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Abstract

This paper presents parsing results for the
constituency track of the SPMRL shared
task. We use the recurrent neural network
model of (Legrand and Collobert, 2015)
which leverages a new RNN-based com-
positional sub-tree representation. Results
are provided for different scenarios were
models are trained on the full corpus or on
a subset of 5k sentences, using either the
gold or the predicted POS tags. Our sys-
tem outperforms the baseline and achieves
significant improvements over the state of
the art model for three languages, while
being very fast due to its greedy nature.

1 Introduction

The SPMRL Shared Task 2013 (Seddah et al.,
2013) provides standardized datasets, evaluation
metrics and baseline results, in both constituency
and dependency parsing, for nine different lan-
guages. This paper presents results for the con-
stituency track, using the system introduced in
(Legrand and Collobert, 2015). The model used
is a greedy parser which leverages a new compo-
sition approach to keep a history of what has been
predicted so far. The composition performs a syn-
tactic and semantic summary of the contents of a
sub-tree in form of a vector representation. The
composition is performed along the tree: bottom
tree node representations are obtained by compos-
ing continuous word and tag vector representa-
tions, and produces vector representations which
are in turn composed together in subsequent nodes
of the tree. The composition operation as well
as tree node tagging and predictions are achieved
with a Recurrent Neural Network (RNN). Both
the composition and node prediction are trained
jointly.

∗All research was conducted at the Idiap Research Insti-
tute, before Ronan Collobert joined Facebook AI Research.

Both the baseline (Berkeley parser) and the
state-of-the-art (Björkelund et al., 2014) models
rely on PCFG-based features. The latter uses a
product of PCFG with Latent Annotations based
models (Petrov, 2010), with a Coarse-to-Fine de-
coding strategy. The output is then discrimina-
tively reranked (Charniak and Johnson, 2005) to
select the best analysis. In contrast, our parser
constructs the parse tree in a greedy manner and
relies only on word and tag embeddings. Thanks
to its greedy nature, our parser is very fast: it
is able to parse around 80 (20 for its voting ver-
sion) sentences per second on average (on a single
CPU). Furthermore, as this model relies only on
word and tag embeddings, it could be easily en-
hanced by leveraging unsupervised embeddings.

2 The Model

2.1 Greedy RNN Parsing

IW : Did you hear the falling bombs ?
IT : VBD PRP VB DT VBG NNS .

O : O S-NP O B-NP I-NP E-NP O

IW : Did R1 hear R2 .
IT : VBD NP VB NP .

O : O O B-VP E-VP .

IW : Did R1 R3 ?
IT : VDB NP VP .

O : B-SQ I-SQ I-SQ E-SQ

Figure 1: Greedy parsing algorithm (3 iterations),
on the sentence “Did you hear the falling bombs
?”. IW , IT and O stand for input words (or com-
posed word representations Ri), input syntactic
tags (parsing or part-of-speech) and output tags
(parsing), respectively.

The model of (Legrand and Collobert, 2015) is
entirely based on neural networks and performs
parsing in a greedy recurrent way. Our approach
is a bottom-up iterative procedure: the tree is built



hear VB the DT falling VBG bombs NNS

C3

R2

C2

R3

Figure 2: Recurrent composition of the sub-tree
(VP (VB hear) (NP (DT the) (VBG falling) (NNS
bombs))). The representation R2 is first com-
puted using the 3-inputs module C3 with the/DT
falling/VBG bombs/NNS as input. R3 is obtained
by using the 2-inputs module C2 with hear/VB
R2/NP as input

starting from the terminal nodes (sentence words),
as shown in Figure 1. This greedy procedure is ex-
plained in detail in (Legrand and Collobert, 2015).

2.2 Word and Tag Embeddings
Each iteration of our parsing can be seen as a sim-
ple sequence tagging task. This is done using the
model introduced in (Collobert and Weston, 2008)
on various NLP tasks. This model relies on word
and tag embeddings. Each word (resp. tag) in
a finite dictionary W (resp. T ), is assigned a
continuous vector representation which is, as all
parameters of our architecture, trained by back-
propagation. Note that we did not use pre-trained
word embeddings as there were not any available
for every language.

More formally, each word (resp. tag) is em-
bedded in a D-dimensional (resp. T -dimensional)
vector space by applying a lookup-table operation
LTX(n) = Xn, where X is a D × |W| (resp.
T × |T |) matrix of parameters to be train. The
column Xn corresponds to the vector embedding
of the nth word (resp. tag) in our dictionary W
(resp. T ).

2.3 Word-Tag Composition
At each step of the parsing procedure, the tagger is
fed with word and node representations. The node
representation is a summary of the corresponding
sub-tree. As shown in Figure 2, the vector repre-
sentation is obtained by a simple recurrent proce-
dure which outputs a representation living in the
same space as the word representations (dimen-
sion D).

Xi−2 Xi−1 Xi Xi+1 Xi+2

Concat

h(M1 × .)

M2 × .

s1 s2 s|P̃|. . .

Figure 3: A constituent Xi is tagged by consider-
ing a fixed size context window of size K (here
K = 5). The concatenated output of the composi-
tional history and constituent tags is fed as input to
the tagger (a standard two-layer neural network).
It outputs a score for each BIOES-prefixed parsing
tag.

Compositional networks take as input both the
merged node word or node representations (di-
mension D) and predicted tag representations (di-
mension T ). There is one different network Ck

for each possible node with a number of k merged
constituent. In practice most tree nodes do not
merge more than a few constituents. In our case,
denoting z ∈ R(D+T )×k the concatenation of the
merged constituent representations (k vectors of
tags and constituent representations), the composi-
tional network is simply a matrix-vector operation
followed by a non-linearity

Ck(z) = h(Mkz) ,

where Mk ∈ RD×(k(D+T )) is a matrix of parame-
ters to be trained, and h() is a simple non-linearity
such as a pointwise hyperbolic tangent.

As the node and word representations are em-
bedded in the same space, the compositional net-
works Ck can compress information coming both
from leaves and sub-trees. Similarly, the tagger
network can be fed indifferently with word or sub-
tree representations.

2.4 Sliding Window BIOES Tagger

As illustrated in Figure 3, the tagging module of
our architecture (see Figure 3) is a two-layer neu-
ral network which applies a sliding window of
size K over the input constituent representations
(as computed in Section 2.3), as well as the in-
put constituent tag representations. Considering



team Arabic Basque French German Hebrew Hungarian Korean Polish Swedish avg
1) gold POS / full training set

IMS:SZEGED:CIS 82.20 90.04 83.98 82.07 91.64 92.60 86.50 88.57 85.09 86.97
BASE:BKY+POS 80.76 76.24 81.76 80.34 92.20 87.64 82.95 88.13 82.89 83.66
BASE:BKY:RAW 79.14 69.78 80.38 78.99 87.32 81.44 73.28 79.51 78.94 78.75
This Model 80.75 82.65 81.06 81.47 91.65 89.54 86.12 93.16 81.06 85.27
This Model (v4) 82.06 84.42 82.38 82.79 91.95 90.56 87.48 93.55 81.93 86.34

2) gold POS / 5K training set
IMS:SZEGED:CIS 79.47 88.45 82.25 74.78 91.64 91.87 80.10 88.18 85.09 84.65
BASE:BKY+POS 77.54 74.06 78.07 71.37 92.20 86.74 72.85 87.91 82.89 80.40
BASE:BKY:RAW 75.22 67.16 75.91 68.94 87.32 79.34 60.40 78.30 78.94 74.61
This Model 77.34 78.83 78.57 75.25 91.65 88.01 79.12 93.12 81.06 82.55
This Model (v4) 79.16 80.82 79.21 76.97 91.95 89.00 80.82 93.43 81.93 83.69

3) predicted POS / full training set
IMS:SZEGED:CIS 81.32 87.86 81.83 81.27 89.46 91.85 84.27 87.55 83.99 85.49
BASE:BKY+POS 78.66 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 80.89
BASE:BKY:RAW 79.19 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.18 78.53
This Model 78.55 81.00 79.27 79.29 91.65 87.00 81.08 92.23 79.47 82.28
This Model (v4) 79.82 82.54 80.62 80.79 91.95 88.36 82.93 92.67 79.61 84.37

4) predicted POS / 5K training set
IMS:SZEGED:CIS 78.85 86.65 79.83 73.61 89.46 90.53 78.47 87.46 83.99 83.21
BASE:BKY+POS 74.84 72.35 76.19 69.40 85.42 83.82 67.97 87.17 80.64 77.53
BASE:BKY:RAW 74.57 66.75 75.76 68.68 86.96 79.35 58.49 78.38 79.18 74.24
This Model 75.41 77.37 77.09 73.23 91.65 85.63 72.69 92.18 79.47 80.52
This Model (v4) 77.01 78.99 77.57 75.01 91.95 87.00 75.09 92.66 79.61 81.65

Table 1: Parseval results (the predicted POS were automaticaly predicted and provided with the corpus)

N input constituents X1, . . . , XN , for each con-
stituentXn, the network tagger is fed with the con-
catenation of the constituent’s word and tag repre-
sentations and its K

2 −1 left and right neighbors’
word and tag representations. The network output
a score for every possible BIOES-prefixed parsing
tag.

2.5 Coherent BIOES Predictions

The next module of our architecture aggregates
the BIOES-prefixed parsing tags from our tagger
module in a coherent manner. It is implemented
as a Viterbi decoding algorithm over a constrained
graph G, which encodes all the possible valid se-
quences of BIOES-prefixed tags over constituents:
e.g. B-A tags can only be followed by I-A or
E-A tags, for any parsing label A. Each node
of the graph is assigned a score produced by the
previous neural network module (score for each
BIOES-prefixed tag, and for each word). The
score S([t]N1 , [X]N1 , θ) for a sequence of tags [t]N1
in the lattice G is simply obtained by summing
scores along the path ([X]N1 being the input se-
quence of constituents and θ all the parameters of
the model). This decoding is present only to en-
sure coherence in the predicted sequence of tags.

Both the composition network and tagging net-
works are trained by maximizing a likelihood over
the training data using stochastic gradient ascent.
For detailed information about the training proce-
dure and how the training set is built please read

(Legrand and Collobert, 2015).
The score S([t]N1 , [X]N1 , θ) of the true sequence

of BIOES-prefixed tags [t]N1 , given the input node
sequence [X]N1 can be interpreted as a condi-
tional probability by exponentiating this score
(thus making it positive) and normalizing it with
respect to all possible path scores. The log-
probability of a sequence of tags [t]N1 for the input
sequence of constituents [X]N1 is given by:

logP ([t]N1 |[X]N1 , θ) = S([t]N1 , [X]N1 , θ) (1)

− log

 ∑
∀[t′]N1

expS([t′]N1 , [X]N1 , θ)

 .

The second term of this equation (which corre-
spond to the normalisation term) can be computed
in linear time thanks to a recursion similar to the
Viterbi algorithm (Rabiner, 1989).

3 Experiments

3.1 Corpus
The corpus used to conduct our experiments is the
Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL) corpus provided for the shared
task 2014 (Seddah et al., 2014). It provides sen-
tences and tree annotations for 9 different lan-
guages (Arabic, Basque, French, German, He-
brew, Hungarian, Korean, Polish,Swedish), com-
ing from various sources (Sima’an et al., 2001;
Tsarfaty, 2010; Goldberg, 2011; Tsarfaty, 2013;



team Arabic Basque French German Hebrew Hungarian Korean Polish Swedish avg
1) gold POS / full training set

IMS:SZEGED:CIS 88.61 94.90 92.51 89.63 92.84 95.01 91.30 94.52 91.46 92.31
BASE:BKY+POS 87.85 91.55 91.74 88.47 92.69 92.52 90.82 92.81 90.76 91.02
BASE:BKY:RAW 87.05 89.71 91.22 87.77 91.29 90.62 87.11 90.58 88.97 89.37
This Model 87.77 81.83 90.44 92.58 84.62 94.62 84.19 95.48 88.44 88.89
This Model (v4) 87.50 82.24 91.03 92.94 84.55 94.75 84.66 95.61 88.34 89.07

2) gold POS / 5K training set
IMS:SZEGED:CIS 86.68 94.21 91.56 85.74 92.84 94.79 88.87 94.17 91.46 91.15
BASE:BKY+POS 86.26 90.72 89.71 84.11 92.69 92.11 86.75 92.91 90.76 89.56
BASE:BKY:RAW 84.97 88.68 88.74 83.08 91.29 89.94 81.82 90.31 88.97 87.53
This Model 84.73 80.80 89.13 90.03 84.62 94.01 81.63 94.43 88.44 87.54
This Model (v4) 85.71 81.37 89.44 90.76 84.55 94.13 88.22 95.56 88.34 88.68

3) predicted POS / full training set
IMS:SZEGED:CIS 88.45 94.50 91.79 89.32 91.95 94.90 90.13 94.11 91.05 91.80
BASE:BKY+POS 86.60 90.90 90.96 87.46 89.66 91.72 89.10 92.56 89.51 89.83
BASE:BKY:RAW 86.97 89.91 91.11 87.46 90.77 90.50 86.68 90.48 89.16 89.23
This Model 86.61 81.30 89.52 91.66 84.46 93.94 82.04 95.44 87.56 87.54
This Model (v4) 86.34 82.24 90.07 92.32 84.63 93.86 82.77 95.38 87.12 88.67

4) predicted POS / 5K training set
IMS:SZEGED:CIS 86.69 93.85 90.76 85.20 91.95 94.05 87.99 93.99 91.05 90.61
BASE:BKY+POS 84.76 89.83 89.18 83.05 89.66 91.24 84.87 92.74 89.51 88.32
BASE:BKY:RAW 84.63 88.50 89.00 82.69 90.77 89.93 81.50 90.08 89.16 87.36
This Model 84.37 80.26 88.33 89.23 84.46 92.93 79.05 94.34 87.57 88.30
This Model (v4) 84.62 81.00 88.71 89.98 84.63 93.06 80.04 95.45 87.12 87.17

Table 2: Leaf-ancestor Results (the predicted POS were automaticaly predicted and provided with the
corpus)

Choi et al., 1994; Choi, 2013; Vincze et al., 2010;
Habash and Roth, 2009; Habash et al., 2009;
S. Green and Manning, 2010; Maamouri et al.,
2004; Brants et al., 2002; Seeker and Kuhn, 2012;
I.Aduriz et al., 2003; Csendes et al., 2005; Abeillé
et al., 2003; Świdziński and Woliński, 2010; Nivre
et al., 2006).

For each language, the gold part-of-speech tags
are provided as well as part-of-speech tags pre-
dicted by state-of-the-art taggers. A sub-corpus
of 5k sentences (which correspond to the size of
the smallest corpus) is also provided for each lan-
guage. This leads to 4 different possible scenarios
(see Table 1 and 2). For each of these scenarios,
we evaluated our models using the Parseval (la-
belled f1-score) and the Leaf-ancestor metric.

3.2 Training details

Our systems are trained using a stochastic gradient
descent over the available training data. Hyper-
parameters were tuned on the validation set. The
dimension for the words embedding and tag em-
beddings were respectively 100 and 20. The win-
dow size for the tagger is K = 7 (3 neighbours
from each side). The size of the tagger’s hidden
layer were H = 500. All parameter were initial-
ized randomly. As suggested in (Plaut and Hinton,
1987), the learning rate was divided by the size of
the input vector of each layer. We used the same
dropout regularization and voting procedure as in

(Legrand and Collobert, 2015).

3.3 Results
Table 1 and 2 present the results obtained for the
Parseval and the Leaf-ancestor metrics. We in-
cluded a voting procedure using several models
trained starting from different random initializa-
tions. At each iteration of the greedy parsing pro-
cedure, the BIOES-tag scores are averaged and the
new node representations are computed for each
model by composing the sub-tree representations
corresponding to the given model, using its own
compositional network.

We compare our system with the baseline pro-
vided with the task (Berkeley parser trained in two
modes: with provided POS Tags (gold or predicted
depending on dataset) and in Raw mode where
the parser do its own POS tagging) and with the
best (and only) participant of the task (Björkelund
et al., 2014) which uses a product of PCFG-LA
based model (Petrov, 2010) followed by a discrim-
inative reranking (Charniak and Johnson, 2005).

4 Conclusion

In this paper, we showed that a simple greedy
RNN-based model is able to outperform the base-
line systems. Furthermore, we achieve significant
improvements over the state-of-the-art model for
several languages.
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