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Summary

I First fully turbulent SOL simulations self-consistently coupled to a neutral model.
I A kinetic equation with Krook operators for ionization, recombination and charge-exchange processes

is solved for the neutral species.
I Two fluid drift-reduced Braginskii equations are solved for the plasma.
I First results from the GBS simulations show interesting interplay between neutral and plasma physics.
I The details of the model can be found in [C. Wersal and P. Ricci, submitted to NF 2015].

Complex interaction between neutrals and plasma

Neutrals

Ionization

Convection limited regime
I Low plasma density
I Long λmfp for neutrals
I Ionization in the core
I Heat ≈ particle source
I Q is mainly convective

Neutrals

Ionization

Conduction limited regime
I High plasma density
I Short λmfp
I Ionization close to targets
I ‖ Temperature gradients form
I Q is mainly conductive

Neutrals

Ionization

Recombination

Detached regime
I Very high plasma density
I Friction drag important
I Volumetric recombination
I Very low ion and energy flux to

the target

Turbulent simulations of the SOL including neutrals

I Two fully consistent simulations with the code GBS and the neutral model have been performed with
two different densities (n0 = 5× 1018m−3 and n0 = 5× 1019m−3).
Normalization: v0 = cs, T0 = 10eV , L⊥ = ρs, ρ−1

? = 500

I The top row shows snapshots of plasma density, electron temperature, and the electric potential for
the low density simulation, while the lower row shows the same plots for the high density simulation.

I Time- and space-averaged poloidal profiles during the quasi-steady-state phase of the two simulations:
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I The simulations show clear changes in behavior of plasma density, electron and ion parallel velocities,
and electron and ion temperatures.

I The high density simulation shows properties of the conduction limited regime (e.g., parallel
temperature gradient).

A model for neutral atoms in the SOL

Kinetic equation with Krook operators
∂fn
∂t

+ v · ∂fn
∂x

= −νizfn − νcxnn

(
fn
nn
− fi

ni

)
+ νrecfi (1)

νiz = neriz = ne〈veσiz(ve)〉, νcx = nircx = ni〈vrelσcx(vrel)〉, νrec = nerrec = ne〈veσrec(ve)〉

Boundary conditions are particle conserving and are defined as

fn(xb,v) = (1− αrefl)Γout(xb)χin(xb,v) + αrefl[fn(xb,v− 2vp) + fi(xb,v− 2vp)] (2)

with Γout the ion and neutral particle outflow, αrefl the reflection coefficient, vp the velocity
perpendicular to the wall. The distribution function of absorbed and re-emitted particles is

χin(xb,v) =
3

4π
m2

T 2
b

cos(θ) exp (−mv2

2Tb
) (3)

with θ the angle between v and the normal vector to the surface, and Tb the temperature of the wall.

We apply two assumptions to simplify the model, namely τneutral losses < τturbulence and
λmfp, neutrals� L‖,plasma.

The method of characteristics
The formal solution of equation (1) within these two approximations is

fn(x⊥,v) =

∫ r⊥b

0

[
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S(x,v) = νcx(x)nn(x)Φi(x,v) + νrec(x)fi(x,v)

νeff(x) = νiz(x) + νcx(x)

r ′ = |x− x′|

A linear integral equation for the neutral density is obtained by integrating equation (4) over v.

nn(x⊥) =

∫
dv fn(x⊥,v) =

∫
D
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′
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The kernel Kp→p only depends on plasma quantities. Equation (5) together with the boundary
conditions are spatially discretized, leading to a linear system of equations in the form[

nn
Γout

]
=

[
Kp→p Kb→p
Kp→b Kb→b

]
·
[

nn
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]
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nn,rec
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]
(7)

which can be solved with standard methods. nn can then be used to compute the distribution function
and any of its moments using equation (4).

The Global Braginskii Solver (GBS) code

The drift-reduced two-fluid plasma model is derived from these kinetic equations for ions and
electrons
∂fi
∂t

+ v · ∂fi
∂x

+ a · ∂fi
∂v

= νizfn − νcxnn

(
fi
ni
− fn

nn

)
− νrecfi + C(fi) (8)
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with Φe(v,T ) a Maxwellian distribution, Te,iz = Te/2− Eiz/3 + mev2
e/6−mev2

n/3, and
Te,en = Te + me(v2

e − v2
n )/3.

Two fluid drift-reduced Braginskii equations [Ricci et al., PPCF 2012], k2
⊥� k2

‖ , d/dt � ωci
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∇2
⊥φ = ω, ρ? = ρs/R, ∇‖f = b0 · ∇f , ω̃ = ω + τ∇2

⊥Ti, p = n(Te + τTi)

I These equations are implemented in GBS, a 3D, flux-driven, global turbulence code with circular
geometry including electromagnetic effects

I A set of fluid boundary conditions applicable at the magnetic pre-sheath entrance where the magnetic
field lines intersect the limiter is used [Loizu et al., PoP 2012]

Some achievements of GBS (see also http://crpp.epfl.ch/research_theory_plasma_edge):
I SOL width scaling as a function of

dimensionless/engineering plasma parameters
I Origin and nature of intrinsic toroidal plasma rotation
I Non-linear turbulent regimes in the SOL
I Mechanism regulating the equilibrium electrostatic potential
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