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Abstract

Many engineering problems that involve hierarchical control applications, such as demand side ancillary service
provision to the power grid, can be posed as an optimal tracking commitment problem. In this setting, the lower-
level controller commits a set of possible reference trajectories over a finite horizon to an external entity, which
requires guaranteed tracking of any reference trajectory that can be sampled from the committed set, with an
allowed deviation, in exchange for a payment corresponding to the size of the reference set. This paper presents
a method to solve the optimal tracking commitment problem for constrained linear systems subject to uncertain
disturbance and reference signals. The proposed method allows tractable computations via convex optimization for
conic representable reference sets and lends itself to distributed solution methods. We demonstrate the proposed
method in a simulation based case study with a commercial building that offers a frequency regulation service to
the power grid.
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I. INTRODUCTION

EGULATION of large and complex systems that include many agents is usually handled with several

control layers that interact in a hierarchical fashion in order to break down the complex control task
into simpler sub-tasks. Frequency regulation of the power grid is a good example of such a setting, where
an upper level controller, run by the grid operator, sends reference signals to the lower level subsystems,
reserve providers, which are expected to track the reference within an acceptable error bound. For the
upper level controller, it is crucial to know the tracking capability of the subsystems. In the power grid,
this information is provided to the grid operator in terms of a reserve commitment, which represents the
set of robustly trackable trajectories by the lower level subsystem for a specific time window []1].

In today’s market the reserves are usually described by simple limits on the maximum power and
ramp rates which are available for power plants [2]. However, the integration of demand response and
storage elements in frequency regulation impose several challenges on the commitment problem: First,
more complicated reserve descriptions that incorporate energy limitations and time variations are required
in order to capture fundamental characteristics of these new reserve providers [3]]. Second, the assessment
of the optimal reserve capacity, i.e. the uncertainty in the power consumption that the service provider
can accommodate, is far from trivial to determine for a complex subsystem such as a commercial office
building that is not designed for demand response and restrained by its primary objectives and external
disturbances such as weather conditions and occupancy levels.

In this paper, motivated by the reserve commitment problem for demand response, we pose the robust
tracking commitment problem, which corresponds to the assessment of a subsystem’s tracking capability
for a finite horizon and optimal commitment of this capability to an upper control layer, considering the
subsystem’s overall cost of operation and feasibility. The tracking capability is expressed in terms of a set
of possible reference trajectories the system can track robustly, that is, not violating internal constraints
and always staying close to the reference trajectory within an allowed error set, while being subjected to
external disturbances. For a fixed reference set, considering that both the reference and disturbance are
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external uncertainty sources, the ability of the system to track any reference from this set can be assessed
by means of a general robust control problem [4]], [S]]. The peculiarity of the commitment problem comes
from the freedom in the choice of uncertainty sets that are admissible for robust tracking, and which
therefore need to be optimized as well. In this paper, we propose a methodology to solve the robust
tracking commitment problem in a tractable manner, by means of convex optimization. Our method is
based on linear decision rules [6] together with modifier functions over sets and can be used for optimal
sizing of reference sets while simultaneously guaranteeing robust tracking.

Finite horizon robust control for linear systems is well established in the model predictive control
literature [7], however, the related work is mainly concerned with obtaining a control law that guarantees
robust feasibility and stability under a given uncertainty set. Available methods mainly rely on choosing a
nominal trajectory and a control policy that will keep the system around the nominal trajectory under the
effect of the uncertainty [8], [9], [10]. The use of a closed-loop control policy reduces the conservatism
considerably compared to open-loop robust policies. The control policies are often selected to be affine [[10]
as they lead to tractable computations that rely on convex optimization [|6]. The work of [11] generalizes
these linear policies by considering linear combinations of basis functions, a possibility also shown by [6].

An illustrative example of robust model predictive control for the operation of the power grid can be
found in [[12], where the authors allocate reserves while considering temporal correlation of the demand-
generation forecast and assuming the forecast error to belong to a polytopic set defined over a finite
prediction horizon. However, the uncertainty set is fixed prior to allocation, therefore the authors do not
address the problem of assessing disturbance rejection capabilities of a given reserve fleet.

The commitment problem, on the other hand, requires searching over uncertainty sets that the system
can accommodate rather than guaranteeing robustness against a fixed uncertainty set. The interest in
this problem has peaked in recent years due to the prospect of Demand Response applications [[13],
where the reference set to be tracked that represents the reserve capacity of the system is not given, but
should be computed by the service provider. In [S]] the problem was posed in the robust model predictive
control context, and simple up-down flexibility of a single actuator was optimized. [[14] and [[15] consider
aggregation of several subsystems to track a reference signal and optimize maximum up-down limits
on the reference, however the robust formulation is again limited either to single dedicated actuators
or predetermined schemes that distributes the required change in the total power consumption among
actuators. [16] considers reference sets that are norm balls and optimizes over linear mappings to modify
the uncertain reference set utilizing dual norm formulations. However, in all aforementioned works, the
authors do not consider the time correlation that will be present in the uncertain reference signal. This
problem is tackled in our previous work [4]], where we consider polytopic uncertainty sets defined over
the whole prediction horizon and formulate a method for modification of the uncertainty set via linear
maps. A similar work is [[17]], where the authors propose optimizing over a linear map to be applied to a
polytopic reference set that represents energy constraints in frequency regulation signals.

Another related problem is the so called output regulation, which deals with the capability of the system
to track a reference trajectory that is generated by an external dynamical system [18]]. In the finite horizon
framework, the external system serves as a generator for the reference trajectory set. Most of the work
in output regulation deals with asymptotic tracking guarantees [18], [19], [20]. However, for the finite
horizon tracking commitment context, it is necessary to guarantee tracking during the whole commitment
period, which includes transients. The authors of [21]] utilize robust invariant sets to guarantee tracking
with specified error bounds during and after the finite prediction horizon, however the guarantees are
sought for a given reference generator under the assumption that there exists a feasible solution to the
problem.

The contribution of this paper is threefold: First, we formulate a general robust tracking commitment
problem for linear systems that allows computation of optimal reference sets to be committed for guar-
anteed tracking with error bounds under additive state disturbance. Second, we propose a method that
allows implicit modulation of conic representable uncertainty sets via modifier functions, which leads to
tractable formulations for the problem of searching over admissible uncertainty sets and corresponding



control policies simultaneously. Finally, we establish sufficient conditions on the modifier functions that
ensure causality of the obtained control policies according to the available information on the uncertainty.

The paper is organized as follows. Section [lI| lays out the problem formulation for constrained tracking
under uncertainty and introduces information structures. Section [[lI] defines the robust tracking commit-
ment problem, proposes a method for solving the problem in a computationally tractable manner with
implicit modulation of uncertainty sets and closes with discussions of properties of the tractable problem
formulation. Finally, Section [[V|illustrates our results with a demand response application.

Notation: R™ denotes the Euclidean space of dimension n, and Z denotes the set of integers. For
two integers i € Z and j € Z such that ¢ < j, let Zy; j; := {4,i+1,...,j}. I,, denotes the identity matrix
of dimension n and ® denotes the Kronecker product. For a matrix M € R"*™, an integer 1 € Zp; ) and
a set J C Zpm, M(4,J) indicates the set of components that belong to the ith row and columns for
which the indices belong to 7. For a set @ C R™ x R™, the orthogonal projection operator is defined
as Proj (Q) := {z € R"| Jy € R™, (x,y) € Q}. Given two functions f : R* — R™ and g : R™ — R,
fog:R"— R denotes the composition of f and g , such that f o g(z) = f(g(x)).

II. PROBLEM FORMULATION
A. Constrained tracking under uncertainty

Consider the linear uncertain system

Tpy1 = Az + Buy, + w;

1
yr = Cxp + Duy, )

with constrained state and inputs (z,u) € X x U C R™ x R™, disturbance w € R™ and output y € R™.
The sets X and U are assumed to be polytopic and to contain the origin.

Given that the system is in state x at time 0, the input sequence u = (uo,...,uy_1) is applied, and
the disturbance sequence w = (wy,...,wy_1) is observed, the state at time 7 is denoted as ¢;(x, u, w),
and the resulting sequence of states (¢ (z, u, w),...,ony(z, u, w)) as ¢(r, u, w). Note that ¢ is a linear
function of its arguments. The output of the system over the horizon is also a linear function, and is
denoted y(z,u,w) := (Czg + Dug, Cd1 + Duy,...,Codn_1 + Duy_1), where the arguments have been
removed for brevity.

The goal is to determine if an admissible control law exists such that the output of system can
be made to robustly track any signal within a given reference set over a finite horizon. To this end, we
define a reference set R C RN™ and a disturbance set YW C R™" which represent possible reference
and disturbance signals over the entire horizon of length N and assumed to be compact. Note that the
reference and disturbance sets allow for coupling along the horizon which provides a critical flexibility
that will be exploited in the application studied in Section

Given a reference signal » € R™ at time k, the tracking error is denoted as ey = y; — 7, and the error
over the horizon as

e=r—y(r,u,w) ()

where 7 := (rg,...,7y_1) is the reference trajectory. We further define the tracking error set € C RN,
The objective of the control action is to maintain the difference between the output of the system and the
reference signal, that is e, within the set .

We can now define the set of input, reference and disturbance sequences that satisfy the system and
tracking constraints over an N —step horizon

Qz) :={(u,r,w) |p(x,u,w) € X, ueld, ec &} 3)

where X := X and U := UY. As seen from the definition, the feasibility set Q is parameterized by
the initial condition x of the system. In the following, we will drop the argument of Q for notational
simplicity.



Remark 1. The reference is only defined over the finite horizon and we do not discuss tracking guarantees
for the infinite horizon case. Note that any terminal condition that would ensure robust invariance under
a persistent disturbance after the finite horizon can easily be added to the set Q(x) without changing
its structure. We refer the reader to [22|] for computation of positively robust invariant sets under time
invariant disturbance sets, to be used as the terminal constraint.

Note that both the reference r and disturbance w are exogenous uncertain signals for the system. From
the point of view of the controller, the main difference between these two is the time they are observed
by the controller. This causality condition can be easily incorporated in the control policy to be applied
over the horizon as we will show in the following sections. Therefore, we define £ = (r,w) € R" as
the unified uncertain signal.

Let the map 7, : RV — R™ be the control policy to be used at time step k. The control policy
sequence for the finite horizon can be defined as

7(&) = (mo(§), .-, Tn-1(§)) )
We further define the general uncertainty set as
E=RxW .

We can now define the set of all admissible finite-horizon control policies mapping from disturbance
and reference sequences to input sequences

AE)={r:Z2-U|VEec= (7w(),€) cQ} ®))

Given the feasibility and tracking conditions and the uncertainty set, a controller using a policy that
belongs to the set A(Z), starting from the state x, can keep the tracking error within the set £ throughout
the finite horizon for any realization of the disturbance w and the reference r. The existence of such
control policies is not guaranteed: if the system constraints and the tracking set is too restrictive or the
uncertainty sets are too large, then it may not be possible for any controller to satisfy system feasibility
and tracking requirements simultaneously.

Let us now characterize the uncertainty sets that allow existence of admissible control policies for
tracking. This characterization will be instrumental in the following sections, when we optimize over
reference sets that the system can track robustly.

Definition 1. The set = C RY"¢ is admissible for tracking by system in state x if
A(E)#£0D. (0)

The following lemma provides more insight into the geometry of the admissibility condition:
Lemma 1. The set = C RN" is admissible for tracking by system (1)) in state x if and only if:
= C Proj(Q) )
where Proje(Q) denotes the projection of the set Q onto the & subspace.

Proof. : The proof directly follows from the definition of the projection operator and the definition of
A(Z). Suppose that = C Proj.(Q), we have that V€ € =, Ju : (u,§) € Q. This indicates the existence
of a function 7, which maps every £ € = to a feasible u = w(§), such that (w(£),&) € Q, and hence
A(Z) # @ . Conversely, suppose that A(=Z) # @ and let w € A(Z). By definition of A(Z) , V€ € Z, Ju
such that u = m(§) and (u,§) € Q, and hence = C Proj.(Q).

O

Lemma [I] also illuminates a method of testing the admissibility of a given uncertainty set for robust
tracking, by means of verifying set inclusion.



B. Information structure of control policies

The control policy 7 should account for the fact that the uncertain exogenous signals are revealed
partially to the controller as time progresses. Generally speaking, any decision variable u; might depend
on a subset of the uncertainty vector & and only on this subset. To make this claim more precise, the
concept of the information structure of a function f is introduced. The presentation follows concepts from
Section 14.2 of [[6] but adopts a different presentation.

Definition 2. Let 7 be a subset of {1,2,...,n}, and
FIO)={f:R"=>Rl|zz =27 = f(x) = f(2)} (8)

where x7 denotes the entries of x defined by the indices of L.
Let T = (Iy)rezy, ,, be a collection of index subsets and:

FI)={f:R"=R", fi € F(Ti) Yk € Zp m)} )

If f € F(Z), then we refer to L as the information structure of f.

[1,m

Loosely speaking, F(Z) denotes the set of real-valued functions that depend only on the input indexed
in Z. For functions with multiple outputs, the information structure is defined output-wise. Z summarizes
the information structure of the function f: the k™ component of f depends only on inputs indexed in Zj,.
For example, in the robust multi-stage control setting considered here, a typical requirement of the control
policy will be causality (also called non-anticipativity) which states that the current control action can
depend on observations made in the past only: this translates in our notation to the fact that for each stage,
every control action can depend on past measurements, so that 7, € F(Zy) with Z,, = {1,...,k — 1}.
Notice here a small abuse of notation in the sense that 7, is a function with values in R™*, and by
7, € F(Z)). We mean that every component of 7, is in F(Zy).

Definition 3. The set = C RYN"¢ is causally admissible for tracking by system (1)) in state x with respect
to the information structure I if

FI)NAE) £0. (10)

In contrast with Definition |1, we now require that the control policy satisfies a particular information
structure. For example, the reference trajectory to track will usually be known at the current time step but
not the disturbance. It is also possible that the reference is known either partially or totally in advance. In
the following section, we will see that our examples may display more complex information structures.

III. ROBUST TRACKING COMMITMENT

Consider the problem of finding a reference set, such that the combined uncertainty set = = R x W,
composed of the disturbance and reference is admissible for robust tracking for system (I)). The admissible
reference set R is to be committed to an external agent together with the guarantee of robust tracking for
a finite horizon. We call this problem, a robust tracking commitment problem, the application of which
can be found in ancillary service provision to the power grid, as we will demonstrate in Section [[V] or
similar hierarchical control settings.

Essentially, tracking commitment requires evaluation of the admissibility of uncertainty sets, in order
to be able to find a suitable reference set to be committed. Based on Definition [3) we can write the family
of causally admissible uncertainty sets for tracking with respect to a given information structure

Q={EcRY™ |3Ir e F(T)NAE)} (11)

First we tackle the problem of simply finding a causally admissible reference set, without attaching any
cost function to the problem. The tracking commitment problem can be written as

find R: RxW e (12)



For a fixed uncertainty set, admissibility can be verified by searching over control policies. However it is
not obvious how to search over possible admissible sets and corresponding control policies simultaneously.
In order to treat the problem with a unified methodology, we will characterize admissible sets as images of
a modifier function applied to an initial uncertainty set =. The advantage of this approach will be evident
in the following section [lII-Bl when we formulate tractable methods for evaluating the admissibility of
uncertainty sets for tracking, utilizing parameterized function based techniques available in the robust
optimization literature [6].

A. Implicit modification of uncertainty sets

Let us formalize characterization of uncertainty sets by modifier functions. We first define the uncertainty
modifier function v : RV"% — RV which is assumed to be bijective and used for reshaping a given

uncertainty set. R R
v(E) ={v(§): £} (13)

Remark 2. Note that we do not distinguish between the reference and the disturbance as they are just
parts of the combined uncertainty signal, and all presented results apply to general robust programs.
However, in the context of tracking commitment, only the reference set R can be modulated, whereas the
disturbance set VV is fixed. Also in general, the information structure of the reference and the disturbance
are different. Nevertheless, without loss of generality, these particularities of the uncertain signal can be
easily incorporated in the definition of the information structure and the mapping v by letting

v =v(r, w):=(v.(r), w). (14)

In the following, we will show that we can evaluate the adm1551b111ty of the set = = v (= ) via conditions
on the composite function 7w = moy that is applied to the initial set =, as depicted in Figure|l| This allows
us to fix an initial uncertainty set =, embed the modifier function into the control policy and implicitly
modulate uncertainty sets and control policies simultaneously. To this end we introduce the following
lemma,

Lemma 2. Let v : RNne s RN"¢ be a bijection and = be a compact set with non-empty interior . The
set = := v(Z) is causally admissible for tracking by system (I)) in state x with respect to the information
structure L if and only if
Jr e A(E):wov e F(T) (15)
where A, is defined as

Ay(E) ={m:VE€E, (w(§),v(§)) € Q} (16)

Proof. : Suppose 7 € A,(Z) and % o v~ € F(Z). Then we have

vE € =, (7(€),v(é) € Q (17
Let & := v(€). Since v is bijective, we have £ = v~1(£). Therefore is equivalent to
V(g €Z, (movT(§).worTl(€) € Q
Ve ev(B), (rov 1(€),6) e Q
eVEeE, (w(¢),8) e Qwithm =sov™!
o e A(Z)

(18)

Moreover, we have that w = w o v~! € F(Z). This concludes that = is causally admissible for tracking
according to Definition [3] The reverse direction follows from the equivalence of all steps.
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Fig. 1: Conceptual sketch of the relationships between uncertainty sets and applied functions. The initial
uncertainty set = is not necessarily a subset of the projection of Q, therefore might not be admissible
according to Lemma [I] However once we find a feasible lifting of this set into Q, we can take its
projection as an admissible uncertainty set, which is given by = = v(Z). The corresponding admissible
control policy can be obtained by letting 7w = 7 o v.

]

Remark 3. Since the modifier function v is an arbitrary bijection, we do not lose generality when we
consider uncertainty sets that can be characterized as the image of a given initial compact set = with
non-empty interior, under v.

According to Lemma [2] we can write an equivalent formulation of the family of admissible sets for a
given initial set =
v,w:Z=v(Z), }

e AL(2), Fov !t e F(T)

When we look for a causally admissible set that belongs to €2, the description (T9) allows us to implicitly
manipulate uncertainty sets and control policies simultaneously to verify admissibility, as will be seen
in Section However, while searching for a modifier function v, the condition w o v~ € F(Z) is
difficult to evaluate since it is a condition on a composite function that involves the inverse of v~ !. In
the following, we will propose a simple sufficient condition directly on v, that is easy to evaluate and
ensures causal admissibility of the modified uncertainty set. We start by splitting the causality conditions

of the composite function 7 o v,

Q:{EcRMs (19)

Lemma 3. Let (Ik)kez[l,m] be a set of information structures and f : R — R. If for all k, f € F(Zy)
then f € F((, Zk)-

The proof of Lemma [3] as well as other technical proofs in this section are grouped in Appendix [B]
The results will be briefly discussed in this section and we refer the reader to the appendices for more
details. Lemma [3] states an intuitive fact, that is if the output of a function f depends only on inputs
indexed by Z; and Z, then it actually depends only on inputs indexed by their intersection. This directly
motivates the next lemma.

Lemma 4. Let g : R" — R", be a bijection. Given an information structure L, define T as

L= () & (20)

{ili€Z:}
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Fig. 2: For given information structures, the corresponding information structure of the uncertainty modifier
function
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The following equivalence holds

~

VfeF(I),foge F(IT)<=gec FIT) (21

Equation (20) characterizes a set of functions which do not change the information structure of f.
Loosely speaking, it states that if f; depends on z; then g; should not depend on anything that f, does

not depend on. Notice that fj is always nonempty and in particular it contains j. This reflects the fact that
a "diagonal” mapping (where g, depends only on j for all j) does not change the information structure
of any function it is composed with (for linear functions it means that multiplying by a diagonal matrix
always preserves the sparsity pattern).

In Figure , the information structure Z for different information structures Z are presented. The k™ row
of the matrix represents the indicator vector of Z;. These matrices can be thought of as sparsity patterns in
the case that the control laws are linear. The first column shows the sparsity pattern of the control law
and the second column the corresponding sparsity-preserving sparsity pattern. In other words, multiplying
the matrix from the first column by the matrix from the second column will result in the same sparsity
pattern. This directly helps us select control laws and modifier functions such that their composition will
still respect the required information structure. For example, as would be expected, the first row of the
table tells us that a lower triangular control law composed with a lower triangular modifier will still be
lower triangular. The second line tells us that if the information is known with a delay of [/ time steps,
then the modifier function can be lower triangular and the last [ x [ block full.

In view of Lemma 2, simultaneous optimization over 7 and v would be beneficial for searching
admissible uncertainty sets. Lemma [4{ is instrumental in proving that from a control law 7 defined on =



and an invertible mapping v, a control law defined on u(é) which has the desired information structure
can be recovered. Indeed, 7 € F(Z) and v~! € F(Z) ensures that 7 o v~ defined on v(Z) belongs to
F(Z) according to the lemma.

However, conditions on ! are inconvenient since the aim is to optimize directly over v. Sufficient
conditions on v are sought to replace the condition v~ € F(Z). Unfortunately a certain information
structure for v~ does not usually result in a specific information structure for v. In particular, a sparse
information structure for ! does not generally result in a sparse information structure for v. For example,
the inverse of a causal function is not generally causal. The following lemma gives sufficient conditions
on v.

Lemma 5. Suppose v : R" — R" is a continuous bijection of R" and v € F (i') as defined by
equation (20). Define G = {fov | f € F(Z)}. We have

G = F(T)

Under mild assumptions, Lemma [5| states that composing f € F(Z) with v results in a function with
the same information structure.

Corollary 1. Given an lnformatton structure T and T as defined in equation (20), if v is a continuous
bijection and v € F(I), then v~ € F(I).

Proof. According to Lemma |3, F(Z) = {fov™" | f € G} = {fov™" | f € F(Z)}. Hence, for any
f € F(I), it holds that f ov~—! € F(Z). The fact that v~! € F(Z) follows from Lemma O

Theorem 1. Let v : RV" — RN"¢ be a continuous bijection and I an information structure, I defined
by equation (20) and A, in equation (16). v(Z) is causally admissible for tracking with respect to the
information structure I if

FI)NAL(E) #0

D)NAE) # .
veFI)

Proof. Suppose there exists 7 € F(Z) N A,(Z). Since v is a contlnuous bijection, v € F(Z) implies

that v=! € F (I) by Corollary l Lemma @ in turn ensures that 7w o v~! € F(Z). Finally, application of

Lemma [2] concludes the proof. [

Theorem [I] provides sufficient conditions for causal admissibility of an uncertainty set for tracking. We
can define the family of admissible sets that comply with these sufficient conditions as

dv,w
Q) = EcRMfzzuGLuef@) (23)
e FI)NALE

)
For the definition of  we have replaced the condition 7t o v~" € F(Z) with the sufficient but simpler
conditions 7 € F(Z) and v € F(Z). Therefore ) is a restriction of the original family of admissible
sets (2.

Q=) C O (24)

The restriction will depend on the initial set = and thus the argument of Q) is added to reflect this
fact. However, this restriction leads to tractable formulations based on the available robust programming
literature, as we will show in the following section.
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Finally, we write the modified robust tracking commitment problem that is based on sufficient condi-
tions (22)) as o
find R: R xW € Q=) (25)

B. Tractable solutions

The problem formulation (23] allows us to search over uncertainty sets implicitly by means of modifier
functions. However the problem is still difficult in its general form, due to the infinite dimension of the
search space and the infinite number of constraints. Therefore we will look for finite dimensional and
tractable approximations of the tracking commitment problem in order to solve it efficiently.

Using the definitions of {2 and A,, we can rewrite the modified robust tracking commitment problem

as A
find T,V

subject to VE e E

(7(€),v(8) € Q (26)
e F(T)
veFT).

Note that (26) is an adjustable robust optimization (ARO) problem [6], that allows decisions to be
taken after the realization of the uncertainty. In our case the uncertainty dependent decision rule is
characterized by the control policy 7. In the standard form of ARO, the uncertainty set is fixed, whereas
the tracking commitment problem requires optimization over possible uncertainty sets. However, even
with the additional modification of the uncertainty set, the tracking commitment problem (26) still fits
into the standard ARO framework, because the uncertainty modifier v can also be treated as a decision
rule. Consequently, we can directly utilize results from adjustable robust programming [6]], which shows
that restricting the search space to linear (or affine) functions leads to finite dimensional and tractable
formulations, referred as the affinely adjustable robust counterpart (AARC). For notational simplicity, we
use linear functions, as any affine term that does not depend on the realization of the uncertainty can be
defined as a separate non-adjustable decision variable in the optimization problem.

Firstly, we consider polytopic tracking sets, defined as

E:={e|Ge< g}
The feasibility set Q also becomes polytopic and can be written as

Q={(u,&) | Hu+ Q€ < ¢}

For the derivation of (), H, and g see Appendix [Al Note that ¢ is an affine function of the initial condition
x, and g, which determines the size of the tracking set.
Let us further define the linear versions of the control policy and the uncertainty modifier

miin(§) == ME,  vin(§) = LE (27)

where M € RVNmxNne and I € RV"*Nne, We can describe the causality conditions by constraints on
M and L

M(k’, Z[I,Nng]\zk> = O, ke Z[I,N} = T E .F(I) (28)
Lk, Zunng\Ii) =0, k€Zyy < veFI)
Note that the constraints impose that the elements of M and L multiplying the elements of the
uncertain variable which are not included in the information structure at step %k to be zero, thus enforcing
causality of the linear functions 7;;, and vy;,.



11

Furthermore, we restrict the class of allowed initial uncertainty sets to intersections of convex cones
E={&|Fié+ fi€Ki i € Ly} (29)

where the cone K, is assumed to be proper. Note that, the considered class of uncertainty sets is very
extensive, as it allows the description of well known cones such as the non-negative orthant, the Lorentz
cone or the positive semi-definite cone as well as their intersections and products.

Let us now formulate the robust tracking commitment problem (26)) with linear policies given in (27)
and conic uncertainty sets described by (29)

find M, L

subject to VE: Fié+ fie K;, i€ L1
HME + QLE < g
(M, L) satisfies (28)

(30)

Once the problem is solved, a feasible solution M* and L* can be used to construct the uncertainty set
that is causally admissible for tracking and the corresponding control policy

E=L'2, w(¢)=M¢ M=MTL! (31)

The optimization problem (30) is still difficult, due to the infinite number of constraints for every possible
realization of the uncertain variable. However this issue can be tackled by considering an equivalent
formulation, where the worst case realizations of the uncertainty is considered by enforcing the constraint;
max {H Mé + QV%} < q. Applying conic duality thereafter and stacking dual variables in matrix Z, the

ge=
robust counterpart can be formulated as

find Z,M,L
subject o Z] € KJ, i € Zpi )
Z Zifi <q (32)

i=1
(M, L) satisfies

We refer the reader to [6] for the derivation of the robust counterpart. The robust counterpart for the
tracking commitment is convex in linear control policies parameterized by M and linear uncertainty
modifiers parameterized by L. Therefore, when sets K; are polyhedral, second order or semi-definite
cones, the problem formulation (32) allows tractable computations of feasible reference sets admissible
for tracking with respect to the information structure Z and the tracking error set £, by the system (TJ).
Table [l gives a summary of problem complexity in case of most common uncertainty sets for the reference
and disturbance.

Remark 4. Any additional decision variable that is independent of the uncertainty, u, as well as non zero
nominal values for the disturbance and reference, &, can be easily incorporated in the above formulation
as

Ha+QE+ Y Z:fi <q
=1
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R w ‘ Robust Counterpart

For < fr Fow < fu LP
For+frrl,<1 Fow < fo SOCP

For < fr Fow + fu : |lw]|, <1 SOCP
For+fri|rl, <1 Fow+ fu:|lw], <1 SOCP

TABLE I: Optimization type for the robust counterpart formulation (32)) of the tracking commitment
problem, considering combinations of polytopes and ellipsoids as uncertainty sets. Note that the polytopic
representation also covers 1 and oo norm balls.

C. Nonlinear policy and uncertainty modifiers

Since Theorem [I| and related Lemmata apply to generic functions and sets, all presented methods
can be applied directly to nonlinear policies and modifier functions. Even though the formulation (32))
is limited to linear functions, it is possible to incorporate nonlinear policies (or modifier functions) in a
computationally tractable manner. The key principle, introduced in [[6] and studied in greater detail in [11]]
is to consider a modified uncertainty set which is the image of the original uncertainty under a nonlinear

lifting.
Consider the following constraint with non-linear control policy
Hm(§) +Qu(§) <q, VEE€E (33)
where the policies 7t and v are linear combinations of a set of possibly nonlinear basis functions
mi(€) =) ai;f;(€) and wi(€) = Y bi;fi(€) (34)
j=1 j=1
We define the lifted uncertainty variable, and the corresponding uncertainty set as
with properly defined matrices, the inequality (33) can be converted into a linear one
HM( + QL¢ < g (36)

If the new extended uncertainty set Z or its convex hull conv(Z), can be represented in conic form (29),
then the tractable formulation (32) can be to used solve the problem and obtain the nonlinear control
policy that is composed of the basis function and linear decision rule. For details and possible nonlinear
mappings that result in tractable formulations, we refer the reader to [6] and [11]. As an example, we will
briefly summarize results from [6] showing that quadratic control policies can be handled with ellipsoidal
uncertainty sets. Consider the policy

mi(€) == €'Y + v/ E +u; (37)
and the ellipsoidal uncertainty set
=={¢]IT¢&l. <1} (38)
with invertible 7. The lifted uncertainty set can be described as:
Equivalently we can use a matrix notation
1 ¢ }
- (40)
~le é

As shown in [6], the convex hull of the lifted uncertainty set Z is given by

conv(Z) = {g _ E éﬂ

C=0, r(TWTH) <1 } 41)
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where ¢ > 0 means that ¢ is a symmetric positive semi-definite matrix. This representation can be
put in the standard conic form of (29), and therefore allows a tractable robust counterpart formulation
like (32). In [23], the authors use quadratic liftings to find the largest volume inner approximations of
polytope projections. This can be seen as a specific case of the work presented here, with full information
knowledge and quadratic lifting law 7r but linear modifier function v.

D. Modulating the tracking error set

In the previous section, we have formulated a tractable version of the robust tracking commitment
problem which seeks a causally admissible reference set with respect to a fixed tracking error set
£. However for some applications, it might be preferable to modulate the reference set together with the
associated tracking error set, since the relative sizes of the two sets will indicate the tracking performance.
For example, for frequency regulation service to the power grid in Switzerland, the service providers are
allowed to deviate from the reference up to a certain percentage of the total service capacity committed,
therefore a service provider who is committing a larger reference set is allowed to have a larger error set
[24].

Notice that the problem (32)) is convex in ¢ which parameterizes the polytopic feasibility set Q. Therefore
one can freely optimize over modifications of the feasibility set. For clarity let us write the system
feasibility and tracking constraints separately as

o-{ )Tu+Vw<h
R i Gr— (Pu+Sw+y)<g

where y is the nominal output of the system without control action and the derivation of matrices 7', V,
P, S can be found in Appendix [A]

From (42)), we can immediately observe that the problem is also convex in g which parameterizes
the tracking error set £, therefore allows modulation in a tractable manner. The sizes of the tracking error
set and the reference set can be related by enforcing a joint constraint on the uncertainty modifier function
parameter L and the error set parameter g.

(42)

E. Optimal tracking commitment

As mentioned earlier, the robust tracking commitment (I2)) is a feasibility problem. On the other hand,
the optimal robust tracking commitment problem is finding the control policy, reference and tracking error
sets, that minimize a cost function.

IR
o Minimize J(m,R,&) 43)

Relying on the tractable formulation with linear control policies and uncertainty modifiers (30), we can
solve the tractable version of the optimal robust tracking commitment.

minimize J(u,L,,g)

subject to V7 : F.r + f. € K,,
Yw : F,w+ f, € Ky,
Tu+Vw < h (44)
GL,7 — (Pu+ Sw+7y) <y
u= 1\A/[T7A' +M,w +u
(M, L) satisfies (28)

where M and L are defined as

~

- M, (L,
SRS
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For notational simplicity, the reference and disturbance sets are represented as single conic sets, but they
can also be defined as intersection of several conic sets as in (29)).

With a suitable cost function, the optimal commitment problem (44) can be solved as explained
in section [II-B] The cost function usually depends on the uncertain realization of the reference and
disturbance. However this dependence can be qualified out by either considering the worst-case or
expectation of the possible cost realizations [25]]. Furthermore, as long as J is bilinear in the uncertain
variables and decision variables, the tractable robust formulation for the minimization of an upper bound,
that constitutes an equivalent problem with certain cost function, can be obtained [6].

After solving (@4)), the optimal control policy, reference and tracking error sets can be obtained as

R* = {r=L'%| Bi+ f, € K,}
™ (r,w) = M'L e + M w + @* (46)
& ={e|Ge<y'}

where * indicates that the variable is an optimizer of (44).

FE. Collective tracking

In this section, we will consider the collective tracking commitment problem, where the reference signal
is to be tracked by the summation (or average) of the outputs of several subsystems that are not coupled
via constraints or dynamics. In this case, the aggregate tracking error can be written as

e=r—Y v 47)
j=1

where superscript 7 indicates that the associated variable belongs to subsystem j.

In order to compute a causally admissible reference set for the collection of subsystems, it is necessary
to compute the aggregated tracking capability simultaneously. An obvious option is to treat the collective
system as a single system with block diagonal system matrices, and solve the problem (30) centrally.
However this requires collecting the knowledge of detailed subsystem models by an aggregator and
will possibly result in a very large number of decision variables. Therefore it is desirable to distribute
the problem, such that it can be solved without central knowledge of the models and using limited
communication between the agents.

Let us briefly show that the problem (30)) in fact easily lends itself to distributed solution methods. The
subsystems are supposed to track a single reference by collective action. This is equivalent to saying that
the subsystems are tracking separate reference signals, which sum up to the central reference. Using a
common nominal reference set and a linear uncertainty modifier function for each subsystem, the reference
can be split as

ri =Lp, ZLj —L (48)
j=1

where L parameterizes the global linear modifier function. Therefore the aggregate reference set can be
described as

R=Y LR (49)
j=1

Many distribution schemes are possible, given the cost-reward framework of the collective tracking
task. As an example, we consider the case where the error set is fixed, the reward is split between agents
according to their contributions to tracking characterized by parameter L.’ and the objective is to minimize
the total cost

> (L) (50)
j=1
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Subsystem feasibility constraints 77w’ + V7w’ < h’/ and causality conditions on the local control poli-
cies can be treated separately by each subsystem. However (48) and the collective tracking constraint (47))
introduces a constraint coupling among all subsystems. The collective tracking constraint can be written
as

Vi Ep+ f e K., Vw!  Flw’ + f] € K,
> (GL# — (Plw/ + S'w’ + 97)) < g (51)
=1
uw = l\A/Iﬁf“ + M{ij +a’
Utilizing linear control policies u/ = M/#+M/ w/ 4@’ and formulating the dual of the robust counterpart
as in (32), we obtain a tractable formulation for the collective tracking constraint

7T e K, 7 €K Vi € Zpy p (52a)

Z.f +> (Z,f) - Pla’ —g') < g (52b)
j=1

Z,F, => (P'Mi - GL)), (52¢)
j=1

Z)F! = PPMI 4 S Vi € Zjn (52d)

We observe that the coupling constraints are (52b) and (52¢). The partial Lagrangian with the coupling
constraints can be written as

n n n
> J (@ L)+ N vee(Z, Fr = Y (PMI 4+ GL)) + 1" (2, fr + Y (2Z3,£5, — Pla? —g7) —g) (53)

j=1 j=1 J=1
which is separable given the variables A, i and Z,.. Therefore the collective tracking commitment problem
can be solved in a distributed manner with global updates of these variables or enforcing consensus on
their local copies [26]]. Note that, after the commitment of the aggregate reference set, it is not necessary
to further communicate for guaranteed tracking if all subsystems have access to the aggregate reference
r, since collective tracking is robustly guaranteed by independent local control policies. However, the
performance can be improved by repetitively solving the problem (52) online for redistributing the tracking
task among subsystems according to the available information on the disturbance and reference as time
progresses. Adjusting the error set parameter ¢ is also possible with a suitable constraint on the aggregate
modifier L and g. In case of dynamic couplings, inter-system constraints or common disturbances that
couples the state and inputs of several subsystems, the same methodology can be applied to derive the

tractable robust counterpart formulation and distribute the computation.

IV. APPLICATIONS
A. Power tracking with a building

In this section, we will illustrate most of the theoretical concepts put forward in this article on a
realistic example of a building providing power tracking to the grid operator. The problem of interest is
the commitment of secondary frequency control provision. Secondary frequency control providers in the
Swiss electricity grid have to commit regulation with a weekly bid. When their capacity bid is accepted,
they have committed to track a power consumption signal called the Area Control Signal (ACS) signal,
within the bounds specified by the bids. Deviations in the power consumption tracking are allowed within
a error margin proportional to the bid. For details on frequency control, refer to [2].
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We consider an office building with three controlled zones served by individual air handling units that
we assume can control the heat fluxes to the zones. A linear state-space model of the building was extracted
and validated against EnergyPlus simulation data using the toolbox OpenBuild [27]. The toolbox builds a
thermal model of the building based on first principle modeling and collects realistic data for occupancy
and equipment schedules, as well as weather. One week of typical summer weather for the city of Chicago
is used in this study. The model of the building is a model of the form () with state dimension n, = 10 and
input dimension n,, = 3. The disturbance captures the effect of internal gains, solar radiations and outdoor
temperature, and the input vector represents the negative thermal input power to the zones (it is cooling
season). In this study, y is a scalar that represents the total electricity consumption so that y, = oy ", u;
with « the electric to thermal conversion factor. For simplicity, a linear relationship is assumed here but a
more detailed model could be used depending on the heating system, provided it is linearized. The peak
thermal cooling load of the building is of 45kW for the summer. The input constraint set I/ specifies
maximum and minimum cooling levels in the rooms so that 0 = ; min < u; < U; max for each thermal
zone input, reflecting the sizing of the equipment. The state constraints X specifies temperature zones in
the constraints so that the temperature is maintained between 20°C and 25°C.

The bidding process is as follows: at time t, = 0, the building starts in initial condition z(. The
tracking period starts at time t; and ends at time to, therefore leaving a "preparation" period for the
building controller. The capacity bid consists of the commitment of a baseline consumption during the
tracking period upe, and up-down regulation limits around that baseline for power tracking. Up-down
regulation bids result in a "box" uncertainty set. We therefore fix the basic uncertainty shape as the unit
box

ﬁbow ={r|lr]le <1} (54)

It is expected that a load like a building cannot easily increase or decrease its power consumption for a
long period of time. It is therefore interesting to introduce the notion of a maximum "integral" capacity.
This can be modeled by considering an uncertainty set with integral limits on the power consumption.
This gives an uncertainty set of the form

80250

7@ 0<s < Smaz> Vi € Z[l,n] (55)
att — T
batt St11 = St + T Vt € Z[l,n]

—-1<rn<l1 VtEZ[Ln}

By analogy with the feasible set of a simplified battery model, we will refer to this uncertainty set
as the "battery" reference set. For simplicity here indices are omitted but it is implied that the reference
tracking set is defined only during the tracking period. For the external disturbance from weather and
internal gains, the disturbance set is defined as follows

W = {wnom + Wstoch | wz;och,iinstoch,i S 17 1= 17 27 3} (56)

As such, W is the direct product of three "uncorrelated" ellipsoidal uncertainty sets so that W =
Waun X Wains X Wiemp. Wnom 18 the nominal prediction of the uncertainty over the prediction horizon
and the three ellipsoids represent confidence sets that should cover a reasonable part of the possible
outcomes for the disturbance. To dimension properly the set WV, that is to choose the matrices ();, several
methods have been proposed. Probabilistic data-driven methods will aim at selecting a reference set that
will contain the realization of the uncertainty with some level of probability 1 — e with high confidence.
For example, [28] exploits the scenario approach presented in [29]] to derive a set that contains some level
of the probability mass of the uncertainty with high confidence. The set is obtained as the solution of a
convex scenario problem where the scenarios are taken from measured data and the number of scenarios
determines the probabilistic bound. A similar method can be used in our case to characterize the typical
variability of the weather and internal gains around predicted values. Data from historical prediction
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(a)

]
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b I

Fig. 3: Information structure for the example. It shows that decisions at time step ¢ can depend on the
reference up to time ¢ and disturbance up to time ¢ — 1. Below is the resulting information structure for
the modifier function.

error are easily available for weather. Generally speaking the selection of good uncertainty sets in robust
optimization are a subject of active research [30] and fall outside the scope of the present work. It is
assumed here that the maximum variability of the disturbance is 10% of its nominal value. Finally we
have = =R x W.

We consider here an affine controller and modifier function as in (27)). Our aim is to characterize the
largest tracking reference set. Following the rules of the Swiss ancillary market, the bid is a fixed up/down
capacity over the tracking period. This means the allowable modifier function is a uniform scaling of the
uncertainty set (that is, time-varying capacity is not allowed). For clarity we keep the description of the
uncertainty split between the reference to track and the external disturbance, so that: & = (r,w) and
v = (vg,vy). We assume the weather uncertainty is unknown at the time of the decision whereas the
reference is revealed as it needs to be tracked: this results in an information structure that is depicted in
Figure [3] We see that the modifier function could theoretically modify the uncertainty set so as to "mix"
the external disturbance and the reference. In this application, it would not have physical sense so it is
preferable to keep a block diagonal structure for the modifier’s information structure. The disturbance
uncertainty set is fixed a priori while the reference set can be modified. Furthermore, in the case that the
reference set is a fixed up/down box along the horizon then the reference tracking set can only be scaled
uniformly so that the modifier function will reduce to the simpler form:

VI, On, N, )
L — e (57)
( ONnw. N INne

To maximize the up/down capacity bid, it suffices to maximize the scaling factor A. Notice that enforcing
7)) implicitly enforces the requirement that v € Z. The description of the uncertainty set = = =R xW
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can easily be put under the form of equation (29) since it is the direct product of a polyhedron with three
ellipsoids. Details are skipped for brevity.

The optimal tracking commitment problem (@4)) is solved with cost function J = ¢! — CeommA Where
¢! is the time-varying price of electricity, u is the baseline consumption in the absence of disturbance and
Ceomm 18 the unit reward price of the power tracking commitment (hence promising to track +1kW for
the commitment period is rewarded at the price c.omm)-

The tracking error is sized proportionally to the tracking requirement so that tracking errors amounting
up to 10% of the maximum tracking requirement are allowed. This yields:

& :=1{e]ello < 0.1}

A horizon of one day with a timestep of one hour is considered. For the sake of illustration, we take
Ce << Ceomm 1n order to favour participation in the tracking commitment. The problem solved is a second-
order cone problem with 240,000 non-zero variables and 900 second-order cone constraints. Solving time
on a 2.7GHz i-Core 7 platform was 10 seconds. The optimal value of X is 6.1, meaning that the building
can offer a 6.1kW up/down power tracking capacity for a period of 10h with an integral energy limit of
30.5kWh and maximum tracking error of £0.61 kW. This represents 13.5% of the peak heating power
and about 30% of the average power consumption for that particular day.

Figure 4| shows the open-loop trajectories generated in response to randomly generated weather and
reference signals inside the prescribed sets. In each of the plots, the shaded band shows the reference
tracking times. The different plots shows the average temperature in the building as well as in individual
zones, the total power consumption in the building, the requested power consumption to be tracked on
top of the nominal consumption, the state of the virtual battery and the tracking error.

B. Influence of the integral constraint in the reference set

As outlined previously, frequency control bids theoretically impose the providers to be able to offer up
or down regulation for long periods of time, which appears to be limiting for loads. In this section, the
influence of the addition of the integral constraint is studied. Notice that contrary to the box reference
set, the battery reference set is time-correlated, and our approach directly accounts for that.

We respectively consider a box reference set (54) and a battery reference set (55). When optimizing
over the set, a uniform scaling over time is considered as described in equation (57). This does not allow
separate optimization of the maximum power rate and maximum capacity of the battery. A prototype
battery shape is obtained by using actual measured data for the tracking signal used by SwissGrid during
the year 2013. The following procedure has been applied:

o the historic ACS signal is normalized by the maximum observed ACS signal requested over the

whole year.

« the empirical integral value of the signal over any one day period is considered as the maximum

capacity of the battery

« the initial state of the battery is set at half of the maximum capacity s,,,,/2. This is justified by the

symmetric nature of the tracking bid. Empirical data also suggest that up and down regulation are
close to equally likely.

The power to capacity ratio of the corresponding battery is 5.6 (that is for 1kW of up/down power
offered, a maximum capacity of 5.6kWh is considered). This suggests that the ACS tracking signal is
relatively well-behaved in the sense that it does not typically ask for maximum positive or negative power
tracking for long periods of time.

To study the influence of the integral limit in the reference set, the tracking bid is evaluated as a
function of the duration of the tracking commitment. the preparation time is kept at 8 hours. The weather
is considered known perfectly in advance in this case to rule out other factors of uncertainty in the
computation. Beyond 66h, the computational burden becomes prohibitive. The maximum scalings for the
battery and the box uncertainty sets are reported on Figure [5] Introducing an integral limit for the tracking
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Fig. 4: Open-loop trajectories for randomly generated weather and reference

region corresponds to the tracking commitment period.

trajectories. The shaded
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Fig. 5: Flexibility versus duration of participation

commitment allows to improve the tracking bid significantly as the duration of participation time increases.
Indeed, situations of long lasting positive or negative tracking request are ruled out, thus relieving the
tracking requirements on the building, and leading to less conservative solutions.

V. CONCLUSION

In this paper, we have formulated the problem of optimal robust commitment tracking and proposed a
computationally tractable solution method. By implicit modification of uncertainty sets, the set of possible
reference trajectories that can be tracked under additive disturbance with a guaranteed error bound can
be efficiently computed over a finite prediction horizon. The presented tracking commitment framework
is representative of many practical problems encountered in the hierarchical control of complex systems,
that requires communication of tracking capability of subsystems to an upper level control layer. We have
illustrated the description capability of the framework and the solution method with a practical example
that investigates ancillary service provision to the power grid by a commercial building.

APPENDIX A
POLYTOPIC DESCRIPTION OF THE FEASIBILITY SET O

The dense form of the system equations (I]), which describes the evolution of the system for N steps,

is given by
x = Azry+ Bu + Ew

y = Cx + Du

The matrices A € RWVHDnexne B ¢ RIN+DnaxNnw | ¢ RWADnaxNne ¢ ¢ RNmyx(N+hne gnd
D € RV *Nnugre defined as

I 0 e e 0

A I, 0 :
A= | A JE = A I,

AN _A]\}_l AZ\}_2 Inz

B.=E(y®B), C:=[Ixy®C 0], D:=Iy®D
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The polytopic state, input constraints and the disturbance set can be described as

X ={¢p eR"™ :F.¢ < f.}
U:={uecR" Fu<f}
_{wE]RN”‘” F,w<f,}

The matrices used in the descriptions (3) and of the feasibility set Q are given by

PR3 5

P=CB+D, S=CE, y=CAxz

H e {_TP}, Q=[_°S Z} q:{gﬁ@}

where 0’s are matrices of zeros with proper dimensions.

APPENDIX B
PROOFS FOR THEOREMS OF SECTION [[I-B]

Notations: Given a set of indices 7, let J be the complementary of .7 in 2y n)- Denote m the cardinality
of J. As x 7 denotes the entries of x indexed by J, v s denotes the function from R" into R formed
by the outputs of v indexed by J. Given J, we also overload notations and denote v(z 7,z 7) to make
explicit the respective dependency of v on x; and x 7. Accordingly, denote v(z 7, .) the restriction of v
to {.’L‘j} x R,

Proof of Lemma [3] Consider two information structures Z; and Z,. Suppose f € F(Z;), F(Z,). Let z, 2
be such that v7,~7, = 2% 7, Choose y such that y7, = xz, and yz, = 27, (this is possible because
T1n1, = T7,ng,)- Since f € F(Zy), we have that f(x) = f(y). Similarly, f € F(Z,) implies that
f(z") = f(y). Together this gives f(z) = f(y) = f(z') for all z,2" such that x7,~7, = 27 7, Le.
f € F(Z:NZ,). Noticing that (", Z, = Z: N (", 21 Ty), it is straightforward to extend the argument above
to the intersection of finitely many information structures. 0

Proof of Lemma @ By convention, Z, = Zp ) if {ilk € I;} is empty.

Direction < : Assume g € F(Z). Consider (z, :%) such that z7; = 27 and f € F(Z) . Let us prove that
Jog(z) = fog(z'). Let us denote y = g(x) and y' = g(2'). Let us consider any k € Z;. Then according to
equation (20), we have 7, C Z; and hence x7, = % . In turn this implies yj, = yj, by definition of F(Z).
Since this holds for all £ € Z;, it holds that yz, = yI and therefore fog(x) = f(y) = f(v') = fog(a)
since f € F(T).

Direction — : Assume g ¢ F(Z). There exists an index j such that g; ¢ F(Z;). Since Z; = (iljery Li
we can use Lemma [3| to conclude that there exists ¢ such that g; ¢ F(Z;) and j € Z,. (The intersection
is non-empty since if it was then Z; = Zi1 ), which contradicts the possibility that g;(x) # g;(2’)). Then
there exist 2 and 2" such that 27, = 27 and g;(x) # g;(2'). Consider the function f defined as follows:
Vk # i, fr is identically 0. This trivially implies f; € F(Z;) no matter what Z is. Define f; as:

{fi(y) = 1if y; = g;(2')

fi(y) = 0 otherwise

Consider y,y" such that y7, = y7.. Since j € Z;, we have y; = y; and hence fi(y) = fi(y'). Therefore
fi € F(Z;) and f € F(Z). However, f;og(xz) = 0 and f;og(z’) = 1 by definition of f;. Putting everything
together, we can conclude that 2z, = 27 and f o g(x) # f o g(2'), therefore f o g ¢ F(Z). O

Proof of Lemma 3] G C F(Z): It directly follows from Lemma [4]
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F(Z) C G: Consider g € F(Z). Showing that there exists f € F(Z) such that g = fowv is
equivalent to showing that f = gov~! € F(Z) (v is a bijection). It is done by contradiction. Suppose
J ¢ F(Z). This means that for some k, f ¢ F(Zy). To lighten notation, let Z, = J. There exist y,y’
such that y7 = y/; and f(y) # fr(y'). By definition of Z, v 7 cannot depend on elements of 7, i.e.
ry =1, = vy(z) = vy(2'). Fix x € R". We divide the remainder of the proof in intermediate steps
for clarity.

Bijectivity of v 7(.,z7) : Notice that v 7(x7,.) is injective in R"~™ since v is injective. Denoting
V(zy) = vz(xs7,R"™), by continuity of v, V(zs) is an open set. By injectivity of v, if vs(z) =
vy(2') with x5 # 27, then V(x) and V(2') are disjoint. By surjectivity of v, it also holds that
Ula!, b7 (@ g27)=v 7 (@ly e nVi(z;) = R, Since R"™™ is connected, it cannot be covered by a non-
trivial union of disjoint open sets, which implies that {2';|vs(z7,27) = vs(a';,x7)} is reduced to
{z 7}, which in other words means injectivity of v ;(.,x 7).

Surjectivity of v 7(.,x 7) directly follows from the surjectivity of v. Indeed, Vy € R™ there exist 2’ such
that v (2') = y. Then v s (2, v 7) = y. Together, this proves the bijectivity of v ;(.,z7) for all z ;.

Bijectivity of v 7(z7,.) : Injectivity directly follows from the injectivity of v. For z; fixed, by
injectivity of v 7(., z7) there does not exist any other 2’; such that v ;(z s,z 7) = v 7(2';, x 7). Therefore,
surjectivity of v implies that v 7(z 7, R"™"™) = R"™™, i.e. surjectivity of v 7(x 7, .).

Contradiction : Consider x; such that v;(x7,27) = yz. Bijectivity of v;(.,,z7) ensures its
existence. In t/urn, bij/ectivity Qf v 7(x7,.) ensures that ‘there exists z 7, 2’7 such that v j/(x T, T ‘7/) =Yz
and vz (r7,2';) = y’;. Combining the _results above gives v(ry,z7) = y and {/(I’ijj‘) = 1/. Then,
gr(x) = frov(xr) = fi(y) and similarly g.(z') = fr o v(2') = fi(¢/). Finally, this shows that
gr(x) # gr(z’) which implies g ¢ F(Zy). this contradicts the assumption that g € F(Z). Finally,
this confirms that f € F(Z). O
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