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José del R. Millán
School of Engineering
EPFL STI-CNBI
ELB 138
Station 11
CH-1015 Lausanne

Email: jose.millan@epfl.ch
Phone: +41(0)21 693 5311

Acknowledgements
This study is supported by Nissan Motor Co. Ltd., and carried out under the “Research on Brain
Machine Interface for Drivers” project. We thank Mohit Kumar Goel for his help on performing some of
the experiments.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
2

Electrophysiological and neuroimaging evidence suggest

the existence of common mechanisms for monitoring

erroneous events, independent of the source of errors.

Previous works have described modulations of theta activity

in the medial frontal cortex elicited by either self-generated

errors or erroneous feedback. In turn, similar patterns have

recently been reported to appear after the observation of

external errors. We report cross-regional interactions after

observation of errors at both average and single-trial levels.

We recorded scalp electroencephalography (EEG) signals

from 15 subjects while monitoring the movement of a cursor

on a computer screen. Connectivity patterns, estimated

using multivariate auto-regressive models, show increased

error-related modulations of the information transfer in

the theta and alpha bands between frontocentral and

frontolateral areas. Conversely, a decrease of connectivity

in the beta band is also observed. These network patterns

are similar to those elicited by self-generated errors.

However, since no motor response is required, they appear

to be related to intrinsic mechanisms of error processing,

instead of being linked to co-activation of motor areas.

Noticeably, we demonstrate that cross-regional interaction

patterns can be estimated on a trial-by-trial basis. These

trial-specific patterns, consistent with the multi-trial analysis,

convey discriminant information on whether a trial was

elicited by observation of an erroneous action. Overall, our

study supports the role of frequency-specific modulations

in the medial frontal cortex in coordinating cross-regional

activity during cognitive monitoring at a single-trial basis.

Keywords: Monitoring error; EEG; brain connectivity;

anterior cingulate cortex; single-trial classification;

multivariate auto-regressive model.

I. INTRODUCTION

The monitoring of erroneous events is an essential func-

tion of the human brain for behavior adjusting and learn-

ing (Holroyd and Coles, 2002; Taylor, Stern, and Gehring,

2007). Converging evidence from electroencephalography

(EEG) and functional magnetic resonance imaging (fMRI)

studies suggests that common neural mechanisms are in-

volved in monitoring self-generated errors –when subjects

make wrong decisions in response to cues– as well as when

they observe erroneous external events or feedbacks (van

Schie et al., 2004; Cavanagh, Zambrano-Vazquez, and

Allen, 2012; Ullsperger et al., 2014). The medial frontal

cortex (MFC), and more specifically the anterior cingulate

cortex (ACC) has been suggested as the putative locus of

these mechanisms (Milner et al., 2004; de Bruijn et al.,

2009; Shane et al., 2008). Activity in this area has been

reported to be sensitive to expectation mismatch, error of

motor commission, and erroneous feedback, reflecting both

endogenous and exogenous performance-relevant informa-

tion (Cavanagh, Zambrano-Vazquez, and Allen, 2012). The

present work focuses on the monitoring of external events

and reports evidence of functional brain connectivity pat-

terns both at average and single trial levels that support the

similarity of neural process between monitoring external and

self-generated events.

The electrophysiological signature of these monitoring

processes appears as an event-related potential (ERP) over

frontocentral areas elicited by both self-generated and exter-

nal errors (Cavanagh, Zambrano-Vazquez, and Allen, 2012;

Ullsperger et al., 2014). In the former case, the ERP

shows an early negative deflection, termed as error-related

negativity (ERN), appearing no later than 120 ms after the

erroneous motor response (Gehring et al., 1993). The mon-

itoring of external events elicits a similar modulation around

250 ms after stimuli (feedback-related negativity, FRN). De-

spite the timing difference, the negativities in both condi-

tions precede a frontocentral positive deflection, followed

by a sustained positivity over parietal areas (Ullsperger

et al., 2014). Furthermore, source analysis of scalp ERP

signals suggests that the brain systems associated with the

monitoring of self-generated errors are also activated by

the process of monitoring external errors (van Schie et al.,

2004).

EEG activity after self-generated errors exhibits response-

locked theta band modulations at the ACC (Luu, Flaisch,

and Tucker, 2000; Trujillo and Allen, 2007; Cavanagh,

Zambrano-Vazquez, and Allen, 2012). This region is be-

lieved to coordinate local and distant functional brain con-

nectivity with other cortices for monitoring error events (Luu,

Flaisch, and Tucker, 2000; Ullsperger and von Cramon,

2001; Brown and Braver, 2005). In particular, there exists

strong evidence of causal influences from ACC to the lateral

prefrontal cortex (LPFC) via increased theta activity (Luks

et al., 2002; Brázdil et al., 2007; Cavanagh, Cohen, and

Allen, 2009; Brázdil et al., 2009). Further studies in goal-

directed behavior suggest that the ACC detects conflicting

or unmatched information and notifies the LPFC and other

related cortices as part of a monitoring system (Carter et

al., 2000; Luks et al., 2002; Kerns et al., 2004). Moreover,

both scalp EEG and magnetoncephalography (MEG) stud-

ies have shown increased amplitude of theta interactions

(Cavanagh, Cohen, and Allen, 2009; Brázdil et al., 2009),

as well as beta rhythm suppression after the monitoring

of erroneous responses (Cohen et al., 2008; Koelewijn et

al., 2008; Mazaheri et al., 2009). These studies provide a

consistent depiction of the connectivity patterns related to

the monitoring of self-generated errors.

Complementing these works, in this study we analyze

the brain connectivity patterns generated by the process

of monitoring external errors. Our results show frequency-

specific modulations of connectivity patterns in frontocentral

and frontolateral areas consistent with those observed after

subject-generated errors, thus supporting the role of cross-

regional activity modulations in the theta band during the

observation of external conflicts. Moreover, we show that

beta modulations also appear after the observed errors, and

are not exclusive to motor-related tasks. Last but not least,

we demonstrate that connectivity patterns can be estimated

on a single-trial basis. The resulting patterns are consistent

with the multi-trial analysis and, remarkably, carry discrimi-

nant information about whether or not a trial corresponds

to an erroneous action. Furthermore, connectivity-based

patterns are shown to convey complementary information

to temporal features.
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II. MATERIALS AND METHODS

Participants and experiment procedure

Fifteen subjects (4 females, mean age 27.13± 2.59)

participated in the experiments. All subjects had normal or

corrected-to-normal vision, and did not report any known

neurological or psychiatric disease. Subjects were asked

to monitor whether a cursor on a computer screen moved

towards a given target. This protocol has been previously

shown to elicit error-related potentials in the frame of

brain-machine interfacing (Chavarriaga and Millán, 2010;

Iturrate et al., 2014). Subjects seated in front of a computer

screen located at 50 cm from their eyes. During the

experiment 20 light red squares were shown along a

horizontal line in the center of the screen. At the beginning,

one of the squares either at the left- or the right-most

position turns red to indicate the target position (preferred

direction), and one of the other squares turns green and

becomes the moving cursor. The initial cursor position was

chosen randomly, but at least two steps away from the

target. At each trial, the cursor square moved one position

either left or right, with 80% probability of approaching

the target, and remained at its new position for 2000 ms

before moving again. A correct trial is defined when the

cursor moves towards the target, whereas trials where

it moved in the opposite direction are labeled as error

trials. The cursor and the target were relocated at random

positions when the cursor reached the target or if 10

steps were performed without reaching it. During the

experiments, subjects were requested to minimize eye

blinking and movements. Each trial corresponds to a

single cursor movement, and recordings yielded about

400 correct and 100 error trials for each subject. For

all the subjects, the target was reached 94.27 ± 33.24

(mean ± standard deviation) times on average, whereas

it was not reached in 6.60 ± 4.95 occasions. Since

the location of the target was randomized, the moving

directions of cursor (left or right) for both conditions were

balanced and uncorrelated to the trial type (i.e., correct

or error). Moreover, previous studies using this protocol

have shown that ERPs are not correlated to the target

position or to eye movements (Ferrez and Millán, 2008;

Chavarriaga and Millán, 2010).

EEG recording and pre-processing

Scalp EEG was recorded using 64 electrodes (Biosemi Ac-

tive Two, The Netherlands) with an extended 10-20 system

montage at a sampling rate of 2048 Hz. The EEG signals

were downsampled to 512 Hz. We filtered the EEG data in

the frequency band [1, 50] Hz with a 4th order non-causal

Butterworth filter. Afterwards, EEG data were epoched into

trials, corresponding to cursor movements either correct or

erroneous. Each trial lasted 2 s, from 1 s before the onset

of the action to 1 s after.

Before estimating the connectivity patterns, we computed

current source density (CSD) from the EEG signal to

reduce the effect of volume conduction (Kayser and

Tenke, 2006). This avoids spurious bi-directional brain

connectivity patterns (Kayser and Tenke, 2006). CSDs are

estimated by the second spatial derivative of the potential

between electrodes, thus giving prominence to local activity

Fig. 1. Experimental protocol. 20 squares in light red are presented in
a computer screen in front of the subject. The green square indicates
the moving cursor and the red square represents the target. The green
cursor moves to the target with 80% probability, i.e., correct trials (in the
left column). The position of the moving cursor is randomly initialized after
reaching the target (the target turned to light green) or continuing moving
for more than 10 steps. The moving cursor stops on each position for
2000 ms.

and attenuating common distal activity which is usually

considered as volume conduction (Kayser and Tenke,

2006).

Multi-trial brain connectivity
The brain connectivity patterns were computed both at the

subject level and single-trial level. At the subject level, we

explored the dynamics of the modulation with high temporal

resolution between broad brain regions using multiple trials

to increase the reliability of the estimated patterns. When

analyzing the single-trial connectivity, we also assessed the

feasibility of estimating discriminant connectivity patterns

between a subset of channels selected from the results at

the subject level.

The multi-trial connectivity between CSDs was com-

puted using the short time direct directed transfer function

(SdDTF) (Korzeniewska et al., 2008). This method is a

modification of the directed transfer function (DTF), based

on the estimation of a multivariate autoregressive model

(MVAR). Defining Xt = [x1,t, x2,t, · · · , xk,t]
T to be a vector

of EEG samples of k channels at time point t (superscript

T denotes matrix transposition), the MVAR model can be

represented as

p∑

j=0

AjXt−j = Et (1)

where Et is a vector of zero-mean white noise with size

1×k, and Aj is the k×k coefficient matrix with A0 = −I (I
is the identity matrix). Here, p is the model order, indicating

how many previous points are used to estimate the current

sample. We used the Matlab package arfit (Schneider and

Neumaier, 2001) to compute the coefficient matrices. Using

Fourier transform, we investigate the relations in the fre-

quency domain XF = HFEF , where HF = (AF )−1 and AF

is the Fourier transform of the coefficient matrix. The non-

normalized DTF is defined by the system transfer matrix

HF , where θ2ij(f) = |HF
ij (f)|

2 represents the information

transfer from channel j to i at f Hz (Kamiński and Bli-

nowska, 1991).
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We focused on estimating the connectivity patterns in

short time windows around and after the cursor movement

to identify brain modulation patterns during error process-

ing. To this purpose we applied the multi-trial analysis

assuming that the EEG signal is quasi-stationary over the

window of interest, and estimated the coefficient matrix

by averaging the covariance matrix across trials in each

condition (Kamiński et al., 2001). This contributes to pre-

serve the reliability of the parameter estimation even when

short windows are selected (i.e., having a small number of

data samples) or a large number of channels are taken in

consideration (i.e., increasing number of parameters).

Additionally, partial coherence was used to avoid indirect

cascade influences in the network, i.e., influences between

two channels mediated by a third channel. The short time

direct DTF (SdDTF) (Korzeniewska et al., 2008) is thus

defined as:

ζFij (f) =
|HF

ij (f)||χ
F
ij(f)|∑

f

∑
ij |H

F
ij (f)|

2|χF
ij(f)|

2
, (3)

where χF
ij(f) indicates the partial coherence (elements of

the inverse of spectral matrix, HFV HF∗, where V is the

covariance of the noise term EF ) and the denominator

is a normalization term across channels and frequencies.

SdDTF values range from 0 to 1. The asymmetry of the

matrix reflects the directionality of the cross-channel influ-

ences. One should also notice that the SdDTF reflects the

phase difference between channels, thus the elements of

the matrix are non-zero only when there exists a phase dif-

ference between them. In consequence, this measurement

is insensitive to volume conduction (Blinowska, 2011).

In the multi-trial analysis, we estimate connectivity pat-

terns within sliding windows of 250 ms with 90% overlap-

ping. 41 CSDs were considered for the analysis, excluding

the most peripheral electrodes, i.e., AF3, F1, F3, F5, FC5,

FC3, FC1, C1, C3, C5, CP5, CP3, CP1, P1, P3, P5,

PO3, POz, Pz, CPz, AF4, AFz, Fz, F2, F4, F6, FC6, FC4,

FC2, FCz, Cz, C2, C4, C6, CP6, CP4, CP2, P2, P4, P6

and PO4. We used the same number of trials (100) for

both correct and error conditions, as otherwise the order

of the autoregressive model of the two conditions may be

different. The 100 error/correct trials used in the analysis are

uniformly distributed across the duration of the experiments.

Before computing the MVAR model, we normalized the

data within each sliding window (subtracting the mean and

dividing the standard deviation within the window) for each

CSD before computing the SdDTF to meet the zero mean

requirement of the MVAR model (Kamiński and Blinowska,

1991). After that, data in each sliding window was also

normalized across trials for each time sample to avoid

spurious connectivity (Korzeniewska et al., 2008; Oya et al.,

2007). The order of the model was determined by Schwarz’s

Bayesian Information Criterion (BIC) and the logarithm of

Akaike’s final prediction error using arfit (Schneider and

Neumaier, 2001). Despite small variations, this resulted in

a minimal order of about 10 for most sliding windows. We

therefore fixed the model order to this value for both error

and correct conditions on all subjects, so as to keep the

same size of the coefficient matrices.

We identify brain regions that exhibit high levels of

interaction by estimating the total information inflow and

outflow at each location. The information inflow (outflow) at

one point was defined as the sum of resulted SdDTF values

from (to) all the other channels, or the total received (sent)

information amount. For a given channel i and frequency

f , we compute these values as inflow =
∑

j ζ
F
ij (f)

(outflow =
∑

j ζ
F
ji(f)). Given the prominent role of the

theta oscillations in monitoring processes (Cavanagh,

Zambrano-Vazquez, and Allen, 2012), we estimated the

inflow and outflow of theta band in the error condition to

determine the most active brain regions for the statistical

analysis. Furthermore, this information was also used to

select the subset of channels on which the single-trial

analysis is performed (see below).

Statistical analysis

In the multi-trial level, we analyzed the statistical

significance among the regions of interest, i.e., the

subsets of electrodes selected according to the results

of the inflow/outflow analysis. We computed the SdDTF

between -875 ms and 875 ms (window size of 250 ms)

from 1 Hz to 50 Hz. When reporting our results sliding

windows are referred to by the time of its center point.

The SdDTF values were divided by the average of the

pre-stimulus activity (-875 ms to -125 ms) with the purpose

of canceling out the variations across subjects. To assess

the role of different frequency ranges, we analyzed the

statistical significance in four bands following their common

definitions, i.e., theta (4-8 Hz), alpha (8-13 Hz), beta

(13-30 Hz) and gamma (30-50 Hz). Seven time windows

were specified, including the baseline activity (-875 ms to

-125 ms, whose value is 1 after normalization) and six

windows at the moment of and after stimulus presentation

(i.e., -100 to 100 ms, 0 to 200 ms, 100 to 300 ms, 200 to

400 ms, 300 to 500 ms and 400 to 600 ms), in order to

verify the temporal evolution of significant brain connectivity

modulations caused by the monitoring processes. After

obtaining the average value of SdDTF in these time-

frequency blocks (baseline/monitoring phases and four

frequency ranges), we used Wilcoxon signed rank test to

assess the significance of the null hypothesis that there

was no difference in connectivity patterns between baseline

and each monitoring time window. The type I error of these

multiple tests was corrected by permutation tests, in which

we randomly shuffled the baseline window (-875 ms to

-125 ms) and the other 6 time windows for 1000 times, and

obtained the corrected p value as the percentage of those

permutations having lower p value than the original test.

Single trial connectivity and classification

We further assessed the information conveyed by the con-

nectivity patterns by evaluating whether such information

can be used to discriminate between error and correct

conditions in single trials. In this analysis, we preprocessed

the data with a 4th order causal Butterworth filter after

downsampling to 512 Hz, as the single trial analysis will be

further implemented in a real-time framework. To estimate

connectivity on a single trial basis, we restricted the analysis

to a smaller number of channels and a longer time window
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since fewer data samples were available. In this case, the

size of the time window used was 400 ms with an overlap

of 360 ms. Four EEG electrodes located at the center of

frontolateral, frontocentral and centroparietal regions, i.e.,

F3, F4, FCz and CPz, were included in the MVAR com-

putation. These regions showed high levels of information

inflow/outflow as reported in the results section. The order of

the MVAR model was set to 5 for all subjects, satisfying the

same criteria used for the multi-trial case. We used the non-

normalized DTF (i.e., θ2ij) as features for classification with-

out considering the indirect effects due to the fact that less

electrodes were included which are less likely to produce

critical cascading indirect effects. Moreover, the computa-

tional cost is highly reduced as it is not necessary to com-

pute the inverse of the spectral matrix. As in the multi-trial

analysis, brain connectivity values were divided by the pre-

stimulus level (-800 ms to -200 ms). Then, statistically sig-

nificant differences between baseline (-800 ms to -200 ms)

and post-stimulus connectivity (200 ms to 400 ms) were

assessed using the Wilcoxon signed rank test. Notice that,

compared to the multi-trial analysis, different time periods

had to be defined for the analysis since longer time windows

were used for computing the DTF values.

Moreover, we compared the classification accuracy (error

vs. correct) based on the connectivity patterns to the use

of standard temporal features. To verify whether connec-

tivity features provide extra information with respect to the

temporal features we also assessed classification accuracy

using both types of features combined. Linear discriminant

analysis (LDA) was used to classify correct and error trials.

Three sets of features were compared: (1) Temporal fea-

tures, corresponding to the most common approach used

for classification of these type of signals for brain-computer

interfacing (Chavarriaga, Sobolewski, and Millán, 2014);

(2) Brain connectivity features (θ2ij); (3) Combination of

temporal and connectivity features. Temporal features were

extracted from the same 4 electrodes utilized in the single

trial connectivity analysis, between 200 ms and 700 ms after

the stimulus onset. This yielded a total number of 52 (13

time samples×4 channels) features. In the second case,

for each trial we extracted features between [1-30] Hz in the

same time range as above. Since this results in more than

104 features, we selected for classification the 50 highest

ranked features according to their Fisher score. This score

indicates the discrimination capability of each feature and is

defined as fs = |m1 −m2|/(s
2

1
+ s2

2
), where mk and s2k are

the mean value and the variance of class k, respectively. In

the third case, both temporal and connectivity features were

used (selected separately) and then fed into the classifier.

We report the classification performance as the area under

the specificity-sensitivity curve (AUC) computed using 10-

fold cross-validation. To verify whether the classification

performance was significantly better than chance level, we

used a permutation test, through training classifiers using

randomly shuffled labels. The procedure of generating ran-

dom classifier was repeated for 1000 times, and for each of

them we obtained its testing performance. The upper 95%

percentile of the testing performance distribution was ob-

tained and compared to the results of the original classifier.

This assesses how likely it is to obtain the classification

performance by chance alone.

III. RESULTS

Event related potentials (ERP) and spectrogram

On average, we obtained 121.33 ± 15.43 (mean ± standard

deviation) error trials and 441.33 ± 12.71 correct trials per

subject. Figure 2.A shows the grand average ERP of correct

and error trials of four electrodes (F3, F4, FCz and CPz).

For visualization, we filtered the raw EEG data between

[1-10]Hz after using common average reference across all

64 channels. Significant differences between two conditions

are shown as green areas in the figure (t-test, Bonferroni

correction).
ERPs in FCz and CPz (midline areas) show higher mod-

ulations than the other selected electrodes. A negative peak

appears at about 240 ms in the error condition (Figure 2.A,

black lines) in both FCz and CPz. After that, a positive

peak is observed at about 330 ms with a following negative

peak at about 420 ms in FCz and around 500 ms in CPz.

In the correct condition (Figure 2.A, gray lines), both FCz

and CPz include a positive peak at around 260 ms and a

negative peak around 400 ms. Significant differences can be

observed from 200 ms until 650 ms after the stimuli onset in

both FCz and CPz. In the electrodes F3 and F4 (frontolateral

sites), the most evident differences between correct and

error are found at about 420 ms. At this time a negative

deflection, lasting until about 500 ms, can be observed in the

error condition (black line) but not in the correct condition

(gray line). Significant differences could be found around

420 ms in both F3 and F4. These differences are larger at

the left frontal areas (F3).
These results are consistent with previous studies of

error monitoring with a similar protocol (Chavarriaga and

Millán, 2010; Iturrate et al., 2014), and the negative peak in

midline regions, particularly FCz, replicates negative ERP

deflections reported by other error monitoring experiments

(van Schie et al., 2004; Milner et al., 2004; Ullsperger et al.,

2014).
Figure 2.B illustrates the ERP (error - correct) of EEG

topographies during (0 ms) and after the stimuli (ERP

peaks: 240 ms, 330 ms and 490 ms). No evident difference

could be found at 0 ms. In contrast, we found a larger

negativity for the error condition in medial central regions

at 240 ms, followed by higher activity at 330 ms. Finally a

larger negativity is also observed for the error condition

in medial frontal regions at 480 ms. The spectrogram

of channels F3, F4, FCz and CPz, computed using the

short-time Fourier transform with window size 250 ms and

overlapping 98%, is shown in Figure 2.C, error - correct.

Frontal central (FCz) theta occurring around 250 ms seems

to be the most prominent pattern. It appears in other

channels (CPz, F4 and F3) as well but exhibiting a smaller

amplitude than in FCz. The theta modulations finish before

500 ms. A second modulation, although not as strong as

in the theta band, manifests in the lower beta band in

FCz and CPz at around 400 ms. Statistically significant

differences (Wilcoxon ranksum test, corrected by a 1000

random permutation test) were found in FCz, CPz and F3,

between 200 and 500 ms in the [4-10]Hz frequency range.
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Fig. 2. A. Grand average of the event-related potential (ERP). The black
lines indicate the error condition, the gray lines show the correct condition,
and green areas show the periods with significant differences between
error and correct. Origin of the time axis, 0 s, represents the onset of the
visual stimuli (i.e. cursor movement). Four EEG channels in frontolateral
(F3 and F4) and midline central (FCz and CPz) areas are illustrated.
B. Topographies of the ERP difference (error - correct) at selected time
points, -0.2 s, 0s, 0.24 s and 0.33 s. C. Differences of event related spectral
perturbation of selected channels. The gray (p < 0.05) and black (p < 0.01)
contours indicate the areas where significant differences between correct
and error conditions were found.

Information inflow and outflow
Estimation of the information inflow and outflow shows that

the error condition have stronger connectivity modulations

than the correct condition (Figure 3). In the error condition,

the frontal and frontocentral areas have the highest

increased inflow. Most electrodes (gray circles, p <
0.002) in these regions show significant differences

compared to the pre-stimulus activity, particularly in

frontocentral and frontolateral channels, as shown by the

black markers (Bonferroni correction). For the outflow

patterns, the essential brain regions are frontocentral and

centroparietal. In addition, given previous evidences that

MFC is the generator of the error-related ERP (Holroyd

and Coles, 2002; Taylor, Stern, and Gehring, 2007;

Milner et al., 2004) and the contribution of frontoparietal

interaction in the attention network (Ptak, 2012), we

therefore choose frontocentral (defined as the combination

of FC1, FCz and FC2 electrodes), frontolateral (F5, F3 and

F1; and F6, F4 and F2 for left and right ones respectively)

and centroparietal (CP1, CPz and CP2) regions for further

analyses. We averaged the brain connectivity of electrode

pairs between these regions after the computation of
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Fig. 3. Grand average of information inflow and outflow for all electrodes.
Results were referenced by dividing the mean value of the pre-stimulus
time window (-875 ms to -125 ms) and averaged for all subjects. Values
equal to 1 denote no change from pre-stimulus levels. Greater values
indicate an increase in inflow/outflow, while smaller values represents a
decrease. Gray circles indicate p < 0.002, and the black markers denote
statistical significance using Bonferroni correction.

the SdDTF, e.g. the connectivity from frontocentral to

left frontolateral is the mean value among all pairs from

electrodes FC1, FCz and FC2 to electrodes F1, F3 and F5.

Multi-trial brain connectivity patterns
Figures 4.A, C and E illustrate the dynamics of directional

brain connectivity patterns in the time-frequency domains.

The statistical tests (Wilcoxon signed rank test) between

baseline (-875 ms to -125 ms) and monitoring periods at a

subject level are shown in Figure 4.B, D and F. As can be

observed, significant differences only appeared in the error

condition, specifically in the theta band.

In lower frequencies, i.e. theta and alpha, brain connectiv-

ity increases. In error trials, significant increases (p < 0.05)

appear in the information flow from frontocentral to both left

and right frontolateral areas in the theta band, starting at

about 200 ms and ending at about 400 ms. Significant con-

nectivity pattern between frontocentral and left frontolateral

areas (Figure 4.A, 4.B, 4.C and 4.D) could also be observed.

In contrast, no significant modulation appears after correct

trials. The pattern of information flow in the opposite direc-

tion (i.e. from frontolateral to frontocentral sites) exhibits an

increase in the theta and alpha band, and is significant from

the right hemisphere (p < 0.05). In the correct condition,

the brain connectivity in both directions does not change

significantly neither in the theta nor alpha band (p > 0.05)

with respect to the baseline period. The information flow

from centroparietal to frontocentral areas shows an early in-

crease (starting at about 100 ms) in connectivity in the theta

band for the error condition, as displayed in Figures 4.E

and F. This modulation precedes those observed between

frontocentral and frontolateral regions, and may be related

to perceptual processes. An increase in connectivity from

frontocentral to centroparietal areas appears in the alpha

and theta bands as well.

In higher frequency bands, i.e. beta and gamma, we

observe a significant decrease in the information flow from

frontolateral to frontocentral areas in the error condition.

This pattern slightly precedes the increase observed in

lower frequencies. This pattern is significant in the error con-
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Fig. 4. Brain connectivity between frontocentral, frontolateral and centroparietal areas. A, C and E represent SdDTF in the time-frequency domain.
Colors in the figure represent the ratio with respect to pre-stimulus level (average between -875 s and -125 ms). Values equal to 1 represents no difference
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dition (p < 0.05) between baseline and after onset: starting

at 100 ms to 300 ms from left side in beta and gamma and

later from the right hemisphere. As before, no significant

modulations appear in the correct condition.

Information flow in the opposite direction, from

frontocentral to frontolateral areas, decreases as compared

to the baseline level for both conditions, but no significant

change could be found. The connectivity patterns between

frontocentral and centroparietal regions also decrease

in the error condition, with a significant reduction from

centroparietal to frontocentral in the gamma band

(p < 0.05). As before, the modulations in the correct

condition are much lower and show no significant difference

with respect to baseline levels.

Single trial connectivity and classification

Figure 5.A shows the estimation of the single trial modula-

tion of brain connectivity patterns between F3, F4, FCz and

CPz. The figure illustrates the grand average of all trials of

the 15 subjects in the time window 200 ms to 400 ms as well

as statistically significant values with respect to the baseline

period (-800 to -200 ms).

The connectivity values of the correct condition (gray

bars) show no significant modulation, in comparison to

the baseline period. In the error condition, the results are

consistent with the multi-trial analysis, i.e. information flows

from frontocentral to frontolateral and centroparietal sites

are enhanced in the theta band. A decrease in beta con-

nectivity in the opposite direction is also observed, which is

significant from frontolateral to frontocentral sites.

We computed the Fisher score for each connectivity

feature, which measures how well that feature separates

correct and error trials. Figure 5.B reports the averaged

Fisher score of all pairs throughout the frequency domain

for each time point. The Fisher score revealed that most

of the discriminability between error and correct trials came

from the time interval between 200 ms to 400 ms. Figure

5.C shows an equivalent analysis in the frequency domain.
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Fig. 5. Single trial analysis of brain connectivity between F3, F4, FCz and
CPz. A. The columns represent the mean value between 200 ms and 400
ms for theta and beta bands. Asterisks indicate statistical significance (p
< 0.05) between baseline (-800 ms to -200 ms) and after onset (200 ms to
400 ms). B. Discrimination power (Averaged Fisher score ± standard error)
of brain connectivity features in temporal domain. C. Discrimination power
of brain connectivity features (Averaged Fisher score ± standard error) in
frequency domain. D and E: Spatial directionality of discrimination power in
low (4-15 Hz) and high (25-30 Hz) frequency bands. The width of the arrows
represents the normalized Fisher score. F. Classification performances of
three feature sets: connectivity, temporal and the combination of them. The
bars represent AUC for each subject, and the black lines indicate the 95%
confidence chance of output from random classifiers. Asterisk indicates
that, across all subjects, the combination of features yields a significant
improvement (p < 0.05, see text for details).

Low frequency bands (4-15 Hz, mainly theta and alpha)

are the most dominant rhythms, with a smaller peak in

beta (around 25 Hz). Discrimination power associated to

spatial directionality (averaged in time window 0 s-0.7 s) are

illustrated in Figures 5.D and 5.E for 4-15 Hz and 25-30 Hz,

corresponding to the two peaks in Figure 5.C. The width

of the arrows represents the normalized Fisher score. The

information flows in the theta band from FCz to F3, F4 and

CPz are much stronger than others, while a larger decrease

is seen in the beta flows from F3, F4 and CPz to FCz. These

results are consistent with the patterns obtained in the multi-

trial analysis.

Figure 5.F shows the classification performance (AUC)

for the three types of features used: connectivity, temporal

and combined features. Besides the AUC for each subject

it also shows the mean AUC across all subjects. Chance

level estimated using a permutation test (95% confidence

interval) is indicated by the black line in the bar. In all

subjects the three types of features yielded classification

performance significantly higher than chance level (paired

Wilcoxon signed rank test p<0.05). The performance using

connectivity-based features (AUC = 0.7682) was lower

than for temporal features (AUC = 0.8502). However, the

combination of the two features resulted in significantly

higher performance (AUC = 0.8709) than using temporal

features alone (paired Wilcoxon signed rank test, p<0.05).

Overall, 14 out of 15 subjects had higher AUC with

combined features. These results suggest that not only

it is feasible to extract discriminant information from the

connectivity patterns in single trials, but also that this

information is complementary to the customary temporal

features.

Methodological Considerations

The brain activity at source level is particularly interest-

ing. For this, inverse solution methods are usually used

to estimate the source activity prior to the connectivity

analysis (Schoffelen and Gross, 2009; Hipp, Engel, and

Siegel, 2011). As a methodological check, we include it

in this study. Among the existent inverse solution methods,

beamforming is one of the most frequently used methods.

This method maps the EEG signals into electric activities

within specific regions of interest (ROI) by maximizing the

variance ratio inside and outside the ROI (Grosse-Wentrup

et al., 2009). We replicated the previous analysis using

this technique. The processing followed the computational

steps in (Grosse-Wentrup et al., 2009), and we used the

generic MNI-based leadfield matrix for all subjects. ROIs

were selected as the 10 closest voxels (within 1.5 cm radius

sphere from the closet point in the cortex under the surface

electrode) to each of the 41 EEG electrodes. Particularly,

the beamformer was derived for each subject using 100

trials (-1 s to 1 s) in both conditions together. Figure 6.A

shows the averaged source topographies (error - correct)

at the ERP peaks, 240 ms and 330 ms. Consistent patterns

with the EEG topographies were found (Figure 2.B), i.e.

negativity at 240 ms and positivity at 330 ms in medial

central areas. The spectrogram (error - correct) of the four

selected ROIs, under F3, F4, FCz and CPz, are illustrated

in Figure 6.B, showing higher theta modulation in the error

condition from about 200 ms after stimulus onset. We also

estimated single-trial connectivity patterns between the four

selected ROIs, i.e. left and right frontolateral, medial frontal

and centroparietal regions, using DTF. This yielded similar

brain connectivity patterns (measured by the Fisher scores,

Figure 6.C), particularly in the theta band. The colors of

the head model indicate the differences (error - correct)

of the band power, theta (left) and beta (right) in all 41

ROIs, showing higher theta and lower beta power in the

error condition.
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Fig. 6. A. The difference (error - correct) of topographies in source level
at 240 ms and 330 ms after visual stimuli, using beamforming of 41 ROIs
under 41 central EEG electrodes. The values are thresholded at -0.2µV
for the negative peak and 0.4µV for the positive peak. B. Time-frequency
spectrogram (error - correct) of four brain sources under electrodes F3, F4,
FCz and CPz. C. Fisher score of brain connectivity patterns between four
selected brain sources, in two frequency bands, 4-15 Hz and 20-30 Hz. The
values of the Fisher score are represented by the color and the thickness
of the arrows. Power spectrum density (error - correct) of the brain sources
at 240 ms is indicated by the color.

IV. DISCUSSION

The results of the current work show that specific modu-

lations of directional brain connectivity patterns are elicited

when subjects are monitoring external erroneous events. In

particular, there is an increase of information transfer at the

theta band between frontal and parietal regions and from

frontocentral to frontolateral areas; as well as a suppression

of brain interactions from frontolateral and centroparietal

to frontocentral areas at the beta band. Previous studies

using intracranial and surface EEG, as well as hemody-

namics neuroimaging techniques have pointed out that the

information transfer patterns between the frontolateral and

frontocentral regions are associated with the monitoring of

self-generated errors (Cavanagh, Cohen, and Allen, 2009;

Brázdil et al., 2009; Debener et al., 2005). In addition, there

are consistent reports of MFC activation due to erroneous

information both from internal and external sources (Holroyd

et al., 2004; Cavanagh, Zambrano-Vazquez, and Allen,

2012). We report patterns similar to those obtained for moni-

toring self-generated errors, further supporting the existence

of a common mechanism of monitoring processes in the

brain, irrespective of the modality of the error.
Theta dynamics in the MFC relates to focused atten-

tion, working memory and action control (Klimesch, 1999;

Klimesch et al., 2001; Sauseng et al., 2004; Gevins and

Smith, 2000; Buzsáki and Draguhn, 2004), particularly error

monitoring and feedback processing in both human (Tru-

jillo and Allen, 2007; Cavanagh, Cohen, and Allen, 2009;

Cohen et al., 2008; Wang et al., 2005) and primates (Tsu-

jimoto et al., 2010; Womelsdorf et al., 2010; Kuwabara et

al., 2014), and organize cross-regional brain interactions for

cognitive control processes (Cohen and Cavanagh, 2011;

Cohen et al., 2009). Further studies report the MFC theta as

a common temporal neural pattern during endogenous and

exogenous monitoring processes (Cavanagh, Zambrano-

Vazquez, and Allen, 2012; Ullsperger et al., 2014). We

report increased theta connectivity patterns during error

monitoring. In particular, the directional information transfers

from frontocentral to frontolateral regions possibly reflect

the communication from MFC to lateral regions as further

cognitive reaction after the error detection in MFC, con-

sistent with the patterns elicited by self-generated errors

as measured by electrophysiological (Luks et al., 2002;

Brázdil et al., 2007; Cavanagh, Cohen, and Allen, 2009;

Brázdil et al., 2009), and fMRI (Debener et al., 2005;

Agam et al., 2011) techniques. This highlights the role of

theta dynamics in frontal areas as a common cognitive

mechanism between different performance monitoring pro-

cesses, i.e., external erroneous events and self-generated

errors (Cavanagh, Zambrano-Vazquez, and Allen, 2012).

Interestingly, we found stronger information flow from

frontocentral to left frontolateral than from frontocentral to

right regions, illustrated in Figure 4. The lateralization phe-

nomenon is also observable in ERP amplitudes, where the

F3 has lower negative peak than F4, as shown in Figure 2.

A. Larger inter-channel theta synchrony between left frontal

hemisphere and frontocentral sites – with respect to right

frontolateral sites – have been previously reported in action

monitoring tasks, c.f., Figure 3 in (Cavanagh, Cohen, and

Allen, 2009). It has been suggested that the left dorsal

prefrontal cortex is more related to participant’s expectation

regarding the nature of the upcoming trial, whereas the

right dorsal prefrontal cortex is associated with the online

macro-adjustments in a conflict-driven context (Vanderhas-

selt, Raedt, and Baeken, 2009). It might be possible that

the pattern of lower interactions with right frontocentral

areas is caused by the fact that the monitoring process

in our experiments does not require any further behavioral

adjustments. However, it is yet to be elucidated the exact

mechanisms that govern this lateralization pattern.

We also observed significant information flows between

centroparietal and frontocentral areas starting as early as

100 ms. This pattern appears before the activation of the

network in frontal regions (i.e., between frontocentral and

frontolateral), and may be linked to perception processes.

Since the cursor moving directions are balanced in both

error and correct conditions, this pattern is not correlated

with specific moving directions. An interpretation of this

frontoparietal interaction is that the sensory representation

towards visual perception in the parietal cortex has already

been biased by the contents in the working memory, modu-

lating the information flow after stimulus onset, and reported

as an integration between bottom-up perception and top-
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down control process (Ptak, 2012). However, modulations

of connectivity patterns between frontal and parietal regions

have not been reported in the studies of monitoring self-

generated errors. A previous study was unable to find a

significant modulation of phase synchrony between FCz

and parietal regions (Cavanagh, Cohen, and Allen, 2009).

However, in these studies the EEG data is time-locked to the

behavioral responses, and stimulus-locked parietal patterns

– more related to sensory processes – may be washed out

after trial averaging given the variability of the reaction time.

Besides modulations in the theta band, we also ob-

served decreased connectivity patterns in the beta and

gamma bands. The beta band activity is associated with

the maintenance of the current sensorimotor or cognitive

state (Engel and Fries, 2010). Decreased beta power and

beta synchronization are usually related with the changes

of cognitive conditions (Pfurtscheller et al., 2005; Jurkiewicz

et al., 2006). Also, beta modulation is expressed more

strongly if the maintenance of the status quo is intended or

predicted than after novel or erroneous events (Engel, Fries,

and Singer, 2001; Engel and Fries, 2010). Accordingly,

greater beta power in frontocentral areas has been reported

after correct feedback in reinforcement learning tasks (Ca-

vanagh, Zambrano-Vazquez, and Allen, 2012). This effect

has been attributed to increased coactivation of MFC and

motor cortices during feedback processing (Cohen and

Ranganath, 2007). In turn, other studies reported stronger

beta depression and rebound in MEG signals after error

trials in a monitoring task (Koelewijn et al., 2008). Together

with our results, this shows that the beta modulations are

also sensitive to the errors in absence of motor responses.

Rather than reflecting low-level automatic motor resonance,

the beta desynchronization corresponds to the discontinua-

tion of the current cognitive states as a high level role, not

restricted to motor related intentions (Koelewijn et al., 2008;

van Schie et al., 2004). This study supports this theory,

since no specific movement reaction is required in the task

but the continuation of the cognitive state maintenance is no

longer sustained after the perception of erroneous events.

Currently, there is an increased interest in the possibility of

performing single-trial, spatio-temporal analysis of the neu-

ral correlates of monitoring processes (Debener et al., 2005;

Cavanagh, Cohen, and Allen, 2009; Heike et al., 2010; Co-

hen and Cavanagh, 2011; Cavanagh, Zambrano-Vazquez,

and Allen, 2012). This allows to elucidate phenomena

that are hardly observable using averaging-based methods.

Here we show that cross-regional interaction patterns can

be estimated at the single-trial level. These patterns are

obtained with a regression model, and thus are not linearly

dependent with original EEG channels, possibly providing

discriminant information for decoding whether a trial cor-

responds to monitoring the correct or erroneous condition.

Notably, significant differences and discrimination capability

(Fisher score) in the single trial modulations further verified

that the obtained brain interaction patterns during error cog-

nition are coincident with the modulation patterns obtained

at the subject level. The estimation of connectivity patterns

in a single-trial basis shows that the network dynamics

do convey information about the brain modulations of the

monitoring process. Importantly, this information is comple-

mentary to the one provided by standard ERP analysis for

the use of recognizing error trials, both in the temporal and

spectral domain.

Recent studies of EEG-based brain-machine interface

show that the classification performance of motor imagery

tasks using brain connectivity features, either DTF (Billinger,

Brunner, and Müller-Putz, 2013) or instantaneous phase

difference (Hamner et al., 2011), is comparable to the

use of customary band power features. Connectivity-based

features have also been used for continuous decoding of

arm trajectories from electrocorticography signals show-

ing increased estimation accuracy with respect to spec-

tral features (Benz et al., 2012). However, most of these

classification or regression models are mainly data driven,

extracting features through optimization algorithms, without

providing an explicit interpretation about the selected fea-

tures. The current work provides evidence that discriminant

connectivity-based features not only allow pattern recog-

nition, but are also consistent with the current knowledge

about the dynamics of the brain network involved in mon-

itoring processes. Nevertheless, practical applications may

consider using the connectivity patterns estimated in the

temporal domain (or in narrow-band filtered data). This

avoids computing frequency specific components and will

reduce the dimensionality of the problem. Further work

may be required to assess how much improvement can be

expected from this approach.

It should be noticed that the order of the MVAR model

is determined by the data using the BIC criterion. In this

study, another hard limit comes from the amount of data,

K(p + 1)/Nsnt < 0.1 (K is the channel number, p is the

MVAR order, Ns is the sample number in the time window

and nt is the number of trials) (Korzeniewska et al., 2008),

which constrains the order to be smaller than 5.4 in the

single-trial analysis. For classification, it is necessary to

keep the same order for all the trials, since different MVAR

orders may cause a different resolution in the frequency

domain, thus resulting in a more arbitrary distribution in the

feature space. In addition, the data amount in the analysis

window was selected as a trade-off between the sensitivity

and the dimensionality of the features, i.e., a larger time

window uses higher MVAR order thus more detail in the

frequency domain can be obtained, but at the same time

leads to a lower resolution (less features) in the temporal

domain. Further work should explore alternative algorithms

to overcome this limitation, for instance, adaptive DTF based

on adaptive estimation of autoregressive parameters (Wilke,

Ding, and He, 2008).

To summarize, modulations of brain connectivity patterns

appear in both low and high frequency bands in the process

of monitoring external events through the recording of scalp

EEG. In particular, strong theta modulations are obtained

both at average and single-trial levels. These results, con-

sistent with modulations elicited after the monitoring of self-

generated errors, support the parsimonious role of theta

activity in MFC in coordinating cross-regional activity dur-

ing various monitoring processes. Importantly, since our

protocol does not involve motor response, these network

patterns appear to be related to intrinsic mechanisms of the

function of error cognition in human brain, instead of being
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exclusively linked to co-activation with motor areas. Further-

more, the temporal evolution of the EEG connectivity mod-

ulations – i.e., activation of frontoparietal network precedes

increased frontolateral interactions – suggests a possibly

hierarchical organization of the monitoring cognition: Early

frontoparietal interaction may reflect modulation of neural

activities by bottom-up sensory inputs, whereas frequency-

specific interactions between frontocentral and frontolateral

areas reflect the perturbation of cognitive states in the

working memory and the preparation for a potential top-

down adjustment. Future work will be devoted to investigate

the causal dependences between these two modulation pat-

terns, as well as trial-by-trial changes in different response

and feedback tasks.
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Agam, Yigal, Matti S Hämäläinen, Adrian K C Lee, Kara A Dyck-
man, Jesse S Friedman, Marlisa Isom, Nikos Makris, and Dara S
Manoach (2011). Multimodal neuroimaging dissociates hemodynamic
and electrophysiological correlates of error processing. Proc Natl Acad
Sci 108(42): 17556–17561.

Benz, Heather L, Huaijian Zhang, Anastasios Bezerianos, Soumyadipta
Acharya, Nathan E Crone, Xioaxiang Zheng, and Nitish V Thakor (2012).
Connectivity analysis as a novel approach to motor decoding for prosthe-
sis control. IEEE Trans Neural Syst Rehabil Eng 20(2): 143–152.

Billinger, Martin, Clemens Brunner, and Gernot Müller-Putz (2013).
Single-trial connectivity estimation for classification of motor imagery
data. J Neural Eng 10(4): 046006.

Blinowska, Katarzyna J (2011). Review of the methods of determination
of directed connectivity from multichannel data. Med Biol Eng Com-
put 49(5): 521–529.

Brázdil, Milan, Claudio Babiloni, Robert Roman, Pavel Daniel, Martin
Bares, Ivan Rektor, Fabrizio Eusebi, Paolo Maria Rossini, and Fabrizio
Vecchio (2009). Directional functional coupling of cerebral rhythms
between anterior cingulate and dorsolateral prefrontal areas during rare
stimuli: a directed transfer function analysis of human depth EEG signal.
Hum Brain Mapp 30(1): 138–146.

Brázdil, Milan, Michal Mikl, Radek Mareucek, Petr Krupa, and Ivan Rektor
(2007). Effective connectivity in target stimulus processing: A dynamic
causal modeling study of visual oddball task. Neuroimage 35: 827–835.

Brown, Joshua W and Todd S Braver (2005). Learned predictions of error
likelihood in the anterior cingulate cortex. Science 307(5712): 1118–1121.
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Highlights 

• Analysis of error-related brain connectivity patterns in multiple and single-trial 

• Increased θ and decreased β connectivity in fronto-parietal during error monitoring 

• Prove frontal theta as a common mechanism for different monitoring cognitions. 

• Cross-regional interaction patterns convey information at single-trial levels 


