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Abstract—This paper studies how a reliable communication
service can be built, with high probability synchrony, over a
wireless channel. We investigate environments where energy con-
sumption is crucial, e.g., sensor networks. We consider a Partially
Observable Markov Decision Process (POMDP) setting in which
the channel state: (i) changes according to a classic Markovian
model and (ii) can be only partially observed, through feedback
relative to previous transmissions. We perform a thorough an-
alytic study under four Ack/Nack feedback mechanisms, which
to our knowledge represent all Ack/Nack feedback variations.
Despite the general intractability of POMDPs, we prove that
our communication service, under reliable feedback, can be
inexpensively implemented. We precisely obtain a closed form
solution specifying when to transmit over the channel, which allows
to derive an energy-optimal dependable implementation. We show
that an easy implementable structure for our communication
service can also be obtained under lossy feedback, depending
on the feedback mechanism.

I. INTRODUCTION

Unreliable asynchronous communication renders the de-
sign and analysis of distributed algorithms a challenging
task [1]–[3]. Consequently, fault-tolerant distributed algorithms
typically assume reliable or even synchronous (or partially
synchronous) links [4]–[8]. However, in practice, message
loss is unavoidable. In fact, all communication media are
lossy to some extent, due to uncertainties stemming from
various phenomena such as unpredictable system loads and
physical properties of the media. For example, wireless and
power line communication quality are influenced by path loss,
fading, interference, switching of the power grid, activation
of electrical equipment, etc [9]–[12]. Although message loss
is common in wireless and power line networks, it actually
exists everywhere [13], [14]. Due to the random occurrences
of such inevitable phenomena, messages losses typically come
and go over time. The communication between a pair of pro-
cesses (abstracted by a communication link) thus experiences
time-varying unreliability, i.e., changes in the quality of the
communication link with time between lossy and reliable. In
addition to being a problem by itself, time-varying unreliabil-
ity induces asynchrony1, as successful message transmission
delays become hard to anticipate.

The goal of this work is to mask such message losses
through a communication service, that can be used by high
level applications of the network. More precisely, we want to
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mission delays, while synchrony means that the bound exists and is known.

provide a communication service which guarantees that mes-
sage transfer, over a time-varying unreliable communication
link, is: (i) always reliable and (ii) synchronous with high
probability. Moreover, we want to design our communication
service in an energy-efficient manner. In environments such as
sensor networks [15]–[21], some devices have battery-powered
wireless and recharging may be tedious or even impossible. In
order to prolong the lifetime of a network, energy-efficient
algorithms are crucial [22]–[30]. Distributed algorithms can
thus transparently utilize this communication service to deliver
energy-efficient services at the network level, e.g., to build an
energy-efficient reliable broadcast or higher level abstracts.

To capture the time-varying message loss of a commu-
nication link, we consider a widely-used approach for such
cases, the Gilbert-Elliot (GE) model [31], [32]. The GE
model, consisting of two states (see Fig. 1), is a simple non-
trivial finite state Markov chain (FSMC) [33], established to
capture well message loss behaviour resulting from randomly
occurring phenomena [34]–[36]. In fact, the GE model has
been empirically verified, by a large body of work [32],
[34], [37]–[40], as a good approximation of message losses
in real-life communication scenarios. The GE model, for
instance, has been used to model losses in wireless media
IEEE 802.11 [40], wired power line networks [41] and other
hybrid networks [13], [14]. The two states of the GE model
(Fig. 1), noted by good and bad, can for example abstract the
following: the communication link between a pair of processes
occupies the bad state when the packet success-rate drops
below a certain “unacceptable” threshold and the good state
otherwise. The cause for these state transitions can, itself, lie
in the random phenomena leading to message loss [34].

As in [38], [42]–[44], we assume that the current state
of the link is not known to the sending process. The sender
can however benefit from the feedback regarding previous
transmissions to guess the current state. It can thus make
better decisions of when to transmit; for example to avoid
transmitting when the link state is bad. Such adaptive transmis-
sion decisions employ link prediction to appropriately adjust
the transmission rate to the varying link conditions. In short,
transmission policies which tell the sending process when
to transmit and when to withhold from transmitting can be
devised.

A reliable communication can be achieved by retrans-
mitting a message until it has been received [45]. However,
the rate at which the protocol attempts to retransmit yields
a trade-off between (i) low energy consumption, (ii) high
throughput and (iii) low latency. At one extreme, while merely
optimizing for throughput and latency favors transmitting at
every possible opportunity, this scheme results in maximum
waste of energy. Especially at times when the link might be in
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a “bad condition”, i.e., constantly losing messages, for a long
duration. At the other extreme, optimizing solely for energy
might lead to a throughput bottleneck and an overwhelming
message latency. Given this trade-off, we address the question
of how to build our communication service optimally by first
studying the fundamental question of when to transmit.

In particular, we seek to solve the optimal transmission
policy which defines when should a sender transmit messages
in order to optimize a defined energy-throughput balance
while favoring lower latency. We also address two corollary
questions: (i) can optimal transmission policies guarantee
reliability under all desired energy-throughput trade-offs? If
not, under what energy-throughput trade-offs can reliability
be ensured? (ii) how to provide synchronous guarantees with
high probability, given unbounded time-varying message losses
between a pair of processes?

Determining the optimal transmission policy in such a
setting is an instance of partially observable Markov decision
processes (POMDPs), known to be notoriously intractable [46].
We investigate the optimal transmission policy under various
Ack/Nack feedback schemes2.

For presentation simplicity, we first conduct our analysis
under a reliable feedback mechanism, where a sending process
is notified about the success/failure of the previous transmis-
sion. We accomplish the following:

Optimal Transmission. Despite the fact that POMDPs are
P-SPACE hard, we derive explicit solutions proving that the
optimal transmission scheme, conforms to a computationally
inexpensive and easily implementable structure.

Reliability. We show that the optimal transmission policy,
under certain energy-throughput trade-offs and link parame-
ters3, can stop transmission for good. Suspending transmission
as such prevents reliable communication. We hence identify
the necessary conditions of system parameters to achieve
reliability. We prove that when reliability is guaranteed, the
optimal transmission policy takes one of three forms: con-
stantly transmit, back-off on bad and skip if good.

Synchrony. Despite the dynamic message loss, we establish
methods to obtain high probability guarantees on the total time
required to successfully send a message over the link.

We then study the impact of lossy feedback (feedback
which can be lost) on the optimal transmission by considering
different feedback mechanisms. To the best of our knowledge,
our work is the first to study optimal transmission under lossy
feedback. Assuming a mechanism where feedback about the
link state is periodically sent, we show that a myopic greedy
policy [47] is optimal and reliable. If feedback is sent only
regarding the times when the sender transmits over the link
(regardless if the transmitted message is successfully received
or not), we show that the optimal transmission will be similar
to that in which feedback is reliable. In other words, closed
form expressions allowing an easy implementation of the pol-
icy can be obtained. However, if we assume that the feedback
is only sent when transmission is successful, we showcase that
the optimal transmission policy does not necessarily comply
with an easily implementable structure.

2To our knowledge, the feedback schemes we consider cover all possible
Ack/Nack feedback mechanisms.

3An example could be when the energy cost relative to transmitting is very
high and the link is rarely in the good state.

Contributions. Our paper shows how to provide, over
a time-varying unreliable link, an energy-efficient, reliable
communication that is synchronous with high probability.

We achieve energy-efficiency by solving the optimal trans-
mission problem for time-varying links under incomplete infor-
mation about link quality. In other words, we solve a decision
problem (when to transmit messages) in a POMDP setting
using the Gilbert-Elliot (GE) model to capture time-varying
message losses over a communication link. Although the GE
model admits a simple structure consisting of two states, it has
been shown that POMDP approaches associated with the GE
model are theoretically intractable (P-SPACE hard) to solve in
various decision problem contexts [43], [46], [48]. Despite the
difficulty associated with the incomplete link quality informa-
tion, we derive in this paper explicit solutions for the optimal
transmission problem and for the first time under multiple lossy
feedback schemes. Our main contributions can be summarized
as:
• A first full analytic study of optimal transmission policies

of time-varying links for several reliable and lossy feedback.
• A derivation of explicit and closed form solutions to imp-

lement optimal transmission policies.
• An establishment of the necessary conditions for reliable

communication using optimal transmission policies.
•Methods to obtain synchronous message transfers with high

probability.

Road-map. The rest of the paper is organized as follows:
Section II discusses the related work. Section III describes
the system model, the various feedback mechanisms and
demonstrates a way of defining an energy-throughput balance.
Section IV formulates the problem of determining the optimal
transmission policy. In Sections V and VI we prove that the
optimal transmission strategy under reliable feedback has an
implementable structure, provide respective closed form ex-
pressions and determine the necessary conditions and transmis-
sion forms guaranteeing reliability. In Section VII we study the
impact of lossy feedback on the optimal transmission scheme.
In Section VIII we show how to achieve a synchronous
behaviour over the link, with a high probability. We conclude
the paper in Section IX.

II. RELATED WORK

In this section, we discuss related work on (i) reliable
links and dynamic link failures in distributed algorithms, (ii)
communication over time-varying links under POMDP settings
and (iii) restless bandits.

Previous work on distributed algorithms addressed the
issue of achieving reliable communication over lossy links at
different levels [?], [49], [50]. For example Aguilera et al.
implemented a failure detector allowing a quiescent reliable
communication when processes can fail [49]. Guerraoui et al.
defined the stubborn link abstraction which is weaker than a
reliable link but strong enough to solve important distributed
problems such as consensus [50]. Another work by Basu et al.
studied the solvability of problems in a system with process
crashes and message loss [?]. Aside from reliable communica-
tion, certain distributed algorithms approaches studied systems
with dynamic communication failures. Multiple efforts [51],
[52] addressed the k-consensus problem, which requires only
k processes to eventually decide. Moniz et al. [51] considered a
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system where message transmissions can be faulty: after some
unknown time at most dn2 e(n−k)+k−2 faulty transmissions
occur at each round. The number of faults per round prior to
this is unrestricted. In a different setting, Moniz et al. [52]
considered a communication system where a process sending
a message will send it to all other processes sharing that
link. Their algorithm tolerates up to f Byzantine processes
and requires the number of omission faults affecting correct
processes to be at most dn−f2 e(n−k−f) +k−2 in infinitely
many rounds, a fairness assumption to guarantee liveness. The
work in this paper goes one step further as it tries to achieve
energy-optimal algorithms. Also, in comparison with previous
work accounting for links failures through omission faults, our
work does not specify any bounds on the number of message
losses and allows, through a probabilistic loss behaviour, to
send messages intelligently, precisely avoiding potential losses.

In a different context, existing work applied tools from
Markov decision processes to solve communication problems
over time-varying links, e.g., [37], [38], [53]. In their work,
Laourine and Tong considered actions with a variable number
of bits being sent in each action [38]. The problem we
investigate in this paper is different. We consider transmission
with a fixed number of bits in all actions and optimize for
throughput under energy costs, which is not accounted for in
Laourine and Tong’s work [38]. Another work by Johnston and
Krishnamurthy, applied results from optimal search theory of a
Markovian target to find optimal transmission strategies [53].
They studied the problem of transmitting a single file/message
over the link maximizing the average reward. In contrast, we
consider an infinite sequence of messages to be transmitted
and optimize for the discounted reward, which allows to favor
lower latency. Most related to this paper is the work by Zhang
and Wassermanin [37], which targeted achieving a suitable
balance between throughput and energy consumption. The
authors proved that the optimal transmission policy follows a
threshold structure. Their paper assumed multiple power levels
for transmission where a sender must decide on one, in case it
decides to send. This energy level itself affects the probability
of the message content being delivered correctly. However,
in this paper we assume that a link can lose messages but
it does not manipulate their content. Besides, we define the
optimal policy in terms of the costs and we obtain closed
form solutions in terms of the system parameters. It is also
important to note that all the above mentioned work have
mainly considered positively correlated links (see Section V)
and error-free feedback. To the best of our knowledge, this
paper is thus the first to analyse all cases of link memory, i.e.,
memoryless, positively and negatively correlated cases and to
study optimal transmission under lossy feedback.

Another closely related area to the problem studied in this
paper is that of restless multi-armed bandits that was applied
mainly to cognitive radio networks [43], [44], [47]. In restless
multi-armed bandits, there is a set of N independent projects
that evolve over time and can yield some reward once they are
activated based on their state at that time. A player is required
to activate one of these projects at each time in such a way that
maximizes the total long-term expected reward. The problem
was studied in a setting where projects evolve according to
the GE model where the parameters are known [43], [44],
[47]. Zhao et al. prove that when projects are independent and
identically distributed, a myopic policy, which activates the
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Fig. 1. A time-varying communication link under the 2-state GE model

project with the highest belief, is optimal under the positive
correlation assumption [44]. Another work by Guha et al. also
studied this problem under the positive correlation assumption
and independent but not necessarily identically distributed
links [43]. They propose an approximation algorithm with
a performance guarantee of 2. Among the work on restless
bandits, that by Liu and Zhao is perhaps the closest to the
work in this paper [44]. The authors compute a closed form
of an index known as the Whittle index (see [48] for a complete
definition of this index), which measures the attractiveness of
activating a project. They propose to activate at every time the
project with the highest index. The work in this paper uses
a notion similar to the subsidy of the Whittle index to derive
its closed forms. However, the link considered here has non-
trivial differences from the link considered in all cited work on
restless bandits [43], [44], [47], as we permit for feedback to
be lost. We also allow for positive rewards and negative costs
to coexist and allow for costs to be incurred at two levels:
when the link is idled and when a transmission fails.

III. SYSTEM MODEL

We study the communication between any two processes.
One process, noted by S, needs to send messages to the other
process noted by R (see Figure 1). We assume discrete time
events denoted by Tsys = {t1, t2, t3, ...}. A subset, T , of
these time events occur at S, where ti ∈ T ∀i odd (i.e.,
T = {t1, t3, t5, ...}). The time interval between consecutive
events in Tsys is an upper bound on the propagation delay over
the channel in a single direction. As a result, the time interval
between consecutive time events in T is an upper bound on the
round trip propagation delay over the channel. We designate
by the time events in T the instances at which S is allowed
to use the channel, if it desires.

As shown in Figure 1, the communication channel con-
forms to a 2-state Gilbert-Elliot (GE) model. At any point in
time, the channel can be in one of the two states: the good
state or the bad state. The channel transitions with time, i.e.,
the channel moves to its new state, which can be the same
state it existed in or the other state. The time instants at which
the channel transitions are known as the transition times of
the channel. For example, given the channel is in the good
state at some point in time, it will remain in the same state at
the next transition time with probability 1− β and will move
to the other state with probability β. Similarly if the channel
state is bad at some point in time, it will remain bad at the
next transition time with probability (1− α) and will shift to
good with probability α. The channel state remains fixed in
the interval separating the transition times. We assume that S
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knows the parameters of the channel, i.e., α and β (in practice
S can estimate these parameters, see e.g., [54]).

If S sends a message m at some time ti ∈ T and the
channel is in the good state in the interval [ti, ti+1[, then m is
received by R at time t : ti < t < ti+1 (i.e., before ti+1). We
say R receives m by time ti+1. If however the channel state
is bad, the transmission of message m fails, in which case S
will retry to send this same message m in the following time
unit in T . Consequently, transmitting a message might span
several time units (depending on the state of the channel).
Meanwhile, new messages (whether from outside or generated
by S itself) that may arrive to S will be enqueued. We assume
a FIFO queue where a message is dequeued only when it is
successfully acknowledged. If a message transmission fails, the
respective message remains at the top of the queue. Practically,
this queue should be of a finite size. We thus assume that
the rate at which new messages arrive to S, relative to the
rate at which messages are dequeued, amounts to having at
all times a non-empty queue4 of size at most N . In practice
and with the help of queuing theory, N can be chosen such
that the probability of the queue overflowing is extremely
small (≈negligible). Guaranteeing a non-empty queue can be
achieved by having S generate dummy messages whenever
needed, which then serve to probe the channel state.

We investigate the optimal transmission scheme, i.e. what
time instances in T it is optimal for S to transmit a message
over the channel, under four Ack/Nack feedback mechanisms.
These four feedback mechanisms constitute, to the best of our
knowledge, all possible variations of an Ack/Nack feedback
mechanism.

Perfect Feedback. This feedback mechanism allows the
sender to know what was the channel state in the last car-
ried transmission. This mechanism is analogous to sensing
the channel, assuming error-free sensing. To implement this
feedback scheme, we assume that the channel transitions at
every time instant in T only. When S sends a message m at
some time ti ∈ T and the channel is in the good state, m
will be successfully propagated to R. R then directly replies
with an acknowledgment, ack, which will be received by S
before the next time instant in T , i.e., ti+2. However, if the
channel state is bad, transmission fails and R receives nothing.
S is thus informed about the success of the last message
transmission, and simultaneously about the last channel state,
by the presence or absence of an acknowledgment from R.

Constant Feedback. In this mechanism, the sender ex-
pects to receive periodical feedback from the receiver about
the channel state. However, this feedback can be lost. This
mechanism is analogous to sensing the channel on a periodical
basis. We achieve this feedback by assuming that the channel
transitions at every time instant in Tsys. We also assume that
R has access to the time instants Trcv = {t2, t4, t6, ...}. R thus
sends a message to S at every time instant in Trcv regardless if
S has sent something or not. The message sent by R is an ack
if some message from S is received and is a nack otherwise.
As a result, messages sent by R can be lost independently of
those sent by S.

Smart Feedback. In this mechanism, the sender expects
feedback, despite potential losses, every time it transmits

4This is otherwise known as the infinite backlog assumption resulting in
infinite messages to send.

over the channel. This mechanism is analogous to error-free
sensing, however in a lossy environment. Smart feedback
can be achieved similar to constant feedback, except that we
consider now that R knows the times at which S sends a
message. As such R will not send anything when it’s not
expecting to receive a message from S. The assumption that
R knows the sending times of S can be easily satisfied under
deterministic sending schemes, e.g., constantly transmitting
over the channel.

Unreliable Feedback. The sender in this feedback mecha-
nism is not sure if it can obtain feedback even when it transmits
over the channel. This mechanism is analogous to a sensing
service which is not available all the time. To implement this
mechanism, we also assume that the channel transitions at
every time instant in Tsys. As noted in constant feedback,
having the transition times in Tsys means that messages sent
by R can be lost independently of those sent by S. The receiver
R sends an ack message to S only when it receives a message
from S; otherwise R sends nothing.

At each time instant in T , S can either (i) use the channel to
transmit a message or (ii) idle transmission. Both transmission
and idling incur energy costs. We assume that a message
transmission incurs a cost (negative reward) of cp(≤ 0), while
idling incurs a cost of cd(≤ 0). It is obvious that in practice
cp < cd (since the idling energy cost is at least one order of
magnitude less than sending in wireless sensor networks, see
e.g., [55]), otherwise the optimal policy would be to always
transmit. If a message is both transmitted and acknowledged
successfully, S obtains an additional reward rs >| cp |. In this
case, the total reward relative to a successful transmission is
r = rs + cp (> 0), while an unsuccessful or unacknowledged
transmission gives no additional reward. This assignment of
rewards and costs constitutes a generic function which allows
to define any desired weighted balance between energy and
throughput.

Illustration of Cost Assignment. Let us set the idling cost
cd to 0 and try to establish a throughput-energy balance based
on the reward rs and cost cp. Assuming that messages sent
by S are of maximum size, i.e., equivalent to the channel
capacity, then a reward of value rs = 1 can be assigned. This
reflects a maximum throughput, achieved by utilizing 100%
of the channel capacity in every time unit where transmission
is successful. The amount of energy needed to transmit these
fixed size messages is possible to obtain by measuring how
much power is dissipated in the required transmission period.
Assuming that S is a battery operated process5, we can
calculate the average percentage energy consumption relative
to a single transmission (guaranteed to be < 1), which can in
turn be assigned as the value of the energy cost cp.

IV. OPTIMAL TRANSMISSION FORMULATION

In this section, we formally define our first question con-
cerning how our communication service can be made energy
optimal. In other words, we define mathematically the problem
of determining when to transmit over the channel so that a
defined cost function is optimized. For simplicity we consider
throughout the rest of the paper t = {ti : ti ∈ T } and

5Wireless sensor networks in a variety of contexts such as building au-
tomation and smart grids have finite energy sources or intermittent energy
harvesting scenarios.
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t+1 = ti+2, i.e., the next time instant in T . Let at be the action
taken a time t. at = 1 (at = 0) corresponds to transmitting
(idling) at time t respectively. The transmission policy, π, will
then be the set of all decisions to be taken, i.e., at ∀t. We
denote by ot the feedback received by S (precisely from R)
by time t. If nothing is received by time t then ot =⊥ . Let
R(at, ot+1) be the reward obtained at time t relative to action
at and the corresponding feedback relative to action at (which
is obtained by time t+ 1).

R(at, ot+1) =


r at = 1, ot+1 = ack,

cp at = 1, ot+1 = nack ∨ ⊥,
cd at = 0

Under all feedback mechanisms, S can make probabilistic
guesses about the link state. Consequently, a conditional proba-
bility that the link state is good given the last received feedback
from R, can be maintained by S at all times in t ∈ T . This
conditional probability is called the link belief wt. We compute
the link belief under each feedback mechanism.

Perfect Feedback. Under perfect feedback, if S sends a
message at time t then at time t + 1, S will know what was
channel state in [t, t + 1[. Accordingly the channel belief is
updated at the end of every time t ∈ T as follows:

wt+1 =

 1− β at = 1, ot+1 = ack,

α at = 1, ot+1 =⊥,
τ(wt) = (1− β)wt + α(1− wt) at = 0.

Constant Feedback. At all times t ∈ T , S can know the
exact last state of the channel before t. Consequently, the
channel belief w is updated at every time t as follows:

wt+1 =

{
1− β ot+1 = ack ∨ nack,
α ot+1 =⊥,

Smart Feedback. S can know the exact previous state of
the channel at all times t : at = 1, i.e., the times at which S
sends a message over the channel. Consequently, the channel
belief w is updated at time instants t as follows:

wt+1 =


1− β at = 1, ot+1 = ack ∨ nack,
α at = 1, ot+1 =⊥,
τ2(wt) = τ(τ(wt)) at = 0.

Unreliable Feedback. S can know the exact previous state
of the channel at all times t : at = 1 ∧ ot+1 = ack,
i.e., the times at which S sends a message and receives an
acknowledgement for that message. At all other times S can
not be sure about the previous channel state. Consequently, the
channel belief w is updated at time instants t as follows:

wt+1 =


1− β at = 1, ot+1 = ack,

T(wt) = τ(α)−αwt(2−2β−α)
1−wt(1−β) at = 1, ot+1 =⊥,

τ2(wt) = τ(τ(wt)) at = 0.

We now show how T(wt) is derived. By Bayes’ Theorem,

T(wt) = Pr(st+1 = G|wt, at, ot+1 =⊥)

=
Pr(st+1 = G,wt, at, ot+1 =⊥)

Pr(ot+1 =⊥)|wt, at)
(1)

where st is the channel state at time t and
Pr(st+1 = G,wt, at, ot+1 =⊥)

=
∑
st

Pr(st+1 = G|st, at, ot+1 =⊥)Pr(ot+1 =⊥ |st, at)Pr(st, wt)

(2)

T(wt) =
τ(α)− αwt(2− 2β − α)

1− wt(1− β)
(3)

We want to favor lower message latency while maximizing
the defined energy-throughput cost function (Section I), i.e., we
consider a delay sensitive communication. Accordingly, the
performance measure we seek to maximize is the expected
total discounted reward. The discounting factor is a constant
denoted by γ, such that 0 < γ < 1. This γ can be roughly
thought of as a penalty for delay. For practical choice of γ,
note that γ weights future rewards. Thus, a smaller γ should be
chosen for more delay-sensitive applications, as it puts more
emphasis on early transmissions. The expected total discounted
reward can be formally written as:

Eπ

 ∞∑
j=0

γjR(atj+1
, otj+3

)|w0

 , (4)

where w0 is the initial belief. The objective is to obtain
the maximum expected total discounted reward that can be
incurred from transmitting over a single channel, also known as
the value function Vγ(w). Let Vγ(w; a = 1) (and analogously
Vγ(w; a = 0)) designate the expected total discounted reward
from transmitting (not transmitting) on the channel in the first
decision followed by the optimal decisions in future times.
Due to POMDP theory, the value function satisfies the Bellman
equation and thus Vγ(w) can be written as [38]

Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}.

V. OPTIMAL TRANSMISSION STRATEGIES

For presentation simplicity we first derive the value func-
tion and study the optimal transmission policy under the
perfect feedback mechanism. We study the optimal transmis-
sion policy under the other feedback mechanisms later in
Section VII.

Transmitting over the link yields an immediate expected
reward of:
wR(at = 1, ot+1 = ack) + (1− w)R(at = 1, ot+1 =⊥)

= wr + (1− w)cp = w(r − cp) + cp.

The future maximum expected total discounted reward, relative
to transmitting over the channel, will be either: (i) γVγ(1−β)
(if the current state is good) or (ii) γVγ(α) (if the current state
is bad). The former occurs with probability w while the latter
occurs with probability 1− w resulting in:

Vγ(w; a = 1) = w(r−cp)+cp+γ[wVγ(1−β)+(1−w)Vγ(α)].

Idling however yields an immediate expected cost of cd (since
no other cost/reward exists relative to idling the channel).
By the update function of the channel belief (Section IV),
w deterministically evolves to τ(w) as a result of not using
the channel. The consequent future maximum expected total
discounted reward is Vγ(τ(w)) occurring with probability 1.
Hence, Vγ(w; a = 0) = cd + γVγ(τ(w)).
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The value function, Vγ(w), can be recursively written as:

Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}
= max{w(r − cp) + cp + γ[wVγ(1− β) + (1− w)Vγ(α)], cd + γVγ(τ(w))},

(5)
We distinguish between the different channel types and deter-
mine the optimal transmission strategy in each case. The chan-
nel can be categorized, based on its transition probabilities, as
either being memoryless or not. The latter itself is subdivided
into two categories: positively correlated (1 − β > α) and
negatively correlated (1− β < α).

Memoryless Channel. The channel is memoryless when
the probability of being in either state at the next time step
is independent from current state, i.e. 1 − β − α = 0. As a
consequence, 1 − β = α = τ(w) = p. The value function
in (5), thus reduces to

Vγ(w) = max{w(r − cp) + cp + γVγ(p), cd + γVγ(p)}
= max{w(r − cp) + cp, cd}+ γVγ(p).

The optimal transmission policy hence depends merely on the
values of w(r − cp) + cp and cd:

optimal policy =

{
transmit if w >

cd−cp
r−cp ,

idle otherwise.

Since 1−β = α = τ(w) = p, w will have a constant value for
a given channel. The optimal policy thus is either: (i) transmit
on the channel at every t or (ii) never transmit on the channel.

Channel with Memory. It is well established that the
value function can be obtained by value iteration as a uniform
limit of cost functions for finite horizon problems, which
are continuous, piecewise linear and convex [42], [56]. The
uniform convergence follows from the discounted dynamic
operator being a contraction mapping [56]. As a consequence
of uniform convergence, Vγ(w) is a convex function in w
continuous on [0,1].

Lemma 1: If cd < w(r−cp)+cp (in particular if cd < cp),
then the optimal decision is to use the channel for transmission
at every t.

Proof: By convexity of Vγ(w) in w we have:

Vγ(τ(w)) = Vγ(w(1− β) + α(1− w)) ≤ wVγ(1− β) + (1− w)Vγ(α)

Vγ(w; a = 1) will be greater than Vγ(w; a = 0), if cd <
w(r − cp) + cp, i.e., if cd − cp < w(r − cp).
Given that w(r − cp) ≥ 0, Vγ(w; a = 1) > Vγ(w; a = 0) if
cd − cp < 0.

Lemma 2: For a channel with a defined cost function,
there exists a unique value w∗ such that Vγ(w∗; a = 1) =
Vγ(w∗; a = 0), Vγ(w; a = 1) < Vγ(w; a = 0) ∀w < w∗ and
Vγ(w; a = 1) > Vγ(w; a = 0) ∀w > w∗.

Proof: At w = 0:
Vγ(0; a = 1) = cp+γVγ(α) and Vγ(0; a = 0) = cd+γVγ(α).
From Lemma 1, cd < cp trivializes the optimal policy to that
which constantly transmits over the channel. We thus consider
cd > cp which yields Vγ(0; a = 1) < Vγ(0; a = 0).
At w = 1:
Vγ(1; a = 1) = r + γVγ(1 − β) and Vγ(1; a = 0) = cd +
γVγ(1− β). Since r > 0 and cd ≤ 0, we get Vγ(1; a = 1) >
Vγ(1; a = 0).

Fig. 2. The behaviour of the value functions for transmitting and idling.

It can be seen that Vγ(w; a = 1) is linear in w. Following from
the convexity of Vγ(w), we can conclude that Vγ(w; a = 0)
is convex in w. As a result, there exists a single intersection
point between Vγ(w; a = 1) and Vγ(w; a = 0), where the
implication w∗ is unique comes from. This leads to the graph
shown in Figure 2 concluding the proof.

As a direct consequence of Lemma 2 the optimal policy has
the following structure:

optimal policy =

{
transmit if w > w∗,

idle if w < w∗.

We compute the value of w∗ by distinguishing between pos-
itively and negatively correlated channels. Depending on the
possible position of w∗ with respect to α, 1 − β and πg (the
stationary probability of being in the good state, πg = α

α+β ),
w∗ takes different values and admits different closed form
expressions (refer to Appendix A). However, this requires first
to guess the position of w∗ with respect to α, 1 − β and πg
for a given channel and given cost assignment. Not knowing
the position of w∗ in the general case, we define the optimal
policy in terms of costs. The computed closed form expressions
of w∗, for all cases, depend on the cost cd. More precisely,
these closed forms show that w∗ is strictly increasing in cd
(refer to Appendix A). We substitute the given fixed cost cd
by an unknown cost C(w). We let C(w) be the cost such that
w∗ = w. In other words, C(w) is the idling cost under which
Vγ(w; a = 1) = Vγ(w; a = 0).

Lemma 3: There exists a unique cost C(w) such that
Vγ(w; a = 1) = Vγ(w; a = 0), where

Vγ(w; a = 1) = w(r−cp)+cp+γ[wVγ(1−β)+(1−w)Vγ(α)],

Vγ(w; a = 0) = C(w) + γVγ(τ(w)).

Proof: By Lemma 2 there is a unique intersection point
(w∗) between Vγ(w∗; a = 1) and Vγ(w∗; a = 0). Since w∗ is
strictly increasing in the idling cost cd (refer to Appendix A),
then no two or more distinct idling costs can lead to the same
w∗, which concludes the proof.

The closed form expressions of C(w) can then be obtained
by simply inverting the closed form expressions of w∗ and
setting w∗ = w (see Figure 3).

Lemma 4: C(w) is strictly increasing in w.

Proof: From Appendix A, w∗ is strictly increasing in cd,
which means that cd is also strictly increasing in w∗ (inverting
the relation preserves the monotonicity). But the expressions
for C(w) are obtained by replacing cd by C(w) and setting
w∗ = w, which concludes the proof.
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Fig. 3. Closed form expressions for C(w).

Theorem 1: The optimal policy for a channel with memory
under a given cost assignment is:

optimal policy =

{
transmit if cd < C(w),

idle if cd ≥ C(w).

Proof: For a channel with a given idling cost cd, there
exists by Lemma 2 a unique value w∗ which makes the action
of transmitting on the channel as equally attractive as that of
idling transmission. More precisely C(w∗) = cd. By Lemma 4,
C(w) > cd for w > w∗. The optimal policy definition says
to transmit if w > w∗ and idle otherwise. Thus C(w) > cd
amounts to having the action of transmitting over the channel
as optimal. Similarly by Lemma 4, C(w) < cd for w < w∗,
which means that idling transmission is optimal.

VI. OPTIMAL RELIABLE TRANSMISSION

Still considering perfect feedback, we investigate in this
section how to guarantee reliability using optimal transmission
schemes. Clearly reliability is guaranteed if and only if optimal
decisions do not suspend transmission endlessly.

Lemma 5: Optimal transmission policies do not always
guarantee reliability across a channel be it memoryless or not.

Proof: We prove the lemma for each case of channel
memory by illustrating a counter example showing endless

suspension of transmission under optimal decisions.
Memoryless. In the memoryless case the optimal decision

at every time instant t is transmit only if w >
cd−cp
r−cp ; however

w = p = 1 − β = α, ∀t > 0. An assignment of cd = 0 and
r = −cp leads to cd−cp

r−cp = 0.5. Hence any channel satisfying
1 − β = α < 0.5 will have the optimal decision of always
idling the channel.

Positively correlated. One possible cost assignment could
lead to the following relation being satisfied: cd ≥ (1−β)(r−
cp) + cp. Such an assignment can happen in cases where the
channel rarely resides in the good state and the energy costs
are relatively high (e.g. cd = 0, r = −cp and 1 − β = 0.3).
The expected reward relative to transmitting on the channel
is w(r − cp) + cp. Note that 1 − β ≥ w ≥ α (a direct
consequence of the belief update function in Section IV) and
that w(r − cp) + cp increases monotonically as w increases.
The expected reward (cd) relative to idling the channel is thus
always greater than the maximum expected reward relative to
using the channel. Hence attempting to transmit at any time
will only make the value of the total expected discounted
reward less.

Negatively correlated. As in the positively correlated case,
a channel which rarely resides in the good state and whose
energy costs are relatively high (e.g. cd = 0, r = −cp and
α = 0.3) may lead to having cd ≥ α(r − cp) + cp satisfied.
Due to negative correlation, we have 1−β ≤ w ≤ α (following
from the belief update function in Section IV). Attempting to
transmit on the channel at any time will yield an expected
reward less than that obtained by idling the channel. This
makes the decision of idling the channel at all times lead to
the maximum value of the total expected discounted reward.

Theorem 2: In a memoryless channel, i.e., a channel with
a constant probability, 1− p, of losing messages, reliability is
guaranteed under an optimal policy only if p > cd−cp

r−cp . The
policy in this case is to constantly transmit on the channel.

Proof: The proof follows directly from the optimal policy
of memoryless channels in Section V.

Theorem 3: Given that a positively correlated channel is
used at some time t, there are exactly 2 forms of optimal
transmission policies at [t+ 1, ...,∞[, capable of guaranteeing
reliability.

1) Constantly Transmit: In case of high idling cost,
keep sending, irrespective of the predicted channel
state (at+i = 1 ∀i). This policy is optimal if cd <
α(r − cp) + cp.

2) Back-off on Bad: Transmit as long as the observed
channel state is good. When the observed state is
bad, transmission is withheld for T time instants
(somehow wait until channel is expected to transition
to the good state) after which transmission resumes
again.

T =

 ln (r−cd)A(k)+(1−w0)(cdD(k)−B(k))
w0(B(k)−D(k))

ln(1− β − α)

 .
This policy is optimal if cd < (1− β)(r− cp) + cp ∧
cd ≥ (α)(r − cp) + cp.
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Proof: We split the possible search space of w∗, i.e. [0; 1],
into different regions. If w∗ ∈ [πg, 1], and the channel is
observed in the bad state, i.e., w = α, then the optimal policy
will be to suspend transmission forever. This follows from the
fact that (14) and (15) lead to w ≥ w∗ never being satisfied.
The only possible range for w∗, such that transmission is never
suspended forever, is to exist in the region [0, πg]. This range
can be split in two: [0, α]∪ [α, πg]. Following from the update
function of Section IV the channel belief eventually abides by:

1− β ≥ w ≥ α. (6)

If w∗ ∈ [0, α], then by (6), w > w∗ will always be satisfied
and the optimal policy would be to always use the channel.
If w∗ ∈ [α, πg] then as long as the channel is observed to
be good (w = 1 − β > w∗) it would be optimal to use the
channel again. However if the channel is observed to be bad
(w = α ≤ w∗) then it is optimal not to use the channel until
w > w∗ is satisfied, which by (14) happens in finite time
T. By Theorem 1 w > w∗ for w∗ ∈ [α, πg] is equivalent to
cd <

rA(k)−B(k)(1−w)
A(k)−D(k)(1−w) , where w = τT(α) for T ∈ [0,∞].

Theorem 4: Given a negatively correlated channel is used
at some time t, there are exactly 2 forms for the optimal
transmission policies at times [t+1, ...,∞], which are capable
of ensuring reliability:

1) Constantly Transmit: This policy is optimal if cd <
(1− β)(r − cp) + cp.

2) Skip if Good: Transmits as long as the observed
channel state is bad. If the observed state is good
transmission is withheld for the following time instant
after which it resumes again. This policy is optimal
if cd < α(r − cp) + cp ∧ cd ≥ (1− β)(r − cp) + cp.

Proof: For the negatively correlated channels [44]:

τ2k(w) and τ2k+1(w)→ πg, from opposite directions , as k →∞.
(7)

If w∗ ∈ [τ(1 − β), 1] then transmission can be suspended
forever. When the channel is observed in the good state (w =
1−β < w∗) then it is optimal to idle the channel. This results
in the channel never being used since from (7), τk(1− β) >
w∗, can never be satisfied. Therefore, to guarantee reliability,
we should have w∗ ∈ [0, τ(1 − β)], which can be split into
[0, 1−β]∪[1−β, τ(1−β)[. If w∗ ∈ [0, 1−β], by 1−β ≤ w ≤ α,
w > w∗ is always satisfied and the optimal policy is to always
use the channel. Now if w∗ ∈ [1 − β, τ(1 − β)], then when
w = α > w∗ (i.e., the channel is observed to be bad) it is
optimal to use it again. If the channel is good though, then
w = 1−β which is not greater than w∗, meaning it is optimal
to idle the channel. Consequently, in the following time instant,
w will be updated to w = τ(1−β) > w∗ and the optimal action
is to transmit over the channel.

Implications of Theorems 3 and 4. The established the-
orems indicate that an optimal reliable transmission protocol
continues to transmit after a successful (failed) transmission
along a positively (negatively) correlated channel. This same
protocol, however, will wait for a fixed time, say Twait, before
attempting to send again after a failed (successful) transmis-
sion. Hence an optimal reliable protocol can be defined solely
by the waiting time Twait after a successful (failed) sending
attempt.

VII. IMPACT OF LOSSY FEEDBACK

Recall that so far, and for presentation simplicity, we have
considered perfect feedback. We now investigate the impact
of lossy feedback on energy-optimal transmission policies
by studying the system under the constant feedback, smart
feedback and unreliable feedback mechanisms.

Transmitting over the link yields an immediate expected
reward of:
w(1− β)R(ati = 1, oti+2

= ack) + α(1− w)R(ati = 1, oti+2
= nack)

+ (w(1− β) + α(1− w))R(ati = 1, oti+2
=⊥)

= w(1− β)(r − cp) + cp.

Idling however yields an immediate expected cost of cd (since
no other cost/reward exists relative to idling the channel). Next
we derive the value function relative for each of the other
feedback mechanisms.

Constant Feedback. The future maximum expected total
discounted reward, regardless if S transmits or idles the link,
will be either: (i) γVγ(1−β) (if an ack or a nack is obtained)
or (ii) γVγ(α) (if a ⊥ is obtained). The former occurs with
probability τ(w) while the latter occurs with probability 1 −
τ(w), resulting in:

Vγ(w; a = 1) = w(1− β)(r − cp) + cp
+ γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)]

Vγ(w; a = 0) = cd + γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)].

The value function Vγ(w) can be thus recursively written as:
Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}

= max{w(1− β)(r − cp) + cp + γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)],

cd + γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)]}.
(8)

Smart Feedback. Under this feedback mechanism, the
future maximum expected total discounted reward, relative to
S transmitting over the the link, will be either: (i) γVγ(1−β)
(if an ack or a nack is obtained) or (ii) γVγ(α) (if a ⊥ is
obtained). The former occurs with probability τ(w) while the
latter occurs with probability 1− τ(w).

Vγ(w; a = 1) = w(1− β)(r − cp) + cp
+ γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)]

However, when S does not use the link to send a message, w
will deterministically shift to τ2(w) resulting in:

Vγ(w; a = 0) = cd + γVγ(τ2(w)).

So, Vγ(w) can be written as:
Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}

= max{w(1− β)(r − cp) + cp + γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)],

cd + γVγ(τ2(wt))}.
(9)

Unreliable Feedback. Under this feedback mechanism, the
future maximum expected total discounted reward, relative to
S transmitting over the channel, will be either: (i) γVγ(1−β)

(if an ack is obtained) or (ii) γVγ( τ(α)−αw(2−2β−α)
1−w(1−β) ) (if ⊥ is

obtained). The former occurs with probability w(1−β) while
the latter occurs with probability 1− w(1− β).
Vγ(w; a = 1) = w(1− β)(r − cp) + cp+

γ

[
w(1− β)Vγ(1− β) + (1− w(1− β))Vγ(

τ(α)− αw(2− 2β − α)

1− w(1− β)
)

]
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As in the smart feedback mechanism when S idles the channel,
Vγ(w; a = 1) = cd + γVγ(τ2(w)). So, Vγ(w) can be written
as:
Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}

= max{w(1− β)(r − cp) + cp

+ γ

[
w(1− β)Vγ(1− β) + (1− w(1− β))Vγ(

τ(α)− αw(2− 2β − α)

1− w(1− β)
)

]
, cd + γVγ(τ2(w))}.

(10)

Optimal Transmission Policies Under Lost Feedback

Having obtained the value function Vγ(w), we investigate
the structure of the reliable energy-optimal transmission policy
under the different feedback mechanisms.

Constant Feedback. By observing (8), we can note that the
maximum future total expected discounted reward for using the
channel and idling it is the same (denote it by F ). Thus:

Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}
= max{w(1− β)(r − cp) + cp + F, cd + F}. (11)

Theorem 5: A myopic (greedy) threshold policy is the
energy-optimal transmission policy that guarantees reliable
transmission under a constant feedback mechanism when
(1− β)2 >

cd−cp
r−cp .

Proof: From (11), it is clear that the value function
depends only on the immediate expected reward. The optimal
policy can be stated as:

optimal policy =

{
transmit if w >

cd−cp
(1−β)(r−cp) ,

idle otherwise.

By the update belief function under constant feedback (Sec-
tion III), the optimal policy will never suspend transmission
forever if (1− β)2 >

cd−cp
r−cp .

Smart Feedback. As in perfect feedback (Section V),
Vγ(w) for smart feedback can be shown to be a convex
function in w continuous on [0, 1].

Lemma 6: If cd < w(1− β)(r − cp) + cp (in particular if
cd < cp), then the optimal decision is to use the channel for
transmission at every t.

Proof: By convexity of Vγ(w) in w we have

Vγ(τ2(w)) = Vγ(τ(w)(1− β) + α(1− τ(w))) ≤ τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)

Vγ(w; a = 1) will be greater than Vγ(w; a = 0), if cd <
w(1−β)(r−cp)+cp, i.e., if cd−cp < w(1−β)(r−cp). Given
that w(1 − β)(r − cp) ≥ 0, Vγ(w; a = 1) > Vγ(w; a = 0) if
cd − cp < 0.

Theorem 6: The energy optimal transmission policy un-
der a smart feedback mechanism is a threshold policy, i.e.,
Vγ(w; a = 1) < Vγ(w; a = 0) ∀w < w∗ and Vγ(w; a = 1) >
Vγ(w; a = 0) ∀w > w∗ for a unique w∗, only if cd − cp ≥
γ[τ(α)Vγ(1−β)+(1−τ(α))Vγ(α)−Vγ(τ(α))]∧r > cd−βcp

1−β .

Proof: At w = 0:
Vγ(0; a = 1) = cp + γ[τ(α)Vγ(1 − β) + (1 − τ(α))Vγ(α)]
and Vγ(0; a = 0) = cd + γVγ(τ(α)). From Section III and
Lemma 1 cd > cp (since cd < cp trivializes the optimal
policy to that which constantly transmits over the channel).
By convexity of Vγ(w) in w, Vγ(τ(α)) ≤ τ(α)Vγ(1 − β) +

(1− τ(α))Vγ(α). Thus, if cd − cp < γ[τ(α)Vγ(1− β) + (1−
τ(α))Vγ(α) − Vγ(τ(α))], then Vγ(0; a = 1) < Vγ(0; a = 0);
otherwise Vγ(0; a = 1) > Vγ(0; a = 0).
At w = 1:
Vγ(1; a = 1) = r(1 − β) + βcp + γVγ(1 − β) and Vγ(1; a =

0) = cd + γVγ(1 − β). Consequently, if r > cd−βcp
1−β , then

Vγ(1; a = 1) > Vγ(1; a = 0); otherwise Vγ(1; a = 1) <
Vγ(1; a = 0). From (9), it can be seen that Vγ(w; a = 1) is
linear in w. Following from the convexity of Vγ(w), we can
conclude that Vγ(w; a = 0) is convex in w. This leads to a
graph as that shown in Figure 2 concluding the proof.

Closed form solutions and conditions relative to attaining
reliability can be obtained similar to those of perfect feedback
Section VI. Due to space limitation we do not elaborate further
on these conditions since an analogous analysis has been
already conducted in details (Section VI).

Unreliable Feedback. We analyse unreliable feedback for
positively correlated channels only.

Lemma 7: Under the unreliable feedback mechanism the
channel belief is w ∈ [0, 1].

Proof: w at any time can take one of the following values:
(i) 1−β, (ii) T(w) or (iii) τ(τ(w)). [44] shows that τn(w)∀ w,
tends to α

α+β as n −→ ∞ (τn(w) means that the function τ
is called n times on w). It can be easily shown that T(w) is a
decreasing function in w such that 0 < T(1),T(0) < 1.

Lemma 8: T(w) is a convex function in w.

Proof: For 0 < w1, w2, λ < 1:

λT(w1) + (1− λ)T(w2)− T(λw1 + (1− λ)w2) =

= (1− β)2τ(α)[λ(1− λ)(w2 − w1)2]

+ (1− β)(2− 2β − α)[λw1(1 + w1(2w2(1− β)− 1))

+ (1− λ)w2(1 + w2(2w1(1− β)− 1))] ≥ 0

The value function Vγ(w) can be obtained by value iteration as
a uniform limit of cost functions for finite horizon problems,
which are continuous and convex [42], [56]. Vγ(w), as the
upper envelope of a family of straight lines (cost functions),
is thus convex in w (proved by [57]).

Theorem 7: For a channel with a defined cost function
under unreliable feedback, there will exist at least one value w∗

such that Vγ(w∗; a = 1) = Vγ(w∗; a = 0) only if r > cd−βcp
1−β .

Proof: At w = 0:
Vγ(0; a = 1) = cp + γVγ(τ(α)) and Vγ(0; a = 0) = cd +
γVγ(τ(α)). Since cd > cp, then Vγ(0; a = 1) < Vγ(0; a = 0)
(recall from Section III that if cd < cp the optimal action is to
constantly transmit over the channel).
At w = 1:
Vγ(1; a = 1) = r(1−β)+βcp+γ[(1−β)Vγ(1−β)+βVγ(α)
and Vγ(1; a = 0) = cd + γVγ(τ(1 − β)). By convexity of
Vγ(w) we have Vγ(τ(1− β)) ≤ (1− β)Vγ(1− β) + βVγ(α).
If r > cd−βcp

1−β we get Vγ(1; a = 1) > Vγ(1; a = 0).

Both Vγ(w; a = 0) and Vγ(w; a = 1) depend on Vγ(f(w))
(where f(w) is some function of w) and are convex (due to the
convexity of Vγ(w) ∀ w). Vγ(w; a = 0) and Vγ(w; a = 1) will
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Fig. 4. Behavior of value functions for transmitting and idling under
unreliable feedback.

thus intersect in at least a single point as shown in Figure 4
concluding the proof.

The optimal policy under unreliable feedback is to transmit
only in the intervals where Vγ(w; a = 0) < Vγ(w; a = 1),
which by Figure 4 may span multiple disjoint intervals over
w ∈ [0, 1]. Consequently, a simple threshold policy (as that
under the other feedback mechanisms) is not necessarily guar-
anteed, i.e., the optimal policy may not be a simple threshold
policy.

VIII. ESTABLISHING SYNCHRONOUS COMMUNICATION

The transmission on a channel is subject at any time to a
non-zero probability of message loss, which may lead to a fi-
nite but unbounded delivery time for messages. In this section,
we show how synchronous communication over such a channel
can be guaranteed with high probability. For presentation
simplicity and space limitations we carry our analysis for the
optimal transmission under the perfect feedback mechanism.
Similar analyses can be easily conducted for the other feedback
schemes. We determine the probability distribution of the total
time, X , required to deliver the last message in the finite
queue of size N . As such being able to guarantee with high
probability that such a message is delivered within a specific
time, say δ, implies that any message will get delivered in time
≤ δ.

More precisely, define the waiting time of the ith message
in the queue to be the time required for this message to reach
the top of the queue. Let Xi designate the time to successfully
transmit the ith message in the queue, given it has zero waiting
time. Xi is thus the time it takes message i to get from the top
of sender’s queue to the receiver’s side. In queuing theory, Xi

is known as the service time. Given N messages in the queue,
X = X1 +X2 + ...+XN . We are interested in the minimum
δ such that P [X < δ] = 1− ε. We show in what follows how
to determine the value of δ for the channel.

Lemma 9: Xi ∀i, in a Gilbert-Elliot channel model, are
independent and identically distributed random variables, given
the initial channel belief w0 = 1− β.

Proof: The following three facts apply to every message
at the top of the queue:
1. If a message reaches the top of the queue at time t ∈ T ,
then the channel state at [t− 1, t[ was good. A message only
reaches the top of the queue if the previous message is no
longer there, i.e., has been successfully transmitted.
2. Given that the channel was good at [t−1, t[ the probability
that the channel state stays good or becomes bad is independent

of the message. Thus for any message reaching the top of the
queue, the probability distribution of the channel being good
is the same.
3. The optimal transmission policy is deterministic and
independent of the message, but dependent on the state of
the channel, which by 1 and 2, is the same for every message
reaching the top of the queue.

As a result the probability distribution of successfully
transmitting a message is the probability distribution of the
channel being in the good state after being observed to be
good some t time steps ago, where t by the third fact is only
dependent on the policy. Due to the fact that the transmission
policy does not change for a given channel, neither do the
channel stochastic parameters, this probability distribution is
fixed and thus independent and identical for every message.
By assuming w0 = 1 − β, the very first message will have
identical distribution as well.

The probability distribution of X , fX(k) = P [X = k], is
obtained by the convolution of the distributions of Xi’s.

fX(k) =
∑k
k1=1

∑k
k2=1 ...

∑k
kN−1=1 fX1

(k1) · fX2
(k2)...fXN (k −

∑N−1
i=1 ki)).

(12)
The minimum δ such that P [X < δ] = 1 − ε can be
found by argmin

δ

{
δ :
∑δ
k=1 fX(k) >= 1− ε

}
. fX(k) for a

general queue of size N is hard to express in a closed form.
fX(k) can however be obtained offline by a simple algorithm
implementing the function in (12). For theoretical interest, we
alternatively obtain a closed form of an upper bound on δ.

Theorem 8: The time to deliver all N messages in the
queue with probability 1− ε is upper bounded by

δ =

⌈
N · E[Xi]

ε

⌉
.

Proof: The average waiting time of the N th message
is E[X] = E[

∑N
i=1Xi] =

∑N
i=1E[Xi] = N · E[Xi]. By

Markov’s inequality we have P [X > δ] < E[X]
δ = N ·E[Xi]

δ .
Multiplying by −1 and then adding 1 to both sides of the
inequality leads to P [X ≤ δ] > 1 − N ·E[Xi]

δ . Since we
need P [X < δ] = 1 − ε, then an upper bound on δ is
argmin

δ

{
δ : 1− N ·E[Xi]

δ ≥ 1− ε
}

, which after simple calcu-

lation leads to δ =
⌈
N ·E[Xi]

ε

⌉
.

Next we compute closed form expressions of fXi(k) and the
average service time E[Xi] for all optimal reliable policies.

Constantly transmit. A message reaches the top queue
only if the message proceeding it gets successfully transmitted,
inferring that the channel state was good. Since this policy
always transmits, a message arriving to the top of the queue
at time t gets successfully transmitted at t+1 with probability
1− β (i.e., channel is good at t+ 1), at t+ 2 with probability
βα (i.e., channel is bad at t+ 1 and good at t+ 2), so on and
so forth. The probability distribution of Xi is:

fXi(k) = P [Xi = k] =

{
1− β if k = 1,

βα(1− α)k−2 if k ∈ {2, 3, ...,∞}.

10



The average time to successfully transmit a message on the
channel given that it is on the top of the queue, E[Xi], is:

E[Xi] =

∞∑
k=1

k · fXi(k) = 1− β +

∞∑
t=2

βαt(1− α)t−2 =
α+ β

α
.

We illustrate for this constantly transmit policy how to com-
pute the average number of message waiting in the queue.
Assume a geometric arrival process and denote by λ the
average arrival rate per unit time. Let λ̄ = 1−λ. Given a queue
of fixed size N , we create a finite state machine (FSM) for the
number of messages in the queue. The designed FSM results
in states {0, 1, 1′, 2, 2′, ..., N,N ′}, where S and S′ are states
with the same number of messages in the queue but which
may shift to different states and with different probabilities.
This results from time varying behavior of the channel, which
leads to service rates that change with time. We determine the
transitions between these states and represent in the following
transition matrix:

I =



λ̄ λ 0 0 0 0 0 ...

λ̄(1−β) λ(1−β) λ̄β 0 λβ 0 0 ...

λ̄α λα λ̄(1−α) 0 λ(1−α) 0 0 ...

0 λ̄(1−β) 0 λ(1−β) λ̄β 0 λβ ...

0 λ̄α 0 λα λ̄(1−α) 0 λ(1−α) ...

0 0 0 λ̄(1−β) 0 λ(1−β) λ̄β ...

0 0 0 λ̄α 0 λα λ̄(1−α) ...

... ... ... ... ... ... ... ...

 (13)

The rows of the matrix correspond to states at time t while
the columns correspond to states at time t + 1. Extracting
the information from the transition matrix above results in the
following system of equations:

x0 = λ̄x0 + λ̄(1− β)x1 + λ̄αx1′ ;

x1 = λ̄x0 + λ(1− β)x1 + λαx1′ + λ̄(1− β)x2 + λ̄αx2′ ;

x1′ = λ̄βx1 + λ̄(1− α)x1′ ;

xi = λ(1− β)xi + λαxi′ + λ̄(1− β)xi+1 + λ̄αx(i+1)′ 2 ≤ i ≤ N − 1;

xi′ = λβxi−1 + λ(1− α)x(i−1)′ + λ̄βxi + λ̄(1− α)xi′ 2 ≤ i ≤ N ;

xN = λ(1− β)xN + λαxN ′ .

Solving this system of equations allows to determine an
important value/metric, the probability of having i messages
in the queue: Pi = xi + xi′ . The average number of waiting
messages in the queue can be calculated by:

∑N
i=0 iPi.

Back-off on bad. This transmission scheme keeps transmit-
ting on the channel as long as the observed state is good. It
however ceases transmission for some time T (Theorem 3)
after observing the channel in the bad state after which
transmission is resumed. Such form of transmission can be
optimal only in positively correlated channels. The probability
distribution of Xi is:

fXi(k) = P [Xi = k] =

{
1− β if k = 1,

βτT(α)(1− τT(α))(
k−1
T+1−1) if k ∈ {T + 2, 2(T + 1) + 1, ...,∞}.

The average service time E[Xi] is:

E[Xi] =

∞∑
k=1

k · fXi(k) = (1− β) +

∞∑
t=0

[(t+ 1)T + 1]βτT(α)t(1− τT(α))t

=
β(T + 1) + τT(α)

τT(α)
.

Skip if good. This policy occurs in negatively correlated
channels and results in the following distribution:

fXi(k) = P [Xi = k] =

{
τ(1− β) if k = 2,

(1− τ(1− β))α(1− α)k−3 if k ∈ {3, ...,∞}.

The average service time E[Xi] is:

E[Xi] =

∞∑
k=1

k · fXi(k) = 2τ(1− β) +

∞∑
t=0

(t+ 3)(1− τ(1− β))α(1− α)t

=
4(1− τ(1− β))− α(1− 2τ(1− β))

α
.

IX. CONCLUSION

We presented in this paper an analytic study describing
how energy-optimal reliable communication can be built, with
high probability synchrony, over unreliable wireless channels.
The analysis was conducted for a time-varying lossy channel
that captures the unreliable behavior of wireless. We dis-
cussed four forms of Ack/Nack feedback mechanisms. We
obtained under reliable feedback, a closed form of the policy
which determines when it is optimal to transmit over the
channel. Optimality in this context was achieved with respect
to a defined energy-through-latency trade-off. Combined with
this closed form solution, we also identified the necessary
conditions under which transmission is never suspended and
provided a probabilistic bound on the total time to deliver a
message. Hence, we presented an implementable form of an
optimal reliable communication, guaranteeing high probability
synchrony. We also studied the impact of lossy feedback on
optimal transmission, which to the best of our knowledge is a
first. We showed that easy implementable forms of the desired
communication service can also be obtained depending on the
utilized feedback mechanism. Possible future work may look
into a more complex channel structure, particularly, when the
states of the channel are not fully reliable/unreliable, or into
a case where the same channel is considered for both up-
link and down-link communication, i.e. down-link not only
for feedback.
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[8] R. Yared, X. Défago, J. Iguchi-Cartigny, and M. Wiesmann, “Collision
prevention platform for a dynamic group of asynchronous cooperative
mobile robots,” JNW, vol. 2, 2007.

[9] R. Rao, S. Akella, and G. Guley, “Power line carrier (plc) signal analysis
of smart meters for outlier detection,” in SmartGridComm, 2011.

[10] J.-P. Vasseur and A. Dunkels, Interconnecting smart objects with ip:
The next internet. Morgan Kaufmann, 2010.

11



[11] N. Baccour, A. Koubaa, C. Noda, H. Fotouhi, M. Alves, H. Youssef,
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APPENDIX A
COMPUTING w∗ IN CLOSED FORM

For positively correlated channels:

τk(w) monotonically tends to πg , as k →∞. (14)

1− β > πg > α. (15)

Case 1: w∗ ≥ πg
If w < w∗, from (14) τk(w) ≤ w∗ and thus the optimal
decision is to also idle the channel. Following from (15)
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V (α) = cd + γcd + γ2cd + ... = cd
1−γ . If w > w∗, then

V (w) = w(r − cp) + cp + γ[wV (1 − β) + (1 − w)V (α)].
If(w∗ ≥ 1−β), then V (1−β) = cd

1−γ . By continuity of V (w)
at w∗ we have
w∗(r − cp) + cp + γ[w∗V (1− β) + (1− w∗)V (α)] = cd + γV (τ(w∗)),
which yields: w∗ =

cd−cp
r−cp . However, if w∗ < 1− β, then

V (1− β) = (1− β)(r − cp) + cp + γ[(1− β)V (1− β) + (β)
cd

1− γ
]

=
(1− β)(r − cp) + cp + γβ cd

1−γ

1− γ(1− β)
.

By continuity of V at w∗

w∗(r − cp) + cp + γ[w∗
(1− β)(r − cp) + cp + γβ cd

1−γ

1− γ(1− β)

+ (1− w∗) cd
1− γ

] =
cd

1− γ
.

After reduction:

w∗ =
(cd − cp)(1− γ(1− β))

r − cp(1− γ)− γcd
,

dw∗

dcd
=

(1−γ(1−β))(r−(1−γ)cp)−γcp(1−γ(1−β))
(r−cp(1−γ)−γcd)2 > 0.

which shows that w∗ is a strictly increasing function of cd.

Case 2: w∗ < πg
By (14), τk(w∗) > w∗ ∀ k > 1 thus

V (τ(w∗)) = τ(w∗)(r − cp) + cp + γ[τ(w∗)V (1− β) + (1− τ(w∗))V (α)]

= cp + γV (α) + τ(w∗)[(r − cp) + γ(V (1− β)− V (α))].
(16)

By (15), we have (1− β) > w∗ and

V (1− β) = (1− β)(r − cp) + cp + γ[(1− β)V (1− β) + βV (α)]

=
(1− β)(r − cp) + cp + γβV (α)

1− γ(1− β)
.

(17)
(r − cp) + γ[V (1− β)− V (α)] =

(r − cp) + γcp − γ(1− γ)V (α)

1− γ(1− β)
.

(18)
By continuity of V at w∗

cp+γV (α) + w∗[(r − cp) + γ[V (1− β)− V (α)]

= cd + γ[cp + γV (α) + τ(w∗)[(r − cp) + γ(V (1− β)− V (α))]].
(19)

Replace (18) in (19)

cp+γV (α) + w∗[
(r − cp) + γcp − γ(1− γ)V (α)

1− γ(1− β)
]

= cd + γ[cp + γV (α) + τ(w∗)[
(r − cp) + γcp − γ(1− γ)V (α)

1− γ(1− β)
].

(20)
By τ(w∗) = α+ w∗(1− β − α) reduce (20) and find w∗

w∗ = 1− [1− γ(1− β)][r − cd]
[1− γ(1− β − α)][(r − cp) + γcp − γ(1− γ)V (α)]

.

(21)
Thus to find the value of w∗, we have to find V (α).
If(w∗ ≤ α), then

V (α) = α(r − cp) + cp + γ[αV (1− β) + (1− α)V (α)]

=
α(r − cp) + cp + γαV (1− β)

1− γ(1− α)
.

By the assumption of positive memory, 1− β > α, then

V (1− β) =
(1− β)(r − cp) + cp + γβV (α)

1− γ(1− β)
.

Solving the two equations yields

V (α) =
α(r − cp) + cp − γcp(1− β − α)

(1− γ)(1− γ(1− β − α))
. (22)

Replace (22) in (21), to get w∗ =
cd−cp
r−cp . It is easy to see that

w∗ is strictly increasing function in cd.

If (w∗ > α), then by (14), for some k we have

τk(α) < w∗ ≤ τk+1(α).

Thus,

V (α) = cd + γcd + ...+ γkcd + αk+1V (τk+1(α))

=
1− γk+1

1− γ
cd + γk+1V (τk+1(α)).

(23)

V (τk+1(α)) = cp + γV (α) + τk+1(α)[(r − cp)γ(V (1− β)− V (α))]

= cp + γV (α) + τk+1(α)[
(r − cp) + γcp − γ(1− γ)V (α)

1− γ(1− β)
].

(24)
Replace (24) in (23)
(r − cp) + γcp − γ(1− γ)V (α) =

=
[1− γ(1− β)][r(1− γk+2)− cp(1− γ)− γ(1− γk+1)cd]

(1− γk+2)(1− γ(1− β)) + γk+2(1− γ)τk+1(α)
.

(25)
Replace (25) in (21)

w∗ = 1− [r−cd][(1−γk+2)(1−γ(1−β))+γk+2(1−γ)τk+1(α)]
[1−γ(1−β−α)][r(1−γk+2)−cp(1−γ)−γ(1−γk+1)cd]

.
(26)

To write w∗ in a more readable form, let:
A(k) = (1−γk+2)(1−γ(1−β))+γk+2(1−γ)τk+1(α)

1−γ(1−β−α) ,

B(k) = r(1− γk+2)− cp(1− γ), D(k) = γ(1− γk+1).
w∗ can then be written as

w∗ = 1−A(k)
r − cd

B(k)−D(k)cd
. (27)

We can show that w∗ is strictly increasing in cd by

dw∗

dcd
= A(k)

(r − cp)(1− γ)

(B(k)−D(k)cd)2
> 0.

Since τk(α) < w∗ ≤ τk+1(α) where

τk(w) = πg−(1−β−α)k(πg−w), then k = d
ln(1−w∗πg )

ln(1−β−α)e−2.

This concludes all possible cases when the channel has a
positive memory. Similar analysis and computations are carried
for the negatively correlated case.

Negatively Correlated:
When the channel has a negative memory, i.e. 1− β−α < 0,
we study the following cases:
Case1:1− β = 0; α = 1{

V (1) = r + γV (0)

V (0) = cd + γV (1)

We solve the two equations and obtain{
V (1) = r+γcd

1−γ2

V (0) = cd+γr
1−γ2
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if(w∗ ≥ 0.5) This means that 1−w∗ < w∗, τ(w∗) = 1−w∗
and τ(1− w∗) = w∗

V (1− w∗) = cd + γV (w∗).

By continuity of V at w∗ we have

V (w∗) = cd + γV (1− w∗)
= cd + γ(cd + γV (w∗))

=
cd

1− γ
.

(28)

cd
1− γ

= w∗(r − cp) + cp + γ[w∗V (0) + (1− w∗)V (1)]

= cp + γ
r + γcd
1− γ2

+ w∗[(r − cp) + γ[
cd + γr

1− γ2
− r + γcd

1− γ2
].

w∗ =
cd(1 + γ − γ2)− γr − cp(1− γ2)

(1− γ)[γcd + r − cp(1 + γ)]
. (29)

dw∗

dcd
=

(1+γ−γ2)(1−γ)r+γ2(1−γ)r−cp(1−γ2)
(1−γ)2[γcd+r−cp(1+γ)]2 > 0.

(30)
It can also be seen that w∗ is strictly increasing in cd.
if(w∗ < 0.5)
This means (1− w∗) > w∗, so

V (1−w∗) = (1−w∗)(r−cp)+cp+γ[(1−w∗)V (0)+w∗V (1)].
(31)

and by the continuity of V at w∗

w∗(r − cp) + cp + γ[w∗V (0) + (1− w∗)V (1)]

= cd + γV (1− w∗)
= cd + γ[(1− w∗)(r − cp) + cp + γ[(1− w∗)V (0) + w∗V (1)]].

w∗ =
cd − cp + γ(r + γV (0)− V (1))

(1 + γ)[r − cp + γ(V (0)− V (1))]

=
cd − cp + γ3r

(1− γ2)[γcd + r − cp(1 + γ)]
.

(32)

dw∗

dcd
=

(1− γ2)(1− γ4)r − cp(1− γ2)

(1− γ2)2[γcd + r − cp(1 + γ)]2
> 0. (33)

which is strictly increasing in cd.
Case2: 0 < α− (1− β) < 1
In this case for any w ∈ [0, 1], τ2k(w) and τ2k+1(w) converge
from opposite directions to πg as k →∞.
If(w∗ ≥ πg)
Then τk(w∗) < w∗, ∀ k.

V (τ(w∗)) =
cd

1− γ
.

By continuity of V (w) at w∗ we have

w∗(r−cp)+cp+γ[w∗V (1−β)+(1−w∗)V (α)] = cd+γV (τ(w∗)).

w∗ =

cd
1−γ − cp − γV (α)

r − cp + γ(V (1− β)− V (α))
. (34)

Following from 0 < α− 1− β < 1, we have 1− β < w0 and
α > πg . So

V (1− β) = cd + γV (τ(1− β)). (35)

If(τ(1− β) ≤ πg) τk(1− β) < w∗, and hence

V (τ(1− β)) =
cd

1− γ
. (36)

If(τ(1− β) > πg)

V (τ(1− β)) = τ(1− β)(r − cp) + cp + γ[τ(1− β)V (1− β) + (1− τ(1− β))V (α)].

If(α ≤ w∗) We have τk(α) < w∗, ∀ k, and thus

V (α) =
cd

1− γ
.

If(α > w∗)

V (α) = α(r − cp) + cp + γ[αV (1− β) + (1− α))V (α)]

=
α(r − cp) + cp + γαV (1− β)

1− γ(1− α)
.

r − cp + γ(V (1− β)− V (α))

=
γ(1− γ)V (1− β) + (1− γ)r − cp

1− γ(1− α)
.

Given that

τ(1− β) = α− (1− β)(α− 1 + β) < α,

divide the interval [πg, 1] into the 3 sub-intervals [πg, τ(1−β)],
[τ(1− β), α] and [α, 1].
If(w∗ ∈ [α, 1])
V (α) = V (1 − β) = cd

1−γ and thus by replacing in (34) we
get

w∗ =
cd − cp
r − cp

.

If(w∗ ∈ [τ(1− β), α])
V (1− β) = cd

1−γ and

w∗ =

cd
1−γ − cp − γ

α(r−cp)+cp+γαV (1−β)
1−γ(1−α)

γ(1−γ)V (1−β)+(1−γ)r−cp
1−γ(1−α)

=
cd(1 + αγ)− γαr − cp
γcd + (1− γ)r − cp

.

dw∗

dcd
=

(1 + αγ)(1− γ)r + αγ2r − cp(1 + γ2)

(γcd + (1− γ)r − cp)2
> 0. (37)

which is strictly increasing in cd.
If (w∗ ∈ [πg, τ(1− β)])

V (α) =
α(r + γV (1− β)) + cp(1− α)

1− γ(1− α)
.

r−cp+γ(V (1−β)−V (α)) =
(1− γ)(r + γV (1− β))− cp

1− γ(1− α)
.

r + V (1− β) = cd − γcp + γ2V (α) + γτ(1− β)[r − cp + γ(V (1− β)− V (α))]

= r + γcd +
r + γV (1− β)

1− γ(1− α)
(γ3α+ γ2(1− γ)τ(1− β))

+ γ2
1− τ(1− β)

1− γ(1− α)
cp.

Replace in (34)

w∗ =
(1 + αγ(1− γ) + γ2(1− β)(α− (1− β)))cd − γαr

(1− γ)(γcd + r − cp(1 + γ))

− cp(1− αγ2 + γ2(1− β)(α− (1− β)))

(1− γ)(γcd + r − cp(1 + γ))
.
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which can be shown to be strictly increasing in cd.
If(w∗ < πg)

V (α) = α(r − cp) + cp + γ[αV (1− β) + (1− α))V (α)]

=
α(r − cp) + cp + γαV (1− β)

1− γ(1− α)
.

r − cp + γ(V (1− β)− V (α))

=
γ(1− γ)V (1− β) + (1− γ)r − cp

1− γ(1− α)
.

τ(w∗) > πg > w∗ and thus by continuity of V (w) at w∗, we
obtain

w∗ =
cd − (1− γ)(cp + γV (α)) + γα[r − cp + γ(V (1− β)− V (α))]

[r − cp + γ(V (1− β)− V (α))][1− γ(1− β − α)]

=
[1− γ(1− α)][cd − cp]

[γ(1− γ)V (1− β) + (1− γ)r − cp][1− γ(1− β − α)]
.

If(0 ≤ w∗ ≤ 1− β)

V (1− β) =
(1− β)(r − cp) + cp + βγV (α)

1− γ(1− β)

=
r[1− β − γ(1− β − α)] + βcp
(1− γ)[1− γ(1− α)(1− β)]

.

Thus w∗ is found to be

w∗ =
[1− γ(1− α)][cd − cp]
[1− γ(1− α)](r − cp)

=
cd − cp
(r − cp)

.
(38)

It can be clearly noticed that w∗ is strictly increasing in cd.
If(1− β < w∗ < πg)
Then τ(1− β) > w∗ and we have

r+γV (1−β) =
(γcd + r)[1− γ(1− α)] + γ2(1− τ(1− β))cp

(1− γ)[1− αγ + γ2(1− β)(α− (1− β))]
.

So the value of w∗ would be

w∗ =
(cd − cp)(1 + γ(1− β))

[γcd − (1 + γ)cp + r]
.

whose derivative with respect to cd is positive, meaning that
w∗ is strictly increasing in cd. This concludes the negative
correlated case.
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