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ABSTRACT: Nanoscale characterization of living samples has become essential for
modern biology. Atomic force microscopy (AFM) creates topological images of fragile
biological structures from biomolecules to living cells in aqueous environments.
However, correlating nanoscale structure to biological function of specific proteins can
be challenging. To this end we have built and characterized a correlated single molecule
localization microscope (SMLM)/AFM that allows localizing specific, labeled proteins
within high-resolution AFM images in a biologically relevant context. Using direct
stochastic optical reconstruction microscopy (dSTORM)/AFM, we directly correlate
and quantify the density of localizations with the 3D topography using both imaging
modalities along (F-)actin cytoskeletal filaments. In addition, using photo activated
light microscopy (PALM)/AFM, we provide correlative images of bacterial cells in aqueous conditions. Moreover, we report the
first correlated AFM/PALM imaging of live mammalian cells. The complementary information provided by the two techniques
opens a new dimension for structural and functional nanoscale biology.

KEYWORDS: Atomic force microscopy (AFM), single molecule localization microscopy (SMLM),
direct stochastic optical reconstruction microscopy (dSTORM), correlative imaging, photoactivated localization microscopy (PALM),
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Observing nanoscale structural changes associated with
many cellular processes is essential for understanding the

complex mechanisms underlying biomolecular function. Per-
forming the experiments in aqueous environments is essential
for maintaining cellular integrity. At the nanoscale, the two
imaging modalities atomic force microscopy (AFM) and single
molecule localization microscopy (SMLM) fulfill the require-
ment of concomitant assessment of structures and dynamics
under close to physiological conditions. AFM has long since
provided nanoscale structural information on living cells.1−3

Recent advances in high-speed AFM have even been
successfully used to directly visualize the dynamics of molecular
machinery such as protein motors.4,5 In addition, newly
emerged SMLM techniques extended all the advantages of
fluorescence microscopy beyond its diffraction limited spatial
resolution of about 200 nm6−8 and provided new important
insights into structural organization,9,10 dynamics,11 and
quantification12−14 of biomolecules. Both techniques by
themselves have proven to be very powerful for research in
nanoscale structural biology. However, in SMLM, biomolecules
themselves are invisible, and one observes/localizes only the
fluorophores. In addition, translating the SMLM localization
precision, typically between 10 and 25 nm, into spatial

resolution is still very challenging due to a number of
complicating factors.15 Therefore, early on, the validation of
SMLM has been carried out with correlative imaging using
transmission electron microscopy (TEM).6 Yet, in the case
when SMLM is correlated either with TEM6,16 or scanning
electron microscopy (SEM),17,18 sample preparation conditions
are far from physiological, prohibiting the observation of live
processes. Structural artifacts might as well be introduced
unless one performs experiments on vitrified samples as Chang
et al.16

AFM on the other hand has proven to obtain submolecular
resolution on membrane proteins in solution,19 but it fails at
providing biomolecular specificity. In combination, AFM and
SMLM hold promise for doing correlated nanoscale bio-
molecular and structural characterization on living samples in
physiological conditions.
Nevertheless, the first attempts to correlate AFM with

SMLM18 have not fully exploited this opportunity. For
example, Monserrate et al.18 performed AFM imaging of
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DNA in air, dried on a mica substrate. While this approach
allows a nice comparison of the two techniques, it does not
allow for the two techniques to complement each other to learn
new things about structure−function relationships in living
systems. In addition, the presence of the thin mica sheet on the
glass coverslip deteriorated the point spread function (PSF)
and compromised the performance of SMLM. Although
Chacko et al.20 employ both modalities in physiological
conditions, their samples were chemically fixed.
In order to exploit the full potential of high-resolution

correlative AFM/SMLM imaging, one has to maintain optimal
performance in both imaging modalities. This requires careful
design of experimental procedures so that the two methods do
not deteriorate each other’s performance. In particular, during
AFM imaging, maintaining low imaging forces is essential to
ensure minimal damage to the soft biological samples in fluid.
At the same time, one has to maintain a low level of noise that
should not be compromised by the integration with the SMLM
optical microscope. To this end, we have built a mechanical
support structure to hold the AFM in place without it
mechanically contacting the microscope body (Figure 1).
Simultaneously, in SMLM it is important that the fluorescent
labeling strategy minimally affects the 3D structure of the
sample. Due to this requirement, from the plethora of labeling/
imaging strategies we have chosen direct stochastic optical
reconstruction microscopy (dSTORM) and photo activated
light microscopy (PALM). In dSTROM, the light-induced
reversible photoswitching of organic fluorophores is obtained in
the presence of millimolar concentrations of reducing thiol
compounds such as dithiothreitol (DTT), glutathione (GSH),
or mercaptoethylamine (MEA), but without requiring the
presence of an activator fluorophore in aqueous buffer.21 In
particular, using fusion proteins or intercalating small molecules
such as fluorescently labeled phalloidin, allowed us to
completely avoid antibodies that would have otherwise
significantly altered the sample’s 3D structure. Also, after
ensuring that the laser used by the AFM to detect the cantilever
motion does not overlap with the fluorophore excitation
spectra, only a subset of fluorophores is available for correlated
microscopy.
The purpose of correlated AFM/dSTORM microscopy can

be two-fold: first to compare and validate the resolution of one
technique with the other, and second to provide comple-
mentary information about two different aspects of the same
biological sample. To establish accurate correlation and
measurement protocols, we chose F-actin as a first test sample,
since high-resolution images of F-actin have been reported in
both imaging modalities. Monomers in actin filaments are very
weakly bound since they have to be dynamically assembled and
disassembled in the cell. Even after stabilization by phalloidin
they are very delicate. AFM imaging of actin filaments in
physiological buffer therefore requires excellent force control to
image at high resolution without destroying the fibers.22 This
makes them an excellent test sample to ensure high-quality
AFM performance. Actin is also one of the best studied
structures with SMLM both in vitro23 and in vivo.24

For direct comparison of the two techniques we imaged
polymerized actin filaments on a glass coverslip. The sample
preparation procedure was designed to meet the requirements
of both techniques. Fluorescently labeled phalloidin was used
to prepare the sample for SMLM as well as for AFM, although
not strictly required in the latter case. The glass coverslip was
functionalized with APTES ((3-aminopropyl)triethoxysilane)

to adhere the actin filaments as required for AFM and SMLM
imaging. Both imaging modes were performed in buffer;
however, each technique requires its own. While the SMLM
experiment requires a buffer optimized for blinking of the
corresponding fluorescent dye, the AFM requires a buffer which
ensures structural integrity and stability.
The best image quality by AFM was obtained using soft

cantilevers (BL-AC40TS-C2 cantilevers (Olympus)) with a
nominal spring constant of 0.09 N/m operated in peak force
tapping keeping the force set point below 100 pN to not
destroy the filament. Figure 2a shows a high-resolution AFM
image of the F-actin, revealing the ∼36 nm periodicity of the
single left handed generic helix.25 The spacing of the individual
G-actin monomers can be seen in the cross section (Figure 2c),
which is equivalent to the highest resolution AFM images of F-
actin published thus far.22

The height of F-actin as obtained by AFM was as expected
between 6 and 8 nm, and a cross section revealed a full width at
half-maximum (FWHM) height of about 10 nm (Figure 2d).

Figure 1. Correlative AFM-SMLM: instrument setup. (a) Schematic
of the aligned optical path with the AFM cantilever. By laterally
translating the incoming laser beam using a micrometer screw, the
TIRF illumination condition is enabled. The AFM cantilever is
centered in the field of view by adjusting the position of the inverted
optical microscope mounted on an x/y-translation stage (as shown in
b and c). (b) Mechanical integration of an inverted optical microscope
and the AFM. The inverted optical microscope is mounted on an x/y-
translation stage. Around it a mechanical support structure is built to
hold the AFM in place without mechanically contacting the
microscope body. The whole instrument is placed on a vibration
isolation platform inside an acoustic isolation box. (c) Photograph of
the instrument and (d) zoom in to the AFM cantilever aligned to the
optical axis.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.5b00572
Nano Lett. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.nanolett.5b00572


This result demonstrates that the performance of the AFM is
not deteriorated by the fact that it was recorded on the
combined SMLM/AFM system.
To assess the image quality obtained by SMLM on this

combined system, we imaged F-actin labeled with phalloidin−
Alexa647, since the Alexa647 dye has been reported to give
optimal SMLM image quality.26 Figure 2e shows a dSTORM
image with a mean photon count of about 5500 (Supporting
Figure 1a) and a mean localization precision of 12.5 nm,
comparable to the values reported in the literature.26 Actin
filaments that have a cross-section profile with a FWHM of ∼24
nm are visible (Figure 2e−g). Our measurements demonstrate
that a high image quality is obtainable by both techniques
individually even when performed on the combined instrument.
The procedure for correlated image acquisition is depicted in

Figure 3a through h. Since Alexa647 emission deteriorates after
exposure to the AFM laser (Supporting Figure 2a−c),
phalloidin−Atto488 was used instead to label F-actin for the
correlative experiment. This significantly reduced the bleaching
of the dye, although some bleaching still occurs (compare
Figure 3b and e), but also reduced the photon count and
therefore the ultimately achievable localization precision. We
recorded the AFM image before recording the dSTORM
image, since the dSTORM seemed to degrade the structural
integrity of the actin filaments (for details see Supporting
Figure 10). By minimizing the AFM peak forces to as low as 50
pN, the sample remained intact for the subsequent dSTORM
image acquisition, which is a prerequisite for recording
correlative images. After the AFM image was recorded, the
buffer was exchanged, and phalloidin-atto488 was forced into a
triplet state by means of the chemical reducing agent NaBH4
(Figure 3f). Subsequently, the reducing agent was washed and

the buffer exchanged with the dSTORM imaging buffer
containing an oxygen scavenging system to ensure optimal
blinking behavior. Then, the dSTORM image was acquired
(Figure 3h). Figure 3i through k show the resulting AFM
images and the dSTORM image, with the squares in Figure 3k
indicating the areas where the AFM images i and j were taken.
Similar results are displayed in Supporting Figure 3.
The effects of various forms of aberrations, primarily

spherical aberrations in SMLM,13 are minimized by performing
accurate transformation and overlay (detailed in the Supporting
Information and Supporting Figure 4). The correlative images
allow comparison as well as provide complementary
information about the sample. Comparing the width of the
actin bundles as measured by AFM and by dSTORM, we find
that dSTORM provides comparable values to AFM. On the
ability to distinguish two diverging bundles of filaments, AFM
provides clearer information than dSTORM (Figure 4a−c).
The height and width of the actin filament bundles measured
by AFM was 14 and 65 nm FWHM, respectively. The FWHM
of dSTORM was 94 nm and of TIRF 271 nm for the filament
bundles.
In addition to direct comparison, the two techniques provide

complementary information about the sample. The dSTORM
image reveals a nonhomogeneous intensity along the filament
which is often attributed to local differences in labeling along
the filament. The correlated AFM measurements however
suggest that the fluctuation in localization densities is partially
due to the presence of actin bundles rather than single
filaments. The tendency of F-actin filaments to bundle up27

therefore likely contributes to the local differences of
localizations recorded by dSTORM along the filament (Figure
4h). We indeed observed a correlation between the height of
the F-actin and the number of localizations recorded at that
particular location (Figure 4i). Along a single filament with a
height of around 8 nm about 8 localizations are detected per
line scanned by AFM (corresponding to ∼12 nm in length).
On the other hand, in areas where an increased height was
measured (∼12−14 nm), the number of dSTORM local-
izations is 1.5 times higher than observed on a single filament.
After correlation protocols have been established, we used

the combination of the AFM and SMLM to extract
complementary information about two different aspects of
one and the same biological sample. For this we extended our
method to samples including chemically fixed bacterial cells
(Figure 4j) and mammalian cells (Supporting Figure 6).
Escherichia coli (E. coli) expressing the fusion protein RNP-
mEOS2 was measured by AFM and subsequently by PALM.
We chose PALM over dSTORM for these experiments since
PALM can be performed with lower laser power, which is
better suited for eventually extending the technique to live cell
imaging. The AFM provides the 3D morphology of the
bacteria, while PALM provides the expression level and the 2D
projection of the spatial distribution of the fusion protein.
Interestingly, one of the bacteria showed no presence of the
fusion protein in a part of the PALM image. The AFM image
clearly shows that this bacterium is situated slightly on top of
two other bacteria. We hypothesize therefore that the fusion
proteins of this particular bacteria were not mapped because the
bacterium was out of the illumination volume covered in TIRF
conditions. This is a good example where the combination of
the two techniques yields a clearer interpretation of the
microscopy data than PALM alone. However, the conventional
PALM we use does not provide 3D information on the location

Figure 2. Independent performance of AFM and dSTORM on the
combined AFM/SMLM system. (a) AFM image of F-actin deposited
on an APTES coated glass coverslip (200 nm × 200 nm). (b) 3D
model of F-actin showing its apparent helical structure, which is
observed by AFM as well. (c) Height profile of F-actin extracted from
AFM data, along the filament (profile line indicated in a). The length
of one helical turn is 36 nm. (d) Profile perpendicular to the F-actin
having a full width at the base of <15 nm. (e) Probability map of F-
actin labeled with phalloidin-alexa647 imaged with dSTORM, with a
selected filament zoomed in (inset). Pixel size full image: 10 nm, inset:
4 nm. (f and g) Intensity profiles corresponding to the lines in the
inset, normalized to the maximum intensity in the profile. The FWHM
of the profiles are ≈24 nm.
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Figure 3. Experimental procedure and representative correlated AFM/dSTORM images. Experimental procedure (a−h): (a) The AFM cantilever is
centered in the optical field of view of the camera by translating the inverted microscope in x- and y-direction. (b) The sample is moved, and a region
of interest is selected. (c) The AFM image is acquired. (d) To determine the center of the scan another optical image is taken to account for an
applied offset during AFM image acquisition. (e) Then, another TIRF image of the sample was taken and the illumination condition was optimized.
(f) The fluorescent labels (phalloidin−Atto488) are quenched chemically and forced into a dark state by exchanging the buffer containing 10 mM
NaBH4. (g) The buffer of the sample is exchanged with optimal dSTORM buffer, and beads are added to be used as fiducial markers during the
image reconstruction. (h) dSTORM images are acquired. Scale bars below images (a−h) are 3 μm. (i and j) AFM images, (k) reconstructed
dSTORM image in probability map representation. (i and j) Areas correlated with AFM.
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of the fluorescence signals with respect to the morphology of
the cell. Recent advancements in 3D PALM28 would further
leverage the power of the correlated technique.
The same technique can be applied to correlated AFM/

PALM measurements on mammalian cells. Supporting Figure 6
shows a fixed mouse embryonic fibroblast expressing the fusion
protein paxillin−mEos2, which is part of the focal adhesion
complexes that form contact with the substrate.
Performing correlated SMLM and AFM measurements

within biologically relevant media not only allows for direct
comparison of the two techniques but also allows us to learn
more about each individual technique and to augment the
weaknesses of one with the strength of the other. In the case of
the actin filaments, AFM provided a reference for the location
and height of the filaments that could be directly compared to
the labeling density fluctuations along the filaments as observed
by SMLM. This showed that the labeling fluctuations originate
partially from the presence of double and triple filaments

(Figure 4h and i) and is therefore not solely due to insufficient
labeling as it was incorrectly assumed. On the other hand, in
areas along the filament revealed by AFM to be a single
filament, the fluctuations can now be unequivocally attributed
to insufficient binding of tagged phalloidin. This dual
information makes the comparison between different labeling
protocols much more effective and accurate. On the other
hand, the fact that the number of localizations per scan-line
correlates well with the AFM height (and therefore the number
of filaments) suggests that the localization intensity could
eventually be used for quantifying the number of actin filaments
in a bundle in situations where no AFM information can be
obtained such as in whole cell imaging.
Thus, far, we have chosen our sample so that a direct

comparison of the two techniques is possible and we also
showed the potential of revealing complementary information
in fixed bacteria and mammalian cells. Now that the correlation
between the two techniques has been established, they can be

Figure 4. Comparison of AFM, dSTORM, and TIRF imaging resolution from correlative imaging. (a, c, and e) AFM, dSTORM, and TIRF images,
respectively (1.5 μm × 1.5 μm), of correlated filaments. Lines and colors indicate the location of profiles shown in (b, d, and f). (g) Overlay of
dSTORM probability map (blue) and 3D rendered AFM image (yellow−brown). (h) Different F-actin arrangements suggested based on the AFM
data. (i) Orange: Maximum height projection of the AFM section shown below the plot. Blue: Number of localizations detected in regions between
the white lines per line scan of the AFM. In higher areas more localizations are observed. (j) Correlative AFM/PALM image of E. coli bacteria
expressing RNA polymerase−mEos2.
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reliably used to complement each other in applications where
the protein specific SMLM information has to be put in a 3D
cellular or mechanical context. This will be especially important
for the recent and ongoing developments in 3D SMLM.29−32

Since we perform our AFM experiments in physiological
solution, it is even possible to perform live cell imaging and
nanomechanical stimulation using the AFM cantilever. Using
the combination of live cell AFM33−35 and live cell SMLM,36

one could observe the reaction of the cells to nanomechanical
stimuli with unprecedented resolution. A major concern for live
cell imaging is the image acquisition speed of both SMLM and
AFM, as they both traditionally require tens of minutes to
obtain a high quality image. With the development of high
speed AFM by Ando et al.4 and the pioneering work in high-
speed SMLM by Zhuang et al.,36,37 real time nanoscale imaging
of living cells is within reach. Our combined AFM/SMLM
system is already capable of such experiments since live cell
PALM has already been reported,11 and the AFM we used is
capable of imaging live cells within a minute or less.38 Figure 5
shows such time-resolved AFM and PALM image sequences of

live CHO-K1 cells in physiological environment. From the
whole cell shown in Figure 5a, we chose the leading edge
(upper corner) for time-resolved analysis (Figure 5b and c).
AFM images (Figure 5b) were recorded at 1 min intervals
showing filopodia already extended with subsequent following
of the lamellipodium. PALM images shown in Figure 5c were
recorded directly after AFM imaging, and the cell edge from the
last image in the AFM sequence is shown for reference in the
PALM images. Fluorescent frames were recorded at a rate of 20
frames/s and processed 5000 frames at a time with a “running
average” of 1000 frames to create each PALM image (see
methods, Supporting Figure 11 and Supporting movie 1 for
details). Figure 5d−g show zoom-ins of regions depicting
paxillin clusters in focal adhesions. In d and e, a paxillin cluster
disappears at one place, while in f and g new ones appear.
The dynamic changes we observed in both the AFM and

PALM images and the complementary information they
provide demonstrate the potential of correlated AFM/PALM
imaging of live cells. It should be noted that in these
experiments the AFM and PALM data were recorded in a

Figure 5. Live-cell time-resolved AFM/PALM on mammalian cell. (a) CHO-K1 cell transiently expressing a paxillin-mEos2 construct imaged in its
off-state under TIRF illumination. Overlaid is an AFM overview image from the upper part of the cell. The white square outlines the area zoomed in
for the AFM time-series shown in b. (b) Time-resolved AFM sequence of the leading edge of the cell, showing the normal cell behavior of filopodia
protrusion with subsequent lamellopodia extension. The frame rate is 1 min−1. The white square in the AFM image recorded after 9 min marks the
area of subsequent PALM images shown in c. (c) Live-cell PALM time series showing the reorganization of the paxillin-mEos2 clusters. (d) Zoom-in
of the green square outlined in c at 28.2 min. (e) The same area as in d at 31.6 min. (f) Zoom of the area outlined in red in (c) in the image taken at
30.7 min. (g) Zoom of the same area as in part f at 33.3 min. While the AFM images show the dynamics of the cell membrane, the PALM series
monitors the changes in the paxillin-mEos2 clusters. In d and e, paxillin clusters disappear from the top left corner (arrow). New paxillin clusters are
formed within 3 min at the site shown in f and g (arrows).
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correlated fashion, but not simultaneously. A better integration
of the AFM operating software with the PALM acquisition
software would allow for truly simultaneous imaging. While
many of the experimental conditions for routine experiments
still have to be worked out, we expect this to become a truly
enabling method in the study of mechanobiology and
mechanotransduction.39,40

Materials/Methods. Choice of Labeling Strategy. What
fluorescent labeling strategy is best suited depends on the kind
of correlated experiment that is performed. In the case of the
actin filaments we imaged the same aspect of a sample with
both modalities. In that case it is imperative that the fluorescent
labeling does not interfere with the sample structure as
measured by AFM. In such a case it is preferential to use a
small intercalating dye such as fluorescently labeled phalloidin.
When one images different aspects of a sample with the two
techniques (such as we did in the combined imaging of cells), a
broader choice of labeling strategies is available such as
antibody labeling or genetic expression of fluorescent fusion
proteins. We chose the latter for live cell imaging as it allows for
labeling of intracellular structures without permeabilizing the
cell membrane. In all cases, it is essential however that the AFM
laser does not bleach the fluorophores.
F-Actin. F-actin has been polymerized from G-actin

following the manufacturer’s protocol (BK003, Cytoskeleton,
Inc.) and stored on ice subsequently. To 5 μL of a G-actin
aliquot (200 μM) 45 μL prechilled general actin buffer was
added, ending up with 20 μM G-actin in 5 mM Tris-HCl pH
8.0, 50 mM KCl, 0.2 mM CaCl2. Next, 5 μL of 10×
polymerization buffer was added, resulting in a final
concentration of 50 mM KCl, 2 mM MgCl2, 1 mM ATP,
and incubated at room temperature to polymerize for 2 h
before storing on ice. Actin was stored up to one month.
E. coli. E. coli bacteria expressing RNA polymerase labeled

with mEos241 were kindly provided by Dr. Mike Heilemann.
The bacteria were grown in lysogeny broth (LB) medium
supplemented with ampicillin (0.1 mg/mL) at 37 °C in an
orbital shaker overnight. Then, 100 μL of bacteria solution was
added to 4 mL of fresh medium and incubated again for 3 h.
Subsequently, 1 mL was pelleted by centrifugation, and the
supernatant was discarded. The pellet was resuspended in
deionized water, and the washing step was repeated once more.
The pellet was eventually resuspended in 400 μL of deionized
water and used for subsequent sample preparation on the
prepared glass coverslip.
Glass Coverslip. 25 mm diameter round glass coverslips

(72225-01, Electron Microscopy Sciences) were cleaned by
piranha etch (H2SO4 and H2O2 at a ratio of 2:1) on a heating
plate for at least 20 min and then left to cool down. Then, the
coverslips were thoroughly rinsed with water and blown dry by
a nitrogen stream. On coverslips prepared for the F-actin
sample, 500 μL of water (Milli-Q) containing 0.5% (v/v)
APTES (440140, Sigma-Aldrich, Switzerland) was deposited
and incubated for 10 min before rinsing with water. Coverslips
were then dried at 65 °C for 1 h in vertical position. Coverslips
were prepared freshly on the day of the experiment.
Cleaned coverslips used to deposit E. coli were immersed for

10 min in a solution containing 0.05 mg/mL poly-L-lysine
(PLL) hydrobromide (Sigma, P1524) and 10 mM Tris at pH 8.
Coverslips were then dried in a vertical position at room
temperature overnight and used within a week.
Cleaned and coated coverslips were glued into a custom-

made holder before the respective sample was deposited.

Sample Deposition and Imaging Buffers. F-actin samples
were prepared as follows: 3 μL of phalloidin−Alexa647
(A22287, Life Technologies) or phalloidin−Atto488 (49409,
Sigma-Aldrich, Switzerland) and 1 μL of polymerized F-actin
was added to 45 μL of Buffer A (2 mM MgCl2, 1 mM EGTA,
20 mM imidazole−HCl, pH 7.6) and incubated in darkness for
10 min. Then 100 μL Buffer A was added, and 50 μL of this
was deposited on a APTES-functionalized coverslip. Another
150 μL Buffer A was added to the sample and incubated for 5
min. Additionally, up to 1 mL of Buffer A was added for AFM
experiments.
E. coli samples were prepared as follows. A drop of

concentrated bacteria solution was deposited onto a PLL-
coated coverslip, and bacteria were left to adhere for 30 min
before the coverslip was gently washed with water. After
imaging by AFM in water, the sample was washed with PHEM
buffer (60 mM Pipes, 25 mM HEPES, 10 mM EGTA, and 2
mM MgCl2 at pH 6.9) and fixed with 4% paraformaldehyde in
PHEM buffer for 30 min without changing the position of the
sample. Subsequently, the sample was washed with PHEM
buffer 3 times, and PALM images were acquired.

CHO-K1 Cells. CHO-K1 cells were grown in an incubator at
37 °C, 5% CO2 in DMEM-F12 supplemented with 10% (v/v)
FBS and 1% antibiotics to 70% confluency prior to transfection.
4 × 105 cells were transfected with 2 μg of plasmid DNA
containing the paxillin−mEos2 sequence with a Neon electro-
poration system. Cells were then seeded in a 6-well plate with
DMEM supplemented with FBS only. The following day they
were transferred onto plasma cleaned fibronectin coated 25 mm
diameter glass coverslips and grown for another 2−24 h. Prior
to the experiment the cells on the coverslip were transferred on
a home-built coverslip heater shown in Supporting Figure 9 to
keep them at 37 °C and the medium was exchanged to DMEM
without phenol red buffered with 25 mM Hepes. As imaging
took less than 35 min, it was not necessary to have a controlled
CO2 environment. For longer term imaging we suggest putting
a CO2 cage around the sample including the AFM, or use the
commercially available perfusion chamber for the FastScan Bio
AFM.

AFM. AFM experiments were conducted with a Dimension
FastScan (Bruker, USA) mounted on a custom-built support
structure on top of an inverted optical microscope (IX71,
Olympus, Japan). BL-AC40TS-C2 cantilevers (Olympus,
Japan) with a nominal spring constant of 0.09 N/m and a
resonance frequency of 110 kHz were used to image the F-actin
samples. Images were taken in PeakForce QNM mode at a
maximal force <100 pN, at a resolution of 512 × 256 pixels. E.
coli samples were imaged using Scanasyst-Fluid cantilevers
(Bruker) with a nominal spring constant of 0.7 N/m and a
resonance frequency of 150 kHz. For the live-cell experiment
on CHO-K1 cells Fastscan-D cantilevers (Bruker) with a
nominal spring constant of 0.25 N/m and a typical resonance
frequency in water of 110 kHz were used. Images were taken in
tapping mode at a resolution of 512 × 128 and a frame rate of 1
min−1. AFM data was processed with standard SPM software.
Supporting Figure 7 displays 2D AFM height images of the 3D
representations shown in the main figures. The reconstruction
of the tip used in Figure 3 as obtained by the software
Nanoscope Analysis (Bruker, USA) is shown in Supporting
Figure 8. More details are provided in the text of the
Supporting Information.

dSTORM. For the imaging with Alexa-647, the sample was
imaged in the buffer conditions described in Olivier et al.42 2
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mL of buffer (pH 7.5) was composed of: 1.685 mL of PBS, 200
μL of Tris (100 mM pH 7.4), 20 μL of 1 M mercaptoethyl-
amine stock pH 8 (MEA, Sigma; pH adjusted with glacial acetic
acid 100%), 7 μL of β-mercaptoethanol (M6250, Sigma), 20 μL
of 200 mM cyclooctatetraene (COT) stock made from 1.27 mL
of DMSO and 30 μL of COT (Sigma), 50 μL of 100 mM
protocatechuic acid (PCA, Sigma) at pH 9 (adjusted with
KOH), and 20 μL of 5 μM protocatechuic dioxygenase (PCD,
Sigma) stock stored in 50% glycerol in 50 mM KCl, 1 mM
EDTA, and 100 mM Tris-HCl pH 8.
For the correlative imaging with ATTO-488, the following

protocol was used. After AFM imaging, the sample was washed
3× with PBS, leaving 300 μL PBS. 600 μL of PBS containing
0.5 mg/mL NaBH4 was added to a final concentration of 10
mM NaBH4 and incubated for at least 5 min or until the
fluorescence was quenched. Then the sample was washed with
Tris/Trolox buffer pH 8 (100 mM Tris, 1 mM Trolox), leaving
250 μL of buffer on the sample. Next, 750 μL of buffer
containing glucose, catalase, and glucose oxidase was added,
resulting in a final concentration of 0.5 mg/mL glucose oxidase,
40 μg/mL catalase and 5% (w/v) glucose. Additionally, 3 μL of
100 nm fluorescent beads (Tetraspeck, Life technologies) was
added to the sample.
The dSTORM measurements were performed with a TIRF

objective (APON 60X TIRF, Olympus, after a further
magnification of 2×, yielding a pixel size of 133 nm) and
appropriate optical filters (dichroic: F73-866; emission filter:
F72-866, AHF Analysetechnik AG, Germany). Illumination was
provided by a monolithic laser combiner (MLC400B, Agilent,
UK), and the optical fiber output of the MLC400B was coupled
into an optical system (TIRFM Illuminator, Olympus, Japan) in
order to generate TIRF illumination. Images were recorded
with an iXon Ultra 897 (Andor) EMCCD camera. The power
of the 488 nm laser at the fiber output was set to 80 mW and
that of the 647 nm laser at a maximum of 140 mW, the gain of
the EMCCD camera was set to 200, and images were taken
with an exposure time of 20 ms.
PALM. The fixed MEF cells were imaged in PHEM buffer at

room temperature. The live CHO-K1 cells were imaged in 25
mM Hepes buffered DMEM at 37 °C. More details can be
found in the Supporting Information.
The PALM measurements were performed with the same

setup as described in the dSTORM section. The emission light
coming from mEos2 was separated from the illumination light
using a combination of a dichroic mirror (493/574 nm
BrightLine, Semrock) and an emission filter (405/488/568 nm
StopLine, Semrock). An optical system (DV2, Photometrics)
equipped with a dichroic mirror (617/73 nm BrightLine,
Semrock) was placed between the EMCCD camera and the
microscope frame. The DV2 splits the emission light from the
on- and off-state of the mEos2 and sends each color to a
separate half of the EMCCD camera chip.
In order to find a cell in the sample, the mEos2 in the off-

state was visualized in the green channel by excitation of 488
nm with 5 mW power at the MLC400B output. Before imaging
of the mEos2 in the on-state, fiduciary beads (100 nm gold
nanospheres, Corpuscular) were added to the sample. The gold
beads that did not sediment after 5 min are removed by
washing 1× with PHEM for the MEF cell experiment. Imaging
of the mEos2 in the on-state was performed in the red channel
by excitation of 561 nm with 30 mW power at the MLC400B
output. During imaging, the mEos2 in the off-state was
activated by 405 nm with a gradually increasing power at the

MLC400B output, ranging for 0 mW to 2 mW. The gain of the
EMCCD camera was 200, and the exposure time was 50 ms.

Reconstruction. The estimation of the single molecule
positions from the images and the rendering as a probability
map were done by the code (MATLAB, MathWorks) kindly
provided by Dr. Eric Betzig, using the same algorithm described
in Betzig et al.6 The localization precision was estimated by
means of the expression provided in Mortensen et al.,43 also
incorporating the precision loss due to the use of the EMCCD
camera. The factor to convert ADC values to photon counts
was calibrated as explained elsewhere.44 The drift during
imaging was corrected using either fiducial marker traces or
using the correlation between frames.45 The dSTORM image
displayed in Figure 2 was obtained from 16000 frames of
imaging, and the one in Figures 3 and 4 from 60000 frames. For
Figure 2, only localizations with a precision between 2 and 30
nm, and a photon count between 300 and 50000 were
considered. For Figures 3 and 4, a localization precision cutoff
of 50 nm and a minimum photon count of 100 were used. The
PALM image displayed in Figure 4j was obtained from 62000
frames of imaging and that in Supporting Figure 6 from 27000
frames. Localizations in both images were plotted if the
corresponding mEos2 image contained at least 100 photons
and if the localization precision was between 3 and 30 nm. The
PALM time sequence (Figure 5c and Supporting Movie 1) was
obtained from 14000 frames of imaging, with each individual
PALM image in the sequence obtained from a subset of 5000
frames. The time sequence (Supporting Movie 1) was obtained
by shifting 1000 (Supporting Movie 1) frames of imaging
between each PALM image (for details see Supporting Figure
11). In Figure 5c selected frames of the sequence are shown.
Only mEos2 localizations with a precision between 2 and 40
nm and a photon count of at least 100 were plotted.

Overlay. Overlay between the AFM image and the STORM
localizations was done by estimating an affine transformation
matrix between the two by minimizing a cost function based on
the overlap between the two images. More details are provided
in the text of the Supporting Information.
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dSTORM and AFM/PALM images. Detailed explanation of the
overlay procedure. 2D representations of the AFM images
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