

GF (m′)α · Tr(m′)β
(1)

Let M be the set of all possible decisions. When each ant of the population has
built a solution, the trails are generally updated as follows: Tr(m) = ρ ·Tr(m)+
∆Tr(m), ∀m ∈ M , where 0 < ρ < 1 is a parameter representing the evaporation
of the trails, which is usually close or equal to 0.9, and ∆Tr(m) is a term which
reinforces the trails left on decision m by the ant population. That quantity is
usually proportional to the number of times the ants have made decision m,
and to the quality of the obtained solutions when decision m was made. More
precisely, let N be the number of ants, then: ∆Tr(m) =

∑N

i=1 ∆Tri(m), where
∆Tri(m) is proportional to the quality of the solution provided by ant i if it
has made decision m. The pseudo-code of a classical ant method is given in
Algorithm 1. A generation consists in performing steps (1) to (4). A stopping
condition can be a maximum number of generations or a maximum time limit.

The paper is organized as follows. In Section 2, the most well-known extensions
and variants of the classical ant algorithm are discussed. The vehicle routing
problem (VRP) is presented in Section 3, where state-of-the-art metaheuristics
are briefly reviewed. In Section 4, five new algorithms are proposed for the VRP,
and the results are presented in Section 5. A conclusion is given in Section 6,
where the main contributions of this paper are highlighted.

Algorithm 1 Classical ant metaheuristic

While no stopping condition is met, do:

1. for i = 1 to N , do: ant i builds a solution si step by step based on Equation (1);
2. intensification (optional): apply a local search to some solutions of {s1, . . . , sN};
3. update s⋆ (best encountered solution during the search);
4. update the trails by the use of a subset of {s1, . . . , sN};

Output: solution s⋆.

2 Ant algorithms

As presented in [11], ant algorithms have been developed for many problems of
different types. Several variants or extensions of the above Algorithm 1 can be
found in the literature. Some of them are briefly discussed below.

Elitist ants trails. It is one of the first improvement of the classical ant algo-
rithms. It biases the trail updating rule to converge faster to the most promising
area of the search space. For example, at the end of each generation, only the
best ants of the generation can update the trail system [3].
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Pseudo-random proportional selection. For each ant, this rule is used at
each iteration of the constructing process. It selects with probability q0 the ele-
ment that maximizes GF (m)α ·Tr(m)β , and uses Equation (1) with probability
(1 − q0). This selection rule is one of the most used and has proved to be a
very easy way to regulate the balance between intensification and diversification
through the parameter q0. It was first presented in [12].

Bounded trails. This variant was first presented in the MAX-MIN ant system
in [26]. It consists in having upper and lower bounds for the trail values. The
lower bound avoids the algorithm to discard some solutions and ensures the
asymptotic convergence, as every solution has always a probability above 0 of
being generated. The upper bound avoids the algorithm to focus all its attention
to a region of the search space. This mechanism has a strong diversification
ability.

Candidate lists. It consists in reducing the number of possible choices to de-
crease the computational effort at each iteration of the constructing process. For
example, only the e (parameter) elements with the best greedy forces can be
chosen for a move. For instance in [13], only the e closest clients can be chosen
in the construction of a solution of the traveling salesman problem.

Hyper-cube framework. Presented for the first time in [2], this technique uses
weighting parameters ws (each ws is proportional to the quality of solution s)
in the trail updating rule. It limits the trail values to interval [0, 1] and it has
been theoretically proved to continuously increase the expectation of the average
solution quality over time.

Multiple Ant Colony System (MACS). It consists in several groups of
ants that have their own trail system. In most MACS, there exists some kind of
interaction or exchange of information between the different groups. A MACS

can optimize different objective functions. In this case, each colony focuses on
optimizing its own objective function and interacts with the other ones to create
a global best solution. This is the case for the VRP with time windows, for which
a MACS was first proposed in [14]. Having more than one trail system provides
the algorithm with a very important diversification potential.

Other ant paradigms. In most ant algorithms, the role of each ant is to build
a solution in a constructive way, basing each decision on the greedy force and
the trails. However, different roles are possible for each individual ant, ranging
from a negligible help in the decision process to a refined local search such a
tabu search (e.g., [23, 28, 30, 31]).

3 Presentation of the VRP and literature review

The VRP is one of the most popular problems in combinatorial optimization
because of its obvious applications in transportation. It consists in designing
the route of each of the k identical vehicles with the aim of minimizing the
total traveled distance f (or the total cost or the total travel time). All vehicles
are initially in a depot, where each route starts and ends. Each client v (with
demand D(v)) has to be visited once by the collection of routes. The problem
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is defined in an undirected graph G = (V,E), where V = {v0, v1, . . . , vn} is
the vertex set and E = {(vi, vj) | vi, vj ∈ V, i < j} is the edge set. Note that
v0 is the depot and the other vertices are clients. The following lexicographical
approach is generally used: minimize k, then the total distance f . The two most
well-known constraints associated with the VRP are: (1) capacity: each vehicle
has a limited capacity Q, thus the demand of each route cannot exceed Q; (2)
autonomy: each vehicle has a limited autonomy A, thus the total duration of
each route cannot exceed A. Several extensions of the VRP can be found in the
literature. In this paper, only the capacity constraint is considered, which is the
most studied version of the VRP.

A few ant algorithms have been proposed in the literature for the VRP, but none
belongs to the best VRP metaheuristics. The first ant algorithm for the VRP

was presented in [4]. In the most basic version, each ant constructs a solution
by choosing the next client (among the non visited ones plus the depot) to visit
according to Equation (1). When the selection of a client leads to an infeasible
solution, the route is closed and another route is started. The greedy force of an
edge is the inverse of its length. The trail updating rule is based on an elitist tech-
nique. Some variations of this algorithm have been tested in the literature. The
most successful variations are described below. The distance between two clients
is not the only relevant heuristic information. In [3], a new probability rule is
described and includes the savings sij (advantage of combining two cities i and
j as consecutive elements in a tour) and the capacity utilization (portion of the
vehicle capacity used if the next considered client is chosen). In [24], local search
procedures (e.g. the well-known 2-opt heuristic based on the cross exchange, the
move swap or reinsert) have improved the performance of the discussed ant al-
gorithms. A mutation operator which belongs to the genetic algorithm paradigm
is introduced in [1]. With a certain probability (which is dynamically managed
during the search), the algorithm selects two tours from parent solutions and
exchanges two nodes (unfeasible solution are penalized but not forbidden). The
resulting solution is improved with the 2-opt heuristic. When updating the trail
of an edge (i, j) with a solution s, two components are considered: the value of
s and the contribution of the length of (i, j) to the tour it belongs to.

For survey papers on the VRP, the reader is referred to [7–9, 15, 17, 18]. Many
algorithms have been developed for the VRP. Among them, there are some
successful classical heuristics such as Clarke & Wright, Two-matching, Sweep,
1-Petal and 2-Petal, as tested in [8]. However, the best performance is achieved
by metaheuristics. Four of them outperforms the others and are discussed below.

Adaptive Memory (AM ). AM [25] has been proved to be a good algorithm
for the VRP and introduces a very innovative approach. At each generation of
AM, an offspring solution s is built route by route from a central memory M
(which contains routes), then s is improved with a local search, and the resulting
solution is used to update M (i.e. routes of M are replaced with routes of s).

Unified Tabu Search (UTS). UTS [10] has been proved to be a very flexible
algorithm (easily adapted to variations of the VRP) with competitive quality



Ant Metaheuristics with Adapted Personalities for the VRP 5

and speed. UTS relies on a tabu search using an objective function which dy-
namically penalizes the constraint violations (the penalty component is likely to
be increased if the last iterations violate the constraints).

Granular Tabu Search (GTS). GTS [27] has been proved to be a very bal-
anced algorithm in terms of speed and quality. It uses a tabu search framework
and relies on the use of granular neighborhoods to discard the edges that rarely
would belong to a competitive solution. GTS uses a granularity threshold which
is dynamically adjusted.

Active Guided Evolution Strategies (AGES). AGES [21] has been proved
to be very efficient (it is probably the best VRP method), with a reasonable
speed. AGES is a combination of several procedures (including local search tech-
niques), but an important drawback is its significant number of parameters.

4 New algorithms for the VRP

4.1 GR: A greedy constructive algorithm with restarts

There are many constructing algorithms for the VRP, such as the savings al-
gorithm [6]. Most of them are deterministic and as a consequence generate al-
ways the same solution. We propose a greedy constructing procedure GR with
randomness, able to generate different solutions if restarted, which is the core
procedure of the proposed ant metaheuristics. It works with a given number k
of vehicles and it is restarted as long as a given time limit is not reached. At the
end, the best generated solution is returned to the user.

GR consists in sequentially constructing each of the k routes. The procedure
starts a new route R by choosing randomly an unserved client v ∈ {v1, . . . , vn},
and creates a tour v0 − v − v0. Let C(R) be the capacity of route R (defined
as the vehicle capacity, minus the demands D(R) of all the clients belonging
to R). Then, for all the unserved clients v such that D(v) ≤ C(R) (called the
R-available clients), a move m = (v, p, R) can to be performed, which consists
in inserting client v at position p (between two clients vi and vj , or between the
depot v0 and one client vi) in route R. To do it, the greedy force GF (v, p, R) is
first computed for each R-available client v, for each position p of the considered
route R. GF (v, p, R) is defined by dividing the distance d(v, v0) between v and
the depot v0 by the augmentation ∆fR(v, p) of the length of R if it is extended
by inserting client v at position p. This greedy force is new and in contrast with
the existing greedy forces proposed in the literature, it favors the insertion of
clients located far away from the depot, which is likely to reduce the number of
isolated clients (i.e. an unserved client v with a large d(v, v0) value). If too many
isolated clients are left for the next routes, such routes are likely to be long.
However, the consideration of ∆fR(v, p) avoids the insertion of isolated clients
located far away from the route R under construction. When the greedy force
of each R-available move has been computed, all the possible choices have been
identified and evaluated for the considered route R. At this moment, the greedy

force threshold GFT (R) is computed as qA ·maxv,p GF (v, p, R). It is the largest
available greedy force, multiplied by parameter qA (tuned to 0.9) which regulates
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the amount of possible moves and corresponds to a candidate list technique. At
the end of each iteration, the selected move m is randomly chosen among the
ones whose greedy forces is above the threshold.

At each iteration of GR, these three mains steps are performed for the considered
route R (i.e., compute the GF (m)’s, then GFT (R), and finally select a move
m) until there is no more R-available client v. When this occurs, a new route is
started by choosing randomly an unserved client. The process stops when all the
clients have been served (feasible solution), or when it is not anymore possible
to serve a client with one of the k vehicles (unfeasible solution).

4.2 ANT: An ant algorithm with two phases

In ANT, the role of each ant is to build a solution with a 2-phase algorithm
denoted 2PH, where a trail value is associated with each edge. In the first phase
(P1), the routes are sequentially built and extended as in GR, whereas in the
second phase (P2), the unserved clients are sequentially considered to fill any of
the existing routes. In other words, (P1) works tour by tour, whereas (P2) works
client by client (by order of decreasing demands, which improves the likelihood
of the solution to be feasible). The transition between the two phases is one of
the challenging issues. The key idea is to stop the construction of a route R in
(P1) when only poor R-available insertions are possible (i.e. do not fill route R
just to fill it, because these R-available clients might be much more efficiently
served by other routes).

Based on Algorithm 1, each generation of ANT consists in the following steps:
(1) construct a solution with each of the N (parameter tuned to 12) ants, using
2PH; (2) is skipped; (3) update s⋆; (4) update the trails and compute a trail

threshold TT , which is used to decide when to move from (P1) to (P2) in 2PH

(in the next generation). More precisely, the role of TT is to detect when the
potential of (P1) becomes poor, in the sense that even if a client v is inserted at
the best position in the considered route R (as it can be done in (P1)), it could
be much better to assign v to another vehicle (as it can be done in (P2)). TT is
computed as min(tB · TB, tS · TS), where tB and tS are parameters respectively
tuned to 0.2 and 3, TB is the average trail value in the best encountered solution
s⋆ during the search, and TS is the average trail value in the whole trail system.

The trails are updated as follows. First, for each edge (i, j), the evaporation
coefficient ρ is used to set Tr(i, j) = ρ · Tr(i, j). Then, the Nb (parameter tuned
to 4) best solutions (i.e. the elite solutions) of the last generation are used to
reinforce the trails of the edges that appear in the elite solutions. More precisely,
for each elite solution s, Tr(i, j) is augmented by (1 − ρ) · w · [f(s)/f⋆], where
f⋆ is the value of s⋆, and w is a weighting parameter tuned to 0.1. One can
remark that parameter ρ (tuned to 0.975) can regulate the balance between the
evaporation and the reinforcement of the trails.

(P1) is derived from GR with the two following differences: (1) the probability
of a move is proportional to its associated trail value; (2) (P1) stops when the
trail of the selected move is below TT (i.e. (P1) does not only stop because of
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non sufficient capacity). More precisely, let p(v, p, R) be the probability to insert
client v at position p = (vi, vj) in route R. Such a probability depends on the
trail Tr(v, p, R) = max[Tr(vi, v), T r(v, vj)]. Consequently, a sequence of clients
that appears to be good in the previous generations is more likely to be created.
The ”maximum” is used (instead of the ”summation”) because at that stage,
many edges are going to be broken by the insertion of the next clients.

(P2) starts by calculating the greedy force GF (v, p, R) of the considered client
v for each position p = (vi, vj) of each existing route R that has a sufficient
remaining capacity to serve v. In contrast with (P1), the trail is computed as
Tr(v, p, R) = Tr(vi, v) + Tr(v, vj). The summation is performed because unlike
in (P1), the added edges are likely to stay in the final solution. As in (P1), the
probability of a move (among the ones above GFT ) is proportional to its trail
value. If a client v cannot be placed in any route R because D(v) > C(R), the
solution is unfeasible.

Because of the sequential use of the greedy forces and the trails, there is no need
to use parameters α and β of Equation (1), which results in a significant reduction
of the computational effort and a better overall performance, as discussed in [31].
We have now all the ingredients to summarize 2PH in Algorithm 2.

Algorithm 2 2PH: The two-phases algorithm associated with each ant

(P1) While there is a free vehicle, do:

1. select a free vehicle;
2. select randomly an unserved client v and build the route R = v0 − v − v0;
3. while there is at least a R-available client v, do:

(a) compute GF (v, p,R) for each R-available client v;
(b) compute GFT (R);
(c) select a move m = (v, p,R) (based on their trail values) among the moves such

that GF (v, p,R) ≥ GFT (R);
(d) if Tr(m) < TT , STOP (select another free vehicle, if any);

(P2) For each unserved client v (ordered by decreasing demand), do:

1. if there is no route R such that D(v) ≤ C(R)−D(R), STOP (unfeasible solution);
2. for each route R such that D(v) ≤ C(R) − D(R), compute GF (v, p,R) and

Tr(v, p,R);
3. compute GFT (over all the possible moves and routes at that step);
4. select a move m = (v, p,R) (based on their trail values) among the moves such

that GF (v, p,R) ≥ GFT (R);

Output: feasible/unfeasible VRP solution.

4.3 AL: ANT enhanced with local search techniques

Often, in order to get competitive results, it is unavoidable to apply a local
search method (e.g., a descent method, tabu search) to the solutions provided
by the classical constructive ants [31]. Widely used neighborhood structures
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for the VRP are: (1) the forward and backward Or-exchange [22], where the
neighborhood structure consists in moving a client from a route to another; (2)
the 2-opt [19], where a move consists in removing two edges of a route and
rebuilding the solution by creating a different pair of edges. 2-opt appears to
be very efficient while combined with the forward and backward Or-exchange

(in one configuration of the algorithm proposed in [21], these are the only three
local search procedures used). Moreover, the 2-opt local search is the most used
in literature for the VRP because of its simplicity, its speed and its capacity to
improve the solutions by making intra-route improvements.

At the end of each generation, before updating the trail system (i.e. at step (2)
of Algorithm 1), the following local search techniques are sequentially applied
to the elite solutions: the 2-opt, the forward Or-exchange, the backward Or-

exchange. This sequence of three local search procedures is restarted until no
more improvement is encountered by any of the procedure.

4.4 ALM: AL enhanced with a central memory

ALM is derived from AL by adding an intensification component at the beginning
of 2PH, before (P1). This component (P0) consists in copying some of the routes
of s⋆ when generating a solution s with the considered ant. More precisely, each
route R of s⋆ has a probability p(R) to be copied in s, which depends on two
elements: the saturation Sat(R) of R and the mutual attractiveness Att(R) of the
clients belonging to R. The probabilities p(R) are updated at each generation,
after s⋆ has been updated (i.e. at the end of step (3) of Algorithm 1).

On the one hand, the saturation Sat(R) of a route R is defined as D(R)/C(R).
The larger it is, the better R is filled (which favors the likelihood of a solution to
be feasible). On the other hand, let M be a central memory containing the elite
solutions of the Mb (parameter tuned to 10) previous generations. For a given
client v, we define fM (v) as the average length of the routes in M which serve
v. In addition, fR(s

⋆) is the length of R in s⋆. The attractiveness Att(R) of the
clients belonging to route R of s⋆ can now be defined as

∏
v∈R fR(s

⋆)/fM (v).
The larger it is, the better are likely to be the solutions which group together
the clients of R. Finally, probability p(R) is computed as in Equation (2), where
qM is a parameter (tuned to 0.4) which can regulate the influence of s⋆ on the
solution s generated by the involved ant. Note that if p(R) exceeds 1, we simply
set p(R) = 1.

p(R) = qM · Sat(R) · Att(R) = qM ·
D(R)

C(R)
·
∏

v∈R

fR(s
⋆)

fM (v)
(2)

4.5 ALMP: ALM with different ant personalities

The idea of ALMP is to assign a specific personality to each of the N ants of the
population. The personality intervenes anytime the ant makes a decision, which
consists in selecting a move among the ones above GFT . Four ant personalities
are proposed: Normal Ants (NA), Follower Ants (FA), Moody Ants (MA) and
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Innovative Ants (IA). These characteristics are likely to belong to any group of
individuals working together to reach a common goal. In order to work with a
well-balanced ant society, we propose to useN/4 ants of each personality (remind
that N was tuned to 12).

NA corresponds to the average ant personality as presented in Subsection 4.2.
NA selects a move proportionally to its trail value.

FA corresponds to the personality that strictly follows what others have done
previously. FA always selects the move with the largest trail value. This behavior
aims at intensifying the search.

MA corresponds to NA with probability (1− pMA), but with a probability pMA

(parameter tuned to 0.4), it changes its mood and starts behaving apparently
against the goal. MA selects a move proportionally to the trail values with prob-
ability (1−pMA), and inverse-proportionally to the trail values with probability
pMA. This behavior aims at strongly diversifying the search.

IA corresponds to the personality that tends to behave in an unusual way, but
with the intention to reach the goal. IA corresponds to FA with probability
(1− pIA) (intensification role), but with a probability pIA (parameter tuned to
0.2), it changes its mood and make a random decision (diversification role). IA
selects the move with the largest trail values with probability (1 − pIA), and
randomly with probability pIA. For this personality, the value of parameter qA
which appears in GFT = qA ·maxv,p GF (v, p, R) is lower than usual (it is tuned
to 0.8 instead of 0.9), which means that the number of possible choices is larger
than for the other personalities, which favors the exploration of new solutions.

5 Results

The algorithms have been coded in C++ and compiled by Microsoft Visual
Studio 2013. The tests have been run in a Windows 7 PC with an Intel Core2
Quad Q9400 of 2.66GHz and 4MB of RAM in 32-bit but only using one of the 4
processors of the PC. To make the results comparable to other results obtained
with other computers, a GFlops test has been performed with the software LinX
0.6.5. The obtained result is 9.1 GFlops. For each proposed algorithm, the stop-
ping condition is 5 ·n seconds, where n is the number of clients of the considered
instance. The results are averaged over 9 runs (as 9 processors were available).
The considered instances are all the benchmark instances from [5, 17] which do
not have the autonomy constraint. More precisely, the instances are 1 to 5, 11
and 12 from [5], and 9 to 20 from [17]. For each instance, the smallest number k
of vehicles and the best-known solution value f⋆ are taken from [21].

The results are provided in Table 1. The five first columns indicate respectively:
the instance name (starting with a ”C” if from [5], and with a ”G” if from [17]),
the number n of clients, the number k of vehicles, the instance saturation Sat
computed as the total demand divided by the total capacity of the vehicles, the
time t⋆ (in seconds) to get the best known value f⋆ (obtained from [21]). Column
6 indicates on the one hand the average percentage gap between GR and f⋆, and
on the other hand the average computing time (in brackets) needed to get the
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best results of GR. Columns 7 to 10 provide the same information, but for ANT,
AL, ALM and ALMP, respectively. The times (indicated in seconds) are all re-
scaled according to the above mentioned computer (based on the corresponding
GFlops performance), so that they can be fairly compared. Average results are
given in the last line. Remind that for the VRP, minimizing k is more important
than minimizing the total traveled distance f . In this respect C14 is of particular
interest, as the newly proposed algorithms are able to generate solutions with
k = 29 vehicles instead of k = 30 (as it is the case in the existing literature).
This indicates that the proposed algorithm 2PH has a strong ability to find
feasible solutions with large values of Sat. For this reason, C14 is not considered
to compute the average results in the last line of Table 1.

From Table 1, it can be concluded that every ingredient (i.e., a trail system,
local search procedures, a central memory, and various personalities) successively
added to GR to derive ALMP is useful, as the average percentage gap is reduced
step by step from 12.5% to 11% to 7.5% to 3.7% to 3.3%. Other experiments,
which are not detailed here, confirm this statement: it was observed that each
ingredient improves significantly the solution values even if other time limits
are used (ranging from n to 5 · n seconds). In addition, it was also observed
that ALMP with the proposed mix of personalities is better than if only one
personality is used (i.e. there is no personality which outperforms the proposed
mix of personalities).

Table 1. Results on well-known benchmark instances

1 2 3 4 5 6 7 8 9 10

Inst. n k Sat t⋆ GR ANT AL ALM ALMP

C01 50 5 97.1% 1 2.4% [82s] 1.4% [130s] 0.3% [88s] 0.9% [25s] 1.3% [46s]

C02 75 10 97.4% 22 11.3% [187s] 8.7% [177s] 3.9% [121s] 1.8% [98s] 1.4% [124s]

C03 100 8 91.1% 4 13.9% [280s] 9.0% [299s] 1.6% [251s] 0.4% [176s] 0.5% [211s]

C04 150 12 93.1% 41 19.9% [338s] 15.1% [229s] 4.4% [491s] 2.0% [364s] 1.7% [630s]

C05 199 16 99.6% 8640 20.0% [289s] 20.2% [575s] 13.0% [446s] 6.2% [721s] 5.5% [746s]

C11 120 7 98.2% 4 12.0% [233s] 6.3% [232s] 4.3% [287s] 4.0% [155s] 0.9% [309s]

C12 100 10 90.5% 1 10.6% [322s] 7.6% [227s] 1.2% [223s] 0.0% [92s] 0.0% [58s]

G09 255 14 95.9% 1441 11.7% [671s] 9.8% [736s] 8.1% [757s] 2.9% [562s] 3.1% [1006s]

G10 323 16 95.0% 300 13.2% [716s] 11.9% [848s] 8.8% [1081s] 4.2% [1353s] 4.1% [1492s]

G11 399 18 94.3% 1763 14.6% [1009s] 13.2% [1249s] 9.7% [1270s] 5.3% [1716s] 5.1% [1833s]

G12 483 19 98.4% 2591 12.6% [1573s] 12.4% [1496s] 11.8% [793s] 5.9% [2161s] 4.8% [2324s]

G13 252 26 96.7% 1600 10.4% [539s] 9.9% [607s] 8.4% [472s] 3.0% [1061s] 3.2% [886s]

G14 320 29 98.9% N/A 1255 [791s] 1261 [867s] 1245 [775s] 1170 [1510s] 1173 [1516s]

G15 396 33 97.7% 110 12.0% [985s] 11.9% [1075s] 10.2% [849s] 5.8% [1743s] 5.3% [1899s]

G16 480 37 96.7% 3200 14.1% [1429s] 13.3% [1168s] 11.1% [1419s] 7.3% [1957s] 6.2% [2136s]

G17 240 22 98.2% 121 10.0% [638s] 9.7% [495s] 6.6% [271s] 1.7% [994s] 1.7% [1064s]

G18 300 27 100.0% 600 10.0% [663s] 10.5% [648s] 9.0% [904s] 3.6% [1256s] 3.6% [1312s]

G19 360 33 98.2% 93 12.9% [979s] 12.9% [916s] 10.1% [640s] 5.0% [1619s] 5.2% [1747s]

G20 420 38 99.5% 920 12.9% [1620s] 13.4% [988s] 11.7% [1312s] 6.0% [2026s] 5.8% [1964s]

Avg. 12.50% 11.00% 7.50% 3.70% 3.30%
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6 Conclusion

In this paper, the vehicle routing problem is tackled with new approaches. The
main contributions are the following: (1) five new algorithms are developed for
the VRP; (2) a new type of ant algorithm is designed (relying on the use of
various personalities of ants), which can be applied to any combinatorial opti-
mization problem; (3) a new type of greedy force is proposed for the VRP, which,
in contrast with the existing ant methods for the VRP, favors clients located far
away from the depot (this augments the likelihood of a solution to be feasible);
(4) the performance of the best proposed metaheuristic is very encouraging, as
the average percentage gap is 3% with respect to the best-known results, and
new best results are provided for one benchmark instance. Future works include
the adaptation of the ant algorithm with personalities to other problems.
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