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Abstract

Considering the uncertainty of economic conditions, multi-objective optimi-

sation can be favoured to single-objective optimisation for process design.

However, from the Pareto sets generated by multi-objective optimisation it

is not obvious to identify the best one, given that each solution is optimal

with regard to the selected objectives. A method taking into account the

economic parameters uncertainty to support decision making based on the

Pareto-optimal solutions is proposed. It uses a Monte-Carlo simulation to

define the probability of each of the Pareto optimal configuration to be in the

list of the best configurations from the economical point of view. For a given

economic context defined the most probable best configurations are identified.

The proposed method is applied to two cases: the CO2 capture in power plants

and synthetic natural gas production from biomass resources. The results al-

low to identify the most attractive system designs and give recommendations

for the process engineers.
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Nomenclature

Abbreviations

ATR Autothermal Reforming

BM Biomass

CC Carbon Capture

CCS Carbon Capture and Storage

CFB Circulating Fluidised Bed

CFBO2 Circulating Fluidised Bed directly heated with O2

CGCL Cold Gas Cleaning

CPI Current Policy Initiatives

DH District Heating

ETS Emission Trading System

FICFB Fast Internally Circulating Fluidised Bed

pFICFB Pressurised Fast Internally Circulating Fluidised Bed

GWP Global Warming Potential

HGCL Hot Gas Cleaning

IPCC International Panel on Climate Change

LCA Life Cycle Assessment

MEA Monoethanolamine

NG Natural Gas

NGCC Natural Gas Combined Cycle

PSA Pressure Swing Adsorption

SNG Synthetic Natural Gas
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WGS Water Gas Shift

Greek letters

�ho Lower heating value, kJ/kg

✏ Energy e�ciency, %

Roman letters

COE Electricity production cost, $/GJe

Ė Mechanical/electrical power, kWe

ṁ Mass flowrate, kg/s

ṅ Molar flowrate, kmol/s

Q̇ Heat Flow, kW

1. Introduction

To meet the CO2 reduction targets and to ensure a reliable energy supply,

the development and wide scale deployment of cost-competitive innovative

low-carbon energy technologies is necessary. Carbon capture and storage

(CCS) in power plants and the use of renewable resources for the poly-

generation of biofuels, heat and power are considered as promising measures.

The thermodynamic performance of di↵erent process designs depends on the

process configuration (i.e. technological options and operating conditions)

while the market competitiveness depends in addition on the economic con-

ditions, especially on the resource price. Therefore, it is important to evaluate

and optimise the process designs with regard to multiple competing objec-

tives such as e�ciency, investment cost and environmental impacts. Since

there is a trade-o↵ between the objectives and that the economic performance

is highly influenced by the market conditions, it is di�cult to identify the
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best process design from multi-objective optimisation results by taking into

account the economic parameters uncertainty.

The influence of the economic conditions is frequently investigated in lit-

erature based on extreme scenarios, as in [1] for the European market and

in [2] for the global market, or on sensitivity analysis. A method to support

decision making based on multi-criteria decision analysis taking into account

uncertainties is developed by [3]. In [4] a method for decision support in

chemical process design based on the navigation on Pareto sets is proposed.

The innovative slider concept [5] used to navigate on the Pareto frontiers

supports decision making by choosing the best compromise between conflict-

ing objectives. This method does not account for parameters uncertainties.

Multiple decision making methods have been developed for management ac-

tivities. However, the applications for process system designs are limited. To

assist the multi-objective decision analysis an incentive model for primary en-

ergy savings and carbon dioxide emission reduction is presented in [6] to eval-

uate the Pareto operation decisions derived from a stochastic model including

uncertainties. In [7] decision making and robustness strategies are combined

with multi-objective optimization to optimize polymer extrusion processes.

So far systematic approaches taking into account the economic condi-

tions fluctuation for the decision making based on the optimisation results

are rarely applied and process integration aspects and life cycle assessment

are not systematically assessed. Based on the systematic optimisation ap-

proach previously presented [8] and [9], a method, taking into account the

economic parameter sensitivity, to support decision making based on the

Pareto-optimal solutions is proposed here. The influence of the economic
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scenario on the decision-making is studied by taking into account the sen-

sitivity of the economic performance to the carbon tax, the resource prices,

the operating time, the investment and the interest rate.

1.1. Uncertain market conditions

The analysis of the fossil fuel market over the last years, reveals diverse

patterns over time and with regard to the geographic location (i.e. Europe,

the United States and Japan). This is revealed by the the energy statistics

[10] and the oil and gas market data reported by the IEA [11], as well as the

publications of the European Comission reporting trends [12], raw data [13]

and future scenarios [14]. The large fluctuations result from multiple factors

a↵ecting the trading. In the past, the natural gas price evolution went in pair

with the oil price. However, with the exploitation of shale gas this pattern

changes. The coal price which is less a↵ected by the oil price and is predicted

to stabilise around 5$/GJcoal in 2030 [14]. Consequently, the gas to coal price

ratio is projected to increase steadily and will together with the carbon price

influence investment decisions in the power sector. European gas prices are

about twice as high as US gas prices and are projected to be 10$/GJNG in

2020, 12$/GJNG in 2030 and 16$/GJNG in 2050 for the EU ’Reference’ energy

scenario [14]. In a similar way, the carbon tax price is influenced by multiple

factors. The emission trading system (ETS) directive has been established

in the European Union to promote greenhouse gas emissions reductions in

a cost e↵ective and economically e�cient manner [15]. The carbon price

drop from around 25e/tCO2 in 2008 to below 10e/tCO2 in the second half

of 2011 because of the surplus of allowances and international credits and

the financial crisis. According to the predictions from the Energy Roadmap
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2050 [14], carbon tax prices will rise moderately until 2030 and then signif-

icantly to provide support to low carbon technologies and energy e�ciency.

For the current policy initiatives (CPI) scenario, taking into account the lat-

est policies on energy e�ciency, taxation and infrastructure, the carbon tax

is predicted to increase to 15e/tCO2 in 2020, to 32e/tCO2 in 2030 and to

51e/tCO2 in 2050. Comparing the costs projections for di↵erent energy and

policy scenarios a large variation of the predictions is found. This highlights

the large uncertainty of costs projections and the need to account for di↵er-

ent economic scenarios when evaluating the competitiveness of processes to

support investment decisions.

2. Methodology

The applied thermo-environomic modelling and optimisation approach

illustrated in Figure 1 combines flowsheeting and energy integration tech-

niques with economic evaluation and life cycle assessment (LCA) [8] in a

multi-objective optimisation framework previously presented in [16] and [9].

The main steps are summarized as following:

1. Establishment of the process superstructure and development of the pro-

cess models.

2. Computation of the energy integration.

3. Assessment of the performance indicators.

4. Multi-objective optimisation.

5. Decision making.

After the assessment of candidate process technologies in a superstruc-

ture, energy-flow models are established with conventional flowsheeting soft-
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ware computing the chemical and physical transformations and the associ-

ated heat transfer requirements of each process option. The heat recovery and

the combined heat and power production is optimised in the energy integra-

tion model by using the heat cascade constraints and a linear programming

model minimising the operating cost [17]. The process needs are satisfied

by di↵erent utilities including waste and process gas combustion, Rankine

cycle, gas turbine and cogeneration. To evaluate the economic performance,

the equipments are first sized and the costs are then evaluated by applying

the approach and correlations reported in [18] and [19]. A multi-objective

optimisation based on an evolutionary algorithm [20] is finally performed to

assess the trade-o↵s between competing objectives and identify optimal pro-

cess designs and operating conditions. Evolutionary algorithms working with

populations instead of a single data point, generate multiple promising solu-

tions in the form of a Pareto-optimal frontier. The Pareto-optimal solutions

correspond to the configurations for which it is not possible to improve one

objective without simultaneously downgrading one of the other objectives. It

is a priori not obvious which configuration has to be chosen from the Pareto

results.

Therefore, the aim is here to propose an approach which allows to identify

the optimal process design from the Pareto-optimal solutions taking into

account the economic conditions sensitivity.

2.1. Decision support approach

In this approach (Figure 1), the economic conditions fluctuation is first

described by probability distribution functions (Section 2.1.1). By applying

the distribution functions a series of 1000 economic scenarios is randomly
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Figure 1: Thermo-environomic optimisation strategy to support decision-making.

generated. For every single economic scenario and for each configuration

(i.e. process design) of the Pareto frontiers resulting from the multi-objective

optimisation, the decision criterion/criteria is/are then recomputed. From

the Pareto-optimal solutions the designs that yield the best performance

(best, top 5 and top 10) with regard to the decision criteria are then identified

for each economic scenario. After having identified the most economically

competitive designs in the wide range of economic scenarios, it can be found

out if some configurations are dominating or if some are never part of the best

performing ones. To evaluate this quantitatively, the probability to be part of

the best performing designs is assessed for each point of the Pareto front. The

di↵erent process designs can then be ranked based on this probability. This

allows finally to identify the most economically competitive process design

in a wide range of economic scenarios.

The following steps summarise the decision support approach that allows

to rank the di↵erent process designs and to identify the best process design
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taking into account the economic parameters sensitivity.

1. Generation of the Pareto frontiers by multi-objective optimisation. When

several technology options can be considered, one Pareto frontier is gen-

erated per process option.

2. Definition of probability distribution functions for each uncertain eco-

nomic parameter (i.e. resource price, carbon tax, interest rate,...).

3. Generation of a set of 1000 di↵erent economic scenarios based on the

probability distribution functions.

4. For each economic scenario:

• Recalculation of the decision criteria (i.e. lowest production costs,

highest profit, ...) for each Pareto optimal solution.

• Ranking of the process designs with regard to the decision crite-

rion.

• Identification of the best and top 5 process designs.

5. Repeat step 3 for each economic scenario.

6. Assessment of the probability to perform the best. For each Pareto

optimal solution the probability to be the best and the probability to

be part of the 5 best process configurations are calculated. The best

performance is evaluated based on one or several decision criteria/on,

being a chosen performance indicator (i.e operating cost, profitability,

...).

7. Identification of the overall best, most robust process design.
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2.1.1. Distribution functions - Uncertain parameters

The economic conditions fluctuation is described by probability distribu-

tion functions. Characteristic distribution functions that are applied here

are the normal, uniform and beta distributions. Di↵erent approaches are

discussed in [21]. The normal or Gaussian distribution is a continuous prob-

ability distribution that has a bell-shape probability density function given

by Eq.1. The parameter µ is the mean and �2 is the variance and � the

standard deviation. The continuous uniform distribution is characterised by

the lower a and upper b endpoint defining the distribution support. Each

point in this interval is equally probable. The probability density function

for x2 [a, b] is given by Eq.2. The beta distribution is a continuous proba-

bility distribution that is defined in the interval [0,1] and is parameterised

by two positive shape parameters a and b. This distribution characterised

by the probability density function Eq.3 is frequently applied to model the

behaviour of random variables limited to a finite interval.

f(x;µ, �2) =
1

�
p
2⇧

e�
1
2(

x�µ

�

)
2

(1)

f(x) =
1

a� b
(2)

f(x; a, b) = c · xa�1 · (1� x)b�1 (3)

Based on available literature data about economic scenarios projections

from IEA and the European Comission [10, 11, 14, 12, 13, 1], the lower and

upper boundary values are defined for each economic parameter. The appro-

priate distribution function is then selected and the characteristic parameters

are identified in such a way that boundary values are part of the distribution.
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The distributions for the natural gas price and the carbon tax are represented

in Figure 2 and the parameters of the probability density functions are re-

ported in Table 1. The variation of the natural gas price is represented by a

normal distribution. The carbon tax price which is assumed to increase most

probably in the future is described by a beta distribution function.

Table 1: Definition of the parameters of the distribution functions for the natural gas price
and carbon tax. The boundary values are based on [10, 11, 14, 12, 13, 1]

Scenario Distribution functions parameters
Base Low High Distribution Param. A Param. B Param. C

Natural gas price [$/GJNG] 9.7 5.5 14.2 Normal µ=9.7 �=2.5 -
Carbon tax [$/tCO2] 35 20 55 Beta a=2 b=1.5 c=100

3. Applications

The previously described methodology is applied to identify under un-

certain market conditions the best process designs from the multi-objective

optimisation results of two di↵erent systems: a) CO2 capture in power plants

and b) Synthethic natural gas (SNG), heat and power poly-generation from

lignocellulosic biomass.

3.1. CO2 capture in power plants

For CO2 capture in power plants three major concepts are suitable: post-,

pre- and oxyfuel-combustion. The thermo-economic competitiveness of these

CO2 capture options depends on the power plant layout, the resources type,

the capture technology and the economic conditions. The penalty of CO2

capture in terms of e�ciency and costs has been evaluated by the European
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Figure 2: Distribution function (in red) of the natural gas price (top) and of the carbon
tax (bottom). The white dots correspond the values reported in Table 1. The black bars
represent the random sample of 1000 values.

Technology Platform [1], the International Panel on Climate Change [22] and

the International Energy Agency [2]. Diverse layouts have been compared by

[23] and [24]. Di↵erent process configurations based on fossil and renewable

resources have been evaluated based on process modelling and simulation in

[25–27] and [28] without including detailed process integration and economic

considerations. An extensive life cycle assessment (LCA) of CO2 capture

options is performed in [29], while economic and environmental aspects are

combined in [30]. Nevertheless, none of these studies combines extensive flow-
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sheeting with thermodynamic, economic and environmental considerations

simultaneously to make a comprehensive comparison of CO2 capture options

in power plants applications. All these studies reveal that the competitive-

ness of CO2 capture processes on the future energy market is determined by

the economic conditions, especially the resource price and the introduction

of a carbon tax. The influence of the economic conditions is frequently inves-

tigated based on extreme scenarios or sensitivity analysis [1, 31], however no

systematic approach taking into account the economic conditions fluctuation

for the decision making based on the optimisation results is applied.

The decision support approach is applied here to identify the best CO2

capture process design under uncertain market conditions.

3.1.1. CO2 capture process description

Three representative CO2 capture options, illustrated in Figure 3, are

investigated: 1) Post-combustion CO2 capture by chemical absorption with

monoethanolamine (MEA) applied to a natural gas combined cycle (NGCC)

plant (582 MWth,NG). This option, abbreviated hereafter as NG post-, is

the same as the one described in [32]. 2) Pre-combustion CO2 capture by

physical absorption with Selexol in a natural gas fueled power plant (725

MWth,NG) based on autothermal reforming. This option, referred to hereafter

as NG pre-,has been described and analysed previously in [33] and [34] for

H2 production applications. 3) Pre-combustion CO2 capture by physical

absorption with Selexol in a biomass fired power plant (380 MWth,BM) based

on fast internally circulating fluidised bed gasification. The biomass resource

is wood characterised by a weight composition of 51.09%C, 5.75%H, 42.97%O

and 0.19% N, and a humidity of 50%wt. This option, labeled hereafter as
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BM pre-, has been described and analysed previously in [35]. For all the

cases CO2 compression to 110 bar for subsequent transport and storage is

included to evaluate the thermo-environomic performance. The key operating

parameters of the investigated pre- and post-combustion processes are reported

in Tables 2 and 3.

Power Plant

air

E

Natural

CO2 capture

CO2

N2

H2O

O2

gas

a) Post-combustion

Chemical
Absorption

(MEA)

.

Gasication
ATR
WGS

CO2 capture Power Plant
Syngas

Generation

CO2

Biomass

Natural gas air

N2
H2O

E

b) Pre-combustion

Physical 
Absorption
(Selexol)

.

Figure 3: Investigated CO2 capture processes for electricity production.

A multi-objective optimisation is performed with the objective of max-

imising the energy e�ciency (Eq.4) and the CO2 capture rate (Eq.5) with

regard to the process operating parameters (i.e. reforming, gasification and

water gas shift temperature and pressure, steam to carbon ratio, capture unit

design, absorption and desorption operating conditions, cogeneration system

configuration,... (Tables 2 and 3).

The energy e�ciency ✏tot is defined by the ratio between the net electricity

output (�E� = Ė� � Ė+) and the resources energy input, expressed on the

basis of the lower heating value (�h0), according to Eq.4.

✏tot =
�E�

�h0
NG,in · ṁNG,in

(4)
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Table 2: Decision variables for the post-combustion CO2 capture process using chemical
absorption process with monoethanolamine.

Operating parameter Range
FGR [-] [0-0.56]
Lean solvent CO2 loading [kmol/kmol] [0.18-0.25]
Rich solvent CO2 loading [kmol/kmol] [0.4-0.5]
Rich solvent pre-heat T [oC] [95-105]
Rich solvent re-heat T [oC] [115-125]
LP stripper pressure [bar] [1.7-2.1]
HP / LP pressure ratio [-] [1-1.5]
MEA % in solvent [-] [0.3-0.35]
Absorber steam out [kgH2O/tFG] [306-309.5]
Split fraction [-] [0-0.7]
Nb stages absorber [10-17]
Nb stages HP stripper [8-15]
Nb stages LP stripper [6-10]
Absorber diameter [m] [6-12]
HP stripper diameter [m] [3-6]
LP stripper diameter [m] [2-5]

⌘CO2 =
ṅC

captured

ṅC
in

· 100 (5)

To evaluate the economic performance the electricity production costs,

including the annual capital investment and the operation and maintenance

costs, are computed.The capital investment of each equipment assessed based

on cost correlations reported in [18] and [19] is update to year 2014 with

the Marshall and Swift cost index accounting for inflation. The total cap-

ital investment is annualised taking into account the interest rate and the

plant lifetime. The maintenance costs are assumed to be 5% of the initial

annual investment. The operating costs mainly consist of the purchase of the

resources, which are here the natural gas and biomass feedstock.

The competitiveness of the CO2 capture options is compared with a con-

ventional NGCC plant (559MWth,NG) without CO2 capture characterized

by an e�ciency of 58.7%, specific CO2 emissions of 105kgCO2/GJe, COE of
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Table 3: Decision variables for the pre-combustion CO2 capture (physical absorption with
Selexol solvent) processes using natural gas or biomass as a feedstock.

Section Specification Range
Biomass drying T [K] 473
Biomass pyrolysis T [K] 533
Biomass gasification ✓wood,gasif in [%wt] [5-35]

T [K] [1000-1200]
P [bar] [1-15]

SMR after gasification T [K] [950-1200]
ATR T [K] [780-1400]

P [bar] [1-30]
S/C [-] [0.5- 6]

WGS THTS (NG/BM) [K] [523-683]/[573-683]
TLTS (NG/BM) [K] [423-523]/[423-573]
P (BM) [bar] [1-25]
S/C (BM) [-] [0.2-4]

CO2 capture Selexol/CO2 ratio [kg/kg] [8-14]
Absorber T [oC] [-18-173]
Absorber P [bar] [10-60]
Nb stages absorber 10
Absorber packing Pall ring
Regeneration P [bar] [1-10]
Regeneration T [oC] [25-100]

18.3$/GJe without carbon tax.

The multi-objective optimisation results illustrated in Figure 4 reveal the

trade-o↵ between the energy e�ciency and the CO2 capture rate. An in-

crease of the CO2 capture rate leads to a decrease of the energy e�ciency

due to the energy consumption for CO2 capture and compression to 110

bar. Considering only these two performance indicators no evident decision

in favor of one specific process configuration can be made. To evaluate the

process market competitiveness, the economic dimension has to be included.

CO2 capture induces additional investment costs for the capture equipment

(i.e. absorber and desorber) and the CO2 compressor. Together with the
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Figure 4: Power plants performance with CO2 capture: Decision-making based on the
Pareto front (black points).

reduced electricity production, this increase of the investment leads to an

increase of the electricity production costs. When a carbon tax is intro-

duced the cost penalty of CO2 capture is reduced by the benefit from the tax

compared to a plant without CO2 capture inducing larger emissions. Con-

sequently, there are break even economic conditions for which CO2 capture

becomes beneficial. To take into account the economic conditions uncertainty

for the decision making, the fluctuation of the di↵erent economic parameters

is described by the distribution functions following the approach described in

Section 2.1.1. The distribution functions are summarized in Table 4. The

boundary values used to set up the distribution functions of the resource price

and the carbon tax are based on [10, 11, 14, 12, 13, 1]. The yearly operation

is characterised by a beta distribution as the as target of the plant is to oper-

ate closely to its design value which was here 8600 h/y. Most plants tending
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to operate for more than 10 years and operating likelihood between 20 and

30 years, a beta distribution is used to reflect the variation of the economic

lifetime. The interest rate being a↵ected by the market and the trading a

normal distribution around the usual rate of 6% is used. For the investment

cost estimation a presicion of ± 30% is reported in [18], which is reflected

by the uniform distribution. For ranking the di↵erent solutions the chosen

decision criteria is the electricity production costs (COE) including a carbon

tax.

Table 4: Definition of the economic scenarios and parameters of the distribution functions
for the economic assumptions.The distribution functions are set up based on values from
[10, 11, 14, 12, 13, 1]

Distribution functions parameters
Distribution Param. A Param. B Param. C

Resource price [$/GJNG] Normal µ=9.7 �=2.5 -
Carbon tax [$/tCO2] Beta a=2 b=1.5 c=100
Yearly operation [h/y] Beta a=3.9 b=1.2 c=8600
Economic lifetime [y] Beta a=5.8 b=4 c=40
Interest rate [%] Normal µ=0.06 �=0.01 -
Investment cost [%] Uniform a=-0.3 b=0.3 -

3.1.2. Decision making based on the Pareto-optimal solutions

The variation of the economic performance of the Pareto optimal solutions

with the economic conditions is illustrated in Figure 5.

The configurations yielding the best economic performance are identified

in Figures 5&4. Figure 4 illustrates by the black dots how the decision-

making along the Pareto-optimal frontier changes. Figure 5 reports the

variation of the COE of the most economically competitive configurations

identified from the Pareto-optimal solutions between the upper and lower
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borderline. The economic conditions corresponding to the lower and upper

boundary are respectively: 5042/7260h/y operation, 7.29/62.3$/GJres re-

source price, 89/55.8$/tCO2 carbon tax, 6.3/4.1% interest rate, 25.5/20y life-

time and -23/+25% investment costs estimation. For the base case economic

scenario biomass fed processes are not competitive and post-combustion CO2

capture performs best for capture rates around 70-85%. When gas prices in-

crease, the natural gas based processes become uncompetitive compared to

the base case biomass configurations. These results point out the compe-

tition between the processes and the influence of the economic scenario on

the decision-making. This competition is highlighted in Figure 6 evaluat-

ing the overall competitiveness of each Pareto-optimal solution compared to

the most-economically competitive solution. The post-combustion process

configuration capturing 83% of the CO2 emissions yields a relative compet-

itiveness of 1 since this solution is the most economically competitive one

in the large range of economic conditions. These results clearly show the

close competition between post- and pre-combustion and underline that the

CO2 capture rate is a key factor defining the economic performance. Pre-

combustion CO2 capture configurations, being slightly more expensive for

similar capture rates, yield however slightly better e�ciencies. Depending

on the production scope, this could a↵ect decision-making for the more ex-

pensive solution. For some marginal economic scenarios CO2 capture in

biomass fed power plants becomes a competitive alternative. In fact, the

benefit from the carbon tax overweights the e�ciency penalty for capture

rates around 70%. The performance results of the most economically com-

petitive process configurations are compared with the conventional NGCC
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plant without CO2 capture and summarised in Table 5. These results show

how the most economically competitive process configurations can be iden-

tified from the Pareto-optimal solutions by applying the selection approach

taking into account the economic conditions fluctuation.

Table 5: Process performance.
System NGCC Post-comb ATR BM

no CC MEA Selexol Selexol
Feed [MWth,NG/BM ] 559 582 725 380
CO2 capture [%] 0 82.98 78.63 69.93
✏tot [%] 58.75 50.65 53.59 35.45

Base case economic scenario
COE no tax [$/GJe] 18.31 22.7 23.7 46.1
COE incl. tax [$/GJe] 22 23.2 24.5 21.1

Economic scenario variation
COE incl. tax [$/GJe] 18.3-28.8 9-40 12.8-42 15-69

Environmental Performance (FU=1GJe)
CO2 emit. [kgCO2/GJe] 105 13.9 22.2 -198.1
IPCC GWP [kgCO2,eq/GJe] 120 35.4 42.2 -167
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3.2. SNG production from biomass

The production of synthetic natural gas (SNG) from lignocellulosic biomass

was investigated by Gassner et al. [16], based on the same thermo-enivironomic

optimization methodology [8]. The proposed superstructure of the SNG pro-

cess includes several process options for biomass drying, gasification, clean-

ing, CO2 removal and SNG upgrading. In [36] a database of Pareto-optimal

flowsheets for all the potential combinations of candidate technologies has

been generated by combining the superstructure process model with multi-

objective optimisation techniques. The database consists of 118 Pareto fron-

tiers that di↵er mainly by the following technology choices (illustrated in Fig-

ure 7):

• Wood drying technology: drying with hot air or steam

• Gasification technology: fast internally circulating fluidised bed (FICFB)

gasifier at atmospheric pressure or pressurized (pFICFB) and circulat-

ing fluidised bed (CFB) gasification directly heated with O2 (CFBO2).

• Gas cleaning technology: hot gas cleaning (HCL) or cold gas cleaning

(CCL)

• Methane upgrading technology (i.e. CO2 capture): pressure swing ad-

sorption (PSA), Selexol absorption and membrane processes. The up-

grading can be performed upstream or downstream the methanation

The di↵erent Pareto frontiers are described in detail and listed in Appendix.

The influence of the economic conditions and of the plant scale were

briefly discussed in [36] and the most economically plants have been identi-

fied based on the maximum biomass break even cost for di↵erent conditions.
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Figure 7: Process superstructure of the SNG production (Figure reproduced from [36]).

Since the di↵erent process designs di↵er in terms of the amount of electricity

and heat that is consumed, respectively produced, the economic competi-

tiveness is highly dependent on the market parameters such as the SNG,

heat and electricity selling price and the biomass and electricity purchase

price. To assess systematically the influence of the economic conditions and

to rank the di↵erent process designs based on the probability to be part of

the top performing ones the decision support approach previously described

is applied here.

The analysis is performed for a plant scale of 100MWth. It is considered

that the produced SNG is used as an automotive fuel. The produced elec-

tricity is sold as ’green’ electricity. The economic conditions uncertainty is

assessed through the distributions functions reported in Table 6 which have

been defined based based on data from [37–39]. The considered decision

criteria are the SNG production costs, the resources profitability (obtained

profit), and the overall ranking with regard to the 2 decision criteria (prod.

cost and profitability).
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Table 6: Definition of the economic scenarios and parameters of the distribution functions
for the economic assumptions.

Distribution functions parameters
Distribution Param. A Param. B Param. C

Biomass price [$/MWhBM ] Normal µ=28.6 �=3.5 -
Ė price [$/MWhe] Normal µ=145 �=15 -
Ė price (green) [$/MWhe] Normal µ=165 �=20 -
Distributed heat price [$/MWh] Beta a=5.3 b=1.37 c=92
SNG price (automotive fuel) [$/MWhSNG] Normal µ=110 �=20 -
Biodiesel price [$/MWhFAME] Normal µ=105 �=20 -
Yearly operation [-] Normal µ=0.9 �=0.1 -
Interest rate [%] Normal µ=0.06 �=0.01 -
Investment cost [%] Uniform a=-0.3 b=0.3 -

3.2.1. Identification of best SNG process designs

For each decision criterion, the probability to be the best process design

with regard to this criterion and the probability to be part of the 5 best per-

forming process designs (top 5) is assessed over the whole range of economic

scenarios.

The results illustrated in Figure 8 clearly reveal the influence of the deci-

sion criterion on the best process design. In Figure 8 all the Parteo frontiers

resulting from the multi-objective optimisation maximising the SNG equiv-

alent e�ciency and minimising the specific investment cost are illustrated.

The circles represent the probability of this process design to be part of the

best performing ones. The diameter of the circle is scaled in accordance with

the probability. The results show that several Pareto frontiers do never en-

close the best performing process designs. Di↵erent solutions emerge with

the decision criteria production costs and resource profitability. The best

performing process designs and the corresponding probability to be the best
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one are reported in Table 7 for the di↵erent decision criteria. In terms of

production costs, the process designs the lead to the lowest cost in the large

range of economic scenarios belong predominately to the same Pareto cor-

responding to SNG production by CFB gasification with membrane cascade

downstream of methanation (nb 22 - CFBO2 31 hcl). With regard to the

resource profitability the best configurations are the one based on CFB gasi-

fication with Selexol absorption downstream of methanation (nb 14 - CFBO2

21 hcl), followed by the one with CFB gasification and membrane cascade

downstream of methanation (nb 22 - CFBO2 31 hcl). This reveals the com-

petition between the di↵erent CH4 upgrading technologies and the decision

criterion. The process designs with an high SNG equivalent are the ones that

yield also the best economic performance even if the specific investment costs

are larger than for designs with lower e�ciencies, due to the profit of selling

the products.

Instead of assessing the best process design only on the probability to

be the best performing one with regard to a given decision criteria, the best

design is now identified by the probability to be part of the top 5 performing

ones (T5). In this case the selected solutions are increased as illustrated in

Figure 8 and Table 8. It appears that the most economic competitive pro-

cess designs for SNG production are based on CFB gasification and hot gas

cleaning, and co-produce heat for district heating purposes. The di↵erent

technologies for the SNG purification after methanation are in competition.

When identifying the best process design with regard to the lowest produc-

tion, designs with air drying (nb 10 - CFBO2 20 hcl, nb 18 - CFBO2 30 hcl)

and steam drying compete (nb 14 - CFBO2 21 hcl, nb 22 - CFBO2 31 hcl)
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Figure 8: Pareto frontiers resulting from multi-objective optimisation of SNG processes
[36] and identification of best process designs based on di↵erent decision criteria. The
circles are proportional to the probability to be part of the best process designs.

with each other.

As the two di↵erent decision criteria can lead to the selection of di↵erent

process designs, an overall ranking can also be established by combining the

ranking of each process design with regard to the decision criteria. This allows

to identify the most reliable process designs in a large range of economic

scenarios. In this case, some SNG production processes based on FICFB

gasification (no 101) become interesting as illustrated in Figure 8.

Taking into account the economic conditions uncertainty, the same ap-

proach can also be applied to identify the best process designs from one single

Pareto or from a reduced number of technology scenarios from the SNG pro-

cesses database (for example, only those with district heating, or only CFB
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Table 7: Identification of the 5 best process designs in terms of production costs and
resource profitability and corresponding probability to be the best performing one. The
designs are characterised by XX YY where XX is the number of the Pareto (Appendix)
and YY is the number of the design in this Pareto.

Prod. Cost
Design Proba. ✏SNG Invest.

No Gasifier CO2 capture Drying % % $/kW
22 27 CFB O2 Membrane Steam 63 85.4 818
22 30 CFB O2 Membrane Steam 18.3 85.2 801
22 06 CFB O2 Membrane Steam 16.1 84.2 768.7
74 38 pFICFB PSA Air 0.8 81.3 1418.7
74 31 pFICFB PSA Air 0.6 81.9 1611

Profitability
Design Proba. ✏SNG Invest.

No Gasifier CO2 capture Drying % % $/kW
14 51 CFB O2 Selexol Steam 20.7 85.6 721
14 32 CFB O2 Selexol Steam 15.7 85.8 731
22 30 CFB O2 Membrane Steam 15.3 85.2 801
22 27 CFB O2 Membrane 12.9 Steam 85.4 818
14 69 CFB O2 Selexol Steam 12.0 85.8 735

with steam drying,...).

4. Conclusions

This paper presents a decision support approach that takes into account

the variability of the economic conditions to identify the most economically

competitive process designs from a multi-objective optimisation Pareto set.

The approach is applied to systematically assess CO2 capture options in

power production processes and SNG-fuel production processes. The compe-

tition between the di↵erent process designs and the decision criteria is pointed

out and the influence of the economic conditions on the decision-making is

highlighted.

For CO2 capture processes the optimal power plant design is highly in-
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Table 8: Identification of the 10 best process designs in terms of production costs and
resource profitability and corresponding probability to be part of the 5 best performing
process designs. The designs are characterised by XX YY where XX is the number of the
Pareto (Appendix) and YY is the number of the design in this Pareto.

Prod. Cost
Design Proba. ✏SNG Invest.

No Gasifier CO2 capture Drying % % $/kW
18 62 CFB O2 Membrane Air 18.4 81.1 879
10 60 CFB O2 Selexol Air 15.5 81.1 755
21 37 CFB O2 Membrane Steam (CGCL) 14.1 80.4 787
22 27 CFB O2 Membrane Steam 12.9 85.4 818
14 69 CFB O2 Selexol Steam 8.6 85.9 736
14 51 CFB O2 Selexol Steam 6.0 85.6 721
22 30 CFB O2 Membrane Steam 3.7 85.2 801
14 15 CFB O2 Selexol Steam 3.7 84.6 708
22 06 CFB O2 Membrane Steam 3.2 84.2 769
21 63 CFB O2 Membrane Steam (CGCL) 2.9 79.2 751

Profitability
Design Proba. ✏SNG Invest.

No Gasifier CO2 capture Drying % % $/kW
22 30 CFB O2 Membrane Steam 11.7 85.2 801
10 60 CFB O2 Selexol Air 11.2 81.1 755
6 50 CFB O2 PSA Steam 9.8 85.1 860
14 51 CFB O2 Selexol Steam 7.8 85.6 721
14 69 CFB O2 Selexol Steam 5.2 85.9 736
22 27 CFB O2 Membrane Steam 4.3 85.4 818
18 62 CFB O2 Membrane Air 4.3 81.1 879
31 51 CFB O2 Membrane Steam (CGCL) 4.2 81.7 698
14 32 CFB O2 Selexol Steam 3.2 85.8 732
22 06 CFB O2 Membrane Steam 3.0 84.2 769

fluenced by the resource price and the introduction of a carbon tax. It is

determined by the production scope and the priorities given to the di↵erent

thermo-environomic criteria. By including the economic conditions sensi-

tivity in the decision-making step, it appears that apart from the economic

market conditions, the CO2 capture rate is a key factor defining the economic

competitiveness. Post-combustion CO2 capture reveals to be economically
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competitive for capture rates between 70 and 80% when a carbon tax is

introduced. This contradicts the rates up to 95% CO2 capture that are typ-

ically recommended . It is shown that for specific economic conditions (i.e.

introduction of a carbon tax) CCS can become an energy, cost and environ-

mental e�cient alternative on the future energy market when compared to

a conventional NGCC plant.

For the polygeneration of SNG, heat and power from biomass, it is re-

vealed that the most economically competitive process design is highly in-

fluenced by the gasifier and the methane upgrading technology. In figure 8

one can see that, considering the uncertainty analysis, the most probable best

solutions lies in the right of the Pareto curve. This part of the Pareto cor-

responds to high e�ciency (one of the objective function that is optimized)

and as well high investment. This shows that for the selected economic solu-

tions, it is important to promote the development of e�cient processes even

if those are more expensive. This can be explained by the benefit of selling

the coproduced heat and power that adds to the produced SNG-fuel and that

compensate the increase of the investment.

The use of the uncertainty analysis method is a powerful tool to help in

the identification of the best process designs by highlighting the designs that

have the highest probability of being the best considering the variability

of the economic conditions. Such a tool is therefore an important tool to

generate a limited list of configurations to be compared.
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Appendix

SNG production process options

The database of the Pareto-optimal SNG processes’ flowsheets was gener-

ated in [36]. The database consist of 118 Pareto fronts listed here below. The

technology scenarios names are labeled according the following abbreviations.

• FICFB: FICFB gasification at atmospheric pressure

• pFICFB: pressurised FICFB gasification

• pFICFBgt: pressurised FICFB gasification with power recovery by ex-

panding the flue gases in turbine

• CFBO2: pressurised CFB gasification directly heated with oxygen

• XY: X: CO2-removal technology (X=BN CO2REM; 1/4: PSA down-

stream/upstream of methanation; 2/5: Selexol absorption downstream/upstream

of methanation; 3: membrane cascade downstream methanation) Y:

drying technology (Y=BN DRY-1; 0: air drying, 1: steam drying)

• tor: with torrefaction (i.e. BN PYR=4, otherwise BN PYR=0)

• hcl: hot gas cleaning (i.e. BN GCL=2, otherwise cold gas cleaning

(BN GCL=1))

• nodh: without district heating (i.e. BN DH=0, otherwise with heat

cogeneration into a 110/70oCdistribution grid (BN DH=1))

Numbered list of all the technology scenarios considered for the SNG
production:
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1. CFBO2 10

2. CFBO2 10 hcl

3. CFBO2 10 hcl nodh

4. CFBO2 10 nodh

5. CFBO2 11

6. CFBO2 11 hcl

7. CFBO2 11 hcl nodh

8. CFBO2 11 nodh

9. CFBO2 20

10. CFBO2 20 hcl

11. CFBO2 20 hcl nodh

12. CFBO2 20 nodh

13. CFBO2 21

14. CFBO2 21 hcl

15. CFBO2 21 hcl nodh

16. CFBO2 21 nodh

17. CFBO2 30

18. CFBO2 30 hcl

19. CFBO2 30 hcl nodh

20. CFBO2 30 nodh

21. CFBO2 31

22. CFBO2 31 hcl

23. CFBO2 31 hcl nodh

24. CFBO2 31 nodh

25. CFBO2 40

26. CFBO2 40 nodh

27. CFBO2 41

28. CFBO2 41 nodh

29. CFBO2 50

30. CFBO2 50 nodh

31. CFBO2 51

32. CFBO2 51 nodh

33. FICFB 10

34. FICFB 10 nodh

35. FICFB 10 tor

36. FICFB 10 tor nodh

37. FICFB 11

38. FICFB 11 nodh

39. FICFB 11 tor

40. FICFB 11 tor nodh

41. FICFB 20

42. FICFB 20 nodh

43. FICFB 20 tor

44. FICFB 20 tor nodh

45. FICFB 21

46. FICFB 21 nodh

47. FICFB 21 tor

48. FICFB 21 tor nodh

49. FICFB 30

50. FICFB 30 nodh

51. FICFB 30 tor

52. FICFB 30 tor nodh

53. FICFB 31

54. FICFB 31 nodh

55. FICFB 31 tor

56. FICFB 31 tor nodh

57. FICFB 40

58. FICFB 40 nodh

59. FICFB 40 tor

60. FICFB 40 tor nodh

61. FICFB 41

62. FICFB 41 nodh

63. FICFB 41 tor

64. FICFB 41 tor nodh

65. FICFB 50

66. FICFB 50 nodh

67. FICFB 50 tor

68. FICFB 50 tor nodh

69. FICFB 51

70. FICFB 51 nodh

71. FICFB 51 tor

72. FICFB 51 tor nodh

73. pFICFB 10

74. pFICFB 10 hcl

75. pFICFB 10 hcl nodh

76. pFICFB 10 nodh

77. pFICFB 11

78. pFICFB 11 hcl

79. pFICFB 11 hcl nodh

80. pFICFB 11 nodh

81. pFICFB 20

82. pFICFB 20 hcl

83. pFICFB 20 hcl nodh

84. pFICFB 20 nodh

85. pFICFB 21

86. pFICFB 21 hcl

87. pFICFB 21 hcl nodh

88. pFICFB 21 nodh

89. pFICFB 30

90. pFICFB 30 hcl

91. pFICFB 30 hcl nodh

92. pFICFB 30 nodh

93. pFICFB 31

94. pFICFB 31 hcl

95. pFICFB 31 hcl nodh

96. pFICFB 31 nodh

97. pFICFBgt 10

98. pFICFBgt 10 hcl nodh

99. pFICFBgt 10 nodh

100. pFICFBgt 11

101. pFICFBgt 11 hcl

102. pFICFBgt 11 hcl nodh

103. pFICFBgt 11 nodh

104. pFICFBgt 20

105. pFICFBgt 20 hcl

106. pFICFBgt 20 hcl nodh

107. pFICFBgt 20 nodh

108. pFICFBgt 21

109. pFICFBgt 21 hcl

110. pFICFBgt 21 hcl nodh

111. pFICFBgt 21 nodh

112. pFICFBgt 30

113. pFICFBgt 30 hcl

114. pFICFBgt 30 hcl nodh

115. pFICFBgt 30 nodh

116. pFICFBgt 31

117. pFICFBgt 31 hcl nodh

118. pFICFBgt 31 nodh
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