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Abstract We introduce an analysis framework for constructing optimal first-order
primal-dual methods for the prototypical constrained convex optimization tem-
plate. While this class of methods offers scalability advantages in obtaining nu-
merical solutions, they have the disadvantage of producing sequences that are only
approximately feasible to the problem constraints. As a result, it is theoretically
challenging to compare the efficiency of different methods. To this end, we rig-
orously prove in the worst-case that the convergence of primal objective residual
in first-order primal-dual algorithms must compete with their constraint feasibil-
ity convergence, and mathematically summarize this fundamental trade-off. We
then provide a heuristic-free analysis recipe for constructing optimal first-order
primal-dual algorithms that can obtain a desirable trade-off between the primal
objective residual and feasibility gap and whose iteration convergence rates cannot
be improved. Our technique obtains a smoothed estimate of the primal-dual gap
and drives the smoothness parameters to zero while simultaneously minimizing
the smoothed gap using problem first-order oracles.

Keywords: Model-based gap reduction technique; first-order primal-dual meth-
ods; augmented Lagrangian; smoothing techniques; separable convex minimiza-
tion; parallel and distributed computation.

1 Introduction

We propose a new primal-dual analysis framework for constructing optimal first-
order primal-dual methods in order to obtain numerical solutions to the following
constrained convex optimization template:

f? := min
x∈Rn

{f(x) : Ax− b ∈ K, x ∈ X} , (1)

where f : Rn → R ∪ {+∞} is a proper, closed and convex function; X ⊆ Rn and
K ⊂ Rm are nonempty, closed and convex sets; and A ∈ Rm×n and b ∈ Rm are
given. We assume that the domain X is “simple” so that it is easy to project.
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The template (1) provides a unified formulation for a broad set of applications
in various disciplines, see, e.g., [9,11,12,14,26,39,54]. Clearly, unconstrained prob-
lems can also be reformulated as (1) via splitting variables [10]. Moreover, it covers
standard convex optimization subclasses, such as conic programming, monotropic
programming, and geometric programming, as specific instances [7,8,10].

There are several reasons for our emphasis on first-order primal-dual methods
for (1), with the most obvious one being their scalability. Coupled with recent de-
mand for low-to-medium accuracy solutions in applications, these methods indeed
provide a critical trade-off between the complexity-per-iteration and the iteration-
convergence rate along with the ability to distribute and decentralize computation.

Unfortunately, the newfound popularity of primal-dual optimization has lead
to an explosion in the number of different algorithmic variants, each of which
requires different set of assumptions on problem settings or methods, such as
strong convexity, Lipschitz gradient, or penalty parameter tuning. As a result, the
optimal choice of the algorithm for a given application is often unclear as it is not
guided by theoretical principles, but rather trial-and-error procedures, which can
incur unpredictable computational costs.

To this end, we address the following key question in this paper: “Can we
construct heuristic-free, optimal first-order primal-dual methods?” The concept
of an optimal algorithm in the setting of (1) has been elusive since virtually all
methods produce primal sequences that are infeasible in the constraints of the
form Ax − b ∈ K. To overcome this challenge, we mathematically characterize
the best rates on the primal objective residual and the constraint feasibility gap
of algorithmic iterates and illustrate how they compete with each other, while
requiring the mild set of assumptions on the template (1). We then provide an
analysis recipe for constructing optimal first-order primal-dual algorithms in a
heuristic-free fashion whose convergence rates cannot be improved and which can
obtain desirable trade-offs in their worst-case iteration-complexity bounds.

1.1 The role of the primal-dual gap function

It is natural to expect the constraints to slow down a minimization process for the
primal optimality and not the constraint feasibility, and vice versa. To mathemat-
ically understand the basic issue, we need to study the primal-dual gap function
where the two quantities are entangled. For notational ease, let us consider here a
special case of (1) where K = 0. The primal-dual gap function G is then given by:

G(w) :=max
{
f(x)+〈Ax−b, ŷ〉 : ŷ ∈ Rm

}︸ ︷︷ ︸
f̄(x)

−min {f(x̂)+〈Ax̂−b, y〉 : x̂ ∈ X}︸ ︷︷ ︸
g(y)

, (2)

where w := (x, y) is the concatenated primal-dual variables; f̄ is the extended
function of f ; and g is the Lagrange dual function associated with (1).

The primal-dual gap function G is convex. Moreover, under strong duality (cf.,
Lemma 1), we have G(w?) = 0 if and only if w? = (x?, y?) is a primal-dual solution
of (1). Since the gap function G is generally nonsmooth but has a max-structure,
we can obtain a smoothed estimate using two smoothing functions px and py as:

Gγβ(w) := max
ŷ∈Rm

{f(x)+〈Ax−b, ŷ〉−βpy(ŷ)} −min
x̂∈X
{f(x̂)+〈Ax̂−b, y〉−γpx(x̂)} , (3)

where γ and β in R++ are two corresponding smoothness parameters. Note that if
we choose px(x̂) = 1

2‖x̂‖
2
2, then the dual solution can be computed by the proximal

operator of f + δX , where δX is the indicator function of X .
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With the smoothed gap setup in (3), we show (cf., Section 3) that there exists a
primal sequence {x̄k} ⊂ X and a dual sequence {ȳk} ⊂ Rm such that the following
inequalities for the smoothed gap, objective, and the feasibility hold:

Gγk+1βk+1
(w̄k+1) ≤ (1− τk)Gγkβk(w̄k) + ψk,

f(x̄k)− f? ≤ f(x̄k)− g(ȳk) = O(γk +Gγkβk(w̄k)),

‖Ax̄k − b‖2 = O(βk +
√
βk(γk +Gγkβk(w̄k))),

(4)

for any choices of βk and γk as long as γkβk = O
(
τ2
k

)
, where τk ∈ (0, 1) and

ψk = O(τk). Against intuition, it appears possible to obtain arbitrarily fast rates
via the choice of the rate-parameters βk and γk under a given gap reduction model.

Naturally, there exists lower complexity bounds for minimizing sequences, de-
pending on the chosen optimization oracles [31,33]. In the smoothed gap setting,
we rely only on first-order oracles, i.e., computational primitives based on matrix-
vector products involving A and AT and the proximal operators of f and f+δX . As
a result, without any further assumption on (1), it holds that f(x̄k)−g(ȳk) = Ω

(
1
k

)
,

which implies that τk = Ω
(

1
k

)
, γk = Ω

(
1
k

)
, and βk = Ω

(
1
k

)
, see [34,35].

1.2 Towards optimal first-order primal-dual methods: Model-based gap reduction.

We say that a first-order primal-dual algorithm is optimal if its primal objective
residual and feasibility gap convergence rates satisfy f(x̄k) − f? = O

(
1
k

)
and

dist
(
Ax̄k − b,K

)
= O

(
1
k

)
, where dist(·,K) measures the Euclidean distance to

the set K. Then, it remains to show that we can indeed construct optimal first-
order convex optimization methods. For this purpose, we introduce a model-based
gap reduction technique where the rate of parameters γk and βk in (4) plays an
interpretable role in minimizing the smoothed gap, following the model in (4).

To construct algorithms, we exploit the obvious correspondence between the
duality gap function G and its smoothed estimate Gγβ : The first max-term presents
an approximation to the primal objective f , and the second min-term provides an
approximation to the dual objective g. Depending on the choice of px and py,
we obtain different smoothed approximations and hence, we can develop differ-
ent algorithms for solving (1). Regarding the choice of smoothing functions, two
approaches stand out in the literature: (i) proximity smoothing, and (ii) barrier
smoothing [6,19,20,24,27,28,34,36,50,52,53,57]. In this work, we demonstrate our
results using the proximity smoothing technique [4,28,34,35,53].

With the smoothed gap setup in (3), we generate a primal-dual sequence {w̄k}
in X×Rm satisfying (4) with first-order oracles such that {Gγkβk(w̄k)} converges to
zero, while simultaneously decreasing the product {γkβk} to zero. Among various
strategies, we focus on the model-based gap reduction condition in (4) as well as its
monotone version where ψk ≤ 0 for all k ≥ 0. We then show that first-order oracle
information from (1) is sufficient to obtain τk = O

(
1
k

)
, and hence, the constructed

algorithms are optimal in the sense of black-box models [31,33].
Surprisingly, any attempt to trade-off between the rates of convergences for the

primal optimality and the feasibility worsens the overall convergence. Intriguingly,
we will show that there still exists a practical trade-off since it must hold that:

γkβk = Ω(τ2
k ). (5)

In the monotone gap-reduction model, in the light of (4), the condition (5) shows
how the primal objective residual of the iterates competes with their primal feasi-
bility gap by trading-off the values of the smoothness parameters.
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1.3 Scalable methods for (1) and their limitations.

Scalable numerical approaches for solving (1) are mainly based on penalty, aug-
mented Lagrangian, and other primal-dual (splitting) methods, depending on how
they process the linear inclusion constraint Ax− b ∈ K. In the sequel, we focus on
the special case K = 0 without loss of generality while reviewing the related work.

With the penalty methods, we can obtain low- or medium-accuracy solutions
when we augment the objective f with a simple penalty function, such as:

min
x∈Rn

{
f(x) + (ρ/2)‖Ax− b‖22 : x ∈ X

}
, (6)

where ρ > 0 is the penalty parameter. Penalty methods are widely used to solve
large-scale applications. However, they encounter difficulties in choosing the penalty
parameter, often resulting in numerical issues [39].

While penalty and augmented Lagrangian methods have a fundamental diffi-
culty in choosing the penalty parameter, their variants such as primal-dual split-
ting, AMA and ADMM methods enhance our computational capabilities and nu-
merical robustness since we can apply (accelerated) proximal gradient methods
or can split the computation, see, e.g., [2,15,25,44,46]. The scalability of these
numerical convex optimization algorithms typically rely on two key structures:

Structure 1: Decomposability. The constrained convex optimization problem (1)
is said to be N-decomposable if f and X can be represented as follows:

f(x) :=
N∑
i=1

fi(xi), and X :=
N∏
i=1

Xi, (7)

where xi ∈ Rni , Xi ∈ Rni , fi : Rni → R∪{+∞} is proper, closed and convex for i =

1, · · · , N , and
∑N
i=1 ni = n. Decomposability immediately supports parallel and

distributed implementations in synchronous hardware architectures. This structure
arises naturally in linear programming, network optimization, multi-stage models
and distributed systems and machine learning [9,10].

Structure 2: Proximal tractability. Unconstrained problems can still pose signif-
icant difficulties in numerical optimization when they include non-smooth terms.
However, many non-smooth problems (e.g., of the form (6)) can be solved nearly
as efficiently as smooth problems, provided that the computation of the proximal
operator is tractable [3,42,45]. By tractable proximal operator, we mean that the
following strongly convex problem can be solved “efficiently” (e.g., by a closed
form solution or by polynomial algorithms) for a given convex function h:

proxh(x) := argmin
{
h(z) + (1/2)‖z − x‖22 : z ∈ dom (h)

}
. (8)

It has been shown that many smooth and non-smooth functions support tractable
proximal operators [12,14,26,16,54]. Clearly, decomposability also proves useful
in the computation of (8). In our problem (1), we use the proximal operator of
h(·)← f(·) + δX (·), where δX is the indicator function of X .

On the basis of these structures, we can design algorithms featuring a full spec-
trum of (nearly) dimension-independent, global convergence rates for composite
convex minimization problems with well-understood analytical complexities [3,33,
38,37,51]. Unfortunately, several scalable first-order methods for (1) invariably
feature one or both of the following two limitations which blocks their full impact.
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Limitation 1: Non-ideal convergence characterizations. Ideally, the convergence
characterization of an algorithm for solving (1) must establish rates both on the
primal objective residual f(x̄k)− f? and the feasibility gap ‖Ax̄k − b‖ of its linear
constraints separately for its iterates x̄k ∈ X . The constraint feasibility is critical
so that the primal convergence rate has any significance. Rates on the gap function
associated with the optimality condition of (1) concerning the joint primal-dual
variables (x, y) are not necessarily meaningful at intermediate iterates since (1)
is a constrained problem and f(x̄k) − f? can easily be negative at all times as
compared to the unconstrained setting where we trivially have f(x̄k)− f? ≥ 0.

The convergence results of several existing methods are far from ideal. Most
algorithms have guarantees in the ergodic sense (i.e., on the averaged history of it-
erates) [13,22,23,41,47,55] with non-optimal rates, which diminishes the practical
performance; they rely on special function properties to improve convergence rates
on the function and feasibility [40,41], which reduces the scope of their applicabil-
ity; they provide rates on dual functions [21], or a weighted primal residual and
feasibility score [47], which does not necessarily imply convergence on the abso-
lute value of the primal residual or the feasibility; or they obtain convergence rate
on the gap function value sequence composed both the primal and dual variables
via variational inequality and gap function characterizations [13,22,23], where the
rate is scaled by a diameter parameter which is not necessary bounded.1

Limitation 2: Computational inflexibility. Recent theoretical developments cus-
tomize algorithms to exploit special function classes for scalability. When the
model parameters are known a priori, this strategy is sensible. Unfortunately,
specialized algorithms often require knowledge of function class parameters even
if they are not known, and hence do not address the full scope of (1) (e.g., with
self-concordant functions or fully non-smooth decompositions). Moreover, they
often have complicated algorithmic implementations with backtracking steps to
compute some of these parameters, which create computational bottlenecks.

1.4 Our contributions

To this end, the main contributions of this paper can be summarized as follows:

(a) We identify optimal rates of convergence for the objective residual and the
feasibility gap in first-order primal-dual methods.

(b) We introduce a new model-based gap reduction condition for constructing op-
timal first-order primal-dual methods that can operate in a black-box fashion.
Our analysis technique unifies several existing concepts in convex optimiza-
tion, from Auslander’s gap function and Nesterov’s smoothing technique to
the accelerated proximal gradient descent method.

(c) We illustrate the new techniques enable us to exploit additional structures,
including augmented Lagrangian smoothing, strongly convex or Lipschitz con-
tinuous gradient of the objectives.

(d) We show the flexibility of our framework applying to different constrained
settings including conic programs.

Let us emphasize some key aspects of this work in detail. First, our character-
ization is radically different from existing results such as in [5,13,17,22,23,41,
47] thanks to the separation of the convergence rates for primal optimality and

1 We refer to the standard ADMM (see, e.g., [10]) and not the parallel ADMM variant or
multi-block ADMM, which can have convergence guarantees given additional assumptions.
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the feasibility. We believe this is important since the separate constraint feasi-
bility guarantee can act as a consensus rate in distributed optimization. Second,
our assumptions cover a much broader class of problems, we can trade-off primal
optimality and constraint feasibility without any heuristic strategy, and our con-
vergence rates cannot be improved. Third, our augmented Lagrangian algorithm
generates simultaneously both the primal-dual sequence compared to existing aug-
mented Lagrangian algorithms, while maintains its O

(
1
k2

)
-optimal convergence

rate both on the objective residual and on the feasibility gap. Forth, we also de-
scribe how to adapt known structures on the objective and constraint components,
such as strong convexity, Lipschitz gradient objectives and component full-column
ranks. Fifth, this work significantly expands on our earlier conference work [48]
not only with new methods but also by demonstrating the impact of warm-start.
Finally, our follow up work [49] also demonstrates how our analysis framework and
uncertainty principles extend to cover alternating direction optimization methods.

Remark 1 For the ease of notation, we focus on (1) when K = 0 until Section 7. We
also keep only short proofs in the main text and move the rest to the appendix.

1.5 Paper organization

Next section recalls preliminary concepts for convex analysis, and introduce a
mixed-variational inequality formulation of (1). In Section 3, we propose a smooth-
ing technique with proximity functions for (1) to estimate the primal-dual gap. We
also investigate the properties of smoothed gap function and introduce the model-
based gap reduction condition. Section 4 presents the first primal-dual algorithmic
framework using accelerated (proximal-) gradient schemes for solving (1) and its
convergence theory. Sections 5 and 6 provides the second primal-dual algorithmic
framework using averaging sequences for solving (1) and its convergence theory.
Section 7 specifies different instances of our algorithmic framework for (1) under
other common optimization structures and removes the assumption K = 0.

2 Preliminaries

This section recalls some basic notation, the primal-dual formulation for (1), and
a variational inequality characterization of the optimality condition of (1).

2.1 Notation

Given a proper, closed, and convex function f , we use dom (f) and ∂f(x) to denote
its domain and its subdifferential at x. If f is differentiable, then we use ∇f(x) for
its gradient at x. We call the function f smooth if its gradient ∇f exists at any
point in dom (f) and ∇f is continuous in dom (f).

We denote by f∗(s) := sup {〈s, x〉 − f(x) : x ∈ dom (f)}, the Fenchel conjugate
of f . For any x ∈ Rn, we define ‖x‖ the norm of x, and ‖s‖∗ := max {〈s, x〉 : ‖x‖ ≤ 1}
the dual norm of s. For a given set X , δX (x) := 0 if x ∈ X and δX (x) := +∞,
otherwise, denotes the indicator function of X . We use ‖x‖2 for the Euclidean
norm. For simplicity of our presentation, we directly work with the Euclidean
norm or the weighted Euclidean throughout this paper.

For a smooth function f , we say that f is Lf -Lipschitz gradient if for any
x, x̃ ∈ dom (f), we have ‖∇f(x)−∇f(x̃)‖∗ ≤ Lf‖x− x̃‖, where L(f) := Lf ∈ [0,∞).

We denote by F1,1
L the class of all convex functions f with Lf -Lipschitz gradient.

We also use µf ≡ µ(f) for the strong convexity parameter of a convex function f .
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2.2 Optimality condition

Primal-dual formulation: Let us define the Lagrange function associated with the
linear constraint Ax− b = 0 as L(x, y) := f(x) + 〈y,Ax− b〉. The min-max problem
associated with the Lagrange function L is defined as follows:

g? = max
y∈Rm

g(y) = max
y∈Rm

min
x∈X
L(x, y) ≤ min

x∈X
f̄(x) = f?, (9)

where g is the dual function and f̄ is the extension of f over Rn:

g(y) := inf{L(x, y) := f(x) + 〈Ax− b, y〉 : x ∈ X}, (10)

f̄(x) := sup
y∈Rm

L(x, y) =

{
f(x) if Ax = b;

+∞ otherwise.
(11)

Let us denote by X ? the optimal solution set of (1). If X ? is nonempty, then the
optimal value f? of (7) is finite. We define the Lagrange dual problem of (1) as:

g? := max
{
g(y) : y ∈ Rm

}
. (12)

In this case, we refer to (1) and (12) as the primal-dual problems. We note that
g is proper if {x ∈ X : Ax = b} ∩ dom (f) 6= ∅. We denote by dom (g) its domain.
Clearly, under the decomposable structure (7), we can write the dual function as:

g(y) :=
N∑
i=1

gi(y), with gi(y) := inf{fi(xi) + 〈Aixi − bi, y〉 : xi ∈ Xi}. (13)

Hence, the evaluation of g can be computed in parallel under decomposability.

Optimality condition: We can write the optimality condition or Karush-Kuhn-
Tucker (KKT) condition of (1) and (12) as follows:{

0 ∈ ∂f(x?) +AT y? +NX (x?) ≡ ∂xL(x?, y?) +NX (x?)
0 = Ax? − b ≡ ∂yL(x?, y?),

(14)

where NX (x?) is the normal cone of X at x?. Any point w? := (x?, y?) satisfying
(14) is called a KKT point of (1). We denote by W? the set of KKT points. Then
W? = X ? × Y?, where X ? is the set of stationary points x?, and Y? is the set of
corresponding multipliers y?.

Fundamental assumptions: In order to show the relationship between the primal
problem (1) and its dual one (12), we require the following assumptions.

Assumption A. 1 The constraint domain X and the solution set X ? of (1) are

nonempty. The function f is proper, closed and convex. In addition, either X is a

polytope or the following Slater condition holds:{
x ∈ Rn : Ax− b = 0

}
∩ ri(X ) 6= ∅, (15)

where ri(X ) is the relative interior of X .

Under Assumption A.1, the dual problem (12) is feasible. Moreover, its solution set
Y? is nonempty and bounded. The KKT condition (14) is necessary and sufficient
for w? = (x?, y?) to be an optimal solution of (1) and (12). Throughout this paper,
we assume that Assumption A.1 holds.
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Approximate solutions: For any optimal solution x? ∈ X ?, we have f(x?) = f? = 0,
x? ∈ X and ‖Ax?−b‖ = 0. Our goal in this paper is to design primal-dual algorithms
that produce an approximation x?ε to x? ∈ X ? in the following sense:

Definition 1 Given a target accuracy ε ≥ 0, a point x?ε ∈ X is said to be an
ε-solution of (1) if f(x?ε)− f? ≤ ε and ‖Ax?ε − b‖ ≤ ε.

For clarity and without loss of generality, we will work with K = 0 in the sequel
and then illustrate the algorithmic changes for the general case. As a result, the
approximate feasibility takes the form ‖Ax?ε − b‖ ≤ ε. Moreover, we assume in
Definition 1 that x?ε ∈ X , i.e., x?ε is exactly feasible to X . This requirement is
reasonable in practice since X is usually “simple,” where the projection onto X
can be computed efficiently, e.g., when X is a box, a simplex or a cone constraint.
Note that we can also use different accuracy levels for the absolute primal objective
residual f(x?ε) − f? ≤ ε1 and the primal feasibility gap ‖Ax?ε − b‖ ≤ ε2. We also
note (see Lemma 3) that f(x) − f? ≥ ‖y?‖∗‖Ax − b‖ for any y? ∈ Y? and x ∈ X ,
which guarantees the lower bound of the objective residual f(x)− f?.

2.3 Mixed-variational inequality formulation and its gap function

Mixed-variational inequality: Let w := (x, y) ≡ (xT , yT )T ∈ Rn×Rm be the primal-
dual variable, W := X × Rm be the primal-dual domain, and F (w) := [AT y, b −

Ax] ≡
(

(AT y)T , (b−Ax)T
)T

be the partial KKT mapping. Then, (14) can be

reformulated into the following mixed-variational inequality (MVIP) [18]:

f(x)− f(x?) +
〈
F (w?), w − w?

〉
≥ 0, ∀w ∈ W. (16)

Finding a point w? ∈ W such that (16) holds is equivalent to solving the primal-
dual problems (1)-(12).

Gap function: If we define the bifunction B(w, w̃) := f(x)− f(x̃) + 〈F (w), w − w̃〉 =
f(x)− f(x̃)− 〈Ax̃− b, y〉+ 〈Ax− b, ỹ〉, then B(w,w) = 0 for all w ∈ W. Let

G(w) := max {B(w, w̃) : w̃ ∈ W} ≡ max
ỹ∈Rm

L(x, ỹ)−min
x̃∈X
L(x̃, y) ≡ f̄(x)− g(y), (17)

be the Auslender gap function of (16) [1]. Then, the following result is standard
in convex optimization due to the weak and strong duality theory.

Lemma 1 The gap function G defined by (17) is nonnegative onW, i.e., G(w) ≥ 0 for

all w ∈ W. Moreover, G(w?) = 0 if and only if w? = (x?, y?) ∈ W? is a primal-dual

solution of (1) and (12).

Clearly, the non-negativity of G is due to the weak duality theorem, and the second
condition holds due to the strong duality theorem. In general, the gap function G

is nonconvex and nonsmooth [43]. Fortunately, in the setting (1), G is convex, but
is possibly nonsmooth and may take infinite values.

3 Smoothing the gap function via proximity functions

In this section, we provide a smooth approximation of the gap function G and
prove key properties of this approximation.
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3.1 Proximity functions and Bregman distances

Proximity functions: Given a nonempty, closed and convex set Z, a continuous,
and strongly convex function p with the convexity parameter µp > 0 is called a
proximity function (or prox-function) of Z if Z ⊆ dom (p). We also denote by:

z̄c := argmin {p(z) : z ∈ dom (p)} , (18)

the prox-center of p. Without loss of generality, we assume that µp = 1 and p(z̄c) =
0. For example, pZ(z) := (1/2)‖z‖22 is the simplest prox-function in Rnz .

Given a prox-function p, if p ∈ F1,1
L , then its conjugate p∗ is strongly convex

with the convexity parameter µp∗ = L−1
p due to the Baillon-Haddad’s theorem [2].

We denote by s̄c the prox-center of p∗. It is clear that p∗(s̄c) = −p(0). Moreover,
∇p∗ ∈ F1,1

L with the Lipschitz constant Lp∗ = 1.

Bregman distances: Given a smooth prox-function p defined on Z with the convex-
ity parameter µp = 1 and p(z̄c) = 0, we define the following Bregman distance:

dp(u, v) := p(u)− p(v)− 〈∇p(v), u− v〉, ∀u, v ∈ Z. (19)

Clearly, dp(u, z̄
c) = p(u), and dp(u, v) ≥ 1

2‖u − v‖
2 for any u, v ∈ Z. In addition,

if p is Lipschitz continuous with the Lipschitz constant Lp ≥ 1, then dp(u, v) ≤
Lp
2 ‖u − v‖2 for any u, v ∈ Rq. If p(u) := 1

2‖u‖
2
2, then dp becomes the standard

Euclidean distance.

3.2 Smoothed primal-dual gap function

The gap function G defined in (17) is convex but generally nonsmooth. We now
introduce a smoothed primal-dual gap function that approximates G.

Smoothing functions: Let IN := {1, · · · , N} be the index set of components corre-
sponding to the structure (7). We first decompose IN into two subsets:

I1 ⊆ IA :=
{
i ∈ IN : λmin(ATi Ai) ≥ σ

2
i > 0

}
, and Ī1 := IN\I1, (20)

where λmin(·) is the smallest eigenvalue. We allow I1 to be empty.
For each i ∈ IN , we choose a prox-function pi ∈ F1,1

L , which is 1-strongly
convex and its gradient is Lipschitz continuous with Lpi > 0 on its corresponding
domain. We define the prox-function of X and the constant L̄i, respectively as:

px(Ax) :=
∑
i∈I1

pi(xi) +
∑
i∈Ī1

pi(Aixi) and L̄i :=

{
L̄Ai i ∈ I1
1 i ∈ Ī1,

(21)

where L̄Ai := λmax(ATi Ai) is the largest eigenvalue of ATi Ai. Clearly, we have:

1

2

∑
i∈I1

‖xi − x̄ci‖
2 +

1

2

∑
i∈Ī1

‖Ai(xi − x̄ci )‖
2 ≤ px(Ax)

≤ 1

2

∑
i∈I1

L̄Ai‖xi − x̄
c
i‖

2 +
1

2

∑
i∈Ī1

‖Ai(xi − x̄ci )‖
2.

We also choose py ∈ F1,1
L a prox-function defined on Rm for the dual problem. For

given two positive smoothness parameters γ and β, we consider the function:

pγβ(w) := γpx(Ax) + βpy(y). (22)

We call pγβ a smoother, or a regularizer, for the gap function G.
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The smoothed primal-dual gap function: For given pγβ defined by (22), we consider
an approximation of f and g, respectively as follows:

gγ(ȳ) := min
x∈X
{f(x) + 〈Ax− b, ȳ〉+ γpx(Ax)} ,

fβ(x̄) := max
y∈Rm

{f(x̄) + 〈Ax̄− b, y〉 − βpy(y)} .
(23)

The smoothed primal-dual gap (or the smoothed gap) function of G is defined as:

Gγβ(w̄) := fβ(x̄)− gγ(ȳ). (24)

Clearly, Gγβ is an approximation of G as γ and β approach to zero.

The evaluation of smoothed gap function: To evaluate fβ and gγ , we need to solve
the following two convex subproblems w.r.t. x̄ and ȳ, respectively:

x∗γ(ȳ) := argmin
x∈X
{f(x) + 〈ȳ, Ax− b〉+ γpx(Ax)} ,

y∗β(x̄) := arg max
y∈Rm

{〈Ax̄− b, y〉 − βpy(y)} = ∇p∗y
(
β−1(Ax̄− b)

)
.

(25)

We denote by w∗γβ(w̄) := (x∗γ(ȳ), y∗β(x̄)) ∈ W. While y∗β(x̄) can be computed ex-
plicitly as in (25), the computation of x∗γ(ȳ) can be split into N subproblems due
to the decomposability of f and X in (7), i.e.,

x∗γ,i(ȳ) :=


arg min

xi∈Xi
{fi(xi) + 〈y,Aixi−bi〉+ γpi(xi)} , i ∈ I1,

arg min
xi∈Xi

{fi(xi) + 〈y,Aixi−bi〉+ γpi(Aixi)} , i ∈ Ī1.
(26)

As a result, gγ becomes gγ(ȳ) :=
∑N
i=1 g

i
γ(ȳ) with

giγ(ȳ) :=


min
xi∈Xi

{fi(xi) + 〈y,Aixi−bi〉+ γpi(xi)} , i ∈ I1,

min
xi∈Xi

{fi(xi) + 〈y,Aixi−bi〉+ γpi(Aixi)} , i ∈ Ī1.
(27)

Alternatively, the function fβ defined by (23) can be computed explicitly as:

fβ(x̄) = f(x̄) + βp∗y
(
β−1(Ax̄− b)

)
:= f(x) + p̄β(x). (28)

In practice, we prefer to choose py such that the computation of y∗β(x̄) in (25) is

cheap. For example, if we select py(y) := (1/2)‖y‖22, then ∇py ∈ F1,1
L with Lpy = 1,

and p∗y(v) = (1/2)‖v‖2∗ = (1/2)‖v‖22. Moreover, y∗β(x̄) computed by (25) reduces to

y∗β(x̄) := β−1(Ax̄− b).
The diameter of domain: We define the following diameter of the domain X :

DX :=
N∑
i=1

DXi , where DXi :=

{
sup {pi(xi) : xi ∈ Xi} i ∈ I1
sup {pi(Aixi) : xi ∈ Xi} i ∈ Ī1.

(29)

For designing algorithms, we summarize our technical assumptions as follows:

Assumption A. 2 For each i ∈ IN , the prox-function pi is 1-strongly convex and

smooth, and its gradient is Lipschitz continuous with the Lipschitz constant Lpi ≥ 1.

The prox-function py is also 1-strongly convex and smooth, and its gradient is Lipschitz

continuous with the Lipschitz constant Lpy ≥ 1. For each i ∈ IN , DXi defined by (29)
is bounded, i.e., DXi ∈ [0,+∞).
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Our default choice of pi as well as py is the quadratic prox-function p(·) := 1
2‖ ·

‖2, with Lp = 1. Clearly, if Xi is bounded, then DXi is also bounded. Hence, if
DXi is bounded for all i ∈ IN , then DX is also bounded. We also assume that
Assumption A.2 holds in the sequel.

The properties of smoothed objectives: The smoothed components giγ defined by (27),
and fβ defined by (28) satisfy the following properties (cf., Appendix A.1.2):

Lemma 2 For i ∈ IN , the function giγ(·) defined by (26) is concave and smooth on

Rm. Its gradient is given by ∇giγ(·) := Aix
∗
γ,i(·) − bi, which is Lipschitz continuous

with the Lipschitz constant Lgiγ := γ−1L̄i, where L̄i is defined by (21). Consequently,

for all y, ȳ ∈ Rm, the following estimates hold:

0 ≤ giγ(ȳ) + 〈∇giγ(ȳ), y − ȳ〉 − giγ(y) ≤
Lgiγ

2 ‖y − ȳ‖
2,

giγ(y) ≤ giγ(ȳ) + 〈∇giγ(ȳ), y − ȳ〉 − 1
2Lgiγ

‖∇giγ(y)−∇giγ(ȳ)‖2∗.
(30)

For ȳ ∈ Rm and γ > 0 and gi defined by (13), giγ satisfies the following estimate:

giγ(ȳ)− γDXi ≤ g
i(ȳ) ≤ giγ(ȳ). (31)

For fixed ȳ ∈ Rm, the function giγ(ȳ) is nondecreasing, concave and differentiable in

R++ w.r.t. γ. Moreover, for γ and γ̄ in R++, we have

giγ(ȳ) ≤ giγ̄(ȳ) + (γ − γ̄)p̄∗i , where p̄∗i :=

{
pi(x

∗
γ̄,i(ȳ)) if i ∈ I1,

pi(Aix
∗
γ̄,i(ȳ)) if i 6∈ I1,

(32)

and x∗γ̄,i(ȳ) is defined by (26).

Consequently, gγ :=
∑N
i=1 g

i
γ is also concave and smooth. Its gradient ∇gγ(y) =

Ax∗γ(y) − b is Lipschitz continuous with the Lipschitz constant Lgγ := γ−1L̄g, where

L̄g :=
∑N
i=1 L̄i. Moreover, the estimates (30), (31) and (32) also hold for gγ .

Alternatively, let fβ and p̄β be defined by (28). Then, p̄β is convex and smooth, its

gradient is Lipschitz continuous with the Lipschitz constant Lp̄β := ‖A‖2
β . Moreover,

we have

fβ(x) ≥ fβ̄(x) + (β̄ − β)py(y∗
β̄
(x)),

p̄β(x) ≥ p̄β(x̂) + 〈∇p̄β(x̂), x− x̂〉+ 1
2Lpyβ

‖A(x− x̂)‖2,
(33)

for β, β̄ ∈ R++ and x, x̂ ∈ X .

Since gγ defined by (23) is concave and smooth, and its gradient is Lipschitz
continuous, we can in principle apply the accelerated gradient scheme in [33] to
solve the following smoothed dual problem:

g?γ := max
{
gγ(y) : y ∈ Rm

}
. (34)

Then, we can obtain the O
(

1
ε

)
-worst-case complexity in terms of the dual objective

residual g(ȳk)− g? as in [35]. We can also use an averaging scheme to recover the
primal solution as in [29,56]. However, as a disadvantage, such schemes fix a priori

the smoothness parameter γ at γ := O
(

ε
DU

)
, which is too restrictive.
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3.3 An estimate for the objective residual and primal feasibility gap

The following lemma provides a fundamental estimate on the bounds of f(x̄k)−f?
and ‖Ax̄k − b‖. For clarity of exposition, we move this proof to Appendix A.1.3.

Lemma 3 Let gγ and fβ and Gγβ defined by (23) and (24), respectively. Then, for

any y? ∈ Y? and x ∈ X , one has

− ‖y?‖∗‖Ax− b‖ ≤ f(x)− f? ≤ f(x)− g(y). (35)

Let {w̄k} be a primal-dual sequence in W, and {(γk, βk)} be a smoothness parameter

sequence in R2
++. Then, we have f(x̄k)− g(ȳk) ≤ Sk := Gγkβk(w̄k) + γkDX + βkpy(0),

‖Ax̄k − b‖ ≤ βk
[
c̄? +

√
c̄2? +

(
2Lpyβ

−1
k Sk − ‖s̄c‖2

)]
,

(36)

where c̄? := ‖Lpyy? − s̄c‖∗, provided that c̄? + 2Lpyβ
−1
k Sk − ‖s̄c‖2 ≥ 0.

In particular, if we choose py(y) := 1
2‖y‖

2
2, then: f(x̄k)− g(ȳk) ≤ Ḡk + γkDX

‖Ax̄k − b‖2 ≤ 2βkDY? +
√

2βk
(
Ḡk + γkDX

)
,

(37)

where Ḡk := Gγkβk(w̄k) and DY? := min {‖y?‖2 : y? ∈ Y?} is the norm of minimum

norm dual solutions.

The estimates (35), (36) and (37) are independent of optimization methods using

to construct
{
w̄k
}

. However, their convergence guarantee depends on the smooth-

ness parameters γk and βk. Hence, the convergence rate of the objective residual
|f(x̄k)− f?| and feasibility gap ‖Ax̄k − b‖ depends on the rate of {(γk, βk)}.

3.4 Descent models for the smoothed gap function

Our goal is to generate a primal-dual sequence
{
w̄k
}
⊆ W and a smoothness

parameter sequence {(γk, βk)} ⊆ R2
++ so that

{
Gγkβk(w̄k)

}
converges to 0+, where

Gγkβk(·) is defined by (24). To achieve this goal, we propose to use the following
model imposing on Gγβ in order to design algorithms in the next sections:

Definition 2 The primal-dual sequence {w̄k} ⊆ W and the smoothness parameter
sequence {(γk, βk)} ⊆ R2

++ are said to satisfy the model-based gap reduction (MGR)
condition on Gγβ if the following inequality is satisfied

Gγk+1βk+1
(w̄k+1) ≤ (1− τk)Gγkβk(w̄k) + ψk, (38)

where τk ∈ (0, 1),
∑∞
i=0 τk =∞, and limk→∞ ψk = 0.

In this definition, we have not specified convergence properties of the parame-
ter sequences {τk} and {ψk}. However, as mentioned previously, we can obtain
a monotone or a non-monotone model by appropriately choosing the augmented
term ψk. If we chose ψk ≤ 0, then we obtain a monotone model, while if ψk > 0,
we deal with a nonmonotone model.

With the monotone model, i.e., ψk ≤ 0, by induction, we can derive from (38)

that Gγkβk(w̄k) ≤ ωkGγ0β0
(w̄0), where ωk :=

∏k−1
i=0 (1−τi). Hence, the convergence
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rate of
{
Gγkβk(w̄k)

}
is upper bounded by the convergence rate of {ωk}. We also

note that if we alternatively update one of two parameters γk and βk, then our
monotone model covers Nesterov’s excessive gap technique in [34] as a special case.

With the non-monotone model, one can upper bound ψk by ψk ≤ (1− τk)Rk −
Rk+1 for a given sequence {Rk}. Then, we can write this model as Gγk+1βk+1

(w̄k+1)−
Rk+1 ≤ (1− τk)

[
Gγkβk(w̄k)− Rk

]
. Hence, Gγkβk(w̄k) ≤ Rk + ωk

[
Gγ0β0

(w̄0)− R0

]
.

Clearly, the convergence rate of
{
Gγkβk(w̄k)

}
is upper bounded by the convergence

rate of the two sequences {ωk} and {Rk}. In particular, if Gγ0β0
(w̄0) ≤ R0, then

Gγkβk(w̄k) ≤ Rk, which shows that Gγkβk(w̄k) is upper bounded by Rk.
Several primal-dual methods can be developed to maintain (38). In the next

sections, we demonstrate three primal-dual schemes based on our MGR technique.

4 The accelerated primal-dual gap reduction algorithm

Our goal is to design a new scheme for updating the primal-dual sequence
{
w̄k
}

and the parameter sequence {(γk, βk)} that maintain the MGR condition (38).

4.1 The accelerated smoothed-gap reduction scheme

Our new scheme builds upon Nesterov’s acceleration idea [32,33]. At each iter-
ation, we apply an accelerated (proximal-)gradient step to minimize fβ , while it
maximizes gγ . Since fβ(·) = f(·) + βp∗y(β−1(A · −b)) is nonsmooth, we use the
proximal-operator of fX := f + δX to generate a proximal-gradient step. Alterna-
tively, since gγ is smooth and has Lipschitz gradient, we can use its gradient. As
a key feature, we must update the parameters γk and βk simultaneously at each
iteration, which is different from existing methods.

Let w̄k := (x̄k, ȳk) ∈ W and w̃k := (x̃k, ỹk) ∈ W be given. The Accelerated

Smoothed GAp ReDuction (ASGARD) scheme generates a new primal-dual point
w̄k+1 := (x̄k+1, ȳk+1) as:

ŵk := (1− τk)w̄k + τkw̃
k

x̄k+1 := proxL̄−1
A βk+1fX

(
x̂k − L̄−1

A βk+1A
T y∗βk+1

(x̂k)
)
,

ȳk+1 := ŷk + L̄−1
g γk+1

(
Ax∗γk+1

(ŷk)− b
)
,

w̃k+1 := w̃k − τ−1
k

(
ŵk − w̄k+1

)
,

(ASGARD)

where τk ∈ (0, 1], βk+1 > 0 and γk+1 > 0 will be determined in the sequel. The

constants L̄g :=
∑N
i=1 L̄i and L̄A := ‖A‖2 are defined as in the previous section.

The ASGARD scheme requires one solution x∗γk+1
(ŷk) of the primal subproblem

in (25), and one dual solution y∗βk+1
(x̄k) at the second line of (25). In addition, it

requires a proximal step of fX . Computing x∗γk+1
(ŷk) as well as this proximal step

can be implemented in parallel using the decomposition structure (7).
The following lemma shows that w̄k+1 updated by (ASGARD) maintains the

MGR condition (38), whose proof can be found in Appendix A.2.1.

Lemma 4 Let w̄k+1 := (x̄k+1, ȳk+1) be updated by (ASGARD). Let ĉ and L̄g be the

two constants defined by:

ĉ1 := max

{
L2
py ,max

i∈I1

{
Lpi L̄Ai
σ2
i

}
,max
i 6∈I1

{Lpi}
}
, and L̄g :=

N∑
i=1

L̄i, (39)
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where σ2
i is given in (20), and L̄Ai and L̄i are defined by (21). Then, if τk ∈ (0, 1],

βk > 0 and γk > 0 are chosen such that:

γ0βk = β0γk, and

(
1 +

τk
ĉ1

)
γk+1 ≥ γk, (40)

then w̄k+1 ∈ W and satisfies the MGR condition (38) with:

ψk :=
τ2
k

γk+1

{
γ0L̄A
2β0

[
‖ỹk−y?‖2−‖ỹk+1−y?‖2

]
+
L̄g
2

[
‖x̃k−x?‖2−‖x̃k+1−x?‖2

]}
. (41)

In addition, if (1− τk)τ2
k−1γk+1 ≤ τ2

kγk, then:

Gk(w̄k) ≤ Gk(w̄k) +
τ2
k

(1−τk)γk+1
E∗k≤

τ2
k

(1−τk)γk+1

[
(1−τ0)γ0

τ2
0

G0(w̄k)+E∗0

]
, (42)

where E∗k := γ0L̄A
2β0
‖ỹk − y?‖2 +

L̄g
2 ‖x̃

k − x?‖2.

4.2 Updating parameters

Next, using Lemma 4, we can develop the rules for updating τk, βk, and γk so that
the conditions in (40) and (1 − τk)τ2

k−1γk+1 ≤ τ2
kγk hold. One way of updating

these parameters is presented in the following lemma, whose proof can be found
in Appendix A.2.2.

Lemma 5 Let c̄1 := max {2, ĉ1} ≥ 2, where ĉ1 is defined by (39). Then, the parame-

ters τk, βk, and γk updated by:

τk :=
c̄1

k + c̄1
, γk :=

c̄1γ0

k + c̄1
and βk :=

β0

γ0
γk, (43)

satisfy the conditions (40) and (1− τk)τ2
k−1γk+1 ≤ τ2

kγk in Lemma 4, and τ0 = 1. In

addition, the convergence rate of {τk} is optimal.

Lemma 5 only provides one possibility for updating the parameters τk, βk
and γk. However, they can exactly be updated from the conditions of Lemma 4.
Indeed, we update τk by taking the positive real solution of the cubic equation
ĉ−1
1 τ3 +τ2 +τ2

k−1τ−τ
2
k−1 = 0; then, compute γk+1 := γk

1+τk/ĉ1
, and βk+1 := β0

γ0
γk+1.

We note that, if we do not choose τ0 = 1, then the convergence guarantee for
(ASGARD) depends on the value Gγ0β0

(w̄0). The values β0 and γ0 can arbitrarily

by chosen such that they trade off the primal objective residual f(x̄k) − f? and
the feasibility gap ‖Ax̄k − b‖. The initial point (x̄0, ȳ0) ∈ W can also be chosen
arbitrarily, while setting x̃0 := x̄0 and ỹ0 := ȳ0.

4.3 The primal-dual algorithmic template

Similar to the accelerated scheme [3,32], we eliminate (x̃k, ỹk) in (ASGARD) as:{
x̂k+1 := x̄k+1 + ρk(x̄k+1 − x̄k)

ŷk+1 := ȳk+1 + ρk(ȳk+1 − ȳk),

where ρk := (1−τk)τk+1

τk
. If we choose τk as (43), then ρk = k+c̄−1

k+c̄+1 . Now, we com-
bine all the ingredients presented previously and this step to obtain the complete
primal-dual algorithmic template for solving (1) as shown in Algorithm 1.
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Algorithm 1 (Accelerated Smoothed GAp ReDuction (ASGARD) algorithm)

Initialization:

1: Choose γ0 > 0 and β0 > 0 arbitrarily, and set τ0 := 1 and c0 := β0

γ0
.

2: Choose (x̄0, ȳ0) ∈ W arbitrarily, and set x̂0 := x̄0 and ŷ0 := ȳ0.
3: Compute ĉ1 and L̄g as in (39), and set c̄1 := max {2, ĉ1}.

For k = 0 to kmax, perform:

4: Update the parameters: τk := c̄1
k+c̄1

, γk+1 := c̄1γ0

k+c̄1
and βk+1 := c0γk+1.

5: Compute x∗γk+1
(ŷk) by (25) in parallel, and y∗βk+1

(x̂k) by (25).

6: Update the primal step x̄k+1 in parallel using the prox of fX as:

x̄k+1 := proxL̄−1
A βk+1fX

(
x̂k − L̄−1

A βk+1A
T y∗βk+1

(x̂k)
)
.

7: Update the dual step ȳk+1 as ȳk+1 := ŷk + L̄−1
g γk+1

(
Ax∗γk+1

(ŷk)− b
)
.

8: Compute ρk := τ−1
k (1− τk)τk+1, then update the primal and dual vectors:

x̂k+1 := x̄k+1 + ρk(x̄k+1 − x̄k) and ŷk+1 := ȳk+1 + ρk(ȳk+1 − ȳk).

End for

The computationally heavy steps of Algorithm 1 are given by Steps 5, 6, and
7. At Step 5, we need to compute x∗γk+1

(ŷk), which requires to solve the primal
subproblem in (25) once. This computation can be implemented in parallel using
the structure (7). In addition, y∗βk+1

(x̂k) at Step 5 needs a matrix-vector multi-
plication Ax. At Step 6, it requires one proximal-step on fX , which can also be
implemented in parallel. For this step, we also need one adjoint matrix-vector mul-
tiplication AT y. Step 7 demands only one matrix-vector multiplication Ax. We
also note that the computation of x∗γk+1

and y∗βk+1
at Step 5 is independent, which

can be performed separately. Similarly, the update of x̄k+1 and ȳk+1 at Steps 6
and 7 can also be exchanged.

4.4 Convergence analysis

Under Assumption A.1, the dual solution set Y? of (12) is nonempty and bounded.
Hence, DY? defined in Lemma 3 satisfies DY? ∈ [0,+∞). The following theorem
shows the convergence of Algorithm 1, which is proved in Appendix A.2.3.

Theorem 1 Let
{
w̄k
}

be the sequence generated by Algorithm 1. Then:
f(x̄k)−f? ≤ c̄1(k+c̄1+1)R2

0

γ0k(k+c̄1) + c̄1γ0

(k+c̄1)

(
DX + β0

γ0
py(0)

)
,

‖Ax̄k−b‖ ≤ c̄β0

(k+c̄1)

[
c̄? +

√
c̄2? + 2Lpy

(
(c̄1+2)R2

0

γ0β0
+ γ0

β0
DX+py(0)

)
−‖s̄c‖2

]
,

(44)

where c̄? := ‖Lpyy? − s̄c‖∗, and R2
0 := γ0L̄A

2β0
‖ȳ0 − y?‖2 +

L̄g
2 ‖x̄

0 − x?‖2 and DX is

given in (29).

If we choose py(·) := 1
2‖ · ‖

2
2, then we have:

f(x̄k)− f? ≤ c̄1(k+c̄1+1)R2
0

γ0k(k+c̄1) + c̄1γ0

(k+c̄1)DX ,

‖Ax̄k − b‖2 ≤ β0c̄1
(k+c̄1)

[
2DY? +

√
2
(

(c̄1+2)R2
0

γ0β0
+ γ0

β0
DX

)]
.

(45)
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Note that −DY?‖Ax̄k − b‖ ≤ −‖y?‖∗‖Ax̄k−b‖ ≤ f(x̄k) − f? for any x̄k ∈ X and

y? ∈ Y?. As a consequence, then the worst-case iteration-complexity of Algorithm 1 to

achieve an ε-primal solution x̄k for (1) in the sense of Definition 1 is O
(

1
ε

)
.

The choice of γ0 in Theorem 1 trades off between R2
0 and DX on the primal

objective residual f(x̄k) − f?, while the choice of β0 trades off the feasibility gap
‖Ax̄k − b‖. One limitation of Algorithm 1 is the presence of Ai in pi(Aixi) of the
subproblem (52) when i 6∈ I1. In this case, if Ai is not orthogonal, then Ai destroys
the tractable proximity of fXi := fi + δXi .

Remark 2 Since the proximal operator of fX at Step 6 of Algorithm 1 can be
computed in parallel, we can substitute it by the following proximal operator that
takes into account the individual Lipschitz constant L̄Ai :

x̄k+1
i := prox βk+1

L̄Ai
fXi

(
x̂ki −

βk+1

L̄Ai
ATi y

∗
βk+1

(x̂k)

)
, ∀i ∈ IN ,

where fXi(·) := fi(·)+δXi(·). In this case, the conclusions of Theorem 1 is preserved

with R2
0 being substituted by R̂2

0 := γ0L̄A
2β0
‖ȳ0 − y?‖2 + 1

2

∑N
i=1 L̄Ai‖x̄

0
i − x

?
i ‖

2.

5 The accelerated dual smoothed gap reduction method

We develop a new primal-dual scheme that can remove one proximal operator
computation in Algorithm 1 (i.e., Step 6) by means of averaging in the primal.

5.1 The accelerated dual gap reduction scheme

We assume that w̄k := (x̄k, ȳk) ∈ W is given. We derive below the update scheme
for the new point w̄k+1 := (x̄k+1, ȳk+1) from w̄k such that the MGR condition
(38) holds. This scheme includes two main steps: an accelerated gradient step on
the smoothed dual function gγ , and an averaging step to construct a primal point:

ŷk := (1− τk)ȳk + τky
∗
βk

(x̄k),

ȳk+1 := ŷk + L−1
gγk+1

(
Ax∗γk+1

(ŷk)− b
)
,

x̄k+1 := (1− τk)x̄k + τkx
∗
γk+1

(ŷk),

(ADSGARD)

where τk ∈ (0, 1) and the parameters βk > 0 and γk+1 > 0 will be updated in the
sequel. This scheme requires to solve one primal subproblem in (25) to compute
x∗γk+1

(ŷk), while it needs two dual steps of updating y∗βk(x̄k) from the second line

of (25), and ȳk+1. Since the accelerated step is applied to gγ , we call this scheme
the Accelerated Dual Smoothed GAp ReDuction (ADSGARD) scheme.

The following lemma shows that w̄k+1 updated by (ADSGARD) maintains
(38), whose proof can also be found in Appendix A.3.1.

Lemma 6 Let w̄k+1 := (x̄k+1, ȳk+1) be updated by (ADSGARD). Let L̄g be defined

by (46), and ĉ2 be the constant defined by:

ĉ2 := max

{
max
i∈I1

{
Lpi L̄Ai
σ2
i

}
,max
i 6∈I1

{Lpi}
}
, (46)

where σ2
i is given in (20), and L̄Ai is defined by (21). Then, if τk ∈ (0, 1), βk > 0 and

γk+1 > 0 are chosen such that:(
1+ĉ−1

2 τk
)
γk+1 ≥ γk, βk+1 ≥ (1−τk)βk, and (1−τk)γk+1βk ≥ L̄gτ2

k , (47)
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then w̄k+1 ∈ W and satisfies the gap reduction condition (38) with:

ψk := −
γk+1

2τk

N∑
i=1

1

L̄i
‖Ai(x∗γk+1,i(ŷ

k)− x̄ci )− (1− τk)Ai(x
∗
γk+1,i(ȳ

k)− x̄ci )‖
2
∗ ≤ 0. (48)

5.2 Updating parameters

Our goal is to find update rules for {(τk, γk, βk)} such that the condition (47) holds.
One possibility is shown in the following lemma, which is proved in Appendix A.3.2.

Lemma 7 Let us choose c̄2 := max
{
ĉ2,

3
2

}
, where ĉ2 is defined by (46). Then, the

parameters (τk, γk, βk) updated by the following rules:

τk =
c̄2

k+c̄2+1
∈ (0, 1), γk=

(c̄2+1)γ0

k+c̄2+1
and βk=

c̄22L̄g(k+c̄2+2)

γ0(c̄2+1)(k+1)(k+c̄2+1)
, (49)

satisfies the condition (47). Moreover, the convergence rate of {τk} is optimal. In

addition, βk ≤
c̄22L̄g

γ0(c̄2+1)k and γkβk <
c̄32L̄g

(c̄+1)k(k+c̄2+1) .

From (47) we can derive the tightest condition γkβk =
ĉ2L̄gτ

2
k

(1−τk)(ĉ2+τk) . Hence,

the optimal convergence rate of {γkβk} is γkβk = O
(

1
k2

)
. On the other hand,

by Lemma 3, we see that f(x̄k) − f? = O(γk) and ‖Ax̄k − b‖ = O(βk). Since
γkβk = O

(
1
k2

)
, if we decrease the rate of γk, i.e., decrease the objective residual

f(x̄k)−f?, then the rate of βk is increased, i.e., we increase the rate of the feasibility
gap ‖Ax̄k − b‖. The same augment is applied to the case where γk is increasing.

5.3 Finding initial points

In principle, we can start (ADSGARD) at any initial point w̄0 ∈ W. However, the
worst-case complexity bounds will depend on the value Gγ0β0

(w̄0). To simplify this
worst-case complexity bound, we show how to construct a point w̄0 ∈ W such that
condition (38) holds with ψ0 ≤ 0. Let ȳc := ∇p∗y(0m) ∈ Rm be the prox-center of
py. We compute the point w̄0 := (x̄0, ȳ0) based on the following scheme:{

x̄0 = x∗γ0
(ȳc) := argmin

{
f(x) + 〈ȳc, Ax− b〉+ γ0px(Ax) : x ∈ X

}
,

ȳ0 = y∗β0
(x̄0) := ∇py∗

(
β−1

0 (Ax̄0 − b)
)
,

(50)

where γ0 > 0 and β0 > 0. The following lemma shows that w̄0 computed by (50)
satisfies (38) with ψ0 ≤ 0, whose proof can be found in Appendix A.3.3.

Lemma 8 If w̄0 := (x̄0, ȳ0) is generated by (50), then it satisfies:

Gγ0β0
(w̄0) ≤ −γ0px(Ax̄0)− (2β2

0γ0Lpy )−1 (γ0β − L̄gLpy ) ‖Ax̄0 − b‖2, (51)

Hence, if γ0 and β0 are chosen such that γ0β0 ≥ Lpy L̄g, then Gγ0β0
(w̄0) ≤ 0.

Finally, given γ0 > 0, from (49) we have γ0β0 =
L̄g c̄

2
2(c̄2+2)

(c̄2+1)2 > 2
3 c̄2L̄g. Hence, if

c̄2 ≥ 3
2Lpy , then γ0β0 ≥ L̄gLpy , which is the condition of Lemma 8. We note that

Lpy ≥ 1. Hence, if to choose c̄2 = max
{
ĉ2,

3
2Lpy

}
, then both conditions in Lemma

7 and Lemma 8 are satisfied. In Algorithm 2 below, we choose this value for the
constant c̄2.
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Algorithm 2 (Accelerated Dual Smoothed GAp ReDuction (ADSGARD))

Initialization:

1: Choose γ0 > 0 (e.g., γ0 :=
√

2L̄g), compute c̄2 := max
{
ĉ2,

3
2Lpy

}
.

2: Set β0 :=
L̄g c̄

2
2(c̄2+2)

γ0(c̄2+1)2 and ȳc := ∇p∗y(0m).

3: Solve the following primal convex subproblem:

x̄0 := argmin
{
f(x) + 〈AT ȳc, x〉+ γ0px(Ax) : x ∈ X

}
.

4: Compute ȳ0 := ∇py∗
(
β−1

0 (Ax̄0 − b)
)
.

For k = 0 to kmax, perform:

5: Update τk := c̄2
k+c̄2+1 , γk+1 := (c̄2+1)γ0

k+c̄2+2 and βk :=
c̄22L̄g(k+c̄2+2)

γ0(c̄2+1)(k+1)(k+c̄2+1) .

6: Compute ȳ∗k := ∇py∗
(
β−1
k (Ax̄k − b)

)
.

7: Update ŷk := (1− τk)ȳk + τkȳ
∗
k.

8: Solve the following convex subproblem:

x̂∗k+1 := argmin
{
f(x) + 〈AT ŷk, x〉+ γk+1px(Ax) : x ∈ X

}
. (52)

9: Update the dual vector: ȳk+1 := ŷk + γk+1

L̄g

(
Ax̂∗k+1 − b

)
.

10: Update the primal vector: x̄k+1 := (1− τk)x̄k + τkx̂
∗
k+1.

End for

5.4 The primal-dual algorithmic template

We combine all the ingredients presented in the previous subsections to obtain a
primal-dual algorithmic template for solving (1) as shown in Algorithm 2.

The main steps of Algorithm 2 are Steps 6, 8 and 9, where we need to solve
the primal convex subproblem (52), to update two dual steps, respectively. While
solving (52) can be implemented in a parallel or distributed fashion due to the
decomposable structure of f and X as in (7), the dual steps only require matrix-
vector multiplication Ax. Clearly, by Step 10, it follows that Ax̄k+1 − b = (1 −
τk)(Ax̄k − b) + τk(Ax̂∗k+1 − b), and by Step 6, we have ȳ∗k = ∇py∗

(
β−1
k (Ax̄k − b)

)
,

which is equivalent to Ax̄k−b = βk∇py(ȳ∗k). Hence, Ax̄k+1−b = (1−τk)βk∇py(ȳ∗k)+
τkL̄g
γk+1

(ȳk+1 − ŷk) due to Step 9. Finally, we can derive:

ȳ∗k+1 = ∇p∗y
(
β−1
k+1

(
(1− τk)βk∇py(ȳ∗k) +

L̄gτk
γk+1

(ȳk+1 − ŷk)

))
. (53)

Consequently, each iteration of Algorithm 2 requires one solution of the primal
convex subproblem (52), one matrix-vector multiplication Ax and its adjoint AT y.

5.5 Convergence analysis

Let DY? be defined in Lemma 3. The following theorem shows the convergence of
Algorithm 2, while the lower bound on f(x̄k) − f? remains as in Theorem 1, i.e.:
−DY?‖Ax̄k − b‖ ≤ −‖y?‖∗‖Ax̄k−b‖ ≤ f(x̄k)− f? for any x̄k ∈ X and y? ∈ Y?.
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Theorem 2 Let
{
w̄k
}

be the sequence generated by Algorithm 2. Then, the following

convergence bounds hold: f(x̄k)− f? ≤ (c̄2+1)γ0

k+c̄2+1 DX +
c̄22L̄gpy(0)(k+c̄2+2)

γ0(c̄2+1)(k+c̄2+1)(k+1) ,

‖Ax̄k− b‖ ≤ c̄22L̄g(k+̄c2+2)
γ0(c̄2+1)(k+1)(k+̄c2+1)

[
‖Lpyy?−s̄c‖2∗ +

√
‖Lpyy?−s̄c‖∗+P̄∗

]
,

(54)

where P̄∗ :=
2Lpyγ

2
0(c̄2+1)2

c̄22L̄g
+ 2Lpypy(0)− ‖s̄c‖2, DX is defined by (29) and y? ∈ Y?.

If we choose py(·) := 1
2‖ · ‖

2
2, then we have:

f(x̄k)− f? ≤ (c̄2+1)γ0

k+c̄2+1 DX ,

‖Ax̄k − b‖2 ≤ c̄22L̄g(k+c̄2+2)
γ0(c̄2+1)(k+1)(k+c̄2+1)

[
2DY? +

√
2γ0(c̄2+1)

c̄2
√
L̄g

]
.

(55)

As a consequence, if γ0 :=
√
L̄g, then the worst-case iteration-complexity of Algorithm

2 to achieve an ε-solution x̄k for (1) in the sense of Definition 1 is O
(

1
ε

)
.

Proof Substituting the expression of γk and βk from Lemma 7 into (36) of Lemma

3, and then using γk
βk

=
γ2

0(c̄2+1)2(k+1)

c̄22L̄g(k+c̄2+2)
≤ γ2

0(c̄2+1)2

c̄22L̄g
we directly obtain (55).

With py(y) := (1/2)‖y‖22, we substituting γk, βk and γkβk from Lemma 7 into
(37) of Lemma 3 to obtain the bounds (55). The remaining conclusions are the
consequences of (55). �

The choice of γ0 in Theorem 2 also trades off the primal objective residual and
the primal feasibility gap. Indeed, the smaller γ0 leads to the smaller f(x̄k)− f?.
One limitation of Algorithm 2 is the presence of Ai in the composite prox-function
pi(Ai(·)) of the subproblem (52). When Ai is not orthogonal, the operator Ai
destroys the tractable proximity of fXi := fi + δXi .

6 The accelerated primal smoothed gap reduction method

Even if fXi has a tractable proximity operator for i /∈ I1, the presence of Ai in
pi can require significant computation. As a result, the ADSGARD scheme may
have a disadvantage. To overcome this drawback, we propose in this section as a
symmetric variant of (ADSGARD) that relies on the acceleration of the primal.

Let w̄k := (x̄k, ȳk) ∈ W be given. We update the new point w̄k+1 := (x̄k+1, ȳk+1)
from w̄k using the following scheme to maintain the MGR condition (38):

x̂k := (1− τk)x̄k + τkx
∗
γk(ȳk)

x̄k+1 := prox βk+1
L̄A

fX

(
x̂k − βk+1

L̄A
AT y∗βk+1

(x̂k)
)
,

ȳk+1 := (1− τk)ȳk + τky
∗
βk+1

(x̂k),

(APSGARD)

where τk ∈ (0, 1) and the parameters βk > 0 and γk+1 > 0, which will be updated
in the sequel. Since this scheme performs an accelerated proximal-gradient step on
the primal term fβ of the smoothed gap Gγβ , we call this scheme the Accelerated

Primal Smoothed GAp ReDuction (APSGARD) scheme.
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We note that, the point x∗γk(ȳk) := (x∗γk,1(ȳk), · · · , x∗γk,N (ȳk)) at the first line
of (APSGARD) is computed as follows:

x∗γk,i(ȳ
k) := argmin

{
fi(xi) + 〈ȳk, Aixi − bi〉+ γkpi(xi) : xi ∈ Xi

}
, ∀i ∈ IN , (56)

without using the composite prox-function pi(Ai(·)) for i 6∈ I1 as in (ASGARD)
and (ADSGARD). Hence, we can exploit the tractable proximity of fXi for i 6∈ I1.
However, the downside is that (APSGARD) now requires an additional proximal
step of fX at the second line of (APSGARD).

Similar to Lemma 6, we can show that {w̄k} generated by (APSGARD) main-
tains the MGR condition (38) if the parameters τk, γk and βk satisfy:

γk+1 ≥ (1− τk)γk, βk+1

(
1 +

τk
L2
py

)
≥ βk, and (1− τk)γkβk+1 ≥ L̄Aτ2

k . (57)

Under these conditions, we propose one update rule for τk, γk and βk as follows:

τk :=
c̄3

k+c̄3+1
, βk :=

(c̄3 + 1)β0

k+c̄3+1
, and γk :=

L̄Ac̄
2
3(k + c̄3+2)

β0(c̄3+1)(k+1)(k+c̄3+1)
, (58)

where c̄3 := max
{

3
2Lpy , L

2
py

}
and β0 > 0 is given. Clearly, the constant c̄3 does

not depend on matrix A. If we choose py(·) := (1/2)‖ · ‖22, then c̄3 := 3
2 .

Now, we summarize the convergence of Algorithm 2 using (APSGARD) as
a substitute to (ADSGARD). The proof of this theorem can be found in Ap-
pendix A.4. Here, the lower bound on f(x̄k)− f? remains as in Theorem 1.

Theorem 3 Let {w̄k} be the sequence generated by Algorithm 2 using the primal-dual

scheme (APSGARD) and the update rules (58) with given β0 > 0. Then, the following

estimate holds:
f(x̄k)− f?≤ c̄23L̄A(k+̄c3+2)

β0(c̄3+1)(k+̄c3+1)(k+1)DX +
β0(c̄3+1)py(0)

k+̄c3+1 ,

‖Ax̄k−b‖ ≤ β0(c̄3+1)
k+̄c3+1

[
c̄∗ +

√
c̄∗ +

2Lpy L̄Ac̄
2
3(c̄3+2)DX

β2
0(c̄3+1)2 +(2Lpypy(0)−‖s̄c‖2)

]
,

(59)

where c̄∗ := ‖Lpyy?−s̄c‖∗, DX is defined by (29) and y? ∈ Y?.

If we choose py(·) := 1
2‖ · ‖

2
2, then:

f(x̄k)− f? ≤ 9L̄A(2k+7)DX
10β0(2k+5)(k+1) ,

‖Ax̄k − b‖2 ≤ 5β0

2k+5

[
2DY? + 3

√
7L̄ADX
5β0

]
.

(60)

As a consequence, if β0 :=
√
L̄A, then the worst-case iteration-complexity of this algo-

rithm to achieve an ε-solution x̄k for (1) in the sense of Definition 1 is O
(

1
ε

)
.

We note that we still use the initial point w̄0 as in (50) for this variant. In
Theorem 3, the value β0 trades off between f(x̄k) − f? and ‖Ax̄k − b‖ instead of
γ0 as in Theorem 2.

7 Special instances of the primal-dual gap reduction framework

This section specifies Algorithms 1 and 2 to solve (1) by further exploiting the its
structures as well as using difference choices of the prox-function.
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7.1 Accelerated augmented Lagrangian smoothed gap reduction method

When f and X are not decomposable, i.e., N = 1, we can modify Algorithms 1
and 2 to obtain a new augmented Lagrangian algorithm. For clarity of exposition,
we only present Algorithm 2 using (ADSGARD) in the sequel.

The augmented Lagrangian smoother: Under Assumption A.1, there exists a feasible
point x̄c ∈ X such that Ax̄c = b. We choose the prox-function px as px(u) :=
(1/2)‖u−b‖22. In this case px(Ax) = (1/2)‖A(x−x̄c)‖22 = (1/2)‖Ax−b‖22, which is the
augmented term in the augmented Lagrangian method. Alternatively, we choose
py(·) := (1/2)‖ · ‖22 for the dual smoother. It is well-known that the augmented
Lagrangian method is simply the proximal-point method applying to (12).

We specify the primal-dual scheme (ADSGARD) with the augmented La-
grangian smoother for fixed γk+1 = γ0 below:

ŷk := (1− τk)ȳk + τkβ
−1
k (Ax̄k − b),

x̂∗k+1 := argmin
x∈X

{
f(x) + 〈ŷk, Ax− b〉+ γ0

2
‖Ax− b‖22

}
,

ȳk+1 := ŷk + γ0(Ax̂∗k+1 − b),
x̄k+1 := (1− τk)x̄k + τkx̂

∗
k+1,

(FALSGARD)

where τk ∈ (0, 1), γ0 > 0 is the penalty (or primal smoothness) parameter, and βk
is the dual smoothness parameter. As a result, this method is called Fast Augmented

Lagrangian Smoothed GAp ReDuction (FALSGARD) scheme.
This scheme consists of two dual steps at lines 1 and 3. However, we can

combine these steps as in (53) so that it requires only one matrix-vector multipli-
cation Ax. Consequently, the complexity-per-iteration of (FALSGARD) remains
essentially the same as the standard augmented Lagrangian method [8].

The initial point: Similar to (50), we can initialize (FALSGARD) via:{
x̄0 := argmin

{
f(x) + (γ0/2)‖Ax− b‖22 : x ∈ X

}
,

ȳ0 := β−1
0

(
Ax̄0 − b

)
,

(61)

where β0 is chosen such that γ0β0 ≥ 1 and ȳc := ∇p∗y(0m) = 0m. Clearly, with
w̄0 := (x̄0, ȳ0) computed by this formula, we have G0(w̄0) ≤ 0 due to Lemma 8.

The update rule for parameters: In our augmented Lagrangian method, we can set
γk = γ0 > 0 to be constant, while updating τk and βk such that the two last
conditions (47) of Lemma 6 hold. Using these conditions we can derive an update
rule for βk and τk as follows:

βk+1 := (1− τk)βk, and τk+1 :=
τk
2

(√
τ2
k + 4− τk

)
. (62)

If we choose τ0 := 0.5(
√

5 − 1), we have β0γ0 =
τ2
0

1−τ0 = 1, which satisfies the
condition in Lemma 8.

The algorithm template: We modify Algorithm 2 to obtain the following augmented
Lagrangian variant, Algorithm 3.
The main step of Algorithm 3 is the solution of the primal convex subproblem:

x̂∗k+1 := argmin
{
f(x) + 〈ŷk, Ax− b〉+ (γ0/2)‖Ax− b‖22 : x ∈ X

}
. (63)

In general, solving this subproblem remains challenging due to the non-separability
of the quadratic term ‖Ax− b‖22. We can numerically solve it by using either alter-
nating direction optimization methods or other first-order methods. The conver-
gence analysis of inexact augmented Lagrangian methods can be found in [30].
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Algorithm 3 (Fast Augmented Lagrangian Smoothed GAp ReDuction)

Initialization:

1: Choose an initial value γ0 > 0. Set τ0 := 0.5(
√

5− 1) and β0 := γ−1
0 .

2: Compute w̄0 := (x̄0, ȳ0) by (61).
For k = 0 to kmax, perform:

3: Update βk+1 := (1− τk)βk.
4: Update w̄k+1 := (x̄k+1, ȳk+1) using (FALSGARD).

5: Update τk+1 := 0.5τk

(√
τ2
k + 4− τk

)
.

End for

Convergence guarantee: The following theorem shows the convergence of Algorithm
3, whose proof is moved to Appendix A.5.

Theorem 4 Let {w̄k} be the sequence generated by Algorithm 3. Then:{
−1

2‖Ax̄
k−b‖22−DY?‖Ax̄k−b‖2 ≤ f(x̄k)− f? ≤ 0,

‖Ax̄k−b‖2 ≤ 8DY?
γ0(k+1)2 .

(64)

As a consequence, the worst-case iteration-complexity of Algorithm 3 to achieve an

ε-primal solution x̄k for (1) in the sense of Definition 1 is O
(
DY?√
γ0ε

)
.

The estimate (64) guides us to choose a large value for γ0 such that we obtain
better convergence bounds. However, if γ0 is too large, then the complexity of
solving the subproblem (23) clearly increases. In practice, γ0 is often updated
using a heuristic strategy [8,10]. The bound (64) shows that the sequence {f(x̄k)}
converges to f? from below, which is different from unconstrained setting, where
f(x̄k) ≥ f?. In addition, this bound does not depend on the diameter of X , which
shows that X is not necessary to be bounded as in Assumption A.2. In general
settings, since the solution x̂∗k+1 computed by (63) requires to solve a generic
convex problem, it no longer has a closed form expression.

7.2 The strong convexity of the objective function

If the objective function fi of (1) is strongly convex with the convexity parameter
µfi > 0 for all i ∈ IN , then it is well-known that the dual function g defined by
(10) is smooth. Its gradient is given by ∇g(y) := Ax∗(y) − b which is Lipschitz

continuous with the Lipschitz constant L̂g :=
∑N
i=1 µ

−1
fi
‖Ai‖2 (see [35]), where

x∗(y) is the unique solution of the following primal subproblem:

x∗(y) := argmin
x∈X

{
f(x) + 〈AT y, x〉

}
=

N∑
i=1

arg min
xi∈Xi

{
fi(xi) + 〈ATi y, xi〉

}
. (65)

When f and X are decomposable as (7) with N ≥ 2, we compute x∗(y) in parallel.

The primal-dual update scheme: Principally, we can modify scheme (ASGARD),
(ADSGARD) or (APSGARD) to adapt this strongly convex structure. In this
subsection, we only illustrate the modification of (ADSGARD) as follows:
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ŷk := (1− τk)ȳk + τky

∗
βk

(x̄k)

x̄k+1 := (1− τk)x̄k + τkx
∗(ŷk)

ȳk+1 := ŷk + L̂−1
g

(
Ax∗(ŷk)− b

)
.

(ADSGARDµ)

We note that we no longer have the primal smoothness parameter γk. Hence, the
conditions (47) of Lemma 6 reduce to βk+1 ≥ (1 − τk)βk and (1 − τk)βk ≥ L̂gτ

2
k .

From these conditions can derive the update rule of τk and βk as in Algorithm 3:

τk+1 := 0.5τk
[
(τ2
k + 4)1/2 − τk

]
and βk+1 := (1− τk)βk, (66)

where τ0 := 0.5(
√

5− 1) and β0 := L̂g.
We can also modify (50) to compute the initial point w̄0 := (x̄0, ȳ0) as:

x̄0 := argmin
x∈X

{
f(x) + 〈AT ȳc, x〉

}
, and ȳ0 := ȳc +∇p∗y

(
L̂−1
g (Ax̄0 − b)

)
, (67)

where ȳc := ∇p∗y(0m) is a the prox-center of py. Clearly, if we choose py(·) :=

(1/2)‖ · ‖22, then x̄0 := argmin {f(x) : x ∈ X} and ȳ0 := L̂−1
g (Ax̄0 − b).

Convergence guarantee: The following corollary shows the convergence of the scheme
(ADSGARDµ), whose proof is in Appendix A.6.

Corollary 1 Suppose that the objective fi of (1) is strongly convex with the convexity

parameter µfi > 0 for all i ∈ IN . Let
{
w̄k
}

be a sequence generated by (ADSGARDµ)

using the initial point (67) and the update rule (66). Then:
−DY?‖Ax̄k − b‖ ≤ f(x̄k)− f? ≤ 0,

‖Ax̄k − b‖ ≤ 4L̂gDY?
(k+2)2 ,

‖x̄k − x?‖ ≤ 4DY?
(k+2)

√
L̂g
µ
f

,

(68)

where L̂g :=
∑N
i=1

‖Ai‖2
µfi

, µ
f

:= min
{
µfi : i ∈ IN

}
> 0, DY? is defined in Theorem

2, and x? ∈ X ?. As a consequence, the worst-case iteration-complexity to attain an

ε-solution x̄k of (1) in the sense of Definition 1 is O
(
DY?

√
L̂g
ε

)
.

We note that the bounds in Corollary 1 does not require the boundedness of X
as assumed in Assumption A.2. In addition,

{
f(x̄k)

}
converges to f? from below.

7.3 The component-wise strong convexity of the objective function

Let us denote by Is :=
{
i ∈ IN : µfi ≡ µ(fi) > 0

}
the index subset of strongly

convex objective components fi. If there exists i ∈ IN such that fi is strongly
convex, then Is 6= ∅. Hence, gγ defined by (23) can be replaced by the following:

gγ(y) :=
∑
i∈Is

gi(y) +
∑
i6∈Is

giγ(y), (69)

where gi is the dual component defined in (13) and giγ is the smoothed dual compo-
nent defined by (27). We again illustrate a modification of the scheme (ADSGARD)
to adapt this structure. First, the Lipschitz constant L̄i defined by (21) becomes

L̄i := ‖Ai‖2
µfi

for i ∈ Is, the prox-diameter DX defined by (29) is DX :=
∑
i 6∈Is DXi .
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Second, the conditions for selecting parameters τk, γk and βk remain the same as
in (47), where ĉ2 is replaced by:

ĉ4 := max

{
max

i∈I1\Is

{Lpi L̄Ai
σ2
i

}
, max
i∈Ī1\Is

{Lpi}
}
. (70)

Using these modifications, we obtain a new variant of Algorithm 2 to adapt this
structure. Consequently, the conclusions of Theorem 2 are preserved.

7.4 The Lipschitz gradient continuity of the full objective

If the objective function f of (1) is smooth, and its gradient ∇f is Lipschitz
continuous with the Lipschitz constant Lf := L(f) > 0, then we can modify the
proximal step of Algorithm 1 and Algorithm 2 to further exploit this structure.

Instead of using the proximal step of fX := f + δX as in the second line of
(ASGARD) and (APSGARD), we use the following projected gradient step:

x̄k+1 = projX

(
x̂k − L−1

fβk+1

(
∇f(x̂k) +AT y∗βk+1

(x̂k)
))

, (71)

where projX is the projection onto X and Lfβk+1
:= Lf + β−1

k+1L̄A is the Lipschitz

constant of ∇fβk+1
(·) = ∇f(·) + AT y∗βk+1

(·). Clearly, the projected gradient step

(71) is generally cheaper than the prox-step proxfX of fX , especially when X is
simple (e.g., bound, box and cone constraints) or f is non-decomposable.

In this case, the last condition for updating parameters in (40) is replaced by:

τ2
k

(1− τk)τ2
k−1

≤ min

{
γk
γk−1

,
Lf + β−1

k−1L̄A

Lf + β−1
k L̄A

}
, (72)

while the last condition in (57) becomes:

(1− τk)γk ≥ (Lf + β−1
k+1L̄A)τ2

k . (73)

From these conditions, we can derive the update rule for parameters τk, γk and
βk, respectively for each case. We omit the derivation details in this section.

7.5 Extension to general cone constraints

The theory presented in the previous sections can be extended to solve the follow-
ing general constrained convex optimization problem:

f? := min
x
{f(x) : Ax− b ∈ K, x ∈ X} , (74)

where f , X , K, A and b are defined as in (1).
If K is bounded, then a simple way to process (74) is using a slack variable r ∈ K

such that r := Ax−b and z := (x, r) as a new variable. Then we can transform (74)
into (1) with respect to the new variable z. The primal subproblem corresponding
to r is defined as min {〈−y, r〉 : r ∈ K}, which is equivalent to the support function
of K, i.e., sK(y) := max {〈y, r〉 : r ∈ K}. Consequently, the dual function becomes
g̃(y) := g(y) − sK(y), where g(y) := min {f(x) + 〈Ax− b, y〉 : x ∈ X}. Now, we can
apply the algorithms presented in the previous sections to obtain an approximate
solution z̄k := (x̄k, r̄k) with a convergence guarantee on: f(x̄k)−f?, ‖Ax̄k− r̄k−b‖,
x̄k ∈ X and r̄k ∈ K as in Theorems 1, 2 or 3.
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If K is a cone (e.g., K := Rm+ , K is a second order cone Lm+ , or K is a semidefinite
cone Sm+ ), then with the choice py(·) := (1/2)‖·‖2, we can substitute the smoothed
function fβ in (28) by the following one:

f̂β(x) := f(x) + max
{
〈Ax− b, y〉 − (β/2)‖y‖2 : y ∈ −K∗

}
, (75)

where K∗ is the dual cone of K, which is defined as K∗ := {z : 〈z, x〉 ≥ 0, x ∈ K}.
With this definition, we use the smoothed gap function Ĝγβ as Ĝγβ(w) := f̂β(x)−
gγ(y), where gγ(y) := min {f(x) + 〈Ax− b, y〉+ γpx(Ax) : x ∈ X} is the smoothed
dual function defined as before.

In principle, we can apply one of three previous schemes to solve (74). Let us
demonstrate the (ADSGARD) for this case. Since K is a cone, we remain using
the original scheme (ADSGARD) with the following changes:

y∗βk(x̄k) := proj−K∗
(
β−1
k (Ax̄k − b)

)
,

ȳk+1 := proj−K∗
(
ŷk + γk+1

L̄g

(
Ax∗γk+1

(ŷk)− b
))

,

where projS is the projection onto the convex set S. In this case, we remain having
the convergence guarantee as in Theorem 2 for the objective residual f(x̄k)−f? and

the primal feasibility gap dist
(
Ax̄k − b,K

)
. We note that if K is a self-dual conic

cone, then K∗ = K. Hence, y∗βk(x̄k) and ȳk+1 can often be computed efficiently or
in closed form.

A Appendix: The proof of theoretical results

This section provides the full proof of Lemmas and Theorems in the main text.

A.1 Two technical results

A.1.1 The proximal-gradient descent lemma

The following lemma has a similar proof as [3, Lemma 2.3], but using [33, (2.1.7)].

Lemma 9 Let f and g be two proper, closed and convex functions, and f ∈ F1,1
L .

Suppose that we apply the following proximal-gradient step:

x̄k+1 := proxL−1
f g

(
x̂k − L−1

f ∇f(x̂k)
)

to solve the composite convex minimization problem:

min
x∈Rn

{F (x) := f(x) + g(x)} .

Then, the following estimate holds for any x ∈ dom (F ):

F (x)≥ ˆ̀
k(x)≥F (xk+1)+Lf 〈x̂k−xk+1, x−x̂k〉+

Lf
2
‖x̂k−xk+1‖2+

1

2Lf
‖∇f(x)−∇f(x̂k)‖2,

where ˆ̀
k(x) := f(x̂k) + 〈∇f(x̂k), x− x̂k〉+ 1

2Lf
‖∇f(x)−∇f(x̂k)‖2.
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A.1.2 The proof of Lemma 2: Properties of gγ and fβ

For i ∈ I1, the proof can be found in [35]. We only prove for i 6∈ I1. For fixed
i 6∈ I1, we consider Ui := {u ∈ Rm : u = Aix− bi, xi ∈ Xi} and the function:

f̂i(u) := inf
xi
{fi(xi) : u = Aixi − bi, xi ∈ Xi} .

Under Assumption A.1, it is clear that Ui is nonempty and convex in Rm. The
function f̂i is also proper, closed and convex in Rm, see [11, Example 3.17].

We have pi(Aixi) = pi(u + bi) ≥ 1
2‖Ai(xi − x̄

c
i )‖

2 = 1
2‖u − ū

c‖2, where ūc :=
Aix̄

c
i − bi. Hence, pi(·+ bi) is strongly convex on Ui with the convexity parameter

µpi := 1 > 0. By definition of giγ in (26), we can easily express giγ as:

giγ(ȳ) := min
u∈Ui

{
f̂i(u) + 〈ȳ, u〉+ γpi(u+ bi)

}
. (76)

This function is well-defined due to the strong convexity of pi. Moreover, it is
concave and smooth on Rm. Its gradient ∇giγ is given by ∇giγ(y) = u∗γ(y) =
Aix
∗
γ,i(y) − bi, where u∗γ(y) is the unique solution of (76). The Lipschitz conti-

nuity of ∇giγ with the Lipschitz constant Lγg := γ−1L̄i ≡ γ−1 can be proved as in
[35, Theorem 1]. Then, the inequalities (30) follows from this property as a direct
consequence due to [33, Theorem 2.1.5].

To prove the second part of Lemma 2, it is sufficient to prove for i 6∈ I1.
Otherwise, we substitute Ai by the identity matrix Ii. We first define ϕiȳ(u, γ) :=

f̂i(u) + 〈ȳ, u〉+ γpi(u + bi). The function ϕiȳ is strongly convex in u and linear in

γ. Hence, giγ(ȳ) defined by (76) is concave and smooth w.r.t. γ > 0. Moreover,
dgiγ(ȳ)

dγ |γ=γ̄ = pi(u
∗
γ̄(ȳ) + bi) ≥ 0, which shows that giγ(ȳ) is nondecreasing, where

u∗γ̄(ȳ) is the solution of (76). Using the concavity of giγ(ȳ) w.r.t. γ, we obtain

giγ(ȳ) ≤ giγ̄(ȳ)+(γ−γ̄)pi(u
∗
γ̄(ȳ)+bi). Substituting the relation u∗γ(y) = Aix

∗
γ,i(y)−bi

into the last estimate, we obtain (32).

We not that since gγ =
∑N
i=1 g

i
γ , the properties of gγ follow from the ones

of giγ . We finally prove the properties of p̄β and fβ . Since fβ = f + p̄β and
p̄γ(x) = max

{
〈Ax− b, y〉 − βpy(y) : y ∈ Rm

}
, the convexity and smoothness of p̄β

were proved in [35]. In addition, ∇p̄β is Lipschitz continuous [35] with the Lips-
chitz constant Lp̄β := β−1‖A‖2. Moreover, since p̄β(x) = βp∗y(β−1(A(·) − b)), the
first inequality of (33) follows from the Lipschitz gradient continuity of p∗y, while
the second one is a consequence of (32) by substituting giγ by −p̄β . �

A.1.3 The proof of Lemma 3: Key bounds for approximate solutions

Under Assumption A.1, any (x?, y?) ∈ W? is a saddle point of the Lagrange func-
tion L(x, y) := f(x) + 〈Ax− b, y〉, i.e., L(x?, y) ≤ L(x?, y?) ≤ L(x, y?) for all x ∈ X
and y ∈ Rm. It leads to g(y) ≤ g? = f? ≤ f(x) + 〈y?, Ax− b〉, and hence:

f(x)− g(y) ≥ f(x)− f? ≥
〈
b−Ax, y?

〉
≥ −‖y?‖∗‖Ax− b‖, (77)

for all (x, y) ∈ W, which proves (35). By the definition (10) of g and (23) of gγ ,
using (31) we have:

gγk(ȳk)− γkDX ≤ g(ȳk) ≤ gγk(ȳk). (78)

Combining (77), (78), and the definition of fβ in (28) we obtain:
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−‖y?‖∗‖Ax̄k − b‖ ≤ f(x̄k)− f?
(77)

≤ f(x̄k)− g(ȳk)

(78)+(23)

≤ fβk(x̄k)− gγk(ȳk) + γkDX − βkp∗y(β−1
k (Ax̄k − b)) (79)

(24)
= Gγkβk(w̄k) + γkDX − βkp∗y

(
β−1
k (Ax̄k − b)

)
.

Since p∗y(β−1
k (Ax̄k − b)) ≥ p∗y(s̄c) = −py(0), the last inequality leads to:

−‖y?‖∗‖Ax̄k − b‖ ≤ f(x̄k)− f? ≤ f(x̄k)− g(ȳk) ≤ Sk.

which is indeed the first estimate of (36), where Sk := Gγkβk(w̄k)+γkDX+βkpy(0).

Next, by the 1
Lpy

-strong convexity of p∗y and ∇p∗y(s̄c) = 0, we have :

βkp
∗(β−1

k (Ax̄k − b)
)
≥ βkp∗y(s̄c) +

βk
2Lpy

‖β−1
k (Ax̄k − b)− s̄c‖2

= −βkpy(0) +
1

2Lpyβk
‖Ax̄k − b‖2 − 1

Lpy
〈s̄c, Ax̄k − b〉+ βk

2Lpy
‖s̄c‖2.

Combining this inequality, (77) and (79), we obtain:

〈y?, b−Ax̄k〉 ≤ Gγkβk(w̄k) + γkDX + βkpy(0)

− 1

2Lpyβk
‖Ax̄k − b‖2 − 1

Lpy
〈s̄c, Ax̄k − b〉 − βk

2Lpy
‖s̄c‖2.

Rearranging this expression and using the Cauchy-Schwarz inequality, we obtain:

−‖y? − L−1
by
s̄c‖∗‖Ax̄k − b‖ ≤ Sk − (2Lbyβk)−1‖Ax̄k − b‖2 − βk(2Lpy )−1‖s̄c‖2,

which leads to:

‖Ax̄k − b‖2 − 2βk‖Lbyy
? − s̄c‖∗‖Ax̄k − b‖ −

(
2LpyβkSk − β

2
k‖s̄

c‖2
)
≤ 0.

Let t := ‖Ax̄k − b‖. We obtain from the last inequality the inequation t2 −
2βk‖Lpyy? − s̄c‖∗t −

(
2LpyβkSk − β2

k‖s̄
c‖2
)
≤ 0. This inequation of t leads to:

t := ‖Ax̄k − b‖ ≤ βk
[
‖Lpyy

? − s̄c‖∗ +
[
‖Lpyy

? − s̄c‖2∗ +
(
2Lpyβ

−1
k Sk − ‖s̄c‖2

)]1/2]
,

which is the second estimate of (36), provided that ‖Lpyy? − s̄c‖2∗ + 2Lpyβ
−1
k Sk −

‖s̄c‖2 ≥ 0.

If we choose py(y) := (1/2)‖y‖22, then ∇py(y) = y, Lpy = 1 and s̄c = 0. In this

case, the right-hand side Sk of (36) reduces to Sk = Gγkβk(w̄k) + γkDX , which is
in the first estimate of (37). The right-hand side of the second estimate of (36)

reduces to βk

[
‖y?‖2 +

√
‖y?‖22 + 2β−1

k Sk

]
≤ 2βk‖y?‖2 +

√
2βkSk, which is in the

second estimate of (37). �

A.2 The convergence analysis of the ASGARD method

In this appendix, we provide the full proof of Lemmas 4 and 5, and Theorem 1.
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A.2.1 The proof of Lemma 4: Maintaining the gap reduction condition

By (28), we have p̄β(x) = βp∗y(β−1(Ax − b)). Using the second estimate in (33)

with x̂ := x̂k, we get:

p̄β(x) ≥ p̄β(x̂k) + 〈∇p̄β(x̂k), x− x̂k〉+ (2βLpy )−1‖A(x−x̂k)‖2. (80)

By Lemma 9, x̄k+1 is obtained from x̂k by applying one proximal-gradient step
from (ASGARD) to minimize fβ := f+p̄β with p̄β ∈ F

1,1
L and Lp̄β := L̄A

β , we have:

fβ(x̄k+1)≤ ˆ̀k
fβ (x)+

L̄A
β
〈x̂k−x̄k+1, x̂k−x〉− L̄A

2β
‖x̂k−x̄k+1‖2 − 1

2βLpy
‖A(x−x̂k)‖2

≤fβ(x)+
L̄A
β
〈x̂k − x̄k+1, x̂k − x〉 − L̄A

2β
‖x̂k − x̄k+1‖2 − 1

2βLpy
‖A(x−x̂k)‖2, (81)

where ˆ̀k
fβ

(x) := f(x) + p̄β(x̂k) + 〈∇p̄β(x̂k), x− x̂k〉+ 1
2βLpy

‖A(x−x̂k)‖2.

Alternatively, since ȳk+1 is obtained from ŷk by applying one the gradient ascent
step at line 3 of (ASGARD) to gγ ∈ −F1,1

L , using again Lemma 9 to get:

−gγ(ȳk+1) ≤ −ˆ̀k
gγ (y) +

L̄g
γ
〈ŷk − ȳk+1, ŷk − y〉 − L̄g

2γ
‖ŷk − ȳk+1‖2 − γr̃k(y)

≤ −gγ(y) +
L̄g
γ
〈ŷk − ȳk+1, ŷk − y〉 − L̄g

2γ
‖ŷk − ȳk+1‖2 − γr̃k(y), (82)

where r̃k and ˆ̀k
gγ are defined as:

r̃k(y) :=
∑
i∈I1

1

2L̄Ai
‖x∗γ,i(y)−x

∗
γ,i(ŷ

k)‖2+
∑
i6∈I1

1

2
‖Ai(x∗γ,i(y)−x

∗
γ,i(ŷ

k))‖2,

ˆ̀k
gγ (y) := gγ(ŷk) + 〈∇gγ(ŷk), y − ŷk〉 − γr̃k(y),

gγ(·) =
∑N
i=1 g

i
γ(·),

∇giγ(y) = Aix
∗
γ,i(y)− bi,

L̄g =
∑N
i=1 L̄i.

Using the second inequality of (81) with x := x̄k and of (82) with y := ŷk, respec-
tively, then summing up the results and using Gγβ = fβ − gγ to obtain:

Gγβ(w̄k+1) ≤ Gγβ(w̄k) + β−1L̄A〈x̂k − x̄k+1, x̂k − x̄k〉 − L̄A
2β
‖x̂k − x̄k+1‖2

+ γ−1L̄g〈ŷk − ȳk+1, ŷk − ȳk〉 − L̄g
2γ
‖ŷk − ȳk+1‖2 −

(
βq̃∗k + γr̃∗k

)
, (83)

where q̃∗k and r̃∗k are defined respectively by:
q̃∗k := 1

2β2Lpy
‖A(x̄k−x̂k)‖2,

r̃∗k :=
∑
i∈I1

1

2L̄Ai
‖x∗γ,i(ȳ

k)−x∗γ,i(ŷ
k)‖2+

∑
i 6∈I1

1

2
‖Ai(x∗γ,i(ȳ

k)−x∗γ,i(ŷ
k))‖2.

(84)

Similarly, summing up the first inequality of (81) and (82), we get:
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Gγβ(w̄k+1) ≤ Ĥγβ(w) + β−1L̄A〈x̂k − x̄k+1, x̂k − x〉 − L̄A
2β
‖x̂k − x̄k+1‖2

+ γ−1L̄g〈ŷk − ȳk+1, ŷk − y〉 − L̄g
2γ
‖ŷk − ȳk+1‖2, (85)

for any w ∈ W, where Ĥγβ(·) is defined as:

Ĥγβ(w) :=
[
f(x)+p̄β(x̂k)+〈∇p̄β(x̂k), x−x̂k〉

]
−
[
gγ(ŷk)+〈∇gγ(ŷk), y−ŷk〉

]
. (86)

Next, multiplying (83) by 1−τk and (85) by τk ∈ (0, 1] and summing up the results,
we obtain:

Gγβ(w̄k+1) ≤ (1−τk)Gγβ(w̄k) + τkĤγβ(w) +
L̄A
β
〈x̂k−x̄k+1, x̂k−(1−τk)x̄k−τkx〉

− L̄A
2β
‖x̂k − x̄k+1‖2 +

L̄g
γ
〈ŷk − ȳk+1, ŷk − (1− τk)ȳk − τky〉

− L̄g
2γ
‖ŷk − ȳk+1‖2 − (1− τk)

(
βq̃∗k + γr̃∗k

)
. (87)

Using the first line of (ASGARD), we have ŵk − (1 − τk)w̄k = τkw̃
k, while using

its last line to get w̃k+1 = w̃k − 1
τk

(ŵk − w̄k+1). Hence, we can rearrange (87) as:

Gγβ(w̄k+1) ≤ (1− τk)Gγβ(w̄k) + τkĤγβ(w) +
τ2
k L̄A
2β

[
‖x̃k − x‖2 − ‖x̃k+1 − x‖2

]
+

+
τ2
k L̄g
2γ

[
‖ỹk − y‖2 − ‖ỹk+1 − y‖2

]
− (1− τk)

(
βq̃∗k + γr̃∗k

)
. (88)

Using the first estimate in (33) with x̄ := x̄k, β := βk and β̄ := βk+1, and (32)
with ȳ := ȳk, γ := γk and γ̄ := γk+1, we get:{

fβk+1
(x̄k) ≤ fβk(x̄k) +(βk − βk+1)q̄∗k,

−gγk+1(ȳk) ≤ −gγk(ȳk) +(γk − γk+1)r̄∗k,
(89)

where the quantities q̄∗k and r̄∗k are defined as:

q̄∗k := py(y∗βk+1
(x̄k)) and r̄∗k :=

∑
i∈I1

pi(x
∗
γk+1

(ȳk)) +
∑
i6∈I1

pi(Aix
∗
γk+1

(ȳk)). (90)

Now, we consider Ĥγβ(w) given by (86). Using the definition (28) of fβ and (11)
of f̄ , we have:

ˆ̀k
f (x) := f(x) + p̄β(x̂k) + 〈∇p̄β(x̂k), x− x̂k〉

= f(x) + 〈Ax̂k − b, y∗β(x̂k)〉+ 〈AT y∗β(x̂k), x− x̂k〉 − βpy(y∗β(x̂k))

= f(x) + 〈Ax− b, y∗β(x̂k)〉 − βpy(y∗β(x̂k))

≤ f(x) + max
{
〈Ax− b, y〉 : y ∈ Rn

}
− βpy(y∗β(x̂k))

(11)
= f̄(x)− βpy(y∗β(x̂k)). (91)

Alternatively, using the definition (23) of gγ , and (10) of g, we also have:
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ˆ̀k
g(y) := gγ(ŷk) + 〈∇gγ(ŷk), y − ŷk〉

= f(x∗γ(ŷk)) + 〈Ax∗γ(ŷk)− b, y〉+ γpx(Ax∗γ(ŷk))

≥ min {f(x) + 〈Ax− b, y〉 : x ∈ X}+ γpx(Ax∗γ(ŷk))

= g(y) + γpx(Ax∗γ(ŷk)). (92)

Combining (91), (92), and (17) with G(w) := f̄(x)− g(y), we can show that:

Hγk+1βk+1
(w) ≤ G(w)−

(
βk+1q̂

∗
k + γk+1q̂

∗
k

)
, (93)

where the two quantities q̂∗k and r̂∗k are given by:

q̂∗k := py(y∗βk+1
(x̂k)) and r̂∗k :=

∑
i∈I1

pi(x
∗
γk+1

(ŷk))+
∑
i 6∈I1

pi(Aix
∗
γk+1

(ŷk)). (94)

Using (88) with γ := γk+1, β := βk+1 and w = w? ∈ W?, and then combining the
result with both (89) and (93) we eventually get:

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k) + τkG(w?) +
τ2
k L̄A

2βk+1

[
‖ỹk − y?‖2 − ‖ỹk+1 − y?‖2

]
+

τ2
k L̄g

2γk+1

[
‖x̃k − x?‖2 − ‖x̃k+1 − x?‖2

]
−Rk, (95)

where Gk := Gγkβk , and the last term Rk is given as:

Rk :=
[
τkβk+1q̂

∗
k + (1− τk)βk+1q̃

∗
k − (1− τk)(βk − βk+1)q̄∗k

]
[1]

+
[
τkγk+1r̂

∗
k + (1− τk)γk+1r̃

∗
k − (1− τk)(γk − γk+1)r̄∗k

]
[2]
. (96)

The next step is to lower bound Rk. Using the strong convexity of py and p∗y,
respectively, and ȳc := ∇p∗y(0m) we have:

q̂∗k = py(y∗βk+1
(x̂k)) ≥ 1

2
‖y∗βk+1

(x̂k)− ȳc‖2 =
1

2
‖∇p∗y(β−1

k+1(Ax̂k − b))−∇p∗y(0m)‖2

≥ 1

2β2
k+1Lpy

‖Ax̂k − b‖2. (97)

Alternatively, using the Lipschitz continuity of ∇py and ∇p∗y, and py(ȳc) = 0, we
can also derive:

q̄∗k :=py(ȳ∗βk+1
(x̄k))≤

Lpy
2
‖ȳ∗βk+1

(x̄k)−ȳc‖2 =
Lpy
2
‖∇p∗y(β−1

k+1(Ax̄k−b))−∇p∗y(0m)‖2

≤
Lpy

2β2
k+1

‖Ax̄k − b‖2. (98)

Using the definition (84), (90) and (94) of q̃∗k, q̄∗k and q̂∗k, respectively, and the two
estimates (97) and (98), the first term [·][1] of (96) can be lower bounded as:

[·][1] = βk+1

[
τk q̂
∗
k + (1− τk)q̃∗k − (1− τk)(β−1

k+1βk − 1)q̄∗k

]
≥ 1

2Lpyβk+1

[
τk‖âk‖2 + (1−τk)‖āk−âk‖2 − (1−τk)

(
β−1
k+1βk − 1

)
L2
py‖āk‖

2]
=

1

2Lpyβk+1

[
‖âk − (1− τk)āk‖2 + (1− τk)

[
τk −

(
β−1
k+1βk − 1

)
L2
py

]
‖āk‖2

]
,
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where âk := Ax̂k − b and āk := Ax̄k − b. This expression shows that [·][1] ≥ 0 if:(
1 +

τk
L2
py

)
βk+1 ≥ βk. (99)

Next, using the property of pi in Assumption A.2, it is easy to show that:
1

2L̄Ai
‖Ai(xi − x̄ci )‖

2 ≤ pi(xi) ≤ Lpi
2σ2
i
‖Ai(xi − x̄ci )‖

2, ∀i ∈ I1,

1
2‖Ai(xi − x̄

i
c)‖ ≤ pi(Aixi) ≤

Lpi
2 ‖Ai(xi − x̄

c
i )‖

2, ∀i 6∈ I1.

Let us abbreviate x̂k∗,i := x∗γk+1,i(ŷ
k), x̄k∗,i := x∗γk+1,i(ȳ

k), ēki := Ai(x̄
k
∗,i − x̄

c
i ) and

êki := Ai(x̂
k
∗,i − x̄ci ). Then, we can estimate the second term [·][2] of (96) using

the definition (84), (90) and (94) of r̃∗k, r̄∗k and r̂∗k, respectively, and the two last
inequalities as follows:

[·][2] := γk+1

[
τk r̂
∗
k + (1− τk)r̃∗k − (1− τk)

(
γ−1
k+1γk − 1

)
r̄∗k

]
≥
γk+1

2

∑
i∈I1

[
τk
L̄Ai
‖êi‖2+

(1− τk)

L̄Ai
‖ēki −ê

k
i ‖

2 − Lpi(1−τk)

σ2
i

(
γk
γk+1

− 1

)
‖ēik‖

2

]

+
γk+1

2

∑
i6∈I1

[
τk‖êi‖2 + (1− τk)‖ēki − ê

k
i ‖

2 − Lpi(1− τk)

(
γk
γk+1

− 1

)
‖ēik‖

2

]

=
γk+1

2

∑
i∈I1

1

L̄Ai

[
‖êk−(1−τk)ēk‖2 + (1−τk)

[
τk−

(
γk
γk+1

−1

)
Lpi L̄Ai
σ2
i

]
‖ēik‖

2

]

+
γk+1

2

∑
i6∈I1

[
‖êk−(1−τk)ēk‖2 + (1−τk)

[
τk−

(
γk
γk+1

−1

)
Lpi

]
‖ēik‖

2

]
.

This expression shows that [·][2] ≥ 0 if:
(

1 +
σ2
i

Lpi L̄Ai
τk

)
γk+1 ≥ γk, ∀ i ∈ I1,(

1 + τk
Lpi

)
γk+1 ≥ γk, ∀ i 6∈ I1.

(100)

Consequently, if both conditions (99) and (100) hold, then Rk ≥ 0.
Next, by the choice βk := c0γk with c0 := β0

γ0
, then both conditions (99) and

(100) hold if γk+1

(
1 + τk

ĉ1

)
≥ γk, which is the second condition of (40), where:

ĉ1 := max

{
L2
py ,max

i∈I1

{
Lpi L̄Ai
σ2
i

}
,max
i 6∈I1

{Lpi}
}
.

This quantity ĉ1 is indeed (39). With βk = c0γk, we also obtain from (95) that:

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k) + τkG(w?)−Rk +
τ2
k

γk+1
Dk,

where Dk := γ0L̄A
2β0

[
‖ỹk − y?‖2 − ‖ỹk+1 − y?‖2

]
+

L̄g
2

[
‖x̃k − x?‖2 − ‖x̃k+1 − x?‖2

]
.

This inequality is in fact (41) since G(w?) = 0 and Rk ≥ 0.

Finally, let E∗k := γ0L̄A
2β0
‖ỹk − y?‖2 +

L̄g
2 ‖x̃

k − x?‖2. Then, on the one hand, by

dividing both sides of (41) by τ−2
k γk+1, we have:
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γk+1

τ2
k

Gk+1(w̄k+1) + E∗k+1 ≤
(1− τk)γk+1

τ2
k

Gk(w̄k) + E∗k ,

One the other hand, using the condition (1−τk)τ2
k−1γk+1 ≤ τ2

kγk, we have (1−τk+1)γk+2

τ2
k+1

≤
γk1

τ2
k

. Using this relation into the last inequality, we get:

(1−τk+1)γk+2

τ2
k+1

Gk+1(w̄k+1)+E∗k+1≤
γk+1

τ2
k

Gk+1(w̄k+1)+E∗k+1≤
(1−τk)γk+1

τ2
k

Gk(w̄k)+E∗k .

By induction, we obtain (42) from this inequality. �

A.2.2 The proof of Lemma 5: The update rule for parameters

The tightest conditions obtained from (40) and from (42) are γk+1 = (1+ĉ−1
1 τk)−1γk

and (1− τk)τ2
k−1γk+1 = τ2

kγk. These imply:

τ2
k = (1− τk+1)−1τ2

k+1(1 + ĉ−1
1 τk+1).

Let tk := τ−1
k ≥ 1. It is easy to show that:(

tk+1 − (1 + ĉ−1
1 )
)2

≤
t2k+1(tk+1 − 1)

(tk+1 + ĉ−1
1 )

≤ (tk+1 − 1)2.

The last condition on τk is equivalent to t2k =
t2k+1(tk+1−1)

tk+1+ĉ−1
1

and leads to:

tk+1 − (1 + ĉ−1
1 ) ≤ tk =

t2k+1(tk+1 − 1)

tk+1 + 1
≤ tk+1 − 1.

Hence, tk + 1 ≤ tk+1 ≤ tk + (1 + ĉ−1
1 ). By induction, we have t0 + k + 1 ≤ tk ≤

t0 + (1 + ĉ−1
1 )(k + 1). This shows that tk = O(k), or equivalently, τk = O

(
1
k

)
.

Let τk := c̄1
k+c̄1

. Then τ0 = 1. Moreover, we can choose γk+1 := γk
1+τk/c̄1

=(
k+c̄1
k+c̄1+1

)
γk = c̄1γ0

(k+c̄1+1) , which is the second update in Lemma 5. The third

update βk+1 = β0

γ0
γk+1 comes from the first condition in (40). We finally check the

last condition (1− τk)τ2
k−1γk+1 ≤ τ2

kγk in Lemma 4. Indeed, with γk+1 = c̄1γ0

(k+c̄1+1)

and τk := c̄1
k+c̄1

, this condition is equivalent to k(k+ c̄1)2 ≤ (k+ c̄1−1)2(k+ c̄1 +1),
which is trivially true for any k ≥ 0 and c̄1 ≥ 2. �

A.2.3 The proof of Theorem 1: The convergence guarantee of Algorithm 1.

From (42) of Lemma 4 and τ0 = 1, we have:

Gk(w̄k) ≤ τ2
k

(1− τk)γk+1
E∗0 =

c̄1(k + c̄1 + 1)

γ0k(k + c̄1)
R2

0(w?), k ≥ 1,

where R2
0 := E∗0 ≡

γ0L̄A
2β0
‖ỹ0−y?‖2 +

L̄g
2 ‖x̃

0−x?‖2 ≡ γ0L̄A
2β0
‖ȳ0−y?‖2 +

L̄g
2 ‖x̄

0−x?‖2.

It remains to use this bound and Lemma 3 to obtain (44) by noting that k+c̄1+1
k ≤

c̄1 + 2 for any k ≥ 1. �

A.3 The convergence analysis of the ADSGARD method

In this appendix, we provide the full proof of Lemmas 6, 7 and 8 for (ADSGARD).
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A.3.1 The proof of Lemma 6: Maintaining the gap reduction condition

We abbreviate Gk := Gγkβk , ȳ∗k := y∗βk(x̄k), x̂∗k := x∗γk+1
(ŷk) and x̄∗k := x∗γk+1

(ȳk).

Using the definition of Gk+1 and fβ , the third line x̄k+1 := (1−τk)x̄k+τkx̂
∗
k) in

(ADSGARD), py(y) ≥ py(ȳc) = 0, and βk+1 ≥ (1− τk)βk, we can derive:

Gk+1(w̄k+1)
(24)
:= fβk+1

(x̄k+1)− gγk+1(ȳk+1)

(23)
= max

{
f(x̄k+1) + 〈Ax̄k+1−b, y〉 − βk+1py(y) : y ∈ Rm

}
− gγk+1(ȳk+1)

(47)

≤ max
{
f((1−τk)x̄k+τkx̂

∗
k)) + 〈(1− τk)(Ax̄k−b) + τk(Ax̂∗k−b), y〉

− (1− τk)βkpy(y) : y ∈ Rm
}
− gγk+1(ȳk+1)

≤ max
{

(1−τk)
[
f(x̄k) + 〈Ax̄k−b, y〉 − βkpy(y)

]
[1]

+ τk
[
f(x̂∗k) + 〈Ax̂∗k − b, y〉

]
[2]

: y ∈ Rm
}
− gγk+1(ȳk+1). (101)

Now, we estimate the terms [·][1] and [·][2] in (101) separately. Since ȳ∗k is the
solution of the strongly concave maximization problem (25), using (23) we have:

[·][1] := f(x̄k) + 〈Ax̄k − b, y〉 − βkpy(y) ≤ max
y∈Rm

{
f(x̄k) + 〈Ax̄k − b, y〉 − βkpy(y)

}
= fβk(x̄k)− βk

2
‖y − ȳ∗k‖

2. (102)

By (24), we have Gk(w̄k) = fβk(x̄k) − gγk(ȳk) which implies fβk(x̄k) = Gk(w̄k) +

gγk(ȳk). Substituting this into (102) we get:

[·][1] ≤ Gk(w̄k) + gγk(ȳk)− βk
2
‖y − ȳ∗k‖

2, ∀y ∈ Rm. (103)

Alternatively, we expand the term [·][2] of (101) as:

[·][2] := f(x̂∗k) + 〈Ax̂∗k − b, y〉

= f(x̂∗k) + 〈Ax̂∗k − b, ŷ
k〉+ γk+1px(Ax̂∗k) + 〈Ax̂∗k − b, y − ŷ

k〉 − γk+1px(Ax̂∗k)

= gγk+1(ŷk) + 〈∇gγk+1(ŷk), y − ŷk〉 − γk+1px(Ax̂∗k), (104)

where, in the last line, we use ∇gγk+1(ŷk) = Ax̂∗k − b. Let us denote p̂∗k := px(Ax̂∗k).
Then, substituting (103) and (104) into (101) we get:

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k)− gγk+1(ȳk+1)− τkγk+1p̂
∗
k

+ max
{

(1− τk)gγk(ȳk)− (1− τk)βk
2

‖y − ȳ∗k‖
2

+ τk

[
gγk+1(ŷk) + 〈∇gγk+1(ŷk), y − ŷk〉

]
: y ∈ Rm

}
. (105)

Next, since ∇giγk+1
(ŷk) = Aix̂

∗
k,i−bi and ∇giγk+1

(ȳk) = Aix̄
∗
k,i−bi for i ∈ IN , we

have:

p̃∗k :=
N∑
i=1

1

2L̄i
‖∇giγk+1

(ȳk)−∇giγk+1
(ŷk)‖2∗ =

N∑
i=1

1

2L̄i
‖Ai(x̄∗k,i − x̂

∗
k,i)‖

2
∗. (106)
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For each i ∈ IN , using (30) of Lemma 2 with y := ȳk and ȳ := ŷk to obtain:

giγ(ȳk) ≤ giγ(ŷk) + 〈∇giγ(ŷk), ȳk − ŷk〉 − γ

2L̄i
‖∇giγ(ȳk)−∇giγ(ŷk)‖2∗.

By summing up this inequality from i = 1 to i = N , and using γ := γk+1, the

definition of gγ(·) =
∑N
i=1 g

i
γ(·) and (106), we get:

gγk+1(ȳk) ≤ gγk+1(ŷk) + 〈∇gγk+1(ŷk), ȳk − ŷk〉 − γk+1p̃
∗
k (107)

Now, using (32) of Lemma 2 with ȳ := ȳk, γ := γk and γ̄ := γk+1, then summing
up the results from i = 1 to i = N , and combining with (107) we have:

gγk(ȳk)
(32)

≤ gγk+1(ȳk) + (γk − γk+1)px(Ax̄∗k)

(107)

≤ gγk+1(ŷk) + 〈∇gγk+1(ŷk), ȳk−ŷk〉+ (γk − γk+1)p̄∗k − γk+1p̃
∗
k, (108)

where p̄∗k := px(Ax̄∗k). Substituting (108) into (105) we can further deduce:

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k)− τkγk+1p̂
∗
k − (1− τk)

[
γk+1p̃

∗
k − (γk − γk+1)p̄∗k

]
+ max

{
gγk+1(ŷk) + 〈∇gγk+1(ŷk), (1− τk)ȳk + τky − ŷk〉

− (1− τk)βk
2

‖y − ȳ∗k‖
2 : y ∈ Rm

}
− gγk+1(ȳk+1). (109)

Let us define u := (1−τk)ȳk+τky. Since y ∈ Rm, we have u ∈ Rm. Moreover, using
the first line ŷk := (1− τk)ȳk + τkȳ

∗
k of (ADSGARD), one has u− ŷk = τk(y− ȳ∗k).

Using this expression into (109) we obtain:

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k)− gγk+1(ȳk+1)− Tk

+ max
u∈Rm

{
gγk+1(ŷk) + 〈∇gγk+1(ŷk), u− ŷk〉 − (1− τk)βk

2τ2
k

‖u− ŷk‖2
}

≤ (1− τk)Gk(w̄k)− gγk+1(ȳk+1)− Tk

+ max
u∈Rm

{
gγk+1(ŷk)+〈∇gγk+1(ŷk), u−ŷk〉−

Lgγk+1

2
‖u−ŷk‖2

}
[3]
, (110)

where the last inequality follows from the last condition of (47), i.e., (1−τk)βk
τ2
k

≥
L̄g
γk+1

= γ−1
k+1

∑
i=1 L̄i := Lgγk+1

, and the quantity Tk is given by:

Tk := τkγk+1p̂
∗
k − (1− τk)

[
γk+1p̃

∗
k − (γk − γk+1)p̄∗k

]
. (111)

Using line 2 of (ADSGARD), we can easily bound the term [·][3] of (110) as:

[·][3] := max
{
gγk+1(ŷk) + 〈∇gγk+1(ŷk), u− ŷk〉 −

Lgγk+1

2
‖u−ŷk‖2 : u ∈ Rm

}
= gγk+1(ŷk) + 〈∇gγk+1(ŷk), ȳk+1 − ŷk〉 −

Lgγk+1

2
‖ȳk+1−ŷk‖2

≤ gγk+1(ȳk+1),

where the last inequality follows from Lipschitz continuity of ∇gγ in Lemma 2.
Using this inequality into (110) we eventually get:
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Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k)− Tk. (112)

Finally, we lower bound the quantity Tk. From the definition (111) of Tk, we write:

Tk = γk+1

{∑
i∈I1

[
τkpi(x̂

∗
k,i)+

(1−τk)

2L̄i
‖Ai(x̂∗k,i−x̄

∗
k,i)‖

2
∗−(1−τk)

(
γk
γk+1

−1
)
pi(x̄

∗
k,i)
]

+
∑
i 6∈I1

[
τkpi(Aix̂

∗
k,i)+

(1−τk)

2L̄i
‖Ai(x̂∗k,i− x̄

∗
k,i)‖

2
∗−(1−τk)

(
γk
γk+1

−1
)
pi(Aix̄

∗
k,i)
]}
.

From Assumption A.2, since pi is 1-strongly convex, and its gradient is Lpi - Lips-
chitz continuous, we have:

1
2L̄Ai

‖Ai(x̂∗k,i − x̄
c
i )‖

2
∗ ≤ pi(x̄∗k,i) ≤ Lpi

2σ2
i
‖Ai(x̄∗k,i − x̄

c
i )‖

2
∗, i ∈ I1

1
2‖Ai(x̂

∗
k,i − x̄

c
i )‖

2
∗ ≤ pi(Aix̄∗k,i) ≤

Lpi
2 ‖Ai(x̄

∗
k,i − x̄

c
i )‖

2
∗, i 6∈ I1.

Let us denote by v̂ki := Ai(x
∗
γk+1,i(ŷ

k) − x̄ci ) and v̄ki := Ai(x
∗
γk+1,i(ȳ

k) − x̄ci ) for
i ∈ IN . Using the two last inequalities, we can lower bound Tk as:

Tk ≥
γk+1

2

∑
i 6∈I1

[
τk‖v̂ki ‖

2
∗ + (1− τk)‖v̂ki − v̄

k
i ‖

2
∗ −

(1− τk)(γk − γk+1)Lpi
γk+1

‖v̄ki ‖
2
∗

]
+
γk+1

2

∑
i∈I1

1

L̄Ai

[
τk‖v̂ki ‖

2
∗+(1−τk)‖v̂ki −v̄

k
i ‖

2
∗−

(1−τk)(γk−γk+1)Lpi L̄Ai
γk+1σ

2
i

‖v̄ki ‖
2
∗

]
=
γk+1

2

∑
i 6∈I1

[
‖v̂ki − (1− τk)v̄ki ‖

2
∗ + (1− τk)

(
τk −

(γk − γk+1)Lpi
γk+1

)
‖v̄ki ‖

2
∗

]
+
γk+1

2

∑
i∈I1

1

L̄Ai

[
‖v̂ki − (1−τk)v̄ki ‖

2
∗ + (1−τk)

(
τk −

(γk − γk+1)Lpi L̄Ai
γk+1σ

2
i

)
‖v̄ki ‖

2
∗

]
.

From this estimate, we can see that if:(
τk
ĉ2

+ 1

)
γk+1 ≥ γk, with ĉ2 := max

{
max
i∈I1

{Lpi} ,max
i 6∈I1

{Lpi L̄Ai
σ2
i

}}
, (113)

then Tk ≥
γk+1

2

∑N
i=1

1
L̄i
‖v̂ki − (1− τk)v̄ki ‖

2
∗ ≥ 0. Hence, (112) leads to Gk+1(w̄k+1) ≤

(1 − τk)Gk(w̄k) + τkψk, which is (48) with ψk := −Tk ≤ 0. Moreover, (113) is
exactly the second condition of (47). �

A.3.2 The proof of Lemma 7: The update rule for parameters.

The tightest conditions obtained from (47) are γk+1 = (1 + ĉ−1
2 τk)−1γk, βk+1 =

(1 − τk)βk and (1 − τk)γk+1βk = L̄gτ
2
k . By induction, we can derive from these

equalities the tightest condition for τk as:

τ2
k =

τ2
k+1(1 + ĉ−1

2 τk+1)

1− τk+1
.

Similar to the proof of Lemma 5, we can show that τk = O
(

1
k

)
, which is optimal.

Let us choose τk := ĉ2
k+r for some r > ĉ2. With this choice, τ0 = ĉ2

r ∈ (0, 1). We

choose γk+1 := γk
(1+τk/ĉ2)

= γk(k+r)
k+r+1 . By induction, we get γk = γ0r

k+r . We compute

βk from the last condition of (47) to get:
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βk =
L̄gτ

2
k

(1− τk)γk+1
=

L̄g ĉ
2
2(k + r + 1)

γ0r(k + r)(k + r − ĉ2)
. (114)

It remains to check the second condition of (47), i.e., βk+1 ≥ (1 − τk)βk. Using
(114), this inequality is equivalent to:

k+r+2

(k+r+1)(k+r+1−ĉ2)
≥
(

1− ĉ2
k+r

)(
k+r+1

(k+r)(k+r−ĉ2)

)
=

(k + r + 1)

(k + r)2
. (115)

Let k̂ := k + r, (115) is equivalent to (ĉ2 − 1)k̂2 + (2ĉ2 − 3)k̂ + (ĉ2 − 1) ≥ 0. This
condition holds if ĉ2 ≥ 3/2 and k̂ ≥ 0.

We now define c̄2 := max
{
ĉ2,

3
2

}
and take τk := c̄2

k+c̄2+1 . Then, τk ∈ (0, 1) and
all the conditions in (47) are satisfied. Using the update formula of τk, γk and βk
as above, we obtain the last conclusion of Lemma 7. �

A.3.3 The proof of Lemma 8: Finding a starting point

Given ȳc = ∇p∗y(0m) ∈ Rm, we denote by x̄0 ≡ x̄∗0 := x∗γ0
(ȳc). Using (30) with

Lgγ0
= γ−1

0 L̄g, we can derive:

gγ0(ȳ0) ≥ gγ0(ȳc) + 〈∇gγ0(ȳc), ȳ0 − ȳc〉 −
Lgγ0

2
‖ȳ0 − ȳc‖2

= f(x̄∗0) + 〈Ax̄∗0−b, ȳc〉+ 〈Ax̄∗0−b, ȳ0−ȳc〉+ γ0px(Ax̄∗0)−
Lgγ0

2
‖ȳ0−ȳc‖2

= f(x̄0) + 〈Ax̄0 − b, ȳ0〉 −
Lgγ0

2
‖ȳ0 − ȳc‖2 + γ0px(Ax̄0).

Using this inequality, and ȳ0 := ∇p∗y(β−1
0 (Ax̄0 − b)), we have:

Gγ0β0
(w̄0) := fβ0

(x̄0)− gγ0(ȳ0) = f(x̄0) + β0p
∗
y(β−1

0 (Ax̄0 − b))− gγ0(ȳ0)

≤ β0p
∗
y(β−1

0 (Ax̄0−b))− 〈Ax̄0−b, ȳ0〉 − γ0px(Ax̄0) + (Lgγ0
/2)‖ȳ0−ȳc‖2

= β0

[
p∗y(β−1

0 (Ax̄0 − b))− 〈∇p∗y(β−1
0 (Ax̄0 − b)), β−1

0 (Ax̄0 − b)〉
]

+ (Lgγ0
/2)‖ȳ0 − ȳc‖2 − γ0px(Ax̄0). (116)

By the L−1
py -strong convexity of p∗y, we have:

p∗y(v)−〈∇p∗y(v), v〉≤p∗y(0)− 1

2Lpy
‖v‖2 = max

u∈Rm
{−py(u)}− 1

2Lpy
‖v‖2 ≤− 1

2Lpy
‖v‖2.

Using this inequality with v := β−1
0 (Ax̄0 − b), and then substitute the result into

(116) we obtain:

Gγ0β0
(w̄0) ≤ −γ0px(Ax̄0)− 1

2β0Lpy
‖Ax̄0 − b‖2 +

L̄g
2γ0
‖ȳ0 − ȳc‖2.

Finally, using ȳc := ∇p∗y(0m) and the 1- Lipschitz continuity of ∇p∗y, we have
‖ȳ0 − ȳc‖ = ‖∇p∗y(β−1

0 (Ax̄0 − b)) − ∇p∗y(0)‖ ≤ ‖β−1
0 (Ax̄0 − b)‖ = β−1

0 ‖Ax̄
0 − b‖.

Substituting this bound into the last inequality we obtain (51). The remaining
statement of this lemma consequently follows from (51). �
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A.4 The proof of Theorem 3: The convergence analysis of the APSGARD method

Let us abbreviate x̄∗k := x̄∗γk(ȳk), ŷ∗k :=y∗βk+1
(x̂k), ȳ∗k :=y∗βk+1

(x̄k), and Gk :=Gγkβk .

Using the definition of gγ , the third line ȳk+1 = (1−τk)ȳk+τkŷ
∗
k of (APSGARD)

and the first condition γk+1 ≥ (1− τk)γk of (57), we have:

Gk+1(w̄k+1) = fβk+1
(x̄k+1)− gγk+1(ȳk+1)

(APSGARD)+(57)
= fβk+1

(x̄k+1)−min
{
τk
[
f(x) + 〈Ax− b, ŷ∗k〉

]
[1]

+ (1− τk)
[
f(x) + 〈Ax− b, ȳk〉+ γkpx(x)

]
[2]

: x ∈ X
}
. (117)

Since fβ(·) = f(·) + p̄β(·) ≡ f(·) + βp∗y(β−1(A · −b)) due to (28), we can estimate
the first term [·][1] of (117) as:

[·][1] := f(x) + 〈Ax− b, ŷ∗k〉

= f(x) + 〈Ax̂k − b, ŷ∗k〉 − βk+1py(ŷ∗k) + 〈AT ŷ∗k, x− x̂
k〉+ βk+1py(ŷ∗k)

= f(x) + p̄βk+1
(x̂k) + 〈∇p̄βk+1

(x̂k), x− x̂k〉+ βk+1py(ŷ∗k). (118)

Next, we bound [·][2] of (117) as follows. Using the definition of gγ with px(A(·))←
px(·) and gγk(ȳk) = fβk(x̄k)−Gk(w̄k), we can derive:

[·][2] := f(x) + 〈Ax− b, ȳk〉+ γkpx(x)

≥ min
{
f(x) + 〈Ax− b, ȳk〉+ γkpx(x) : x ∈ X

}
+ (γk/2)‖x− x̄∗k‖

2

= gγk(x̄k)+(γk/2)‖x−x̄∗k‖
2 = fβk(x̄k)−Gk(w̄k) + (γk/2)‖x−x̄∗k‖

2. (119)

Substituting β := βk+1 and x := x̄k into (80), we have:

p̄βk+1
(x̄k) ≥ p̄βk+1

(x̂k) + 〈∇p̄βk+1
(x̂k), x̄k−x̂k〉+ 1

2Lpyβk+1
‖A(x̄k−x̂k)‖2.

Using this inequality, the first inequality of (89) as in the proof of Lemma 4, and
the convexity and Lipschitz gradient continuity of p̄β , we have:

fβk(x̄k) ≥ fβk+1
(x̄k)− (βk − βk+1)py(y∗βk+1

(x̄k))

= f(x̄k) + p̄βk+1
(x̄k)− (βk − βk+1)py(y∗βk+1

(x̄k))

≥ f(x̄k) + p̄βk+1
(x̂k) + 〈∇p̄βk+1

(x̂k), x̄k − x̂k〉+ T̂k, (120)

where T̂k := 1
2Lpyβk+1

‖A(x̄k−x̂k)‖2 − (βk − βk+1)py(y∗βk+1
(x̄k)). Substituting (120),

(119) and (118) into (117), we obtain:

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k) + fβk+1
(x̄k+1)

−min
x∈X

{
τk

[
f(x) + p̄βk+1

(x̂k) + 〈∇p̄βk+1
(x̂k), x− x̂k〉+ βk+1py(ŷ∗k)

]
+ (1−τk)

[
f(x̄k)+p̄βk+1

(x̂k)+〈∇p̄βk+1
(x̂k), x̄k−x̂k〉+ γk

2
‖x−x̄∗k‖

2 + T̂k
]}

≤ (1− τk)Gk(w̄k) + fβk+1
(x̄k+1)− τkβk+1py(ŷ∗k)− (1− τk)T̂k

−min
x∈X

{
(1− τk)f(x̄k) + τkf(x) + p̄βk+1

(x̂k) +
(1− τk)γk

2
‖x− x̄∗k‖

2

+ 〈∇p̄βk+1
(x̂k), (1− τk)x̄k + τkx− x̂k〉

}
. (121)
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To further estimate (121), we now define the quantity T̃k as:

T̃k := τkβk+1py(ŷ∗k) + (1− τk)T̂k

= τkβk+1py(ŷ∗k) +
(1−τk)

2Lpyβk+1
‖A(x̄k−x̂k)‖2−(1−τk)(βk−βk+1)py(ȳ∗k). (122)

For any x ∈ X , the point z := (1−τk)x̄k+τkx ∈ X . Moreover, by using the first line
x̂k = (1− τk)x̄k + τkx̄

∗
k of (APSGARD), we have z − x̂k = τk(x− x̄∗k). Using these

relations and the convexity of f with (1−τk)f(x̄k)+τkf(x) ≥ f((1−τk)x̄k+τkx) =
f(z) into (121), we can further derive:

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k) + fβk+1
(x̄k+1)− T̃k

−min
z∈X

{
f(z) + p̄βk+1

(x̂k)+〈∇p̄βk+1
(x̂k), z−x̂k〉+ (1−τk)γk

2τk
‖z−x̂k‖2

}
(57)

≤ (1− τk)Gk(w̄k) + fβk+1
(x̄k+1)− T̃k

−min
z∈X

{
f(z) + p̄βk+1

(x̂k)+〈∇p̄βk+1
(x̂k), z−x̂k〉+ L̄A

2βk+1
‖z−x̂k‖2

}
, (123)

where, in the last inequality, we use (1−τk)γkβk+1 ≥ L̄Aτ2
k in (57). Since∇p̄βk+1

(x̂k) =

AT ŷ∗k, the second line of (APSGARD) can be expressed as:

x̄k+1 = argmin
z∈X

{
f(z) + 〈∇p̄βk+1

(x̂k), z−x̂k〉+ (L̄A/(2βk+1))‖z−x̂k‖2
}
. (124)

Since ∇pβ(·) is Lipschitz continuous with Lp̄β = β−1‖A‖2 = β−1L̄A, we have:

Qk(x̄k+1) := f(x̄k+1) + p̄βk+1
(x̂k) + 〈∇p̄βk+1

(x̂k), x̄k+1−x̂k〉+ L̄A
2βk+1

‖x̄k+1−x̂k‖2

≥ f(x̄k+1) + p̄βk+1
(x̄k+1).

Using this inequality and (124) into (123), we get:

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k)− T̃k. (125)

Finally, using (97) and (98) we can estimate the quantity T̃k as:

T̃k := τkβk+1py(ŷ∗k) +
(1− τk)

2Lpyβk+1
‖A(x̄k−x̂k)‖2 − (1− τk)(βk − βk+1)py(ȳ∗k)

≥ 1

2Lpyβk+1

[
‖r̂k−(1−τk)r̄k‖2 + (1−τk)

(
τk−

(
βk
βk+1

− 1

)
L2
py

)
‖r̄k‖2

]
, (126)

where r̄k := Ax̄k − b and r̂k := Ax̂k − b. Similar to the proof of Lemma 4, we can

show that T̃k ≥ 0 if βk+1

(
1 + τk

L2
py

)
≥ βk, which is the second condition of (57).

Using (57) with the same argument as the proof of Lemma 7, we can derive the
update rule for τk, γk and βk as in (58). The remainder of this theorem is proved
similarly as in Theorem 2. �
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A.5 The proof of Theorem 4: The accelerated augmented Lagrangian method

Let Lγ(x, y) := f(x) + 〈y,Ax − b〉 + γ
2 ‖Ax − b‖

2
2 be the augmented Lagrangian of

(1). Under Assumption A.1, by the well-known properties of Lγ [8], we have:

Lγ(x?, y) ≤ Lγ(x?, y?) ≡ L(x?, y?) = f? = g? ≤ Lγ(x, y?),

for all x ∈ X , y ∈ Rm, (x?, y?) ∈ W? and γ > 0. This expression leads to:

gγ(y) ≤ f(x) + 〈y?, Ax− b〉+ γ

2
‖Ax− b‖22 ≤ f(x) + ‖y?‖‖Ax− b‖2 +

γ

2
‖Ax− b‖22.

Hence, for any y? ∈ Y?, we obtain:

f(x)− gγ(y) ≥ f(x)− f? ≥ −‖y?‖‖Ax− b‖2 −
γ

2
‖Ax− b‖22, (127)

for all (x, y) ∈ W. Let t := ‖Ax̄k − b‖2. By combining (127) and Gγβ(w) = fβ(x)−
gγ(y), we obtain (1−γkβk)

βk
t2 − 2‖y?‖t − 2Gγ0βk(w̄k) ≤ 0. Since βk+1 = (1 − τk)βk,

we have γkβk = γ0βk = (1 − τ0)(1 − τ1) · · · (1 − τk−1)β0γ0 =
∏k−1
i=0 (1 − τi) < 1 for

k ≥ 1. Hence, the last inequality leads to:

‖Ax̄k − b‖2 ≤
(

βk
1− βkγ0

)[
‖y?‖+

√
‖y?‖2 +

2(1− γ0βk)

βk
Gγ0βk(w̄k)

]
. (128)

To prove (64), we note from the update rule (66) that (1 − τk) =
τ2
k

τ2
k−1

for k ≥ 1.

Hence, βk = β0
∏k−1
i=0 (1−τi) =

(1−τ0)τ2
k

τ2
0

= β0τ
2
k . By elementary calculations, we can

show that τk ≤ 2
k+3 for k ≥ 0. Hence, γ0βk

1−γ0βk
≤ γ0β0τ

2
k

1−γ0β0τ2
k

=
τ2
k

1−τ2
k
< 4

(k+1)(k+3) <

4
(k+1)2 . In addition, Gγ0βk(w̄k) ≤ 0 due to Lemma 6. Using these estimates into

(128), we obtain ‖Ax̄k − b‖2 ≤ 8DY?
γ0(k+1)2 , which is the first inequality of (64).

From (127) and Gγβ(w) = fβ(x) − gγ(y) we have f(x̄k) − f? ≤ f(x̄k) − gγ0(ȳk) =

Gγ0βk(w̄k) ≤ 0. This inequality and (127) imply the second inequality of (64). The
remaining conclusion consequently follows from (64). �

A.6 The proof of Corollary 1: The fully strong convexity of the objective function

Let us define Ḡβ(w̄) := fβ(x̄)−g(ȳ), where fβ is defined by (23) and g is defined by
(10). By the update scheme (ADSGARDµ) and (66), the gap reduction condition
Gβk+1

(w̄k+1) ≤ (1 − τk)Gβk(w̄k) + τkψk ≤ (1 − τk)Gβk(w̄k) in Lemma 6 holds.

Hence, Gβk(w̄k) ≤ ωkGβ0
(w̄0). Since w̄0 is computed by (67), we have Gβ0

(w̄0) ≤ 0.

Consequently, Gβk(w̄k) ≤ 0 for k ≥ 0. Similar to the proof of Lemma A.1.3, we
can show that:

−‖y?‖‖Ax̄k−b‖ ≤ f(x̄k)− f? ≤ f(x̄k)−g(ȳk) = fβk(x̄k)− g(ȳk)− 1

2βk
‖Ax̄k−b‖2

= Gβk(w̄k)− 1

2βk
‖Ax̄k − b‖2 ≤ − 1

2βk
‖Ax̄k − b‖2.

This inequality leads to:

−DY?‖Ax̄k − b‖ ≤ f(x̄k)− f? ≤ 0, and ‖Ax̄k − b‖ ≤ 2βkDY? . (129)

Now, by using [53, Theorem 4], we can show that {βk} updated by (66) satisfies

βk ≤ 2β0(k+2)−2. Since β0 := L̂g =
∑N
i=1 µ

−1
fi
‖Ai‖2, substituting these expressions

into (129), we obtain the first and the second estimates of (68).
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Finally, we prove the last estimate of (68). Indeed, by the strong convexity
of fi, we have fi(x̄

k
i ) − fi(x

?
i ) ≥ 〈ξfi(x

?
i ), x̄

k
i − x?i 〉 + (µfi/2)‖x̄ki − x?i ‖

2
2, where

ξfi(x
?
i ) ∈ ∂fi(x

?
i ) is one subgradient of fi at x?i for i ∈ IN . On the other hand, since

x? is the optimal solution of (1), using the optimality condition of this problem,
we have 〈ξfi(x

?
i ) + ATi y

?, xi − x?i 〉 ≥ 0 for any xi ∈ Xi and y? ∈ Y? and Ax?i = bi
for i ∈ IN . Using these expressions, we can show that:

f(x̄k)−f(x?)≥
N∑
i=1

µfi
2
‖x̄ki−x

?
i ‖

2−〈Ax̄k−b, y?〉 ≥
µ
f

2
‖x̄k−x?‖2−‖y?‖∗‖Ax̄k−b‖,

where µ
f

:= min
{
µfi : i ∈ IN

}
. This estimate leads to ‖x̄k − x?‖2 ≤ 2

µ
f

[f(x̄k) −

f?] + 2‖y?‖∗
µ
f

‖Ax̄k − b‖ ≤ 4DY?
(k+2)

√
L̂g/µf , which is the third estimate of (68). �
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46. A. Ruszczyński. On convergence of an augmented lagrangian decomposition method for
sparse convex optimization. Mathematics of Operations Research, 20:634–656, 1995.

47. R. Shefi and M. Teboulle. Rate of Convergence Analysis of Decomposition Methods
Based on the Proximal Method of Multipliers for Convex Minimization. SIAM J. Op-
tim., 24(1):269–297, 2014.

48. Q. Tran-Dinh and V. Cevher. Constrained convex minimization via model-based exces-
sive gap. In Proc. the Neural Information Processing Systems Foundation conference
(NIPS2014), pages 1–9, Montreal, Canada, December 2014.

49. Q. Tran-Dinh and V. Cevher. Splitting the Smoothed Primal-Dual Gap: Optimal Alter-
nating Direction Methods. Tech. Report. (LIONS, EPFL), 2015.

50. Q. Tran-Dinh, A. Kyrillidis, and V. Cevher. An inexact proximal path-following algorithm
for constrained convex minimization. SIAM J. Optim., 24(4):1718–1745, 2014.

51. Q. Tran-Dinh, A. Kyrillidis, and V. Cevher. Composite self-concordant minimization. J.
Mach. Learn. Res., 15:374–416, 2015.

52. Q. Tran-Dinh, I. Necoara, and M. Diehl. Path-Following Gradient-Based Decomposition
Algorithms For Separable Convex Optimization. J. Global Optim., 59(1):59–80, 2014.

53. Q. Tran-Dinh, C. Savorgnan, and M. Diehl. Combining Lagrangian Decomposition and
Excessive Gap Smoothing Technique for Solving Large-Scale Separable Convex Optimiza-
tion Problems. Compt. Optim. Appl., 55(1):75–111, 2013.

54. M. J. Wainwright. Structured regularizers for high-dimensional problems: Statistical and
computational issues. Annual Review of Statistics and its Applications, 1:233–253, 2014.

55. H. Wang and A. Banerjee. Bregman Alternating Direction Method of Multipliers. Tech.
Report., http://arxiv.org/pdf/1306.3203v1.pdf, pages 1–18, 2013.

56. A. Yurtsever, Q. Tran-Dinh, and V. Cevher. Universal primal-dual proximal-gradient
methods. Tech. Report. (LIONS, EPFL), Available at: http://arxiv.org/pdf/1502.
03123.pdf, 2015.

57. G. Zhao. A Lagrangian dual method with self-concordant barriers for multistage stochastic
convex programming. Math. Progam., 102:1–24, 2005.

http://arxiv.org/pdf/1306.3203v1.pdf
http://arxiv.org/pdf/1502.03123.pdf
http://arxiv.org/pdf/1502.03123.pdf

	Introduction
	Preliminaries
	Smoothing the gap function via proximity functions
	The accelerated primal-dual gap reduction algorithm
	The accelerated dual smoothed gap reduction method
	The accelerated primal smoothed gap reduction method
	Special instances of the primal-dual gap reduction framework
	Appendix: The proof of theoretical results

