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We study automatic speech recognition by direct use
of acoustic features (exemplars) without any assumption
on the underlying stochastic process. The prior studies
exploit spectral exemplars. In this work, we present the
use of neural network sub-word posterior probabilities as
exemplars. The space of sub-word observations is low-
dimensional (e.g. RK×T ) whereas the word transcription
requires reconstructing a high-dimensional representation
(e.g. RL×T , L � K). Given the prior knowledge that
for any given utterance, the word representation is highly
sparse, we cast the speech recognition problem as sparse
reconstruction of word posteriors given the compressed
(low-dimensional) acoustic observation.

The sub-word units (phones) are denoted by {qk}Kk=1.
Given an input spectral feature xt at time t, a (deep) neural
network [1] is used to estimate the posterior probabilities
{p(qk|xt)}Kk=1. The phone posterior probabilities is related
to the word posterior probabilities p(wl|xt) through

p(qk|xt) =
L∑
l=1

p(qk, wl|xt) =
L∑
l=1

p(qk|wl)p(wl|xt);

(1)
the last equality holds due to conditional independence of
the acoustic observation and input speech given a super-
phone lexical unit such as word. Defining an over-complete
dictionary D such that the atoms are exemplars obtained by
conditioning the phone posteriors on a different linguistic
unit wl, we have
p(q1|xt)
p(q2|xt)

...
p(qK |xt)


︸ ︷︷ ︸

zt

=


p(q1|w1) · · · p(q1|wl) · · · p(q1|wL)
p(q2|w1) · · · p(q2|wl) · · · p(q2|wL)

...
...

p(qK |w1) · · · p(qK |wl) · · · p(qK |wL)


︸ ︷︷ ︸

Dictionary: D=[d1...dl...dL]

×



p(w1|xt)
...

p(wl|xt)
...

p(wL|xt)


︸ ︷︷ ︸

αt

(2)
Construction of the dictionary as described in (2) requires
modeling the subspaces of each word using the acoustic
features in terms of phone posterior probabilities. To
that end, we learn word-specific dictionaries such that
each column of the dictionary in (2), dl has a sparse
representation stated as

p(q1|wl)
p(q2|wl)

...
p(qK |wl)


︸ ︷︷ ︸

dl

=


p(q1|swwl

1 ) · · · p(q1|swwl
s ) · · · p(q1|swwl

Swl
)

p(q2|swwl
1 ) · · · p(q2|swwl

s ) · · · p(q2|swwl
Swl

)

...
...

p(qK |sw
wl
1 ) · · · p(qK |sw

wl
s ) · · · p(qK |sw

wl
Swl

)


︸ ︷︷ ︸

Word manifold modeling dictionary:Dwl

×



p(sw
wl
1 |wl)
...

p(sw
wl
s |wl)
...

p(sw
wl
Swl
|wl)


(3)

where swwl
s denotes the sth sub-word unit of the word

wl, Swl represents the total number of (over-complete)
“bases” to model the sub-space of word wl.

Equations (2) and (3) lead us to an intuitive and
natural representation for continuous speech in terms
of posterior features and word-to-subword hierarchical
dictionaries. Thereby, the posterior-based sparse modeling
dictionary is obtained as D = [Dw1 · · ·Dwl · · ·DwL ].
The dictionary D, has an internal partitioning defined by
the boundaries of individual sub-dictionaries Dwl . Ideally,
an input posterior feature zt belonging to a realization of
word wl, when sparse decoded using the dictionary above
will have a sparse representation αt such that only the
atoms corresponding to the subdictionary Dwl , denoted
as αwl

t , will have non-zero values. αwl
t is expressed as

α
wl
t = p(wl|xt)

[
p(sw

wl
1 |wl) . . . p(sw

wl
s |wl) . . . p(sw

wl
Swl
|wl)

]>
αt =

[
αw1
t . . . α

wl
t . . . α

wL
t

]>
(4)

A sequence of posterior features Z = [z1, ...zt], extracted
from an utterance of word wl, will have a hierarchical
group structure underlying the sparse representation A =
[α1, .., αt] where all the coefficients tend to collaborate
in time to activate a higher level group corresponding to
wl. This collaborative hierarchical structure (depicted in
Figure 1) is leveraged using the C-HiLasso algorithm [2]
to obtain the sparse representation αt as

αt = min
α

1

2
‖Z−DA‖2F + λ2ψG(A) + λ1

T∑
t=1

‖α‖1 (5)

where ψG is group Lasso regularizer defined as ψG(αt) =∑
G∈G ‖α[G]‖2. The posterior probability p(wl|xt) for a

word wl is estimated as p(wl|xt) := ‖αwl
t ‖1/‖αt‖1.

For speech recognition, frame-level word-posterior prob-
abilities p(wl|xt)’s are used to obtain the maximum-a-
posteriori word recognition through

wrecognized := argmax
wl

p(wl|X) = argmax
wl

T∏
t=1

p(wl|xt)

(6)
where X = [x1 . . . xT ]. The potential of the proposed
approach is demonstrated on isolated word (Phonebook
corpus [3]) and continuous speech (Numbers corpus [4])
recognition tasks. The results are listed in Table I. For
dictionary learning and sparse decoding, online dictionary
algorithm [5] and lasso solver [6] were used respectively.
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Fig. 1: Given a sequence of acoustic features in Z, the sparse representation matrix A will have a block structure associated
to the word-specific dictionaries where the inner block coefficients are sparse. This collaborative hierarchical sparsity structure
is exploited in [2] to devise an efficient C-HiLasso algorithm for sparse recovery.

# Task Accuracy
1 Isolated Word (Phonebook-75 words) 97.8%
2 Isolated Word (Phonebook-600 words) 93.2%
3 Connected Digit (Numbers) 87.5%

TABLE I: Results for Isolated Word and Connected Digit
Recognition using sparse modeling. Accuracies in case
of Connected Digit are given by (100 - WER), where
WER is word error rate obtained by Levenshtein distance.
The conventional spectral exemplars yield less than 50%
accuracy in Isolated Word recognition and around 70%
accuracy in Connected Digit recognition tasks.
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