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Abstract
The deluge of sequenced whole-genome data has motivated the study of comparative ge-

nomics, which provides global views on genome evolution, and also offers practical solutions

in deciphering the functional roles of components of genomes. A fundamental computational

problem in whole-genome comparison is to infer the most likely large-scale events (rearrange-

ments and content-modifying events) of given genomes during their history of evolution.

Based on the principle of parsimony, such inference is usually formulated as the so called

edit distance problems (for two genomes) or median problems (for multiple genomes), i.e.,

to compute the minimum number of certain types of large-scale events that can explain

the differences of the given genomes. In this dissertation, we develop novel algorithms for

edit distance problems and median problems and also apply them to analyze and annotate

biological datasets.

For pairwise whole-genome comparison, we study the most challenging cases of edit distance

problems—the given genomes contain duplicate genes. We proposed several exact algorithms

and approximation algorithms under various combinations of large-scale events. Specifically,

we designed the first exact algorithm to compute the edit distance under the DCJ (double-cut-

and-join) model, and the first exact algorithm to compute the edit distance under a model

including DCJ operations and segmental duplications. We devised a (1.5+ε)-approximation

algorithm to compute the edit distance under a model including DCJ operations, insertions,

and deletions. We also proposed a very fast and exact algorithm to compute the exemplar

breakpoint distance. For multiple whole-genome comparison, we study the median problem

under the DCJ model. We designed a polynomial-time algorithm using a network flow for-

mulation to compute the so called adequate subgraphs—a central phase in computing the

median. We also proved that an existing upper bound of the median distance is tight.

These above algorithms determine the correspondence between functional elements (for

instance, genes) across genomes, and thus can be used to systematically infer functional

relationships and annotate genomes. For example, we applied our methods to infer orthologs

and in-paralogs between a pair of genomes—a key step in analyzing the functions of protein-

coding genes. On biological whole-genome datasets, our methods run very fast, scale up to

whole genomes, and also achieve very high accuracy.

Key words: rearrangement, inversion, double-cut-and-join, edit distance, median, gene

duplication, ortholog, paralog, integer linear program, network flow
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1 Introduction

The genome of an organism is the set of its genetic material, which encodes all the hereditary

instructions for building and maintaining that organism. During the history of evolution,

genomes have been constantly shaped by mutation and selected by natural environment,

which eventually leads to the myriad species with which we share the planet. As more and

more genomes of different species are sequenced facilitated by the rapid development of

high-throughput sequencing technologies, comparative genomics has found its indispensable

place in deciphering the mystery of genome and evolution. In this chapter, we first introduce

the biological background of comparative genomics, mainly focusing on the two types of

evolutionary events and their underlying molecular mechanisms. Then we state the funda-

mental computational problems in comparative genomics as well as the current challenges

and state-of-the-art solutions. Finally, we summarize the contributions of this dissertation.

1.1 Genome Evolution

In biology, a mutation is a permanent change of the nucleotide sequence of genomes. Muta-

tions are raw materials and driving force of evolution—every genetic feature in every organism

was, initially, the result of a mutation. According to the range of affected genome, genomic

mutations can be divided into small-scale events and large-scale events. These two types

of events have different underlying molecular mechanisms and also convey distinct genetic

consequences.

Small-scale events include nucleotides substitutions and indels. Substitutions, which ex-

change a single nucleotide for another, are often caused by chemicals or malfunction of DNA

replication. The effect of a substitution that occurs within the protein coding regions of a gene

can be silent, if the erroneous codon codes for the same (or a sufficiently similar) amino acid,

or missense, if it codes for a different amino acid, or nonsense, if it codes for a stop codon and

thus truncates the protein. Indels, which add or remove one or several nucleotides, are usually

caused by transposable elements, or errors during the replication of repeating elements. In

protein coding regions, an indel may result in a frameshift, if the length of an indel is not

1



Chapter 1. Introduction

a multiple of 3. Frameshift will alter all the following amino acids, which usually cause to

encounter a premature stop codon and thus produces a truncated protein. If the length of an

indel is divisible by three, usually the produced protein will gain or loss a few amino acids.

In contrast to the small-scale events that only affect a short and local region of genomes,

large-scale events (also called structural variations, genomic disorders) are referred to DNA

changes ranging from thousands to millions of base pairs. These events are further partitioned

into rearrangements—inversions, translocations, chromosome fusions and fissions—and

content-modifying events—tandem duplications, segmental duplications, whole-genome

duplications, gene insertions (including lateral transfer) and losses. Rearrangements may

disrupt genes, create fusion genes, shuffle orders and switch transcriptional orientations of

genes (see Figure 1.1). Content-modifying events can also affect copy number of genes.

Although still quite debatable, several molecular mechanisms have been proposed for large-

scale events [1]. Non-allelic homologous recombination (NAHR) between two low-copy

repeats (LCRs) is a major mechanism for recurrent large-scale events [2]. LCRs usually share

very high degree of sequence identity, which act as the mediators of NAHR. In meiosis or

mitosis, instead of the copies at the usual allelic positions, non-allelic copies of LCRs can be

aligned. Consequently, the subsequent crossover can result in various large-scale events (see

Figure 1.2). For example, when two LCRs are located on the same chromosome and in direct

orientation, NAHR between them causes reciprocal duplication and deletion; when they are

on the same chromosome but in opposite orientation, NAHR results in inversion.
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Figure 1.1 – The left part shows the dot-plot between chromosome 5 of human and chro-
mosome 5 of chimpanzee. There is a clear inversion between these two chromosomes. The
right part shows the dot-plot between chromosome X of human and chromosome X of mouse.
There are several rearrangements between these two chromosomes.
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1.2. Comparative Genomics

Non-homologous end-joining (NHEJ) is a major mechanism for nonrecurrent large-scale

events [3]. NHEJ is a pathway that repairs double-strand breaks (DSBs) in DNA. Inappropriate

NHEJ may lead to translocations and telomere fusion. For example, two DSBs followed by two

NHEJs that join the four DNA ends in a wrong combination can result in a translocation (see

Figure 1.3).

Fork stalling and template switching (FoSTeS) is regarded as a replication-based mechanism

for explaining complex large-scale events [4] (see Figure 1.4). FoSTeS has also been generalized

into another model, called microhomology-mediated break-induced replication (MMBIR) [5].

In this model, the replication fork may switch template in virtue of microhomology multiple

times, and thus causes complicated large-scale events.

1.2 Comparative Genomics

Due to the accumulation of these mutation events in the course of evolution, extant genomes

of different species exhibit certain degree of divergence. However, the functional elements (genes,

Figure 1.2 – Various non-allelic homologous recombinations (NAHR) mediated by two or
more LCRs (marked by yellow arrows) [6].

3



Chapter 1. Introduction

Figure 1.3 – An example illustrating that non-homologous end-joining (NHEJ) results in a
translocation [7].

Figure 1.4 – Illustration of fork stalling and template switching (FoSTeS). (i) A replication fork
stalls after encountering a DNA lesion (black square) on the template strand. (ii) The lagging
strand from the stalled replication fork anneals to the template strand of another replication
fork using microhomology. (iii) The invading strand is extended. (iv) The lagging strand
returns to the original template, allowing normal DNA replication to resume [8].

regulatory elements, etc) and biological pathways across related species have a strong ten-

dency of conservation by virtue of natural selection. Comparative genome analysis thus allows

us to establish the correspondence between functional elements across compared genomes,

as well as to understand their functions by translating knowledge gained about some genomes

to the object of study.

To achieve this, a basic and fundamental task is to correctly infer the evolutionary events

took place during the history of evolution. This task is usually formulated as an optimization

problem under the principle of parsimony, called edit distance problem (for two genomes)

or median problem (for multiple genomes), which is to seek a set of minimum number of

mutation events that can explain the difference of the compared genomes. For different

genomic datasets (sequence data or whole-genome data), different mutation events should

be considered, and different edit distance problems and median problems are formulated and

studied.

1.2.1 Sequence Comparison

When we are interested in comparing nucleotide sequences (usually a single transcript or

a protein sequence), small-scale evolutionary events are considered. In this case, the edit

4



1.2. Comparative Genomics

distance between two sequences, i.e., the minimum number of substitutions and indels that

can transform one sequence into the other, can be computed by efficient dynamic program-

ming algorithm. Further, counting events is replaced by more sophisticated substitution

matrices and gap models, and under this generalized scoring function, dynamic programming

algorithm can still be used to compute the optimal solution. In addition to pairwise sequence

comparison, multiple sequence alignment is also widely studied. Many tools and softwares

have been proposed for both pairwise and multi-way sequence comparison, which are now

playing a very important role in the study of biology.

1.2.2 Whole-genome Comparison

When we are interested in comparing whole-genomes, large-scale events are considered. In

this case, it is more interesting and convenient to only consider genes (or syntenic blocks,

conserved sequence markers) in the genomes, rather than modeling each genome as a long

DNA sequence [9]. That is, we model each genome as a set of chromosomes while model each

chromosome as a linear or circular list of genes (see Figure 1.5). In this model, each gene has a

sign, indicating its transcriptional direction. All genes in the given genomes are grouped into

gene families, which are usually built through clustering based on their sequence similarity. We

say genes in the same gene family are homologous. Throughout this dissertation, homologous

genes are represented with the same symbol and distinguished by different superscripts.

With this model of genomes, these large-scale events can be formally defined. For rearrange-

ment events, an inversion reverses a segment (several continuous genes on one chromosome)

and also switches all the signs of the genes on this segment (see Figure 1.6(a)); an translocation

reciprocally exchanges segments (with telomeres) between two linear chromosomes (see Fig-

ure 1.6(b)); an chromosome fusion merges two chromosomes into one while an chromosome

fission splits one chromosome into two (see Figure 1.6(c)). For content-modifying events, a

segmental duplication copies a segment and then inserts the copy to another position (see

Figure 1.7).

Yancopoulos et al. proposed a universal operation, called double-cut-and-join (DCJ), which

a1 b1 −a2 c1

{a1t} {a1h, b1t} {b1h, a2h} {a2t , c1t} {c1h}

a3b3

c2 −b2

{b2t , a3t}

{a3h, b3t}

{b3h, c2t}

{c2h, b2h}

Figure 1.5 – Example of a genome consisting of a linear chromosome with 4 genes and a
circular chromosome with 4 genes. All adjacencies and telomeres are also illustrated.
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a b c d

{ah, bt} {ch, dt}
inversion a −c −b d

{ah, ch} {bt, dt}

(a)

a b c d

{bh, ct}

e f g h

{fh, gt}

a b g h

{bh, gt}

e f c d

{fh, ct}

a b −f −e

{bh, fh}

−d −c g h

{ct, gt}

translocation

translocation translocation

(b)

a b

{bh}
c d

{dh}
a b −d −c

{bh, dh}

fusion

fission

(c)

Figure 1.6 – Examples of rearrangements.

a1 b1 c1 d1

{c1h, d1t}

segmental

duplication

a1 b1 c1 a2 b2 d1

{c1t , a2h} {b2t , d1h}

Figure 1.7 – Example of a segmental duplication, in which segment of (a2,b2) is duplicated
using segment of (a1,b1) as template.

can be used to represent almost all the existing rearrangement events [10]. To define the

DCJ operation, we further introduce some notations [11]. The two ends of a gene g (head

and tail, represented by gh and g t respectively) are called extremities. Two consecutive genes

form one adjacency, which is represented as a set of two extremities. The two ends of each

linear chromosome are called telomeres, each of which is represented by a set of a single

extremity (see Figure 1.5). With these notations, a DCJ operation can be defined as follows: it
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1.2. Comparative Genomics

takes one or two adjacencies (or telomeres) in the genome as input, then produces one or two

new adjacencies (or telomeres) through recombining all the involved extremities. Formally, a

DCJ operation falls in one of the following four cases:

• {p, q}+ {r, s} → {p,r }+ {q, s}, or {p, s}+ {q,r };

• {p, q}+ {r } → {p,r }+ {q}, or {p}+ {q,r };

• {p, q} → {p}+ {q};

• {p}+ {q} → {p, q}.

Clearly, inversion, translocation, chromosome fusion and fission are all special cases of DCJ

operation (see Figure 1.6). Because of its generality and universality, DCJ operation has formed

the basis for most algorithmic research on rearrangements over the last few years [12, 13, 14,

15, 16, 17].

Feijão and Meidanis proposed another general operation, called single-cut-or-join (SCJ) [18].

A SCJ operation either performs a cut in the genome, which breaks one adjacency into two

telomeres, or performs a join, which merges two telomeres into one adjacency. SCJ model is a

formalization of the commonly used term of breakpoint in studying structural variations.

Similar to sequence comparison, a basic and fundamental computational problem for pairwise

whole-genome comparison is to compute the edit distance between two given genomes, which

is defined as the minimum number of certain types of large-scale events that can transform

one genome into the other. There are many different versions of edit distance problems,

depending on different assumptions on the given genomes and various combinations of

large-scale events.

When the two given genomes do not contain duplicated genes, i.e., each gene family in each

genome consists of exactly one gene (see Figure 1.8(a)), most of the edit distances are well-

defined and can be computed in polynomial-time. Under the inversion model, Hannenhalli

and Pevzner pioneeringly gave the first polynomial-time algorithm to compute the edit dis-

tance for two unichromosomal genomes [19], which was later improved to linear time [20].

Under the model including inversions and translocations, the edit distance problem has been

studied through a series of papers [19, 21, 22, 23], culminating in a fairly complex linear-time

algorithm [14]. Under the DCJ model, the edit distance can be computed in linear time in

a elegant way [11]. Under the SCJ model, the edit distance (also called breakpoint distance)

can also be computed very simply in linear time. Under the model including inversions and

insertions (or deletions), El-Mabrouk proposed an efficient algorithm to compute the edit

distance [24]. Finally, under the model including DCJ operations, insertions and deletions,

Braga et al. gave a linear time algorithm to compute the edit distance [25, 26], which was then

simplified in [27].

7



Chapter 1. Introduction

However, gene duplications are widespread events and have long been recognized as a major

driving force of evolution [28, 29]. Thus, it is much more interesting and important to compare

whole-genomes with duplicate genes (see Figure 1.8(b)). In this case, we need to infer the

one-to-one correspondence between the homologous genes across the two given genomes.

Formally, the edit distance problem in the presence of duplicate genes can be defined as to

compute a matching between homologous genes, such that the edit distance (under a certain

model) between the two genomes induced by this matching (we can assign each pair of genes

in it a new gene family, thus the two genomes can be regarded without duplicate genes and

the edit distance is well-defined) is minimized. According to the cardinality of the matching

for each gene family, we have three different strategies:

• exemplar strategy [30], which is for each gene family to select exactly one gene and

remove other copies in each genome (see Figure 1.8(c));

• intermediate strategy [31, 32], which is for each gene family to select the same number (at

least one) of genes and remove other copies in each genome;

• maximum matching strategy [33], which is for each gene family to select as many genes

as possible (the smaller size of this gene family between the two genomes) and remove

other copies in each genome (see Figure 1.8(d)).

Unfortunately, with either strategy almost all edit distance formulations are NP-hard. For

example, with the exemplar strategy, the breakpoint distance problem and the inversion

distance problem have been proved NP-hard [34]. Moreover, the breakpoint distance cannot

G1

G2

a1 b1 c1 d1

b2 c2 −a2 d2

(a)

G3

G4

a1 b1 c1 a2 c2 d1

b2 −a3 −c3 a4 −d2 c3

(b)

G′
3

G′
4

a1 b1 c2 d1

b2 a4 −d2 c3

(c)

G3

G4

a1 b1 c1 a2 c2 d1

b2 −a3 −c3 a4 −d2 c3

(d)

Figure 1.8 – (a) Two genomes without duplicate genes. The one-to-one correspondence (rep-
resented by thin lines) between homologous genes is unique. (b) Two genomes with duplicate
genes, in which the correspondence is not unique. (c) One possibility under exemplar strategy
for G3 and G4. (d) One possibility under the maximum matching strategy for G3 and G4.
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1.3. Contributions of this Dissertation

be approximated in polynomial time unless P = NP [35, 36]. With the maximum matching

strategy, both the inversion distance and the DCJ distance have been proved NP-hard [37].

Many exact algorithms and heuristics have been proposed for these edit distance problems in

the presence of duplicate genes. With the exemplar strategy, Sankoff [30] gave a first branch-

and-bound algorithm to compute the breakpoint and inversion distances. Nguyen et al. gave

a much faster divide-and-conquer approach for the breakpoint distance [38]. With the in-

termediate strategy, Angibaud et al. [31] proposed an exact algorithm using integer linear

programming to compute the breakpoint distance. With the maximum matching strategy,

Suksawatchon et al. proposed a heuristic to compute the inversion distance using integer

linear programming [39]. Chen et al. proposed an efficient heuristic to compute the in-

version distance through decomposing this problem into two new optimization problems,

called minimum common partition and maximum cycle decomposition, for which efficient

heuristic algorithms are given [37]. Later, their method was extended for a model includ-

ing rearrangements and single-gene duplications [40], which was then implemented as a

software package, called MSOAR. MSOAR has been applied to assign orthologs and paralogs

between two genomes, and its performance has been shown outperformed other orthologous

assignment softwares based on sequence similarity (like INPARANOID [41]).

Similar to multiple sequence alignment, multiple genome comparison is also fairly studied.

The simplest formulation is the median problem, which is a generalization of the edit distance

problem. The median problem is given three genomes, to construct a fourth one, such that

the sum of the edit distances between itself and each of the three given genomes is minimized.

The median problem is NP-hard for almost all formulations [42, 43] even if the given genomes

are without duplicate genes. Under the inversion model, several exact algorithms [44, 45]

and heuristics [46, 47] have been proposed. Under the DCJ model, Zhang et al. presented

an exact solver using a branch-and-bound framework [48]. Xu et al. proposed a promising

decomposition scheme by proving an optimal substructure of the problem [49, 50].

1.3 Contributions of this Dissertation

We focus on whole-genome comparison. The main contributions of this dissertation are in

two folds. First, we designed novel algorithms for these edit distance problems and median

problems, listed as follows.

1. We proposed a very fast and exact algorithm to compute the breakpoint distance with

the exemplar strategy in the presence of duplicate genes (see Chapter 2) [51].

2. We proposed the first exact algorithm to compute the DCJ distance with the maximum

matching strategy in the presence of duplicate genes (see Chapter 3) [52].

3. We proposed the first exact algorithm to compute the edit distance under a model

including DCJ operations and segmental duplications with the maximum matching

9



Chapter 1. Introduction

strategy in the presence of duplicate genes (see Chapter 4) [53].

4. We devised a (1.5+ε)-approximation algorithm to compute the edit distance under a

model including DCJ operations, insertions and deletions with the maximum matching

strategy in the presence of duplicate genes (see Chapter 5) [54].

5. We designed a polynomial-time algorithm to compute the adequate subgraph, a key

step in solving the median problem. We also proved that an existing upper bound for

the median problem is tight (see Chapter 6) [55].

6. We proposed a new universal graphical data structure, trajectory graph, which can repre-

sent both rearrangements and content-modifying events in a very natural way. We also

gave a polynomial-time algorithm to simplify the trajectory graph (see Chapter 7) [56].

Second, we applied these algorithms to analyze whole-genome datasets and to infer functional

relationships between them. For example, the algorithm proposed in [52, 51, 53] can be used to

infer orthologs (and in-paralogs [53]) between two genomes. We tested our methods on both

simulated datasets and biological datasets, and the results demonstrated that our methods

can achieve very high accuracy (about 99% on five mammalian genomes) and outperformed

the state-of-the-art orthology assignment method MSOAR [37, 40, 57].
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2 Exemplar Breakpoint Distance

In this chapter, we propose a very fast and exact algorithm to compute the breakpoint distance

with the exemplar strategy. In Section 1, we first formally state the problem using the equiv-

alent definition of shared adjacencies (rather than breakpoints). In Section 2, we describe

our algorithm, which consists of an integer linear program formulation and two specific tech-

niques, one is to add a collection of new constraints to the ILP formulation and thereby reduce

its search space, and the other is to identify optimal substructures and thereby reduce the size

of the instance. In Section 3, we evaluate the efficiency of these two techniques and compare

our full algorithm with the state-of-the-art divide-and-conquer algorithm through simulation.

In Section 4, we propose a very fast heuristic through iteratively applying this exact algorithm

to maximize the number of shared adjacencies under the intermediate strategy, which can

be naturally used to infer orthologs. The performance of this method is then tested on five

well-annotated genomes and compared with MSOAR.

2.1 Problem Statement

We model each genome as a set chromosomes and each chromosome as a (linear or circular)

list of genes (see Section 1.2.2). For each linear chromosome in the genome, we always add

one capping gene, represented by τ, to each of its two ends. Given a chromosome, we can

reverse the list of symbols and switch all the signs, which will result in the same chromosome.

For example, an equivalent representation of a linear chromosome (τ, a1, a2, · · · , am ,τ) is

(τ,−am , · · · ,−a2,−a1,τ).

Genes in the input genomes are grouped into gene families, and genes in the same family are

called homologous. We place all of the capping “genes" into a single gene family of their own,

denoted by fτ. Given a genome G , we denote by A (G) the set of all the gene families in G .

We define Ã (G) = A (G) \ { fτ}. For a gene family f ∈ A (G), we use F (G , f ) to denote the set

of genes in G that come from f . Given a genome G , we can delete all but one gene for each

non-capping gene family, resulting in a new genome satisfying |F (G , f )| = 1 for all f ∈ Ã (G),

called an exemplar of G .

11



Chapter 2. Exemplar Breakpoint Distance

Two consecutive genes a and b on the same chromosome form an adjacency, written as

(a,b). Notice that (a,b) and (−b,−a) are the same adjacency. (This definition of adjacency

is equivalent with the form consisting of two extremities in Section 1.2.2. We can write

(a,b) = (−b,−a) = {ah ,bt }.) We say an adjacency (a,b) is simple if a and b come from different

gene families. Given two genomes G1 and G2, we say two simple adjacencies (a1,b1) ∈ G1

and (a2,b2) ∈G2 form a pair of shared simple adjacencies (PSSA), written as 〈(a1,b1), (a2,b2)〉,
if a1 and a2 (and also b1 and b2) have the same sign and come from the same gene family.

We use s(G1,G2) to denote the number of PSSAs between G1 and G2. Given two genomes

G1 and G2 with Ã (G1) = Ã (G2), the exemplar breakpoint distance problem is to compute a

pair of exemplars, G ′
1 and G ′

2 for G1 and G2 respectively, such that s(G ′
1,G ′

2) is maximized (see

Figure 2.1 for an example).

2.2 Algorithm

We describe a fast and exact algorithm for the exemplar breakpoint distance problem. The

algorithm consists of a preprocessing phase to reduce the complexity of the instance, followed

by an integer linear program (ILP) to solve the reduced instance. In the preprocessing phase,

the algorithm iteratively identifies optimal substructures, fixing in place those it finds, until no

such substructure can be found. The reduced instance is then formulated as an ILP. By using

the properties of the optimal solution, we can add a collection of new constraints to the ILP,

thereby reducing the search space and making the ILP very efficient. For ease of description,

we present first the ILP formulation, in Section 2.2.1, then the algorithm for adding the extra

constraints, in Section 2.2.2, and finally the algorithm for identifying the optimal substructures,

in Section 2.2.3.

a1 b1 c1

b2 −c2 d1

(G1)

a2−b3

c3 b4

a3 −d2

(G2)

a1 c1

b2 d1

(G′
1)

a2

c3

b4

−d2

(G′
2)

Figure 2.1 – G1 contains two linear chromosomes, and G2 contains one linear and one circular
chromosomes. A (G1) = A (G2) = {τ, a,b,c,d}. G ′

1 and G ′
2 are two exemplars of G1 and G2,

respectively. There are two PSSAs, q1 = 〈(a1,c1), (a2,c3)〉 and q2 = 〈(d 1,τ), (τ,−d 2)〉, between
G ′

1 and G ′
2, which means that s(G ′

1,G ′
2) = 2. We have P (G1,G2) = {〈[τ, a1], [τ, a3]〉,〈[a1,c1],

[a2,c3]〉,〈[b1,c1], [b4,c3]〉,〈[b2,−c2], [−b3,c3]〉,〈[τ,d 1], [−d 2,τ]〉,〈[d 1,τ], [τ,−d 2]〉}. There are
two PSSPAs, p1 = 〈[a1,c1], [a2,c3]〉 and p2 = 〈[d 1,τ], [τ,−d 2]〉, that survive in G ′

1 and G ′
2, and

p1 and p2 are the indicators of q1 and q2, respectively.
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2.2.1 ILP Formulation

We first generalize the definition of adjacency. We say two genes a and b on the same chro-

mosome form a potential adjacency, written as [a,b], if we can remove all genes between a

and b and yet retain at least one gene in every gene family in every genome. (Adjacencies are

just potential adjacencies where nothing need to be removed.) We say a potential adjacency

[a,b] is simple if a and b come from different gene families. Given two genomes G1 and G2,

we say two simple potential adjacencies [a1,b1] ∈G1 and [a2,b2] ∈G2 form a pair of shared

simple potential adjacencies (PSSPA), written as 〈[a1,b1], [a2,b2]〉, if a1 and a2 (and also b1

and b2) have the same sign and come from the same gene family. Given a pair of exemplars

G ′
1 and G ′

2 of G1 and G2 respectively, we say a PSSPA p = 〈[a1,b1], [a2,b2]〉 between G1 and

G2 survives in G ′
1 and G ′

2 if q = 〈(a1,b1), (a2,b2)〉 is a PSSA between G ′
1 and G ′

2; we then say

that the PSSPA p is the indicator of the PSSA q . We denote by P (G1,G2) the set of all PSSPAs

between G1 and G2 (see Figure 2.1). Clearly, all PSSAs in any pair of exemplars of G1 and G2

can find their indicators in P (G1,G2). We say a set of PSSPAs P can coexist w.r.t. G1 and G2 if

there exists a pair of exemplars G ′
1 and G ′

2 of G1 and G2 such that all PSSPAs in P survive in G ′
1

and G ′
2 simultaneously. Thus, the exemplar breakpoint distance problem can be restated as

computing a subset of P (G1,G2) with maximum cardinality that can coexist—and this new

perspective leads to our ILP formulation.

We use two types of variables. First, for every gene a in the two given genomes, we use one

binary variable xa to indicate whether this gene appears in the final pair of exemplars. Second,

for every PSSPA p ∈P (G1,G2) we use one binary variable yp to indicate whether p survives.

Our ILP has two types of general constraints. First, we require that for each non-capping gene

family in each genome, exactly one gene appears in the final exemplar:

∑
a∈F (G1, f )

xa = 1, ∀ f ∈ Ã (G1),∑
a∈F (G2, f )

xa = 1, ∀ f ∈ Ã (G2).

Second, for each PSSPA p = 〈[a1,b1], [a2,b2]〉, we require that, if p survives, then the two pairs,

〈a1, a2〉 and 〈b1,b2〉, must appear in the final exemplars, while those genes between a1 and

b1 (and also between a2 and b2) cannot appear in the final exemplars:

yp ≤ xa1 , xa2 , xb1 , xb2 , ∀p = 〈[a1,b1], [a2,b2]〉 ∈P (G1,G2),

xa ≤ 1− yp , ∀a between a1 and b1 or between a2 and b2.

The objective of the ILP is to maximize the sum of the variables for PSSPAs:

max
∑

p∈P (G1,G2)
yp .
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Chapter 2. Exemplar Breakpoint Distance

Our ILP formulation is similar to the one proposed in [31], but has fewer variables; it uses

some of the same ideas we used for the DCJ distance problem [52]. In our testing, all ILP

instances are solved with GUROBI [58].

2.2.2 Adding Inference Constraints

The constraints we add are based on two new properties of optimal exemplars.

Lemma 2.2.1. Let G1 and G2 be two exemplars. If we remove one non-capping gene from the

same gene family for each genome, resulting in two new genomes G1 and G2 respectively, then

we have s(G1,G2) ≥ s(G1,G2)−1.

Proof. Let a1 and a2 be the two genes that are removed from G1 and G2, respectively. Assume

that a1 and a2 have the same sign; otherwise we can reverse the chromosome on which a2 is

found. Let
←−
a1 and

−→
a1 (resp.

←−
a2 and

−→
a2) be the predecessor and successor of a1 (resp. a2). In

terms of adjacencies, we have that (
←−
a1, a1) and (a1,

−→
a1) (resp. (

←−
a2, a2) and (a2,

−→
a2)) are removed

from G1 (resp. G2), and (
←−
a1,

−→
a1) (resp. (

←−
a2,

−→
a2)) is added to G1 (resp. G2). If (

←−
a1, a1) and (

←−
a2, a2)

do not form a PSSA, or (a1,
−→
a1) and (a2,

−→
a2) do not form a PSSA, then we lose at most one PSSA

and thus the conclusion holds. Otherwise, (
←−
a1,

−→
a1) and (

←−
a2,

−→
a2) must form a new PSSA between

G1 and G2, so the conclusion also holds.

Let G ′
1 and G ′

2 be a pair of exemplars of G1 and G2. We say a PSSA p = 〈(a1,b1), (a2,b2)〉
between G1 and G2 agrees with G ′

1 and G ′
2 if either both 〈a1, a2〉 and 〈b1,b2〉 appear in G ′

1 and

G ′
2, or neither 〈a1, a2〉 nor 〈b1,b2〉 appears in G ′

1 and G ′
2.

Lemma 2.2.2. For any PSSA p between G1 and G2, there always exists an optimal pair of

exemplars of G1 and G2 with which p agrees.

Proof. Let p = 〈(a1,b1), (a2,b2)〉 be a PSSA. Suppose that there exists one optimal pair of

exemplars G∗
1 and G∗

2 with which p does not agree; otherwise the lemma is proved. Without

loss of generality, we assume that 〈a1, a2〉 appears in G∗
1 and G∗

2 , but 〈b1,b2〉 does not (thus

b1 and b2 are non-capping genes). Let b3 and b4 be the two genes in G∗
1 and G∗

2 that come

from the same gene family as b1 and b2 (we may have b3 = b1 or b4 = b2, but not both).

Let G∗
1 and G∗

2 be the two genomes after removing 〈b3,b4〉 from G∗
1 and G∗

2 . According to

Lemma 2.2.1, we have s(G∗
1 ,G∗

2 ) ≥ s(G∗
1 ,G∗

2 )−1. We then insert 〈b1,b2〉 into G∗
1 and G∗

2 to

create the PSSA 〈(a1,b1), (a2,b2)〉, resulting in two new genomes G ′
1 and G ′

2. Clearly, we have

s(G ′
1,G ′

2) = s(G∗
1 ,G∗

2 )+1. Combining these two formulas yields s(G ′
1,G ′

2) ≥ s(G∗
1 ,G∗

2 ), which

implies that G ′
1 and G ′

2 are also an optimal pair of exemplars of G1 and G2.

Given a PSSA 〈(a1,b1), (a2,b2)〉, Lemma 2.2.2 allows us to add the following inference con-

straints to the ILP, which guarantee that, for the two pairs of genes 〈a1, a2〉 and 〈b1,b2〉, the
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2.2. Algorithm

appearance of one pair implies the appearance of the other pair:

xb1 , xb2 ≥ xa1 +xa2 −1,

xa1 , xa2 ≥ xb1 +xb2 −1.

However, we cannot add such constraints simultaneously for two or more PSSAs, as the

following example demonstrates.

Example 2.2.1. Let G1 = (τ, a1,b1,c1,d 1, a2,e1,τ) and G2 = (τ, a3,b2,e2,d 2, a4,c2,τ). We have

|F (G1, f )| = |F (G2, f )| = 1 for each f ∈ {b,d ,e}. If the appearance of 〈b1,b2〉 implies that of

〈a1, a3〉 and the appearance of 〈d 1,d 2〉 implies that of 〈a2, a4〉, we get two genes from gene

family a in each exemplar.

For a PSSA p, we denote by A (p) the two gene families in p. We say two PSSAs p and q are

independent, if we have A (p) =A (q), or A (p)∩A (q) =;. Given two genomes G1 and G2, we

denote by Q(G1,G2) the set of all PSSAs between G1 and G2 (see Figure 2.2 for an example). We

say a subset Q ⊂Q(G1,G2) is mutually independent, if every two PSSAs in Q are independent.

Lemma 2.2.3. Let Q ⊂ Q(G1,G2) be a set of PSSAs. If Q is mutually independent, then there

exists an optimal pair of exemplars with which every PSSA in Q agrees.

Proof. Let G∗
1 and G∗

2 be any optimal pair of exemplars. Suppose that there exists one PSSA

p = 〈(a1,b1), (a2,b2)〉 ∈Q that does not agree with G∗
1 and G∗

2 ; otherwise the lemma is proved.

Without loss of generality, we assume that 〈a1, a2〉 appears in G∗
1 and G∗

2 , but 〈b1,b2〉 does not.

As we did in the proof of Lemma 2.2.2, now we remove the pair of genes 〈b3,b4〉 that come

from the same gene family as 〈b1,b2〉 in G∗
1 and G∗

2 , and then insert 〈b1,b2〉 into G∗
1 and G∗

2 ,

producing a new optimal pair of exemplars G ′
1 and G ′

2. Clearly, p agrees with G ′
1 and G ′

2.

We now show that those PSSAs that agree with G∗
1 and G∗

2 will also agree with G ′
1 and G ′

2.

To prove that, we need only consider those PSSAs affected by the removal of 〈b3,b4〉. If we

have another PSSA q ∈Q that contains 〈b3,b4〉, say q = 〈(b3, x1), (b4, x2)〉, then 〈x1, x2〉 must

come from the same gene family as 〈a1, a2〉, because p and q are independent. Since 〈a1, a2〉
appears in G∗

1 and G∗
2 , we know that 〈x1, x2〉 does not appear, which implies that q does not

agree with G∗
1 and G∗

2 , but does agree with G ′
1 and G ′

2. If we have another PSSA q ∈ Q that

contains b3 or b4 but not 〈b3,b4〉, e.g., q = 〈(b3, x1), (b5, x2)〉, then for the same reason we know

that 〈x1, x2〉 comes from the same gene family as 〈a1, a2〉, which implies that q agrees with

G∗
1 and G∗

2 and also agrees with G ′
1 and G ′

2. Thus, comparing with G∗
1 and G∗

2 , we have more

PSSAs agreeing with G ′
1 and G ′

2. We can repeat this procedure and end up with an optimal pair

of exemplars with which all PSSAs in Q agree.

Hence, in order to add simultaneous inference constraints to the ILP, we need to find mutually

independent PSSAs. We thus focus on this optimization problem: given Q(G1,G2), compute a
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mutually independent subset Q ⊂Q(G1,G2) of maximum cardinality. We now give an efficient

algorithm for this problem by reducing it to a maximum-weight matching problem.

We build the graph G = (V ,E) as follows. For each gene family in A (G1)∪A (G2), we add one

vertex to V . For each PSSA p ∈Q(G1,G2), we check whether there is already an edge between

the two vertices corresponding to the two gene families in A (p). If such an edge already exists,

we increase its weight by 1; otherwise, we create it and set its weight to 1. Clearly, two PSSAs

in Q(G1,G2) are not independent if and only if their corresponding edges share exactly one

vertex in G . Thus, the mutually independent subset Q ⊂Q(G1,G2) with maximum cardinality

corresponds to the matching in G with maximum total weight (see Figure 2.2 for an example).

We can use Edmonds’s algorithm to compute the maximum-weight matching in G , which

gives us the mutually independent subset Q ⊂ Q(G1,G2) of maximum cardinality. We can

then safely add these inference constraints to the ILP for all PSSAs in Q simultaneously. The

efficiency of these constraints is studied in Section 2.3.

2.2.3 Identifying Optimal Substructures

We say n consecutive genes (a1, a2, · · · , an) on one chromosome form a segment of length n.

Notice that (a1, a2, · · · , an) and (−an , · · · ,−a2,−a1) are the same segment. For a segment t of

length n, we use A (t ) to denote the set of gene families among these genes in t , and we say t

is simple if we have |A (t)| = n. Given two genomes G1 and G2, we say two simple segments

(a1, a2, · · · , an) ∈ G1 and (b1,b2, · · · ,bn) ∈ G2 form a pair of shared simple segments (PSSS for

short), written as 〈(a1, a2, · · · , an), (b1,b2, · · · ,bn)〉, if ai and bi have the same sign and come

from the same gene family for all 1 ≤ i ≤ n, or ai and bn−i+1 have the opposite sign and come

from the same gene family for all 1 ≤ i ≤ n (see Example 2.2.2). Intuitively, those PSSSs between

two genomes are more likely to stay in the optimal exemplars, since each PSSS of length n can

contribute (n −1) PSSAs to the exemplars. In this section we give a sufficient condition for a

given PSSS to be contained in some optimal exemplars, and devise an algorithm to test it.

Let p = 〈(a1, a2, · · · , an), (b1,b2, · · · ,bn)〉 be a PSSS between two genomes G1 and G2. We say

a PSSPA 〈[x1, y1], [x2, y2]〉 spans p if (a1, · · · , an) is between x1 and y1, or (b1, · · · ,bn) is be-

tween x2 and y2, or both. We denote by S1(p) ⊂P (G1,G2) the set of all PSSPAs that span p.

Let S2(p) be the set of PSSPAs that consist of at least one gene pair in p, i.e., those PSS-

c1 a1 a2 b1

b2 c2 d1 a3

(G1)

c3 a4 b3 c4 d2

d3 a5 b4

(G2)

a b

cd

0
2

11 1
1

1 1

(G)

Figure 2.2 – Q(G1,G2) = {〈(τ,c1), (τ,c3)〉,〈(c1, a1), (c3, a4)〉,〈(a2,b1), (a4,b3)〉,〈(a2,b1), (a5,b4)〉,
〈(b1,τ), (b4,τ)〉,〈(b2,c2), (b3,c4)〉,〈(c2,d 1), (c4,d 2)〉,〈(d 1, a3), (d 3, a5)〉}. G is the corresponding
graph, in which one maximum-weight matching is shown as bold edges.
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2.2. Algorithm

PAs 〈[x1, y1], [x2, y2]〉 satisfying 〈x1, x2〉 = 〈ai ,bi 〉, or 〈y1, y2〉 = 〈a j ,b j 〉, or both, for some

1 ≤ i 6= j ≤ n. Let S3(p) be the set of PSSPAs that consist of at least one gene pair from

gene family in A (p), i.e., those PSSPAs 〈[x1, y1], [x2, y2]〉 satisfying that the gene family of

〈x1, x2〉 or of 〈y1, y2〉, or of both, comes from A (p). Clearly, we have S2(p) ⊂ S3(p). Set

S(p) = S1(p)∪S3(p) \ S2(p) and let m(p) be the maximum number of PSSPAs in S(p) that can

coexist w.r.t. G1 and G2 (see Example 2.2.2). Intuitively, m(p) is the maximum number of

PSSAs that can be destroyed by the appearance of p. Thus, if we have m(p) ≤ n−1, where n−1

is the number of PSSAs inside p, then some optimal solution must include p. Formally, we

have the following lemma.

Lemma 2.2.4. Let p be a PSSS with n gene pairs between G1 and G2 and assume m(p) ≤ n −1;

then there exists an optimal pair of exemplars of G1 and G2 that contains p.

Proof. We prove the lemma by contradiction. Write p = 〈(a1, a2, · · · , an), (b1,b2, · · · ,bn)〉 and

let G∗
1 and G∗

2 be an optimal pair of exemplars of G1 and G2 that does not contain p. We can

assume that G∗
1 and G∗

2 do not contain any pair of genes in p, i.e., do not contain 〈ai ,bi 〉 for

any 1 ≤ i ≤ n, since otherwise, we can iteratively apply Lemma 2.2.2 to build another optimal

pair of exemplars that include all pairs of genes in p, which contradicts the assumption.

Now we modify G∗
1 and G∗

2 to create a new pair of exemplars of G ′
1 and G ′

2. We first remove

those n gene pairs coming from the gene families in A (p). Exactly those PSSAs between

G∗
1 and G∗

2 that contain at least one gene pair with gene family in A (p) are destroyed. We

denote by P3 those PSSAs that are destroyed in this step. Second, we insert p back to G∗
1 and

G∗
2 . This step can destroy at most two PSSAs between G∗

1 and G∗
2 , since the insertion of two

segments (one in each genome) will break only two adjacencies. We denote by P1 the set of

PSSAs that are destroyed in this step.

Let I3 and I1 be the sets of the indicators of P3 and P1, respectively. According to the construc-

tion, we have I3 ⊂ S3(p) \ S2(p) and I1 ⊂ S1(p). Moreover, these PSSPAs in I3 ∪ I1 can coexist

w.r.t. G1 and G2, since P3 and P1 can appear in a pair of exemplars, G∗
1 and G∗

2 , simultaneously.

Using the condition, we get |P3 ∪P1| = |I3 ∪ I1| ≤ n −1, which means that, during the modifi-

cation, at most (n −1) PSSAs are destroyed. On the other hand, the insertion of p introduces

(n −1) new PSSAs to G ′
1 and G ′

2. Thus, we can write s(G ′
1,G ′

2) ≥ s(G∗
1 ,G∗

2 ), which contradicts

the assumption.

We now give an algorithm to compute an upper bound for m(p). We create a new pair of

genomes G1(p) and G2(p) by keeping only the genes appearing in some PSSPA in S(p) and

removing rest of the genes in G1 and G2. Those PSSPAs in S(p) that can coexist w.r.t. G1 and

G2 can also coexist w.r.t. G1(p) and G2(p), so that the maximum number of PSSPAs in S(p)

that can coexist w.r.t. G1(p) and G2(p) is an upper bound for m(p). Thus, we can apply the

algorithm described in Section 2.2.1 to compute the upper bound: in the ILP formulation,

we just need to replace G1, G2, and P (G1,G2) by G1(p), G2(p), and S(p), respectively, and the

optimal objective value of this ILP will give us an upper bound for m(p). If the upper bound is

no larger than (n −1), then according to Lemma 2.2.4, we know that p is contained in some
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optimal solution. We can then safely fix p by removing other genes from gene families in A (p)

except those in p.

Example 2.2.2. Consider two genomes G1 = (τ,−d 1, a1,b1,c1,e1,c2,− f 1,b2, a2,τ) and G2 =
(τ,−b3, a3,b4, c2,−e2,−b5,c3,d 2, f 2,τ). Let p = 〈(a1,b1,c1), (a3,b4,c2)〉 be a PSSS between G1

and G2. We have S1(p) = {〈(−d 1,e1), (−e2,d 2)〉} and S3(p)\S2(p) = {〈(−d 1,b1), (−b5,d 2)〉,〈(b1,e1),

(−e2,−b5)〉,〈(b2,τ), (τ,−b3)〉}. We then create G1(p) and G2(p) based on S(p), obtaining

G1(p) = (−d 1,b1,e1,b2,τ) and G2(p) = (τ,−b3,−e2,−b5,d 2). There are at most two PSSPAs in

S(p) that can coexist w.r.t. G1(p) and G2(p), i.e., m(p) ≤ 2. Thus, p is contained in some optimal

exemplars of G1 and G2. We can then simplify G1 and G2 to G ′
1 = (τ,−d 1, a1,b1,c1,e1,− f 1,τ)

and G ′
2 = (τ, a3,b4,c2,−e2,d 2, f 2,τ).

For an arbitrary PSSS p, the cardinality of S(p) is usually small, since it consists of only the

PSSPAs related with the gene families in A (p) and those spanning p. Thus, we expect the

corresponding ILP instance to be small and efficiently solvable. The preprocessing phase

applies this algorithm iteratively. At each iteration, we list all possible maximal PSSSs, i.e.,

those PSSSs that cannot be extended into longer ones. For each of these maximal PSSSs, we

use the above algorithm to test whether it is contained in some optimal solution. If it is, then

we fix it and start a new iteration. If the test fails for all maximal PSSSs, then the preprocessing

phase terminates. The efficacy of this procedure is studied in Section 2.3.

2.3 Simulation Results

We simulate a pair of genomes as follows. We start from an ancestor genome with only one

linear chromosome consisting of N gene families, each of which contains exactly one gene.

The two extant genomes then evolve independently from this ancestor genome. The evolution

process on each branch includes a series of genome-scale events: inversions, which occur with

probability p, and segmental duplications, which occur with probability (1−p). An inversion

randomly chooses two positions on the same chromosome and then reverses the segment

in-between. A segmental duplication randomly chooses a segment of length L and insert its

copy to another random position. We make sure that the expected number of genes per gene

family is two in each genome—so that the number of events on each branch is N /((1−p) ·L).

Thus, a simulation configuration is determined by the triple (N , p,L).

First, we evaluate the efficacy of the two features (preprocessing and additional constraints) in

our algorithm. The preprocessing procedure to identify and fix the optimal substructures (Sec-

tion 2.2.3) is referred to as feature 1, while the procedure to add the inference constraints (Sec-

tion 2.2.2) is referred to as feature 2. We denote by ALGO0 the basic ILP formulation, denote by

ALGO1 (resp. ALGO2) the basic ALGO0 with feature 1 (resp. feature 2), and denote by ALGO3

the basic ALGO0 with both features. We use the configuration (1000, p,L) to evaluate the 4

algorithms, where p ranges from 0 to 0.9 and L ∈ {1,5,10}. The results are shown in Table 2.1.

Observe that, as L increases, all versions of the program take longer, because the difficulty of

the problem is closely related to the density of the shared adjacencies in each genome. With
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L = 1, each duplication copies a single gene, thus adjacencies are rarely copied; the larger L is,

the more shared adjacencies appear in each genome. Similarly, observe that, as p increases,

all versions of the program use less time, because the increased number of inversions destroy

many shared adjacencies. While each of the features improves the performance (with fea-

ture 2 bringing more significant improvements than feature 1, especially for small p), the two

features are synergistic, as their combination gains more than the sum of the individual gains.

Indeed, when both features are used, the resulting algorithm is very fast, finishing all instances

in a very short time.

Next, we compare our algorithm ALGO3 with the divide-and-conquer algorithm [38], referred

to here as ALGOX. The results are shown in Table 2.2. ALGO3 runs very fast for small L and

large p. Moreover, for those instances with larger L (L = 5) and smaller p (p ≤ 0.3), ALGO3

still finishes in a very short time (roughly one minute), even for genomes with 10000 genes.

ALGOX, however, can finish in 20 minutes only when both N and p are small—in this case the

number of shared adjacencies in the optimal exemplars is close to N , so that ALGOX can cut

off most of the branches in the search process.

2.4 Application to Orthology Assignment

In this section, we study the maximum adjacency problem with the intermediate strategy:

given two genomes, select the same number of genes in each gene family in each genome

and compute a bijection between the selected genes in the same gene family, such that the

number of shared adjacencies between the resulting two genomes induced by this bijection

is maximized. Notice that this problem is different from the exemplar breakpoint distance

p L = 1 L = 5 L = 10
0.0 0 0 0 0 (0) 22(6) 169 8 (0) 145(4) 181(9) 107
0.1 0 0 0 0 (0) 39(6) 60 12 (0) 87(2) 233(8) 237
0.2 0 0 0 0 (0) 68 44 6 (0) 489(2) 184(8) 201
0.3 0 0 0 0 688(4) 62 45 4 (0) 268(2) 146(8) 189
0.4 0 0 0 0 271(8) 8 40 1 (0) 622(6) 130(8) 368
0.5 0 0 0 0 34 1 11 1 (0) 156(9) 88(9) 110
0.6 0 0 0 0 9 0 6 0 (0) 134 89(9) 36
0.7 0 0 0 0 0 0 0 0 7 8 102 6
0.8 0 0 0 0 0 0 0 0 20 1 9 1
0.9 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.1 – Comparison of the four algorithms. For each value of L, the four columns cor-
respond to ALGO0, ALGO1, ALGO2 and ALGO3, respectively. For each configuration, we
generate and solve 10 independent instances, and compute the average running time (in
seconds) for the instances that are finished in 20 minutes. If the number of instances that are
finished in 20 minutes is less that 10, we put this number in a parentheses. Programs are run
on a 64-core (2.3GHz) machine with 512GB memory.
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with the intermediate strategy, since in the intermediate situation the sum of breakpoints and

shared adjacencies is not a constant.

We propose a new algorithm, which we denote by IALGO3, to solve this problem. The algorithm

works in two steps. In the first step, the algorithm starts with the two given genomes G1 and

G2 and uses ALGO3 iteratively to compute an optimal pair of exemplars between the two

current genomes; each pair of genes in the exemplars is assigned to a distinct new gene family

of its own, and the updated genomes are returned. Successive iterations will decrease the

size of gene families and produce new exemplar pairs. This step ends when two consecutive

iterations give the same exemplars. In the final exemplars, there are min{F (G1, f ),F (G2, f )}

genes in each genome for each gene family f ∈ Ã (G1)∩ Ã (G2). The second step then uses a

local improvement strategy to optimize the objective, by iteratively examining all the gene

pairs in the bijection specified by the exemplars and removing those pairs whose removal can

increase the number of shared adjacencies.

The bijection infers a subset of the orthologs between the two given genomes under a par-

simonious evolutionary model. We compare the results of IALGO3 with another method

for orthology assignment based on position, MSOAR [40]. MSOAR uses several heuristics

to build a bijection between genes in the same gene family such that the inversion dis-

tance induced by the bijection is minimized. We apply both methods to five well-annotated

species, human, gorilla, orangutan, mouse, and rat. The datasets were downloaded from

Ensembl (http://www.ensembl.org). For each species, we collected the sequences and

positions on the chromosomes for all the protein-coding genes; in case a gene had multiple

alternative products, we kept its longest isoform. We follow the pipeline of MSOAR to generate

gene families: we first run the all-versus-all BLASTp comparison, and then build a graph with

all genes as vertices and link two genes if they are among each other’s top five bidirectional

best hits; we finally take all the genes in a connected component as a gene family.

We do the pairwise comparison for all five species. For each pair of species, we run both

methods to obtain two bijections. We then evaluate each bijection as follows. We call a pair

N
L = 1 L = 5

p = 0.1 p = 0.3 p = 0.5 p = 0.1 p = 0.3 p = 0.5
100 0 28(3) 0 (0) 0 (0) 0 0 0 278(6) 0 (0)
200 0 (0) 0 (0) 0 (0) 2 2 0 (0) 0 (0)
500 0 (0) 0 (0) 0 (0) 4 68(2) 5 (0) 0 (0)

1000 0 (0) 0 (0) 0 (0) 7 (0) 11 (0) 1 (0)
2000 0 (0) 0 (0) 0 (0) 9 (0) 14 (0) 2 (0)
5000 0 (0) 0 (0) 0 (0) 24 (0) 30 (0) 12 (0)

10000 1 (0) 0 (0) 0 (0) 56 (0) 75 (0) 18 (0)

Table 2.2 – Comparison of ALGO3 and ALGOX. For each configuration, the two columns give
the performance of ALGO3 and ALGOX, respectively. (The experimental setup is the same as
that in Table 2.1.) The command line for the ALGOX program uses “-ebp -fastED -delete”.
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in a bijection trivial if each of the two genes in this pair forms a singleton gene family. We

focus on nontrivial gene pairs in each bijection. To assess them, we downloaded the gene

symbols (HGNC symbols for the primate genes, MGI symbols for mouse genes, and RGD

symbols for rat genes) from Ensembl as the reference criterion. For a nontrivial gene pair a1

and a2 with symbols s1 and s2 respectively, we say it is assessable if there exists one gene (which

could be a2) in G2 that has symbol s1, or there exists one gene (which could be a1) in G1 that

has symbol s2, or both. We say this pair is assigned correctly, if there exists one gene (which

could be a2) with gene symbol s1 in G2 that is in the same tandemly arrayed genes with a2,

or there exists one gene (which could be a1) with gene symbol s2 in G1 that is in the same

tandemly arrayed genes with a1, or both. The accuracy of a bijection is then defined as the

ratio between the number of correctly assigned pairs and the number of assessable pairs.

The results are shown in Table 2.3. More than half of the gene pairs in the two bijections are

nontrivial—duplicate genes are very common in these five species. Both methods reach very

high accuracy, with IALGO3 doing slightly better than MSOAR—but IALGO3 ran very much

faster (by at least two orders of magnitude) than MSOAR. We remark that the first step of the

iteration in IALGO3 is to run ALGO3 on the two given genomes. Therefore, the running time of

IALGO3 showed in Table 2.3 is an upper bound on the time to compute the optimal exemplars.

species pairs gene pairs nontrivial assessable accuracy time
gorilla & human 16457 16525 8689 8599 7812 7714 98.2% 98.1% 12 1472
gorilla & mouse 15381 15535 8266 8278 7030 7019 98.1% 97.9% 9 3509
gorilla & orangutan 15211 15368 7803 7804 5733 5698 98.1% 98.1% 9 1437
gorilla & rat 15468 15611 8663 8663 6098 6078 96.3% 96.0% 14 6964

human & mouse 15814 15868 8266 8185 7325 7267 98.6% 98.3% 10 2912
human & orangutan 15157 15245 7651 7609 5930 5857 98.8% 98.6% 6 875
human & rat 15749 15802 8613 8531 6433 6404 96.4% 96.3% 15 4846
mouse & orangutan 14437 14509 7429 7397 5390 5374 98.3% 98.3% 8 1921
mouse & rat 17722 17862 9772 9793 6759 6768 96.7% 96.8% 23 5360

rat & orangutan 14465 14559 7754 7740 4616 4617 96.7% 96.5% 9 4261

Table 2.3 – Pairwise comparison on five species. For each category, the first column shows the
numbers for IALGO3 while the second column shows the numbers for MSOAR. The categories
of gene pairs, nontrivial, assessable give the total number of gene pairs in the bijections,
the number of nontrivial gene pairs, and the number of assessable gene pairs, respectively.
The last category gives the running time (in seconds) of the two methods measured on a
6-core (3.5GHz) machine with 32GB memory.

2.5 Discussion

We remark that the high speed and good scaling properties of our algorithms make them

practical for research on large-scale genomic evolution, but also for improved orthology
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assignment, as the exemplar concept finds broad applicability in comparative genomics.

The performance of our algorithms can be further improved. We expect additional structure

can be discovered and turned into constraints for the ILP formulation, thereby reducing the

search space for the ILP solver. We are also studying the use of a set of PSSSs (rather than a

single PSSS) to define candidates for fixing in the optimal substructure, because it is possible

that several PSSSs as a group pass the test, while any single one of these PSSSs fails.
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3 DCJ Distance with Duplicate Genes

In this chapter, we give the first algorithm to compute the DCJ distance with the maximum

matching strategy in the presence of duplicate genes. To achieve this, we first reduce this

problem to the problem of finding the optimal consistent decomposition of the corresponding

adjacency graph, then formulate the latter problem as an integer linear program (ILP). We also

provide an efficient preprocessing approach to reduce the ILP formulation while preserving

optimality. Finally, we apply our method to assign orthologs and also compare its performance

with MSOAR on both simulated and biological datasets.

3.1 Problem Statement

In this chapter, we study two genomes with the same gene content: each gene family has the

same number of genes in both genomes. We say a bijection between G1 and G2 is valid if it

specifies n homologous gene pairs, where n is the number of genes in each genome. If G1

and G2 contain only singleton gene families (exactly one gene in each family in each genome),

then there is a unique valid bijection between G1 and G2, and the DCJ distance between G1

and G2 can be computed in linear time [11]. If G1 and G2 contain gene families with multiple

genes in each genome, then there are many valid bijections between G1 and G2. Different

valid bijections define different one-to-one correspondences between homologous genes,

yielding possibly different DCJ distances between G1 and G2. In this chapter, we study the

DCJ distance problem with the maximum matching strategy: given two genomes G1 and G2

with the same gene content, find a valid bijection between G1 and G2 that minimizes the DCJ

distance induced by this bijection. We denote the DCJ distance with the maximum matching

strategy between G1 and G2 as d(G1,G2). This problem is NP-hard, which can be proved by a

reduction from the NP-hard problem of breakpoint graph decomposition [59].

We now introduce the data structure of adjacency graph, which plays a central role in comput-

ing the DCJ distance. We first introduce two more notations. If genes a and b are homologous,

we say its corresponding extremities (ah and bh , at and bt ) are also homologous. The set of

all extremities of a genome is called extremity set. Let G1 and G2 be two genomes with the
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same gene content, and let S1 and S2 be the extremity sets of G1 and G2, respectively. The

adjacency graph with respect to G1 and G2 can be written as AG = (V ,E ), where V = S1∪S2 and

E is composed of two types of edges, black edges and gray edges. Two extremities in different

extremity sets (one is in S1 and the other one is in S2) are connected by one black edge if they

are homologous, and two extremities in the same extremity set are connected by one gray

edge if they form an existing adjacency. Figure 3.1(a) gives an example.

We say that a cycle (or path) in the adjacency graph is alternating if any two adjacent edges in

this cycle (or path) consist of one black edge and one gray edge. The length of a cycle (or path)

is defined as the number of its black edges. A decomposition of the adjacency graph is a set of

vertex-disjoint alternating cycles and paths that cover all vertices and all gray edges. We say a

decomposition is consistent if for any two homologous genes a and b, either both (ah ,bh) and

(at ,bt ) are in this decomposition, or neither of them is in this decomposition. Figure 3.1(b)

and 3.1(c) give two examples of consistent decompositions.

Given two genomes G1 and G2 with the same gene content, there is a natural one-to-one

correspondence between the set of all possible valid bijections from G1 to G2 and the set of all

possible consistent decompositions of the adjacency graph. In fact, if one valid bijection is

given, which maps gene a in G1 to a homologous gene b in G2, then we can keep the black

edges (ah ,bh) and (at ,bt ) in the decomposition. We do the same thing for every pair of genes

specified by this valid bijection; this process culminates in a consistent decomposition. On the

other hand, if we are given a consistent decomposition of the corresponding adjacency graph,

we can collect all homologous gene pairs (a,b) indicated by black edges (ah ,bh) and (at ,bt ),

which form a valid bijection from G1 to G2. Given a consistent decomposition with c cycles and

a1
t a1

h b1t b1h a2
t a2

h c1t c1h

a3
h a3

t b
2
h b2t c2h c2t a4

t a4
h

(a)

a1
t a1

h b1t b1h a2
t a2

h c1t c1h

a3
h a3

t b
2
h b2t c2h c2t a4

t a4
h

(b)

a1
t a1

h b1t b1h a2
t a2

h c1t c1h

a3
h a3

t b
2
h b2t c2h c2t a4

t a4
h

(c)

Figure 3.1 – An example of adjacency graph and its two consistent decompositions. Genome 1
contains one linear chromosome, (a1,b1, a2,c1), and genome 2 also contains one linear chro-
mosome (−a3,−b2,−c2, a4). Genes in the same gene family are represented by the same label,
and distinguished by different superscripts. All black edges are represented by long thin lines,
and all gray edges are represented by short thick lines. (a) The corresponding adjacency graph,
in which head extremities are represented by circles, while tail extremities are represented by
diamonds. (b) A consistent decomposition with 2 odd-length paths, whose corresponding
valid bijection maps a1 to a3 and a2 to a4. (c) Another consistent decomposition with 2
odd-length paths and 1 cycle, whose corresponding valid bijection maps a1 to a4 and a2 to a3.
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o odd-length paths, exactly (|V |/4− c −o/2) DCJ operations are needed to transform G1 into

G2 [11]. Thus, we can write d(G1,G2) = minD∈D(|V |/4−cD−oD /2) = |V |/4−maxD∈D(cD+oD /2),

where D is the space of all consistent decompositions, and cD and oD are the numbers of

cycles and odd-length paths in a decomposition D, respectively. This formula transforms

our DCJ distance problem into the maximum cycle decomposition problem, which asks for a

consistent decomposition of the adjacency graph such that the number of cycles plus half the

number of odd-length paths in this decomposition is maximized.

3.2 ILP for the Maximum Cycle Decomposition Problem

Shao et al. described a capping method to remove telomeres by introducing null extremi-

ties [54]. All null extremities are homologous to each other, but none is homologous to any

other extremity. Let AG = (V = S1 ∪S2,E) be the adjacency graph with respect to two given

genomes G1 and G2. Suppose that G1 and G2 contain 2 ·k1 and 2 ·k2 telomeres respectively.

The “telomere removal” proceeds as follows (see Figure 3.2 for an example). For each extremity

u ∈ S1 coming from each telomere in G1, we add one null extremity τ to S1 and add one

gray edge to E that connects u and τ. Similarly, for each extremity v ∈ S2 coming from each

telomere in G2, we add one null extremity τ to S2 and add one gray edge to E that connects

v and τ. If we additionally have k1 < k2, we then add (k2 −k1) pairs of null extremities to S1,

each of which is connected by one more gray edge added to E . We finally add black edges

connecting all possible pairs of null extremities between S1 and S2. We can prove that this

telomere removal process does not change d(G1,G2) using the same argument as in [54]. In

the following we assume that each vertex is adjacent to exactly one gray edge in the adjacency

graph, and that the consistent decompositions consist of only cycles.

Now we formulate the maximum cycle decomposition problem as an integer linear program.

Let AG = (V ,E) be the adjacency graph with respect to two given genomes G1 and G2 with

the same gene content. For each edge e ∈ E , we create binary variable xe to indicate whether

a1
t a1

h b1t b1h a2
t a2

h c1t c1h

a3
ha4

h a3
t b2h b2t c2h c2t a4

t

(a)

τ 1 a1
t a1

h b1t b1h a2
t a2

h c1t c1h τ 2

a3
ha4

h a3
t b2h b2t c2h c2t a4

t τ 3 τ 4

(b)

Figure 3.2 – An example of the telomere removal. Genome 1 contains one linear chromosome
(a1,b1, a2,c1), and genome 2 contains one circular chromosome (−a3,−b2,−c2, a4). (a) The
corresponding adjacency graph. (b) The adjacency graph after telomere removal, in which
null extremities are represented by squares.
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e will be in the final decomposition. First, we require that all gray edges be in the final

decomposition:

xe = 1, ∀e that are gray.

Second, we require that the final decomposition be consistent:

x(ah ,bh ) = x(at ,bt ), ∀a ∈G1 and ∀b ∈G2 that are homologous.

Third, we require that for each vertex exactly one adjacent black edge adjacent be chosen:

∑
(u,v)∈E , v∈S2

x(u,v) = 1, ∀u ∈ S1;∑
(u,v)∈E , u∈S1

x(u,v) = 1, ∀v ∈ S2.

Clearly, these three groups of constraints together guarantee that all selected edges form a

consistent decomposition.

Now we count the number of cycles. We first index the vertices arbitrarily, V = {v1, v2, · · · , v|V |}.

For each vertex vi , we create variable yi to indicate the label of vi . We set a distinct positive

bound i for each yi :

0 ≤ yi ≤ i , 1 ≤ i ≤ |V |.

We require that all vertices in the same cycle in the final decomposition have the same label,

which can be guaranteed by requiring that, for each selected edge, the two adjacent vertices

have the same label:

yi ≤ y j + i · (1−xe ), ∀e = (vi , v j ) ∈ E ;

y j ≤ yi + j · (1−xe ), ∀e = (vi , v j ) ∈ E .

Then, for each vertex vi , we create binary variable zi to indicate whether yi is equal to its

upper bound i :

i · zi ≤ yi , 1 ≤ i ≤ |V |.

Since all vertices in the same cycle have the same label and all upper bounds are distinct, there

is exactly one vertex in each cycle whose label can be equal to its upper bound. Finally, we set

26



3.3. Fixing Cycles of Length Two

the objective to

max
∑

1≤i≤|V |
zi ,

which is equal to the number of cycles.

There are O(|E |) variables and O(|E |) constraints in this ILP formulation.

3.3 Fixing Cycles of Length Two

A cycle of length two in the adjacency graph indicates one shared adjacency. The following

theorem gives a sufficient condition to fix this cycle while preserving optimality, which can be

used to narrow the search for an optimal bijection.

Theorem 3.3.1. Given an adjacency graph AG = (V ,E), if a length-two cycle C contains some

vertex with total degree 2, then there exists an optimal consistent decomposition of AG that

contains C .

Proof. Let
{

a1
h ,b1

h , a2
h ,b2

h

}
be the four vertices of C , where a1

h and b1
h form an adjacency in G1

while a2
h and b2

h form an adjacency in G2, and (a1
h , a2

h) and (b1
h ,b2

h) are the two black edges of

C . Let a1
h be the vertex of total degree 2; then {a1} (resp. {a2}) forms a singleton gene family in

G1 (resp. G2), and thus edge (a1
h , a2

h) appears in every consistent decomposition. Now we prove

the theorem by contradiction. Suppose that edge (b1
h ,b2

h) is not in any optimal consistent

decomposition. Take any optimal consistent decomposition D , in which b1
h is linked to b4

h and

b2
h is linked to b3

h . Since D is consistent, we know that edges (b1
t ,b4

t ) and (b2
t ,b3

t ) are also in D .

We now transform D into a new decomposition D ′′ that contains edge (b1
h ,b2

h) by exchanging

two pairs of edges. Figure 3.3 illustrates this process. First, we remove edges (b1
h ,b4

h) and

a1
h b1h b1t b3h b3t

a2
h b2h b2t b4h b4t

(a)

a1
h b1h b1t b3h b3t

a2
h b2h b2t b4h b4t

(b)

a1
h b1h b1t b3h b3t

a2
h b2h b2t b4h b4t

(c)

Figure 3.3 – The process of building a new optimal consistent decomposition that contains
edge (b1

h ,b2
h). (a) One optimal consistent decomposition D without edge (b1

h ,b3
h). Star rep-

resent unrelated extremities. (b) The inconsistent decomposition D ′. (c) The consistent
decomposition D ′′.
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(b3
h ,b2

h) from D and add edges (b1
h ,b2

h) and (b3
h ,b4

h); denote this inconsistent decomposition

by D ′. Since in this step one cycle is split into two small cycles, we have that cD ′ = cD +1. Now,

we remove edges (b1
t ,b4

t ) and (b3
t ,b2

t ) from D ′ and add edges (b1
t ,b2

t ) and (b3
t ,b4

t ) to obtain

the consistent decomposition D ′′. This step involves at most two cycles of D ′, and merges

these two cycles together in the worst case. Thus, we have cD ′′ ≥ cD ′ −1. Overall, we have

that cD ′′ ≥ cD , which means D ′′ is also an optimal consistent decomposition—the desired

contradiction.

If all four vertices in a cycle of length two have degree larger than 2, then it is possible that this

cycle is not part of any optimal consistent decomposition. Figure 3.4 gives such an example.

Moreover, this example also shows that if a shared adjacency appears exactly once in each

genome, it is still possible that the corresponding cycle of length two is not part of any optimal

consistent decomposition.

3.4 Experimental Results

We compare our method with MSOAR on both simulated and biological datasets. The input

for both methods is two genomes with the same gene content, and the output is a bijection

between the two genomes, plus the DCJ distance calculated as (n − c −o/2), where n is the

a2
t c1h a2

h c1t a1
t d1h a1

h b1h b1t d1t b2h e1t b2t f1
t e1h f1

h

a4
t d2h a4

h e2t a3
t c2h a3

h b3h b3t f2
t b4h f2

t b4t d2t c2h e2h

(a)

a2
t c1h a2

h c1t a1
t d1h a1

h b1h b1t d1t b2h e1t b2t f1
t e1h f1

h

a4
t d2h a4

h e2t a3
t c2h a3

h b3h b3t f2
t b4h f2

t b4t d2t c2h e2h

(b)

Figure 3.4 – An example of a cycle of length two that is not part of any optimal consistent
decomposition. (a) A consistent decomposition with 4 cycles that contains the cycle of length
two of {a1

h ,b1
h , a3

h ,b3
h}. (b) An optimal consistent decomposition with 5 cycles.
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number of genes in each genome, and c and o are the numbers of cycles and odd-length paths

in the adjacency graph induced by the bijection. We use both the accuracy of the bijection,

which is defined as the percentage of correct gene pairs (compared with a reference bijection),

and the deviation from the true evolutionary distances, to evaluate the performance of the

two methods.

For our method, given two genomes, we first build the adjacency graph and then employ the

telomere removal technique to obtain a new adjacency graph without telomeres. Then we

apply Theorem 3.3.1 to fix possible cycles of length two, and finally invoke GUROBI [58] to

solve the ILP formulation. Since the ILP solver might take a long time, we set a time limit of

two hours for each instance in our experiments—the best solution will be returned if the ILP

solver does not terminate in two hours. For MSOAR, we run its binary version downloaded

from http://msoar.cs.ucr.edu/. We compare our method with MSOAR, rather than the

latest version MSOAR 2.0, because we focus on genomes with the same gene content, which

implicitly requires that, after the speciation event, only DCJ operations are involved. Compared

with MSOAR, MSOAR 2.0 aims to identify tandem duplications of genes after the speciation.

Thus, under our evolutionary model that does not contain post-speciation duplications,

MSOAR and MSOAR 2.0 are equivalent.

3.4.1 Simulation Results

We simulate artificial genomes under an evolutionary model including segmental duplications

and DCJs. We introduce duplicated genes through segmental duplications. For each segmental

duplication, we uniformly select a position to start duplicating a segment of the genome and

place the new copy to a new position. Since the average copy number of each gene in human,

mouse and rat genomes, are 1.46, 1.55 and 1.28, respectively, we set the average copy number

to 1.5 in our simulation. From a genome with S distinct genes, we generate an ancestor

genome with 1.5 ·S genes, by randomly performing S/(2 ·L) segmental duplications of length

L (in terms of the number of genes in the segment). We then simulate two extant genomes

from the ancestor by randomly performing N DCJs (in terms of inversions) independently.

Thus, the true evolutionary distance between the two extant genomes is 2 ·N . The reference

bijection consists of those gene pairs that correspond to the same gene in the ancestor.

We first set S = 1000, and test four different lengths for segmental duplications (L = 1,2,5,10).

The results illustrate the trends and capabilities of the two methods in handling genomes with

duplicated segments. We also vary the number of DCJs over a broad range (N = 200,210, · · · ,500)

that reaches beyond the saturation point. For each combination of L and N , we randomly

simulate 5 independent instances, and calculate the average accuracy of the bijection and the

average deviation from the true evolutionary distances over these 5 instances.

Figure 3.5 shows the deviation from the true evolutionary distances for both methods. The first

observation is that saturation starts occurring for a true evolutionary distance of 720: the DCJ

distance obtained from the reference bijection is smaller than the true evolutionary distance,
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Chapter 3. DCJ Distance with Duplicate Genes

and the gap increases along with the increase of the true evolutionary distance. Second,

when the true evolutionary distance is less than 720, our method obtains very accurate DCJ

distances while MSOAR usually overestimates the DCJ distance. The difference is particularly

pronounced for L ≥ 2: in such cases, there exist identical segments in each genome, a situation

that creates problems when MSOAR tries to partition each genome into a minimum number of

common segments [37]. Figure 3.6 shows the the accuracy of the bijections for both methods.

For L = 1, both methods can correctly identify most gene pairs. For L ≥ 2, our method

significantly outperforms MSOAR. For large L, the accuracy of our method decreases rapidly

beyond saturation, but continues to dominate MSOAR.

We also simulate very large genomes by setting S = 5000. Again we test different segmental

duplications (L = 1,2,5,10) and different number of DCJs (N = 1000,1100, · · · ,2000). Figure 3.7

shows the average accuracy of the bijection. For large L and small N , our method can identify

almost all correct gene pairs, while MSOAR outputs a significant portion of incorrect pairs.

Similar to the case of S = 1000, when the true evolutionary is large, the accuracy of our method

decreases quickly, but still outperforms MSOAR.

The running time of MSOAR grows slowly as the the true evolutionary distance increases.

For the most complicated case of S = 5000, L = 10 and N = 2000, MSOAR needs roughly

1 hour to finish. Regarding our method, when the true evolutionary distance is relatively

small (for example, N ≤ 320 when S = 1000 and L = 5, N ≤ 1500 when S = 5000 and L = 5),

the preprocessing method can fix a considerable portion of the adjacency graph, leaving a
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Figure 3.5 – Deviation from the true evolutionary distances for S = 1000. Green lines track
reference bijection, red lines track our method, and blue lines track MSOAR.

30



3.4. Experimental Results

small ILP instance that can be solved very quickly (it takes only a few seconds and is faster

than MSOAR). When the true evolutionary distance is relatively large, the ILP solver cannot

terminate in two hours and a sub-optimal solution is obtained. Usually, this solution is equal
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Figure 3.6 – The accuracy of the bijections for S = 1000. Red lines circles track our method,
while blue lines track MSOAR.
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or very close to the optimal solution, because the ILP solver can find the optimal solution very

quickly, but must spend more time to verify that it is optimal. This observation is also verified

by the very high accuracy before the saturation point shown in Figure 3.6.

3.4.2 Application to Orthology Assignment

Under a parsimonious evolutionary scenario, the optimal valid bijection between two genomes

with the same gene content minimizes the number of DCJs after speciation, and thus infers the

orthologous gene pairs [37]. We test both methods for assigning orthologous genes between

pairs of genomes. Human, mouse, and rat genomes are well annotated, so we chose them to

evaluate the performance of the two methods. For each species, we downloaded the infor-

mation for all protein-coding genes from Ensembl (http://www.ensembl.org), including

gene family names, positions on the chromosomes and gene symbols. If a gene has multiple

alternative products, we keep its longest isoform. Two genes are considered homologous

if they have the same Ensembl gene family name; they are considered orthologous if they

have the same gene symbol. (Note that two orthologous genes are necessarily homologous,

but two homologous genes need not be orthologous.) For a pair of genomes, we keep only

orthologous gene pairs, thereby obtaining two genomes with the same gene content; our

reference bijection is then defined by these orthologous gene pairs. For both methods, we use

gene family and position information to infer orthologous relationships and compare them to

the reference bijection.

The results of comparing these three genomes are shown in Table 3.1. Both methods mostly

agree with annotation, indicating that the parsimonious model is appropriate when comparing

these genomes; our method obtains slightly better accuracy. On human and mouse for

example, our bijection has 122 different gene pairs compared with the reference bijection.

Among these pairs, 34 of them can be explained by a simple structure, illustrated in Figure 3.8.

For two identical segments, our method outputs a sequential bijection for which no DCJ

operation is needed, while the reference bijection contains a crossover, for which at least two

DCJ operations are needed. The other 87 pairs can be explained by 32 pairs of segments, for

each of which our bijection needs fewer DCJ operations than the reference bijection. On the

species pairs gene pairs
accuracy of bijection (%) DCJ distance
MSOAR our method MSOAR our method

human mouse 14876 98.63 99.18 933 894
human rat 12971 98.79 99.28 1320 1294
mouse rat 13525 98.60 99.26 968 916

Table 3.1 – Comparison of human, mouse and rat genomes. The column of gene pairs gives the
total number of orthologous gene pairs for each pair of species. The two columns in the third
category give the accuracy of the bijections returned by MSOAR and our method respectively.
The two columns in the last category give the DCJ distance induced by the corresponding
bijections returned by MSOAR and our method respectively.
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comparison of the DCJ distance, our method gets fewer DCJ operations than MSOAR in all

three pairs.

a1 b1 b2 c1

a2 b3 b4 c2

(a)

a1
t a1

h b1t b1h b2t b2h c1t c1h

a2
t a2

h b3t b3h b4t b4h c2t c1h

(b)

a1
t a1

h b1t b1h b2t b2h c1t c1h

a2
t a2

h b3t b3h b4t b4h c2t c1h

(c)

Figure 3.8 – Comparison of the reference bijection and our bijection. (a) Two identical seg-
ments. Our bijection is shown by solid lines while reference bijection is shown by dashed lines.
(b) The adjacency graph corresponding to our bijection, in which there are 3 cycles. (c) The
adjacency graph corresponding to the reference bijection, in which there is only 1 cycle.

3.5 Discussion

The ILP formulation can be extended in various ways. First, we can use the relaxed LP (linear

programming) techniques to design possible approximation algorithms. Second, when we

apply it to do orthology assignment, we can also take the sequence similarity information into

account, by adding a term of the form
∑

e∈E we ·xe to the objective function, where we can be

set to the similarity of the two genes. How to combine sequence similarity and DCJ distances

remains an unexplored problem, but our ILP formulation provides a first step by allowing us

to study linear combinations of the two.
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4 Comparing Genomes with DCJs and
Segmental Duplications

As we have seen, both rearrangements and content-modifying events are commonly observed

in the course of evolution. However, algorithms that can handle them simultaneously in the

presence of duplicate genes remain few and limited in their applicability. In this chapter,

we study the comparison of two genomes with duplicate genes under a model including

DCJ operations and segmental duplications. Formally, the problem is to compute a set of

segmental duplications in each genome and a bijection between the nonduplicated genes,

such that the total cost of the segmental duplications and the DCJs induced by the bijection is

minimized. We propose an exact algorithm for this problem by formulating it as an integer

linear program. Based on studying the the underlying structure of problem, we also devise a

sufficient condition and an efficient algorithm to identify optimal substructures, which can

simplify the problem while preserving optimality. Using the optimal substructures with the

ILP formulation yields a practical and exact algorithm to solve the problem. We also discuss

and propose a reasonable way to balance the costs between DCJs and segmental duplications.

Finally, we apply our method to assign in-paralogs and orthologs and compare its performance

with MSOAR on both simulated and biological datasets.

4.1 Problem Statement

We first give some notations. For a genome X , we use A (X ) to denote all the gene families

in X , and use F (X , f ) to denote the set of genes in X that come from gene family f . We say

consecutive genes on one chromosome form a segment. The length of a segment s is defined

as the number of genes in s, denoted by |s|. We say two segments in the same genome are

independent if they do not contain the same gene. We say segments s = (a1, a2, · · · , an) and

t = (b1,b2, · · · ,bn) are homologous if ai and bi are homologous and have the same sign for all

1 ≤ i ≤ n, or ai and bn+1−i are homologous and have the opposite sign for all 1 ≤ i ≤ n. We

say segment s is possibly duplicated, if there exists segment t in the same genome such that

s and t are independent and homologous. For a genome X , we use D(X ) to denote the set

of all the possibly duplicated segments in X (see Figure 4.1(a)). We say a subset S ⊂D(X ) is

independent if every two segments in S are independent. For an independent subset S ⊂D(X ),
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Chapter 4. Comparing Genomes with DCJs and Segmental Duplications

we use X \ S to denote the new genome after removing all genes appearing in the segments

in S from X . Given two genomes X and Y , we say two independent subsets S ⊂ D(X ) and

T ⊂D(Y ) are consistent if X \S and Y \T have the same gene content, i.e., for each gene family

f ∈ A (X )∪A (Y ), we have |F (X \ S, f )| = |F (Y \ T, f )| (see Figure 4.1(a)). In this chapter we

assume that the given two genomes X and Y satisfy that A (X ) =A (Y ); otherwise we modify

them by removing all the genes that are not in A (X )∩A (Y ). With this assumption, there

always exist two independent subsets S ∈D(X ) and T ∈D(Y ) that are consistent.

Suppose we are given two independent consistent subsets S ∈D(X ) and T ∈D(Y ). We denote

by B(X \ S,Y \ T ) the set of bijections that map each gene in X \ S to a homologous gene in

Y \ T . If X \ S and Y \ T contain only singletons, i.e., we have |F (X \ S, f )| = |F (Y \ T, f )| = 1

for all f ∈ A (X )∪A (Y ), then we have |B(X \ S,Y \ T )| = 1, and the DCJ distance between

X \ S and Y \ T is well defined and can be computed in linear time [11]. Once a bijection

B ∈B(X \ S,Y \ T ) is given, we can relabel X \ S and Y \ T by assigning each pair of genes in

B with a distinct gene family, and thus results in two new genomes with only singletons. We

denote by d(B) the DCJ distance between these two new genomes induced by bijection B .

In this chapter, we study the following problem: given two genomes X and Y satisfying A (X ) =
A (Y ), and a cost function c(·), which maps each segment in D(X )∪D(Y ) to a positive value,

a1 b1 a2 c1 b2

(X)

(Y )

c2 −a3 b3 c3 −b4

(a)

a1 b1 c1 b2

−a3 b3 c3 −b4

(b)
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h c1t c1
h b2t b2
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a3
h

a3t b3t b3
h

c3t c3
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b4
h

b4t

(c)

a1t a1
h b1t b1

h a2t a2
h c1t c1

h b2t b2
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c2t c2
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a3
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a3t b3t b3
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c3t c3
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b4
h
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Figure 4.1 – (a) Two genomes X and Y . Genes in the same gene family are represented
by the same symbol with different superscripts. We have D(X ) = {(a1), (a2), (b1), (b2)} and
D(Y ) = {(c2), (b3), (c3), (−b4)}, and S = {(a2)} and T = {(c2)} are two consistent subsets. (b) The
genomes X \S and Y \T , and the bijection B . (c) The adjacency graph w.r.t. Q = (S,T,B). Black
edges are represented by long thin lines while gray edges by short thick lines. Head extremities
are represented by circles while tail extremities by squares. (d) The extended adjacency graph
w.r.t. Q, in which internal edges are represented by double lines.
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compute a triple Q = (S,T,B), where S ⊂D(X ) and T ⊂D(Y ) are two independent consistent

subsets and B ∈ B(X \ S,Y \ T ), such that the total cost of Q, γ(Q) = ∑
s∈S∪T c(s)+d(B), is

minimized.

4.2 ILP Formulation

We now formulate the above problem as an integer linear program. To achieve that, we first

introduce the adjacency graph in section 4.2.1, which is the essential data structure to compute

the DCJ distance. We also propose a new extension of the adjacency graph, called the extended

adjacency graph, which can incorporate duplicated genes and thus forms the basis for the

following ILP formulation. We then describe a capping method to remove the telomeres, in

section 4.2.2, which allows us only to count the number of cycles when computing the DCJ

distance. Based on them, we finally give the ILP formulation in section 4.2.3.

4.2.1 Adjacency Graph

The set of all extremities in genome X is called the extremity set of X , denoted by E(X ). If

genes a and b are homologous, we also say the two corresponding extremity pairs, ah and bh ,

at and bt , are homologous. Suppose that we are given a triple Q = (S,T,B), where S ⊂D(X ),

T ⊂D(Y ) are two independent consistent subsets, and B ∈B(X \ S,Y \ T ). We can build the

adjacency graph w.r.t. Q, denoted by G(Q), as follows. We first build X \ S and Y \ T through

removing all genes in S ∪T , and take all the extremities in them, i.e., E (X \ S)∪E (Y \ T ), as the

vertices of G(Q). Then for each adjacency in X \ S and Y \ T we add one gray edge to connect

the two extremities in it. Finally for each pair of homologous extremities specified by B (each

homologous gene pair in B specifies two pairs of homologous extremities), we add one black

edge to connect them (see Figure 4.1(a,b,c)). Clearly, in G(Q) the degree of each vertex is at

most 2, and thus it consists of a set of vertex-disjoint cycles and paths. The length of a cycle (or

a path) is defined as the number of black edges in it. Let c be the number of cycles and o be

the number of odd-length paths in G(Q). We have that the DCJ distance induced by B can

then be computed as d(B) = n − c −o/2, where n is the number of genes in X \ S [11].

Given a triple Q = (S,T,B) defined above, we propose an equivalent form of G(Q), called the

extended adjacency graph w.r.t. Q, denoted by G ′(Q). The set of vertices of G ′(Q) includes all

the extremities in X and Y , i.e., E (X )∪E (Y ). For each adjacency in X and Y , there is one gray

edge connecting the two extremities in it. For each pair of homologous extremities specified by

B , there is one black edge connecting them. For each gene contained in some segment in S∪T ,

there is one internal edge connecting the two extremities in this gene (see Figure 4.1(d)). The

difference between G ′(Q) and G(Q) is that, the latter one explicitly removes those extremities

in the genes in S ∪T , while the former one keeps them but adds internal edges connecting

the two extremities in those genes. Clearly, G ′(Q) also consists a set of vertex-disjoint cycles

and paths, and there is a one-to-one correspondence between the connected components

in G(Q) and that in G ′(Q). Thus, the DCJ distance induced by B can also be computed as
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d(B) = n −c ′−o′/2, where c ′ is the number of cycles and o′ is the number of odd-length paths

in G ′(Q), and n is the number of genes in X \ S. As we will see later, this extended adjacency

graph is the key point in devising the ILP formulation.

4.2.2 Adding Capping Genes

In [54], we described a method to remove telomeres by introducing capping genes. A capping

gene contains only one extremity, which combines with the adjacent telomere (or another

capping gene) to form one adjacency. All capping genes are homologous to each other,

forming a distinct gene family, denoted by fτ. Given two genomes X and Y with lX and lY

linear chromosomes respectively (without loss of generality, we assume that lX ≥ lY ), we

first add one capping gene to each end of all the linear chromosomes in X and Y ; then we

add (lX − lY ) dummy chromosomes, each of which contains only a pair of capping genes, to

genome Y (see Figure 4.2). We denote by X̂ and Ŷ the two new genomes after adding capping

genes for X and Y . Clearly, we have |F (X̂ , fτ)| = |F (Ŷ , fτ)|. Thus, given a pair of independent

consistent subsets S ⊂D(X ) and T ⊂D(Y ), we know that X̂ \ S and Ŷ \ T also have the same

gene content. Using the same argument as in [52], we can prove that

min
B̂∈B(X̂ \S,Ŷ \T )

d(B̂) = min
B∈B(X \S,Y \T )

d(B),

a1 b1 a2 c1

(X)

(Y )
a3b3

c2 −b2

(a)

τ1 τ2a1 b1 a2 c1

(X̂)

(Ŷ )
τ3τ4

a3b3

c2 −b2

(b)

a1t a1
h b1t b1

h a2t a2
h c1t c1

h

b3t a3
h

a3t b2t b2
h

c2
h

c2t b3
h

(c)

τ1 a1t a1
h b1t b1

h a2t a2
h c1t c1

h τ2

b3t a3
h

a3t b2t b2
h

c2
h

c2t b3
h

τ3 τ4

(d)

Figure 4.2 – (a) Two genomes X and Y . (b) The genomes X̂ and Ŷ after adding capping genes,
where capping genes are represented by diamonds. (c) The extended adjacency graph w.r.t.
(S,T,B), where S = {(a2)}, T = {(b2)} and B maps a1, b1 and c1 to a3, b3 and c2 respectively. (d)
The extended adjacency graph w.r.t. (S,T, B̂), where B̂ consists of the two pairs mapping τ1

and τ2 to τ3 and τ4 respectively, and those pairs in B .
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and the optimal B can be recovered from the optimal B̂ through discarding the pairs with

capping genes. This statement allows us to add capping genes to remove telomeres on the

two given genomes without affecting the optimal bijection. Since the two new genomes X̂

and Ŷ do not contain telomeres, we have that for any triple Q = (S,T, B̂), where S ⊂ D(X ),

T ⊂ D(Y ) and B̂ ∈ B(X̂ \ S, Ŷ \ T ), both G(Q) and G ′(Q) contain only cycles (see Figure 4.2).

This property allows us only to count the number of cycles when computing the DCJ distance,

which simplifies the following ILP formulation.

4.2.3 ILP Formulation

Let X and Y be two given genomes after adding capping genes. Let Q∗ = (S∗,T ∗,B∗) be the

optimal triple minimizing
∑

s∈S∗∪T ∗ c(s)+d(B∗), where we have S∗ ⊂ D(X ), T ∗ ⊂ D(Y ) and

B∗ ∈B(X \ S∗,Y \ T ∗). (Notice that here X and Y may contain capping genes, but we define

D(X ) and D(Y ) are in terms of the original genomes, which do not contain segments with

capping genes.) To facilitate our description, we use a ∈ X to denote that gene a is contained

in genome X . We use a ∈ s to denote that gene a is contained in segment s. We denote by fa

the gene family to which gene a belongs. We say gene a is duplicated in Q∗, if there exists one

segment s ∈ S∗∪T ∗ such that a ∈ s, and nonduplicated otherwise.

We now give the ILP formulation to compute Q∗. For each segment s ∈D(X )∪D(Y ), we have

one binary variable xs to indicate whether s ∈ S∗∪T ∗. For each gene a ∈ X ∪Y , we have one

binary variable ya to indicate whether a is duplicated in Q∗. We use the following two sets of

constraints to guarantee that ya = 1 if and only if there exists one segment s ∈ S∗∪T ∗ such

that a ∈ s:

ya ≥ xs , ∀s ∈D(X )∪D(Y ) and ∀a ∈ s;

ya ≤ ∑
s∈D(X )∪D(Y ):a∈s

xs , ∀a ∈ X ∪Y .

We require that these segments in S∗∪T ∗ are independent, i.e., there do not exist two of them

that contain the same gene: ∑
s∈D(X )∪D(Y ):a∈s

xs ≤ 1, ∀a ∈ X ∪Y .

We also require that X \ S∗ and Y \ T ∗ have the same gene content, i.e., for each gene family

there must be an equal number of nonduplicated genes in Q∗ in this family in each genome:∑
a∈F (X , f )

(1− ya) = ∑
b∈F (Y , f )

(1− yb), ∀ f ∈A (X ).
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And for each gene family, at least one gene is nonduplicated in Q∗:

∑
a∈F (X , f )

(1− ya) ≥ 1, ∀ f ∈A (X );∑
b∈F (Y , f )

(1− yb) ≥ 1, ∀ f ∈A (Y ).

For each pair of homologous genes a ∈ X and b ∈ Y , we add one binary variable za,b to indicate

whether B∗ contains this pair. We require that for each gene in X ∪Y , it is mapped to exactly

one homologous gene in the opposite genome if and only if it is nonduplicated in Q∗:

∑
b∈F (Y , fa )

za,b = 1− ya , ∀a ∈ X ;∑
a∈F (X , fb )

za,b = 1− yb , ∀b ∈ Y .

These constraints guarantee that these pairs in B∗ form a valid bijection between the genes

in X \ S∗ and those in Y \ T ∗. To compute d(B∗), we need to count the number of cycles in

G ′(Q∗). We add a variable le for each extremity e ∈ E(X )∪E(Y ) to represent the label of e. We

then assign a distinct upper bound for le , denoted by Ue (for example, we can just sort all the

extremities in E(X )∪E(Y ) in an arbitrary order and assign Ue as the index of e in the sorted

list):

0 ≤ le ≤Ue , ∀e ∈ E(X )∪E(Y ).

We then require that all the extremities in the same cycle in G ′(Q∗) have the same label. This

can be achieved by forcing that the two extremities connected by any edge in G ′(Q∗) have the

same label. To guarantee this, we add the following three groups of constraints, each of which

corresponds to one type of edges. First, we require that the two extremities in each adjacency

have the same label (these constraints correspond to the gray edges):

lei = le j , ∀{ei ,e j } form an adjacency in X or in Y .

Second, we require that each pair of extremities specified by B∗ have the same label (these

constraints correspond to the black edges). To achieve that, we add the following four con-

straints for each pair of homologous genes a ∈ X and b ∈ Y (if a and b are capping genes, then

we have ah = at and bh = bt and thus the following four constraints degenerate into two):

lah ≤ lbh + (1− za,b) ·Uah ;

lbh ≤ lah + (1− za,b) ·Ubh ;

lat ≤ lbh + (1− za,b) ·Uat ;

lbt ≤ lah + (1− za,b) ·Ubt .
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Third, we require that the two extremities in each duplicated gene have the same label (these

constraints correspond to the internal edges):

lah ≤ lat + (1− ya) ·Uah , ∀a ∈ X ∪Y ;

lat ≤ lah + (1− ya) ·Uat , ∀a ∈ X ∪Y .

We then add a binary variable we for extremity e to indicate whether le reaches its upper

bound:

we ·Ue ≤ le , ∀e ∈ E(X )∪E(Y ).

Since all the extremities in the same cycle in G ′(Q∗) are forced to have the same label, and all

label variables have distinct upper bounds, we know that for each cycle in G ′(Q∗) at most one

extremity can have its label reaching its upper bound. Thus, we have that∑
e∈E(X )∪E(Y )

we

is exactly the number of cycles in G ′(Q∗). And d(B∗) can then be computed by

|X |− ∑
a∈X

ya −
∑

e∈E(X )∪E(Y )
we ,

where the first two items give the number of genes in X \ S∗.

Finally, we set the objective function of the ILP as

min
∑

s∈D(X )∪D(Y )
c(s) · xs +|X |− ∑

a∈X
ya −

∑
e∈E(X )∪E(Y )

we .

4.3 Identifying Optimal Substructures

Given two genomes X and Y after adding capping genes, we say two homologous segments s

in X and t in Y form a pair of shared segments, denoted by 〈s, t〉. Intuitively, shared segments

are more likely to be nonduplicated and mapped to each other. Below, we give one sufficient

condition and one algorithm to decide whether a pair of shared segments is in some optimal

solution, i.e., in this optimal solution ai and bi are nonduplicated and ai is mapped to bi , for

all 1 ≤ i ≤ n. From now on, we assume that the cost function only depends on the length of

the segments, i.e., we assume that if |s| = |t | then we have c(s) = c(t ).

4.3.1 A Sufficient Condition

We say gene a in genome X is isolated, if there does not exist any segment s ∈D(X ) such that

a ∈ s and |s| ≥ 2. The following theorem gives a sufficient condition to decide whether a pair of

shared segments of length two is an optimal substructure.

41



Chapter 4. Comparing Genomes with DCJs and Segmental Duplications

Theorem 4.3.1. Let p = 〈(a1,b1), (a2,b2)〉. If we have a1 and a2 are singletons, and b1 and b2

are isolated, then p is in some optimal solution.

Proof. Let Q = (S,T,B) be an arbitrary triple such that either b1 or b2 is duplicated in Q,

or B does not contain 〈b1,b2〉. Below, we will show that we can always build a new triple

Q ′ = (S′,T ′,B ′) in which both b1 and b2 are nonduplicated and B ′ contains 〈b1,b2〉, and also

verify that γ(Q ′) ≤ γ(Q). Since Q is arbitrary, this proves the theorem.

First, assume that in Q both b1 and b2 are duplicated. Let s ∈ S and t ∈ T be the segments

containing b1 and b2 respectively. Since both b1 and b2 are isolated, we know that |s| =
|t | = 1. Let S′ = S \ {s} and T ′ = T \ {t }. We have that X \ S′ and Y \ T ′ still have the same

content. Let B ′ = B ∪ {〈b1,b2〉}. We have that d(B ′) = d(B), since X \ S′ has one more gene

than X \ S, while G(Q ′) has one more cycle than G(Q) (see Figure 4.3(a,b)). Thus, we have

γ(Q ′) =∑
u∈S′∪T ′ c(u)+d(B ′) =∑

u∈S∪T c(u)− c(s)− c(t )+d(B) ≤∑
u∈S∪T c(u)+d(B) = γ(Q).

Second, assume that in Q gene b2 is duplicated while b1 is not (or symmetrically, b1 is

duplicated while b2 is not). Suppose that b1 is mapped to b3 in B , i.e., 〈b1,b3〉 ∈ B . Let

S′ = S and T ′ = T \ {t }∪ {t ′}, where t ∈ T is the segment containing b2, and t ′ is the seg-

ment containing only gene b3. Clearly, we also have that X \ S′ and Y \ T ′ have the same

content. Let B ′ = B \ {〈b1,b3〉}∪ {〈b1,b2〉}. To compare d(B ′) with d(B), consider the dif-

ference between G(Q ′) and G(Q). In fact, we can transform G(Q) into G(Q ′) through two

DCJs on genome Y (after that we need to rename b3 as b2). We first perform one DCJ to

cut b3 out to create the adjacency {b3
h ,b3

t } (see Figure 4.3(c,d)). This operation might de-

crease the number of cycles, but the number decreased is at most 1 according to the prop-

e1 a1t a1h e2

e3 a2t a2h
e4

(a)

e1 a1t a1h b1t b1h e2

e3 a2t a2h b2t b2h
e4

(b)

e1 a1t a1h b1t b1h e2

e3 a2t a2h
e4 b3t

e5 b3h
e6

(c)

e1 a1t a1h b1t b1h e2

e3 a2t a2h
e4b3t

e5b3h
e6

(e)

e1 a1t a1h b1t b1h e2

e3 a2t a2h
e4 b3t

e5b3h
e6

(d)

Figure 4.3 – (a,b) The adjacency graph before and after adding 〈b1,b2〉. (c,d,e) Transforming
G(Q) into G(Q ′) using two DCJs. Irrelevant extremities are represented by stars.
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erty of the DCJ model. We then insert b3 back as the neighbor of a2 to form the segment

(a2,b3), which will increase the number of cycles by 1 (see Figure 4.3(d,e)). This implies

that the number of cycles in G(Q ′) is no less than that in G(Q). In addition to the fact that

X \ S′ and X \ S have the same number of genes, we have that d(B ′) ≤ d(B). Thus, we have

γ(Q ′) = ∑
u∈S′∪T ′ c(u)+d(B ′) ≤ ∑

u∈S∪T c(u)− c(t)+ c(t ′)+d(B) = ∑
u∈S∪T c(u)+d(B) = γ(Q).

The last equality uses the assumption that the cost function only depends on the length of the

segments.

Third, assume that in Q both b1 and b2 are nonduplicated, and b1 is mapped to b3 while b4

is mapped b2. Let S′ = S, T ′ = T and B ′ = B \ {〈b1,b3〉,〈b4,b2〉}∪ {〈b1,b2〉,〈b4,b3〉}. Using the

same technique in the Theorem 1 [52], we can prove that d(B ′) ≤ d(B). Thus, we still have

γ(Q ′) =∑
u∈S′∪T ′ c(u)+d(B ′) ≤ γ(Q).

4.3.2 An Algorithm

We say a pair of shared segments p = 〈(a1, a2, · · · , an), (b1,b2, · · · ,bn)〉 between genomes X and

Y is half fixed, if bi is singleton for all 1 ≤ i ≤ n (and thus none of them can be duplicated)

and all genes in F (X , fai ) are isolated for all 1 ≤ i ≤ n. Let p be such a pair of half fixed

shared segments (PHFSS for short). We use A (p) to denote all the gene families in p, i.e.,

A (p) = { fa1 , fa2 , · · · , fan }. In this section, we propose an algorithm to decide whether a PHFSS

is in some optimal solution. Notice that for a PHFSS p, if we further know that in some optimal

solution ak is mapped to bk for some 1 ≤ k ≤ n, then we can immediately conclude that the

whole p is in some optimal solution by iteratively applying theorem 4.3.

Let Q∗
p
= (S,T,B) be the triple with smallest total cost among these triples that do not contain

p (i.e., bi is not mapped to ai for all 1 ≤ i ≤ n). We now modify Q∗
p

to replace a′
i with ai , where

a′
i is the gene that are mapped to bi in Q∗

p
. Notice that {(a1), (a2), · · · , (an)} ⊂ S, since ai is dupli-

cated in Q∗
p (because bi is singleton and a′

i is nonduplicated in Q∗
p ) and all genes in F (X , fai ) are

isolated. Let S′ = S\{(a1), · · · , (an)}∪ {(a′
1), · · · , (a′

n)}, B ′ = B\{〈a′
1,b1〉, · · · ,〈a′

n ,bn〉}∪{〈a1,b1〉, · · · ,

〈an ,bn〉} and Q∗
p = (S′,T,B ′). Clearly Q∗

p contains p. According to the definition of Q∗
p

, if we

can show that γ(Q∗
p ) ≤ γ(Q∗

p
), then p is in some optimal solution. From the construction of

Q∗
p , we can see clearly that the cost of the segmental duplications in Q∗

p
is equal to that in Q∗

p .

Thus we only need to compare the number of DCJs between Q∗
p and Q∗

p .

We compare the number of cycles in G ′(Q∗
p

) and G ′(Q∗
p ). Notice that G ′(Q∗

p
) and G ′(Q∗

p ) differ

only on these gene families in A (p). We now define a new graph to focus on A (p) while hiding

others. Let Q be a triple and p be a PHFSS. We can build the reduced adjacency graph w.r.t.

Q and p, denoted by R(Q, p), as follows. The vertices of R(Q, p) are divided into two types,

the core vertices, which are exactly those extremities in the genes in the gene families in A (p),

and the boundary vertices, which consist of these extremities that form adjacencies with core

vertices (see Figure 4.4(a,b)). The edges of R(Q, p) are divided into four types, gray edges, black

edges, internal edges, and reduced edges. For any two vertices in R(Q, p), they are connected

by gray edges or internal edges, if and only if they are connected by the same type of edge in
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G ′(Q). For any two core vertices in R(Q, p), they are connected by one black edge if and only if

they are connected by one black edge in G ′(Q). For any two boundary vertices in R(Q, p), they

are connected by one reduced edge if there exists one path connecting them in G ′(Q) without

going through any core vertices or boundary vertices (except its two ends). Clearly, R(Q, p)

also consists of a set of vertex-disjoint cycles (see Figure 4.4(c,d)).

We claim that the difference of the number of cycles between G ′(Q∗
p

) and G ′(Q∗
p ) is the same

as that between R(Q∗
p

, p) and R(Q∗
p , p). In fact, the cycles that do not contain any core vertices

or boundary vertices are the same between Q∗
p and Q∗

p according to the construction of Q∗
p ;

those cycles do not appear in either R(Q∗
p

, p) or R(Q∗
p , p). Moreover, for each cycle in G ′(Q∗

p
)

that contains some core vertices, there exists one corresponding cycle in R(Q∗
p

, p), since the

reduction procedure in constructing R(Q∗
p

, p) can only shorten the length of each cycle, while

it cannot merge or split it; it is the same for G ′(Q∗
p ) and R(Q∗

p , p). Thus, the claim holds.

Furthermore, the reasoning used here also implies that we can construct R(Q∗
p , p) directly

from R(Q∗
p

, p), rather than from G ′(Q∗
p ): we can first replace the black edges corresponding to

〈a′
i ,bi 〉 with that corresponding to 〈ai ,bi 〉, and then replace the internal edges corresponding

to ai with that corresponding to a′
i .

In summary, once we know R(Q∗
p

, p), we can then construct R(Q∗
p , p), and compare the number

of cycles in them. If the number of cycles in R(Q∗
p , p) is no less than that in R(Q∗

p
, p), then

p is in some optimal solution. However, the problem is that we do not know R(Q∗
p , p). Our

strategy is to enumerate all the possibilities of R(Q∗
p

, p). The vertices of R(Q∗
p

, p), i.e., all

the core vertices and all the boundary vertices w.r.t. p, can be computed in advance very

easily. All the genes of ai , 1 ≤ i ≤ n, are duplicated in R(Q∗
p

, p) by definition, and thus the

two extremities in ai are always connected by one internal edge in R(Q∗
p

, p). All genes in

F (X , fai ) \ {ai } are possibly mapped to bi in R(Q∗
p , p). For any two boundary vertices (maybe

in the same genome), we need to check whether they can be connected by one reduced edge

in R(Q∗
p

, p), i.e., whether there exists one possible path connecting them that does not go

through any other core vertices or boundary vertices. Notice that this path must be alternating,

i.e., the edges with odd indices must be either black edges or internal edges, and the edges

with even indices must be gray edges (see Figure 4.4(c,d)).

There exists a linear time algorithm to decide the existence of an alternating path between

two given vertices [60]. We now adapt it for our use. Given a PHFSS p and two boundary

vertices x and y , the algorithm first build a graph with V1 ∪V2 ∪ {x, y} as its vertices, where

V1 is the set of all extremities except all the core vertices and boundary vertices, and V2 is a

copy of V1. Two extremities in V1 are connected by one gray edge if they form one adjacency.

Two homologous extremities in V2 in different genomes are connected by one black edge,

and the two extremities in V2 in a possibly duplicated gene are connected by one internal

edge. We connect x (resp. y) to its all homologous extremities in V2 in the opposite genome

by black edges. Finally, all the counterparts between V1 and V2 are connected by bridging

edges (see Figure 4.5). Clearly, all the bridging edges form a matching of size |V1|, denoted by

M . The algorithm then computes an augmenting path w.r.t. M using the Blossom algorithm,
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which takes linear time. We claim that such an augmenting path exists if and only if there

exists one alternating path connecting x and y without going through any core vertices or

boundary vertices. In fact, if such an augmenting path exists, then the two ends of this path

must be x and y , since they are the only two unmatched vertices. We claim that the edges in

τ1 a3t a3h c1t c1h a1t a1h b1t b1h d1t d1h b3t b3h e1t e1h τ2

τ3 d2t d2h a2t a2h b2t b2h c2t c2h d3td3h e2t e2h
τ4

(a)

τ1 a3t a3h c1t c1h a1t a1h b1t b1h d1t d1h b3t b3h e1t e1h τ2

τ3 d2t d2h a2t a2h b2t b2h c2t c2h d3td3h e2t e2h
τ4

(b)

τ1 a3t a3h c1t c1h a1t a1h b1t b1h d1t d1h b3t b3h e1t

d2h a2t a2h b2t b2h c2t

(c)

τ1 a3t a3h c1t c1h a1t a1h b1t b1h d1t d1h b3t b3h e1t

d2h a2t a2h b2t b2h c2t

(d)

Figure 4.4 – X = (a3,c1, a1,b1,d 1,b3,e1), Y = (d 2, a2,b2,c2,−d 3,e2). p = 〈(a1,b1), (a2,b2)〉.
The four subgraphs show G ′(Q∗

p ), G ′(Q∗
p ), R(Q∗

p , p) and R(Q∗
p , p), respectively. The core vertices

are shown as solid patterns, and the boundary vertices are shown as patterns with one inner
point. Reduced edges are shown as dashed lines.
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the augmenting path that are not in M form a alternating path connecting x and y . This is

because edges in M are spanning V1 and V2, while gray edges are all inside in V1 and black

edges and internal edges are inside in V2. The opposite side of statement can be reasoned in a

similar way.

The algorithm to decide whether a given PHFSS p is in some optimal solution proceeds as

follows. The first phase of the algorithm is to compute the core vertices and the boundary

vertices w.r.t. p, and then for each pair of boundary vertices, to check whether they can be

connected by a reduced edge. If the total number of edges (reduced edges plus those among

core vertices) is larger than logn, the algorithm terminates. Otherwise, the algorithm comes

to the second phase. It enumerates all the possibilities of R(Q∗
p

, p): for each possible valid

combination of the reduced edges (i.e., they form a matching that covers all the boundary

vertices), it enumerates all the possible valid mappings for the genes in A (p) (ai cannot

be mapped to bi by the definition of R(Q∗
p

, p)), and the mapping that yields the maximum

number of cycles, plus the current combination of the reduced edges, forms one possibility of

R(Q∗
p

, p). After that, for each possibility of R(Q∗
p

, p), it then builds R(Q∗
p , p), and compares the

number of cycles between them. If the number of cycles in R(Q∗
p , p) is always no less than that

in R(Q∗
p

, p) for all the possibilities, then the algorithm concludes that p is in some optimal

solution.

The above algorithm runs in polynomial-time. In fact, the first phase runs in polynomial-time,

since we can decide the existence of a reduced edge for each pair of boundary vertices in linear

time. In the second phase, the number of edges is in logarithmic-size, which implies that the

number of possibilities of R(Q∗
p

, p) is in polynomial-size. Thus, the second phase also runs in

polynomial-time.

We remark that usually not all pairs of boundary vertices can be connected by a reduced

edge (see Figure 4.6). In fact, if this is not the case, then there always exists one possibility

such that R(Q∗
p

, p) contains more cycles than R(Q∗
p , p), in which case the algorithm fails. In

other words, the first phase to identify possible reduced edges is very essential, which not only

decreases the number of possibilities, but more importantly, makes the algorithm capable of

e1h τ2 τ3 d2t c2h d3t d4h e2t e2h τ4

c1h e1t e1h τ2 τ3 d2t c2h d3t d4h e2t e2h τ4

Figure 4.5 – The underlying graph used to decide the existence of an alternating path con-
necting c1

h and e1
t w.r.t. p for the same instance in Figure 4.4. All bridging edges are shown as

dotted lines.
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identifying optimal substructures. We also remark that this algorithm is a sufficient test, i.e.,

if it returns “yes”, then p is guaranteed in some optimal solution. However, if it returns “no”,

then it is still possible that p is in some optimal solution. This is because two reduced edges in

R(Q∗
p

, p) might not be able to coexist in G ′(Q∗
p

).

We can apply the theorem in section 4.3.1 and the algorithm in section 4.3.2 on all shared seg-

ments to verify their optimality. If such an optimal substructure is identified, we immediately

fix it and update the genomes through assigning each pair of genes in it a distinct gene family.

We can iteratively repeat this process until no such optimal substructure can be found. This

serves as a preprocessing algorithm to simplify the problem before calling the ILP solver. The

performance of this preprocessing algorithm on real genomes is analyzed in Table 4.4.

4.4 Setting the Cost

Under a parsimonious model, it is natural to set a unit cost for all segmental duplications (as

we do for all DCJs). However, in this case, two segmental duplications, one in each genome,

that creates a pair of shared segments can be always explained as two DCJs with the same total

cost. Consider the example in Figure 4.7(a), for which we have two optimal solutions with

total cost of 2: one is to regard a2 and a4 as duplicated genes, and the other uses two DCJs,

which first cut a2 out from X and then insert it back between c1 and d 1. The scenario in the

second case (two DCJs using one circular chromosome as intermediate) requires 3 inversions

to explain, and therefore it is much less unlikely to happen comparing with the first scenario.

Thus, to avoid the second case we set c(·) < 1.

On the other hand, if we have c(·) ≤ 0.5, then every DCJ that inverts a possibly duplicated

segment can be always explained by two segmental duplications with the same or even better

total cost. Consider the example in Figure 4.7(b), for which one solution is to use only one

DCJ to invert the segment (a2,b2) on X . However, if we have c(·) ≤ 0.5, then we can regard

(a2,b2) and (−b4,−a4) as duplicated segments, whose total cost is at most 1. Thus, to avoid

the second case, we need to set c(·) > 0.5.

τ1 a3t a3
h c1t c1

h a1t a1
h b1t b1

h d1t d1
h b3t b3

h
τ2

d2
h

a2t a2
h

b2t b2
h

c2t

Figure 4.6 – All the possible reduced edges in R(Q∗
p

, p) for the same instance in Figure 4.4. We

can verify that among all possibilities of R(Q∗
p

, p), the number of cycles in R(Q∗
p , p) is always

no less than that in R(Q∗
p

, p). Thus, in this instance, p is optimal.
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Combining the above two facts, in the following experiments, we set c(·) = 0.75.

4.5 Inferring In-paralogs and Orthologs

Under a most parsimonious evolutionary scenario, the duplicated genes in the optimal triple

infer the in-paralogs in each genome, while the bijection between the nonduplicated genes

in the two genomes infers a subset of the orthology pairs (more specifically, positional or-

thologs [61]). In the following, we apply our method to infer in-paralogs and orthologs on

both simulated datasets and biological datasets, and compare its performance with MSOAR.

4.5.1 Results on Simulated Datasets

We simulate a pair of genomes as follows. We start from an ancestor genome with only one

linear chromosome consisting of N = 5000 singletons (we also test N = 1000 and N = 2000;

the results are not presented since they agree with N = 5000). We then perform S1 segmental

duplications on the ancestor genome to make some gene families contain more than one

copy. A segmental duplication randomly chooses a segment of length L and inserts its copy

to another random position. The two extant genomes then speciate independently from

this ancestor genome. The speciation process on each branch includes randomly mixed S2

segmental duplications and D DCJs. A DCJ randomly chooses two positions in the genome

and then reverses the segment in between. We make sure that the expected number of genes

per gene family in each extant genome is 1.5 (this number is comparable to that in human

genome, which is 1.46), therefore we have that S1 +S2 = 0.5 ·N /L. We further fix S1 = 0.2 ·N /L

and S2 = 0.3 ·N /L (we also test S1 = 0 and S2 = 0.5 ·N /L, and the results are almost the same).

Thus, a simulation configuration is determined by parameters L and D .

For each pair of simulated genomes X and Y , we take them as input to run MSOAR and our

method. For MSOAR, we run its binary version downloaded from http://msoar.cs.ucr.edu/.

For our method, we first apply the preprocessing algorithm described in section 4.3, and then

formulate the simplified problem as an ILP instance, which is solved using the GUROBI solver.

We set the time limit to two hours for each instance, i.e, if the ILP solver does not return the

a1 b1 a2 c1 d1

(X)

(Y )

a3 b2 c2 a4 d2

(a)

a1 b1 c1 a2 b2 d1

(X)

(Y )

a3 b3 c2 −b4 −a4 d2

(b)

Figure 4.7 – (a) An example in which there are two optimal solutions if c(·) = 1. (b) An example
in which there are two optimal solutions if c(·) = 0.5.
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4.5. Inferring In-paralogs and Orthologs

optimal solution in two hours, we terminate it and return the current sub-optimal solution.

Both methods return triples (S,T,B), where S and T infers the in-paralogs in the two extant

genomes respectively, and B infers the orthology pairs. We now give the measures to evaluate

them. First, we regard the problem to infer in-paralogs as a standard binary classification

problem: those genes that are generated by segmental duplications in the speciation process

are considered as gold standard positive in-paralogs, and those genes that are in the segments

in S ∪T are considered as predicted positive in-paralogs. Thus, we use the sensitivity and

specificity to measure (S,T ). To evaluate the performance of B , we refer to those gene pairs

in the two extant genomes that correspond to the same gene in the ancestor genome as the

true orthology pairs. We therefore use the following way to evaluate B : we say a pair in B is

assessable, if at least one of its two genes can be found in some true orthology pair, and the

accuracy of B is then defined as the ratio between the number of true orthology pairs in B and

the number of assessable pairs in B .

For each parameter configuration, we simulate 10 instances and compute the average sensitiv-

ity, specificity and accuracy for both methods. The performance of the two methods is shown

in Figure 4.8, Figure 4.9 and Figure 4.10, where the parameters L ∈ {1,2,5} and D ranges from

250 to 2000. First, we can observe that both methods get very high sensitivity (above 90% on

all configurations). However, MSOAR gets relatively low specificity. One reason for this is that

MSOAR uses unit cost for both rearrangements and single-gene duplications. According to the

discussion in section 4.4, unit cost for all operations might misclassify in-paralogs. Second,

as D increases, the performance of both methods decreases. This is because the number of

DCJs is highly positively correlated to the difficulty of the problem. When D ≤ 500, i.e., roughly

10% of the size of the simulated genome (which is usually the case for real genomes, see

Table 4.2 columns d(B) for some examples), we can see that our method almost gets perfect
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Figure 4.8 – Sensitivity of the inferred in-paralogs.
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Chapter 4. Comparing Genomes with DCJs and Segmental Duplications

performance. Third, observe that MSOAR is very sensitive to L even when D is very small. This

might be because the evolutionary model for in-paralogs in MSOAR is single-gene duplica-

tion, which creates trouble when genomes contain long segmental duplications. Finally, our

method outperforms MSOAR on all the configurations.

4.5.2 Results on Biological Datasets

We compare both methods on five well-annotated mammalian species, human (H.s.), go-

rilla (G.g.), orangutan (P.a.), mouse (M.m.) and rat (R.n.). For each species, we collect all the
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Figure 4.9 – Specificity of the inferred in-paralogs.
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Figure 4.10 – Accuracy of the inferred orthologs.
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protein-coding genes, and download their positions on the chromosomes and the Ensembl

gene family names from Ensembl (http://www.ensembl.org). Two genes are considered as

homologous if they have the same Ensembl gene family name. Since the tandemly arrayed

genes (TAGs) have a different evolutionary model from segmental duplications, we merge

each group of TAGs into only one gene through only keeping the first gene in the group while

removing all the following ones.

We do the pairwise comparison for all five species, and for each pair of species, we run both

methods to obtain triples (S,T,B). We use the same accuracy defined in section 4.5.1 to

evaluate B . To compute the accuracy, we use the gene symbols (HGNC symbols for primate

genes, MGI symbols for mouse genes, and RGD symbols for rat genes) to define true orthology

pairs: those gene pairs that have the same gene symbol form the set of true orthology pairs

for each pair of species. We do not have annotation data to serve as gold standard positive

in-paralogs (we cannot just regard those genes that are not in the true orthology pairs as

gold standard positive in-paralogs, since many genes have not yet been assigned a valid gene

symbol). Thus we are not able to compute the sensitivity and specificity of (S,T ).

The comparison on accuracy is shown in Table 4.1. We can observe that both methods have

very high accuracy, indicating that the inferred orthology pairs from gene order data mostly

agree with the annotations. On the other hand, our method gets higher accuracy than MSOAR

on all pairs. The running time of MSOAR is also shown in Table 4.1. On average for each

instance it takes 108 minutes, which is on the same level with our method (120 minutes).

In Table 4.2 we compare the number of operations and total score inferred by the two methods,

to evaluate their ability as an optimizer. First, we can see that our method gets more segmental

duplications and many fewer DCJs than MSOAR. One reason for this is that we use smaller cost

species pairs
assessable accuracy

time
MSOAR ILP MSOAR ILP

G.g. & H.s. 14898 14807 98.9% 99.1% 43
G.g. & M.m. 12946 12923 98.7% 99.0% 100
G.g. & P.a. 11308 11262 98.7% 99.0% 71
G.g. & R.n. 10831 10779 97.2% 98.0% 292
H.s. & M.m. 14030 13989 99.1% 99.3% 61
H.s. & P.a. 12004 11955 99.1% 99.3% 32
H.s. & R.n. 11748 11685 97.5% 98.1% 127

M.m. & P.a. 10574 10537 98.9% 99.3% 68
M.m. & R.n. 12332 12280 97.7% 98.2% 130

R.n. & P.a. 8788 8745 97.6% 98.2% 157

Table 4.1 – Comparison with MSOAR on accuracy. The two columns in the category of assess-
able show the number of assessable gene pairs in the bijections returned by MSOAR and our
method respectively. The category of accuracy give the accuracy of the bijections returned by
the two methods. The last column shows the running time of MSOAR (in minutes).
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for segmental duplications. Second, our method gets smaller total cost on all the 10 pairs. This

shows the advantage of our exact algorithm over the heuristic applied in MSOAR. Notice that

the total cost shown in Table 4.2 is computed using our cost scheme, i.e., d(B)+0.75 ·(|S|+|T |),

for both methods. However, if the total cost is computed using MSOAR’s cost scheme, i.e.,

d(B)+|S|+ |T |, our method still has less total cost on all pairs.

In Table 4.3 we analyze the distribution of the length of the inferred duplicated segments by

our method. We can see that most of them are single-gene duplications. We can also observe

that the rat genome contains more duplications than the other four genomes.

In Table 4.4 we analyze the composition of B returned by our method. If a gene family is a

singleton in both genomes, then this pair of genes cannot be duplicated and must be mapped

species pairs
|S|+ |T | d(B) total cost

MSOAR ILP MSOAR ILP MSOAR ILP
G.g. & H.s. 1738 1962 670 361 1973.50 1832.50
G.g. & M.m. 2183 2369 1214 891 2851.25 2667.75
G.g. & P.a. 1985 2259 896 530 2384.75 2224.25
G.g. & R.n. 3389 3620 1969 1394 4510.75 4109.00
H.s. & M.m. 1320 1381 909 743 1899.00 1778.75
H.s. & P.a. 1336 1444 497 306 1499.00 1389.00
H.s. & R.n. 2897 2885 1366 1069 3538.75 3232.75

M.m. & P.a. 1731 1825 906 707 2204.25 2075.75
M.m. & R.n. 2621 2739 1176 763 3141.75 2817.25

R.n. & P.a. 3109 3208 1535 1101 3866.75 3507.00

Table 4.2 – Comparison with MSOAR on inferred operations and total score. The two columns
in the category of |S|+|T | give the number of segmental duplications predicted by MSOAR and
our method respectively. The category of d(B) give the DCJ distance induced by the bijection
returned by the two methods. The last category gives the total cost of the triples returned by
the two methods, computed as 0.75 · (|S|+ |T |)+d(B).

species pairs S1 S2 S≥3 |S| T1 T2 T≥3 |T |
G.g. & H.s. 98.7 1.2 0.0 1347 95.2 4.3 0.3 615
G.g. & M.m. 98.5 1.3 0.1 1421 96.7 2.9 0.3 948
G.g. & P.a. 97.9 1.8 0.1 1579 98.8 1.1 0.0 680
G.g. & R.n. 98.1 1.6 0.2 1377 94.9 3.7 1.2 2243
H.s. & M.m. 94.8 4.9 0.1 563 96.2 3.5 0.2 818
H.s. & P.a. 93.9 4.8 1.2 807 99.3 0.4 0.1 637
H.s. & R.n. 94.9 4.2 0.7 631 95.3 3.2 1.3 2254

M.m. & P.a. 96.0 3.3 0.6 1109 99.1 0.5 0.2 716
M.m. & R.n. 95.5 3.5 0.9 648 94.5 3.5 1.8 2091

R.n. & P.a. 95.2 3.5 1.2 2472 99.0 0.6 0.2 736

Table 4.3 – Distribution of the length of the inferred duplicated segments by our method,
where Sk (resp. Tk ) gives the percentage of the segments of length k in S (resp. T ).
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to each other by definition. We call such pair a trivial pair. Observe that roughly half of the

pairs in B are trivial pairs (trivial column). We also show the percentage of the pairs that

are fixed through the preprocessing algorithm (predetermined column). We can see that

this preprocessing algorithm is very efficient, which can fix almost all the nontrivial pairs,

leaving a very small portion (remaining column) that are to be determined by the ILP. This is

because these species contain many shared segments and many isolated genes (because most

of the segmental duplications are single-gene duplications), and thus there are many optimal

substructures that can be identified by our algorithm.

species pairs trivial predetermined remaining |B |
G.g. & H.s. 51.5% 47.9% 0.5% 16213
G.g. & M.m. 48.7% 49.5% 1.6% 15015
G.g. & P.a. 50.7% 48.5% 0.7% 15271
G.g. & R.n. 46.3% 50.5% 3.0% 14983
H.s. & M.m. 51.0% 47.5% 1.3% 15572
H.s. & P.a. 52.3% 47.1% 0.4% 15481
H.s. & R.n. 48.5% 49.5% 1.8% 15379

M.m. & P.a. 50.0% 48.6% 1.2% 14620
M.m. & R.n. 48.9% 49.4% 1.6% 16347

R.n. & P.a. 47.7% 50.1% 2.0% 14534

Table 4.4 – Composition of the bijection returned by our method. The three columns in the
middle are explained in the main text while the last column gives the total number of gene
pairs in the bijection.

4.6 Discussion

The algorithm described in section 4.3.2 has potential to extend. For example, it can be directly

used to test whether a general substructure, rather than a single PHFSS, is optimal. Moreover,

we made a strong assumption that all genes in the related gene families are isolated, which

immediately makes the cost of the segmental duplications trivial to compare, and thus allows

us to focus on the number of cycles. In fact, we can relax this assumption, as long as we

can guarantee that the segmental duplications induced by the substructure that is tested is

optimal.
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5 Approximating the Edit Distance with
DCJs, Insertions and Deletions

In this chapter, we study the edit distance for genomes with duplicate genes under a model

including DCJ operations, insertions and deletions. We prove that computing such edit dis-

tance is equivalent to finding the optimal cycle decomposition of the corresponding adjacency

graph, and give an approximation algorithm with an approximation ratio of (1.5+ε).

5.1 Problem Statement

For a given genome, we call all its adjacencies and telomeres adjacency set. We define three

operations on an adjacency set.

1. DCJ (double-cut-and-join) [11], which acts on one or two elements (adjacencies or

telomeres) in one of the following ways:

• {p, q}+ {r, s} → {p,r }+ {q, s}, or {p, s}+ {q,r };

• {p, q}+ {r } → {p,r }+ {q}, or {p}+ {q,r };

• {p, q} → {p}+ {q};

• {p}+ {q} → {p, q}.

2. Insertion, which inserts a single gene g in one of the following ways:

• {p, q} → {p, gh}+ {q, g t }, or {p, g t }+ {q, gh};

• {p} → {p, gh}+ {g t }, or {p, g t }+ {gh};

• ;→ {gh , g t };

• ;→ {gh}+ {g t }.

3. Deletion, which deletes a single gene g in one of the following ways:

• {p, gh}+ {p, g t } → {p, q};

• {p, gh}+ {g t } → {p};
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• {gh , g t } →;;

• {gh}+ {g t } →;.

Under a model that includes the above three operations, the edit distance between two adja-

cency sets S1 and S2, denoted as d(S1,S2), is defined as the minimum number of operations

that can transform S1 into S2. Note that the edit distance is defined at the adjacency set level.

For genomes without duplicate genes, an adjacency set denotes a unique genomic structure.

However, for genomes with duplicate genes, two genomes with different structures may share

the same adjacency set as illustrated in Figure 5.1. Thus, d(S1,S2) defined above is a lower

bound for the edit distance between the two genomic structures.

Given two adjacency sets S1 and S2 from two genomes, let E1 and E2 be the multiset of

extremities collected from all elements in S1 and S2 respectively. Let T1 = E1 \ E2 and T2 =
E2 \ E1. Notice that all extremities in T1 (resp. T2) comes from |T1|/2 (resp. |T2|/2) genes, since

S1 and S2 are the adjacency sets obtained from genomes. Thus we can pair extremities in

T1 (resp. T2) into |T1|/2 (resp. |T2|/2) ghost adjacencies, each of which contains two extremities

comes from a single gene. Clearly, to transform S1 into S2, at least |T1|/2 deletions and |T2|/2

insertions are needed. The following theorem shows that these insertions and deletions are

both necessary and sufficient.

Theorem 5.1.1. Given two adjacency sets S1 and S2, there exists an optimal series of operations

with exactly |T1|/2 deletions, exactly |T2|/2 insertions and some DCJ operations that transforms

S1 into S2.

Proof. We prove this theorem by contradiction. Suppose that every optimal series of oper-

ations contains more than |T1|/2 deletions and more than |T2|/2 insertions. Assume that

O1O2 · · ·Om is an optimal series of operations that contains a minimum number of insertions

and deletions. Let S0S1S2 · · ·Sm be the trace of S1 in the process of transformation, where

S0 = S1 and Sm = S2. Note that for any insertion (or deletion) beyond the |T1|/2 deletions and

|T2|/2 insertions, there must be a matching deletion (or insertion) to preserve gene content.

Thus every optimal series of operations has at least a pair of insertion and deletion on the

a

{ah, at}

ab

{bt, ah}

{bh, at}
(a)

a

a

b

{at, ah}{ah, bt}

{bh, at}
(b)

Figure 5.1 – An example illustrating that two genomes with different structures share the same
adjacency set of {{ah , at }, {bh , at }, {bt , ah}}. In this chapter, we do not distinguish genes from
the same gene family.
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same gene. Without loss of generality, assume Oi inserts a pair of extremities {gh , g t } and O j

deletes {gh , g t } (i < j ), and operations between Oi and O j do not contain insertion or deletion

on {gh , g t }. Now we will build a new series of operations O′
i O′

i+1 · · ·O′
j without the pair of

insertion and deletion on {gh , g t } to replace Oi · · ·O j , which produce the trace Si ′Si+1′ · · ·S j ′

and satisfy S j ′ = S j . This process is shown in Figure 5.2.

Denote by g∗
h and g∗

t the two extremities inserted in Oi to distinguish them from other gh and

g t . For k = i , · · · , j −1, we will keep the invariant Sk−1′ = (Sk \ {{pk , g∗
h }, {qk , g∗

t }})∪ {{pk , qk }},

where pk (resp. qk ) is the extremity that shares an adjacency with g∗
h (resp. g∗

t ) in Sk . Note

that pk or qk might be empty if g∗
h or g∗

t forms a telomere, or {g∗
h , g∗

t } forms an adjacency in

Sk . Clearly this holds for k = i , since we have both Si−1′ = Si−1 and Si = (Si−1 \ {{p i , q i }})∪
{{p i g∗

h , q i g∗
t }}. To make this invariant hold for k = i +1, · · · , j −1, our new operation O′

k−1 will

mimic operation Ok as follows: if Ok does not affect the adjacencies or telomeres containing

g∗
h or g∗

t , then set O′
k−1 = Ok , and the invariant holds; if Ok acts on at least one of g∗

h or g∗
t ,

we will build O′
k−1 from Ok by replacing g∗

h (resp. g∗
t ) with pk (resp. qk ) in Ok . For example,

if Ok is the DCJ operation given by {pk−1, g∗
h }+ {c,d} → {pk−1,c}+ {g∗

h ,d}, then O′
k−1 would

be {pk−1, qk−1}+ {c,d} → {pk−1,c}+ {qk−1,d}. Since Ok does not affect g∗
t , we have qk = qk−1.

Besides, we have pk = d . Thus we have Sk \ {{pk , g∗
h }, {qk , g∗

t }}∪ {{pk , qk }} = Sk−1′. Other types

of operations can be expressed similarly.

Recall that O j is a deletion, i.e., {a, gh}+ {b, g t } → {a,b}. If gh and g t are the same as g∗
h and

g∗
t , then we have S j−2′ = S j , and we can skip O′

j−1 and O′
j in our constructed series. If gh and

g t are different from g∗
h and g∗

t , then we have {{a, gh}, {b, g t }, {p j−1, g∗
h }, {q j−1, g∗

t }} ⊂ S j−1. We

can set O′
j−1 to be {a, gh}+ {b, g t } → {a,b}+ {gh , g t }, and set O′

j to be {p j−1, q j−1}+ {gh , g t } →
{p j−1, gh}+ {q j−1, g t }. We can verify S j ′ = S j , and our constructed series contradicts the

optimality of O1O2 · · ·Om .

5.2 Adjacency Graph Decomposition

Given two adjacency sets S1 and S2 from two genomes with E1 and E2 be their corresponding

extremity sets, their corresponding adjacency graph is defined as a bipartite multigraph,

S0(S1) S1

O1

Si−2

· · ·
Si−1

Oi−1

Si

Oi

Si+1

Oi+1

Si+2

Oi+2

S j−2

· · ·
S j−1

O j−1

S j

O j

S j+1

O j+1

Sm−1

· · ·
Sm(S2)

Om

S0(S1) S1

O1

Si−2
· · ·

Si−1

Oi−1

Si ′

O′
i

Si+1 ′

O′
i+1

S j−3 ′
· · ·

S j−2 ′

O′
j−2

S j−1 ′

O′
j−1

S j ′

O′
j

S j+1

O j+1

Sm−1
· · ·

Sm(S2)

Om

Figure 5.2 – Building a new series of operations to replace Oi Oi+1 · · ·O j .
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A = {E1 ∪T2,E2 ∪T1,E }, in which u ∈ E1 ∪T2 and v ∈ E2 ∪T1 are linked by a black edge if u

and v are the same extremity, and u, v ∈ E1 ∪T2 (resp. u, v ∈ E2 ∪T1) are linked by a gray edge

if u and v form an adjacency in S1 (resp. S2) or they form a ghost adjacency in T2 (resp. T1).

Note that E1 ∪T2 and E2 ∪T1 have the same set of extremities; we use n to denote half of the

number of extremities, i.e., n = |E1 ∪T2|/2.

In the case of genomes with the same gene content and without duplicate genes, T1 = T2 =;,

and each vertex in the adjacency graph has degree 2, which means that the adjacency graph

consists of vertex-disjoint cycles and paths. We define the length of a cycle or a path to be the

number of black edges it contains. Based on Theorem 5.1.1, T1 = T2 =; implies there exists an

optimal solution without insertion and deletion, thus d(S1,S2) is just the minimum number

of DCJ operations needed to transform S1 into S2. When S1 has been transformed into S2, the

corresponding adjacency graph only consists of cycles of length 2 and paths of length 1. Since

each DCJ operation can increase the number of cycles at most by 1, or increase the number of

odd-length paths at most by 2, and we can always find out this kind of operation when S1 and

S2 are different, we have d(S1,S2) = n − c −o/2, where c is the number of cycles and o is the

number of odd-length paths in the corresponding adjacency graph [11].

In the presence of duplicate genes, the adjacency graph may contain vertices with degree

larger than 2, so that there may be multiple ways of choosing vertex-disjoint cycles and paths

that cover all vertices (see Figure 5.3). We say that a cycle (or path) in the adjacency graph is

alternating if two adjacent edges in this cycle (or path) contain exactly a gray edge and a black

edge. A valid decomposition of the adjacency graph is a set of vertex-disjoint alternating cycles

and paths that cover all vertices. We say that a cycle of length ` is helpful if at most (`/2−1)

vertices are ghost adjacencies, unhelpful if at least `/2 vertices are ghost adjacencies. In fact, an

unhelpful cycle has exactly `/2 ghost adjacencies (all in T1 or all in T2), since ghost adjacencies

from T1 and ghost adjacencies from T2 do not have common extremities and thus cannot be

linked in the adjacency graph. Now we show how to perform DCJ operations, insertions and

at ch ct ah bh bt ah at

at ct ch ah ah bh bt at

(a)

at ch ct ah bh bt ah at

at ct ch ah ah bh bt at

(b)

at ch ct ah bh bt ah at

at ct ch ah ah bh bt at

(c)

Figure 5.3 – An example of adjacency graph with duplicate genes. G1 contains two circular
chromosomes of (a,c) and (b), while G2 contains two circular chromosomes of (a,−c) and
(a,−b). Head extremities are represented by circles and tail extremities are represented by
diamonds. Extremities in ghost adjacencies are then filled gray. (a) Adjacency graph w.r.t. G1

and G2. (b) A decomposition with 2 cycles. (c) A decomposition with only 1 cycle.
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deletions to transform S1 into S2 based on a decomposition of the corresponding adjacency

graph.

Lemma 5.2.1. Given two adjacency sets S1 and S2 from two genomes, and a decomposition

D of the corresponding adjacency graph with c helpful cycles and o odd-length paths, we can

perform (n−c−o/2) operations to transform S1 into S2, among which there are |T1|/2 deletions,

|T2|/2 insertions and (n − c −o/2−|T1|/2−|T2|/2) DCJ operations.

Proof. We prove this lemma in a constructive way. We will perform operations under the

guidance of the given decomposition. The goal is to transform the adjacency graph into a

collection of cycles of length 2 and paths of length 1 without ghost adjacencies, indicating

that S1 has been transformed into S2. In the following, we will prove that an unhelpful cycle

of length ` costs `/2 operations, a path of even length ` costs `/2 operations, a helpful cycle

of length ` costs (`/2−1) operations, and a path of odd length ` costs (`−1)/2 operations.

In other words, a helpful cycle requires one less operation than an unhelpful cycle or an

even-length path of the same length.

For a helpful cycle of length ` with d ghost adjacencies from T1 and i ghost adjacencies from

ahat bh bt ch dt ct dh

ahbh bt dt ch ct atdh

DEL

ahat bh bt dtdh

ahbh bt dt atdh

INS

ah atbh bt dtdh

ahbh bt dt atdh

DCJ

ah atbh bt dt dh

ahbh bt dt atdh

(a)

ah bt at bh

ahat bt bh

DEL

bhbt

bhbt

INS
∅

(b)

ah bh at ch ct

ahat bh ch ct

DEL

bh ch ct

bh ch ct

INS

bh ch ct

bh ch ct

(c)

ahat bt bh

ah bt at bh

INS

ahat bt bh

ah bt at bh

INS

ah bt at bh

ah bt at bh

(d)

ah bh at ch

ahat bh ch

DEL

bh ch

bh ch

DCJ

bh ch

bh ch

(e)

Figure 5.4 – Examples of performing operations under the guidance of decomposition.
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T2, we first perform d deletions guided by this cycle to reduce the size of the cycle to (`−2d).

Then for each ghost adjacency from T2, we choose one of its non-ghost neighbors in S1 and

perform an insertion to create one more helpful cycle of length 2. After all ghost adjacencies

from T2 are handled, we transform the cycle of length ` into one of length (`−2d −2i ) without

ghost adjacencies, on which finally we can perform (`/2−d − i −1) DCJ operations to create

(`/2−d − i ) cycles of length 2. An example is shown in Figure 5.4(a).

For a unhelpful cycle of length ` with `/2 ghost adjacencies from T1, we can perform `/2

deletions to remove the adjacencies in S1. For a unhelpful cycle of length ` with `/2 ghost

adjacencies from T2, we can first insert a gene as initial operand, then perform (`/2− 1)

insertions to create `/2 cycles of length 2—see Figure 5.4(b)(d).

For a path with odd length `, we need (`−1)/2 operations, and for a path with even length `,

we need `/2 operations—see Figure 5.4(c)(e).

In sum, we need |T1|/2 deletions, |T2|/2 insertions and (n − c − o/2− |T1|/2− |T2|/2) DCJ

operations to transform S1 into S2.

Lemma 5.2.1 states that each decomposition gives an upper bound on the edit distance. The

following lemma shows that an optimal decomposition also provides a lower bound.

Lemma 5.2.2. We have d(S1,S2) ≥ n −maxD∈D(cD +oD /2), where D is the space of all decom-

positions of the corresponding adjacency graph, cD and oD is the number of helpful cycles and

odd-length paths in D, respectively.

Proof. Let ∆P = maxD∈D ′′(cD +oD /2)−maxD∈D ′(cD +oD /2), where D′ and D′′ are the space of

the decomposition before and after performing operation P , and P ∈ {DC J , I N S,DEL}. By

Theorem 5.1.1, there exists an optimal series of operations with exactly |T1|/2 deletions and

|T2|/2 insertions. Summing over all ∆P for these operations in this optimal solution yields∑d(S1,S2)
i=1 ∆Pi = (n −|T1|/2)−maxD∈D(cD +oD /2), where (n −|T1|/2) is the sum of the number

of helpful cycles and half of the number of odd-length paths in the optimal decomposition

of the adjacency graph when S1 has been transformed into S2. Define δDC J = 1, δI N S = 1 and

δDEL = 0. In the following, we will prove ∆P ≤ δP , P ∈ {DC J , I N S,DEL}, which implies that∑d(S1,S2)
i=1 ∆Pi ≤ d(S1,S2)−|T1|/2. The combination of these two formulas proves this lemma.

We prove ∆P ≤ δP by contradiction. Let A′ and A′′ be the adjacency graphs before and after

performing the operation P . Let σ(A′) and σ(A′′) be the optimal decompositions of A′ and A′′,
respectively. Suppose ∆P > δP , namely, (cσ(A′′) +oσ(A′′)/2)− (cσ(A′) +oσ(A′)) > δP . Note that P

is reversible; we denote the reversed operation as P̂ , and P̂ simultaneously transforms σ(A′′)
into a decomposition of A′, denoted γ(A′). Since σ(A′) is optimal, we have cσ(A′) +oσ(A′)/2 ≥
cγ(A′) + oγ(A′)/2. Thus, to get the contradiction, we only need to prove (cσ(A′′) + oσ(A′′)/2)−
(cγ(A′) +oγ(A′)/2) ≤ δP . Recall that γ(A′) is obtained from σ(A′′) by performing P̂ , and both

σ(A′′) and γ(A′) are decompositions, which includes only vertex-disjoint cycles and paths.

If P is a DCJ operation, then P̂ is still a DCJ operation. A DCJ operation may merge two cycles
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5.3. Approximation Algorithm

into one cycle, split one cycle into two cycles, merge two paths into one path, split one path

into two paths, merge one path and one cycle into one path, split one path into one cycle

and one path, rearrange two odd (resp. even)-length paths into two even (resp. odd) paths

or make no change in the number of cycles and odd-length paths. Among those possible

operations, the following four cases can reduce the number of helpful cycles or odd-length

paths: (i) merge two helpful cycles into one helpful cycle; (ii) merge two odd-length paths into

one even-length path; (iii) rearrange two odd-length paths into two even-length paths; (iv)

merge one helpful cycle and one odd-length path into one odd-length path. For any of these

four cases, we have (cσ(A′′)+oσ(A′′)/2)−(cγ(A′)+oγ(A′)/2) = 1. For other possible DCJ operations,

we have (cσ(A′′) +oσ(A′′)/2)− (cγ(A′) +oγ(A′)/2) ≤ 0.

If P is an insertion, then P̂ is a deletion. Similarly, among all possible deletions, the following

five cases can reduce the number of helpful cycles or odd-length paths: (i) merge two helpful

cycles into one helpful cycle; (ii) merge two odd-length paths into one even-length path; (iii)

rearrange two odd-length paths into two even-length paths; (iv) merge one helpful cycle and

one odd-length path into one odd-length path; (v) change a helpful cycle into an unhelpful

one. For any of these five cases, we have (cσ(A′′) +oσ(A′′)/2)− (cγ(A′) +oγ(A′)/2) = 1. For other

possible deletions, we have (cσ(A′′) +oσ(A′′)/2)− (cγ(A′) +oγ(A′)/2) ≤ 0.

If P is a deletion, then P̂ is an insertion. A insertion may split one cycle into two cycles, split

one path into two paths, or split one path into one cycle and one path. All these possible

insertions will not reduce the number of helpful cycles or odd-length paths. Thus, any deletion

will not increase the number of helpful cycles or the number of odd-length paths, and we have

cσ(A′′) +oσ(A′′)/2 ≤ cγ(A′) +oγ(A′)/2.

Combining Lemma 5.2.1 and Lemma 5.2.2, we have the following theorem.

Theorem 5.2.1. We have d(S1,S2) = n−maxD∈D(cD +oD /2), where D is the space of all decom-

positions of A = {E1∪T2,E2∪T1,E }, cD and oD are the numbers of helpful cycles and odd-length

paths in D, respectively.

5.3 Approximation Algorithm

We design an approximation algorithm by using techniques employed on the problem of

Breakpoint Graph Decomposition [62, 15, 63, 64]. The basic idea is to find the maximum

number of vertex-disjoint helpful cycles of length 4 in the adjacency graph. This problem can

be reduced to the problem of k-Set Packing problem with k = 4, for which the best-to-date

algorithm has an approximation ratio of (2+ε) [65, 66].

To make use of such algorithm, we must remove telomeres and keep only cycles in the adja-

cency graph. This can be done by introducing null extremity τ and null adjacency {τ,τ}, which

are different from other extremities and adjacencies (similar definition is introduced in [13]).

Given two adjacency sets S1 and S2 with 2 ·k1 and 2 ·k2 telomeres respectively, we replace each
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telomere {x} by the adjacency {x,τ}. If we additionally have k1 < k2, we must add (k2 −k1) null

adjacencies {τ,τ} to S1 in order to balance the degrees. The corresponding adjacency graph

is constructed in the same way as the case without null extremities. Now we prove that this

“telomere-removal” process does not change d(S1,S2).

Theorem 5.3.1. Let S1 and S2 be two adjacency sets and denote by S′
1 and S′

2 the adjacency sets

obtained from S1 and S2 by removing telomeres. Then we can write d(S1,S2) = d(S′
1,S′

2).

Proof. We first prove d(S1,S2) ≥ d(S′
1,S′

2). Let A = {E1 ∪ T2,E2 ∪ T1,E } be the adjacency

graph with respect to S1 and S2 and σ(A) be the optimal decomposition of A. Let A′ =
{E ′

1 ∪T2,E ′
2 ∪T1,E } be the adjacency graph with respect to S′

1 and S′
2 and σ(A′) be the optimal

decomposition of A′. Suppose σ(A) contains c helpful cycles, o odd-length paths and e even-

length paths, and among these e even-length paths, e1 of them contain two telomeres in S1

and e2 of them contain two telomeres in S2. Suppose S1 and S2 contains 2 ·k1 and 2 ·k2 telom-

eres respectively (without loss of generality, we assume that k1 ≤ k2). Since an odd-length

path contains one telomere in each adjacency set while an even-length path contains two

telomeres in one adjacency set, we have o +2 ·e1 = 2 ·k1 and o +2 ·e2 = 2 ·k2. We can perform

the following modifications on σ(A) to transform it into a decomposition of A′ (see Figure 5.5).

Nothing needs to be done for cycles. For odd-length paths, link their two telomeres to form a

helpful cycle; for each even-length path with both telomeres in S1, arbitrarily choose one even-

length path with both telomeres in S2 and link these two paths to form a helpful cycle; for the

remaining (e2 −e1) even-length paths, use e2 −e1 = k2 −k1 null adjacencies {τ,τ} to transform

ah at bh bt ah at bh bt ch ct dt ch ct dh eh et fh ft gh gt

ah bh at bt ah bh at bt ch ct dt ch ct dh eh et fh ft gh gt

(a)

ah at bh bt ah at bh bt ch ct dtτ ch ct dhτ eh τ et τ fh ft gh τ gtτ

ah bh at bt ah bh at bt ch τ ct dt ch τ ct dh eh et τ fh τ ft gh gt τ τ

(b)

Figure 5.5 – Illustration of the “telomere-removal” process (from (a) to (b)) and “telomere-
recovery” process (from (b) to (a)).

62



5.3. Approximation Algorithm

each such path into a helpful cycle. Thus, there are (c+e2) helpful cycles in this decomposition

of A′, so that the upper bound on d(S′
1,S′

2) is (n +k2)− c −e2 = n − c −o/2 = d(S1,S2).

Now we prove d(S1,S2) ≤ d(S′
1,S′

2). Note that σ(A′) only consists of vertex-disjoint cycles, and

unhelpful cycles cannot contain any null extremity. We claim that, for each helpful cycle in

σ(A′), there is at most two null extremities τ on each side. Otherwise, we can always choose

two nonadjacent edges that are linked through τ, exchange four ends of them, and divide this

cycle into two (see Figure 5.6), contradicting the optimality of σ(A′). Now we transform σ(A′)
into a decomposition of A by recovering all removed telomeres (see Figure 5.5). Each cycle falls

into one of three cases: (a) it contains one {x,τ} adjacency on each side, then the recovery will

yield one odd-length path; (b) it contains one {τ,τ} adjacency on one side, then the recovery

will yield one even-length path; (c) it contains two {x,τ}-like adjacencies on each side, then

the recovery will yield two even-length paths. In all cases (n − c −o/2) remains unchanged,

and after the recovery we obtain a decomposition of A. Thus we have d(S1,S2) ≤ d(S′
1,S′

2).

x τ x τ τ x

x τ τ x τ x

(a)

x τ x τ τ x

x τ τ x τ x

(b)

τ x x τ τ x

τ τ x x τ x

(c)

τ x x τ τ x

τ τ x x τ x

(d)

Figure 5.6 – Two cases of the adjacency graph with more than 2 edges linked through τ. Stars
represent unrelated extremities, and dashed lines might represent more than one edge.

In summary, based on Theorems 5.2.1 and 5.3.1, we have stated the equivalence of the problem

of computing the edit distance and that of finding a valid decomposition with a maximum

number of helpful cycles in an adjacency graph without telomeres. The latter problem is

NP-hard by a reduction from the NP-hard problem of Breakpoint Graph Decomposition [67],

since any instance of the Breakpoint Graph Decomposition is indeed an adjacency graph

without ghost adjacencies. Thus, the problem of computing the edit distance is also NP-hard.

Now we give the approximation algorithm and prove that its approximation ratio is (1.5+ε).

Approximation Algorithm

Input: Two adjacency sets S1 and S2 from two genomes

Output: A series of operations to transform S1 into S2.

Step 1 Add null adjacencies to S1 and S2 to obtain S′
1 and S′

2 without telomeres. Build the

adjacency graph A′ = {E ′
1 ∪T2,E ′

2 ∪T1,E }, where E ′
1 and E ′

2 are extremity sets of S′
1 and S′

2

respectively.

Step 2 Collect all helpful cycles of length 4 in A′ as C . Find a subset S of C in which no

two cycles share the same extremity using the (2+ε)-approximation algorithm for the k-Set
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Packing problem with k = 4.

Step 3 Remove the adjacencies covered by cycles in S . Arbitrarily decompose the remaining

part of A′ into cycles, denoting this set as S ′.
Step 4 Remove the null adjacencies of cycles in S ∪S ′ to obtain a decomposition of A.

Transform S1 into S2 according to Lemma 5.2.1 guided by these cycles and paths.

The running time of the above algorithm is dominated by the time complexity of the (2+ε)-

approximation algorithm for the k-Set Packing problem with k = 4, which is O(|C |log4 1/ε) and

|C | =O(n4) [65, 66].

Theorem 5.3.2. The approximation ratio of the above algorithm is (1.5+ε).

Proof. Suppose the optimal decomposition of A′ contain p helpful cycles of length 4 and q

longer helpful cycles. Clearly, we have n ≥ 2 · p +3 · q . Based on Theorem 5.2.1 and Theo-

rem 5.3.1, we know that d(S1,S2) = n−p−q . In the algorithm, we find at least |S |helpful cycles,

which implies that the number of operations that our algorithm outputs is at most (n −|S |).

Since S is a (2+ε)-approximation solution, we have (2+ε) · |S | ≥OPT ≥ p, where OPT is the

maximum number of independent helpful cycles of length 4 in C . The approximation ratio is

thus

r ≤ n −|S |
n −p −q

≤ n − p
2+ε

n −p −q
≤ 1+ p +q − p

2+ε
n −p −q

≤ 1+ p +q − p
2+ε

2p +3q −p −q
≤ 1.5+ε.
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6 DCJ Median Distance

In this chapter, we study the DCJ median problem: given three genomes without duplicate

genes, we want to construct a fourth genome, the median, that minimizes the sum of the DCJ

distances between itself and each of the three given genomes. We contribute to this problem

in three aspects. First, we describe a new strategy to find so-called adequate subgraphs in

the multiple breakpoint graph [68], using a seed genome, which is a key step in computing

the median. We show how to compute adequate subgraphs w.r.t. this seed genome using a

network flow formulation. Second, we prove that the upper bound of the median distance

computed from the triangle inequality is tight. Finally, we study the question of whether the

median distance can reach its lower and upper bounds. We derive a necessary and sufficient

condition for the median distance to reach its lower bound and a necessary condition for it to

reach its upper bound and design algorithms to test for these conditions.

6.1 Preliminaries

We assume that each genome consists of the same set of n distinct genes and that those genes

form one or more circular chromosomes in each genome. The head and tail of a gene g ,

represented by gh and g t , are called extremities. Two consecutive genes form one adjacency,

represented as the set of its two extremities. Since all genes are distinct, each genome is

uniquely determined by its n adjacencies. We build a graph (V ,E), where V has 2 ·n vertices

representing the extremities and E has n edges representing the adjacencies. Note that a

genome thus corresponds to a perfect matching on V (see Fig. 6.1).

Given genomes G1 and G2 represented by perfect matchings M1 and M2 on V , the corre-

sponding breakpoint graph is defined as the multigraph (V , M1, M2). In the multigraph, two

vertices may be connected by two edges, one from M1 and the other from M2. These edges

are distinguished by their provenance. Each vertex in this breakpoint graph has degree 2, so

that the graph consists of vertex-disjoint cycles; let c(M1, M2) denote the number of these

cycles. The DCJ distance between G1 and G2, denoted as d(M1, M2), can be expressed as

d(M1, M2) = n −c(M1, M2) [11]. We can extend this concept to three given genomes, M1, M2
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and M3, yielding a multiple breakpoint graph (MBG for short, see an example in Fig. 6.1),

denoted by (V , M1, M2, M3). Given a MBG (V , M1, M2, M3), the DCJ median problem asks for a

perfect matching M0 on V (another genome) that minimizes
∑3

k=1 d(M0, Mk ).

Now we generalize the definition of MBG by allowing nonperfect matchings, and we call those

MBGs with three perfect matchings complete MBGs. Notice that if M ′
1 and M ′

2 are not perfect

matchings on V ′, then the breakpoint graph (V ′, M ′
1, M ′

2) consists of isolated vertices, simple

paths, and vertex-disjoint cycles; we still use c(M ′
1, M ′

2) to denote the number of cycles.

Let B ′ be a MBG and B a complete MBG. We say B ′ is a subgraph of B if we have V ′ ⊆V and

M ′
k ⊆ Mk , k = 1,2,3. A matching M ′

0 on V ′ is a median of B ′ if it maximizes
∑3

k=1 c(M ′
0, M ′

k )

over all possible matchings on V ′. We say B ′ is adequate if for any median M ′
0 of B ′ we have∑3

k=1 c(M ′
0, M ′

k ) ≥ 3 · |V ′|/4.

Theorem 6.1.1. [49] If B ′ is an adequate subgraph of B, then for any median M ′
0 of B ′, there

exists one median M0 of B such that M ′
0 ⊂ M0.

This result leads to a decomposition scheme to compute the median by iteratively finding

adequate subgraphs and resolving each separately. To find adequate subgraphs in the com-

plete MBG, ASMedian uses a precomputed set containing all adequate subgraphs with size

less than 10, looking in turn for each subgraph in the complete MBG.

6.2 Adequate Subgraphs w.r.t. a Given Matching

We describe a new algorithm to compute adequate subgraphs in a complete MBG, based on

the use of a “seed” genome—a perfect matching on V . In practice, this seed genome can be

one of the three given matchings; it can also be computed with various heuristics.
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1
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1
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(G3)

2h

2t
1h

1t

6h

6t

5h

5t
4h

4t

3h

3t

(MBG)

Figure 6.1 – Three genomes and the corresponding complete MBG. Genes, adjacencies, and
extremities are represented by arrows, circles, and solid circles, respectively. Adjacencies in G1,
G2, and G3 are represented by solid, dashed and double lines respectively.
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6.2. Adequate Subgraphs w.r.t. a Given Matching

Let M be a perfect matching on V . We say a MBG B ′ = (V ′, M ′
1, M ′

2, M ′
3) is adequate w.r.t. M

if there exists a matching M ′ on V ′ satisfying
∑3

k=1 c(M ′, M ′
k ) ≥ 3 · |V ′|/4 and M ′ ⊆ M . If B ′ is

adequate w.r.t. M , then clearly it is adequate. Given a complete MBG B = (V , M1, M2, M3) and

a perfect matching M on V , let Ck be the set of cycles in the breakpoint graph (V , Mk , M),

k = 1,2,3, and write C =∪3
k=1Ck . For a cycle C ∈C , let V (C ) be the set of vertices covered by

C and E(C ) be the set of edges covered by C . For a subset S ⊆C , set V (S ) =∪C∈S V (C ) and

E(S ) =∪C∈S E(C ).

Lemma 6.2.1. There exist adequate subgraphs of B w.r.t. M if and only if there exists a subset

S ⊆C obeying |S | ≥ 3 · |V (S )|/4.

Proof. If such S exists, we can define the subgraph as (V (S ), M1 ∩E(S ), M2 ∩E(S ), M3 ∩
E (S )). Let M ′ = M ∩E (S ); then the sum

∑3
k=1 c(M ′, Mk ∩E (S )) is exactly equal to |S |, which

is larger than or equal to 3 · |V (S )|/4. Thus, our subgraph is adequate w.r.t. M . Conversely,

suppose that there exists one adequate subgraph (V ′, M ′
1, M ′

2, M ′
3) of B w.r.t. M and let M ′ ⊆ M

be a matching on V ′ satisfying
∑3

k=1 c(M ′, M ′
k ) ≥ 3 · |V ′|/4. Let S be the set of all cycles in the

three breakpoint graphs (V ′, M ′, M ′
k ), k = 1,2,3. We can write |S | =∑3

k=1 c(M ′, M ′
k ). Since M ′

1,

M ′
2 and M ′

3 are all matchings on V ′, we have that |V ′| ≥ |V (S )|. The combination of these

formulas yields |S | ≥ 3 · |V (S )|/4.

We now use a network flow formulation to compute such S as illustrated in Fig. 6.2.

Let N be the network. We add to N one vertex for each extremity in V , one vertex for each cycle

in C , one source vertex s and one sink vertex t . We add to N one directed edge of capacity 3/4

from s to each extremity in V and one directed edge of unit capacity from each cycle in C to t .

For each pair of v ∈V and C ∈C with v ∈V (C ), we add one directed edge of very large (large

enough not to act as a constraint) capacity from v to C . Let f be a maximum s-t flow of N , N f

the residual network w.r.t. f , S the set of vertices reachable from s in N f , and T the set of all

other vertices.

s

t

1h 2t 2h 3t 3h 4t 4h 5t 5h 6t 6h 1t

1

3/4

∞

Figure 6.2 – The network for the complete MBG of Fig. 6.1 with the seed M = M2.
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Lemma 6.2.2. There exists a subset S ⊆C with |S | ≥ 3·|V (S )|/4 if and only if we have {t }( T .

Proof. Based on the construction of S and T , we must have s ∈ S and t ∈ T ; moreover, (S,T ) is

a minimum s-t cut of N . For any other minimum s-t cut (S′,T ′), we have |S| ≤ |S′|. The total

capacity of cut (S,T ) is at most |C |, since it is a minimum s-t cut and there is a trivial s-t cut

(containing just the sink t on one side) whose total capacity is |C |.

Assume we have {t } ( T . Let S ⊆ C be the set of cycles in T and let V ′ ⊆ V be the set of

extremities that are in T . The edges assigned a very large capacity cannot belong to the (S,T )

cut, so that the total capacity of the (S,T ) cut is exactly 3 · |V ′|/4+|C |− |S |. Since the total

capacity of any minimum s-t cut is at most |C |, we must have |S | ≥ 3 · |V ′|/4. Because the

edges assigned a very large capacity are not in the (S,T ) cut, we also have V (S ) ⊆V ′. Thus,

we can conclude |S | ≥ 3 · |V (S )|/4.

Conversely suppose there exists a subset S satisfying |S | ≥ 3 · |V (S )|/4. We prove {t } ( T

by contradiction. Assume T = {t }; then the total capacity of the cut (S,T ) is |C |. Now we

construct another s-t cut (S′,T ′), where T ′ consists of the extremities in V (S ) and the cycles

in S and sink t . The total capacity of this cut (S′,T ′) is 3 · |V (S )|/4+|C |− |S |, which is less

than or equal to |C | since we have |S | ≥ 3 · |V (S )|/4. Thus (S′,T ′) is also a minimum s-t cut,

but clearly we have |S′| < |S|, the desired contradiction.

These two lemmas suggest a polynomial-time algorithm to decide the existence of the ade-

quate subgraphs w.r.t. a seed perfect matching: based on the proof of Lemma 6.2.2, if such

adequate subgraphs exist, we can find one from the residual network.

6.3 The Upper Bound is Tight

Let M0 be a median of a complete MBG B = (V , M1, M2, M3). We denote by dm =∑3
k=1 d(M0, Mk )

the median distance of B and by dt = d(M1, M2)+d(M1, M3)+d(M2, M3) the triangle dis-

tance of B . According to the triangle inequality (the DCJ distance is a metric), we have

d(M0, Mi )+d(M0, M j ) ≥ d(Mi , M j ), 1 ≤ i < j ≤ 3, which yields a lower bound for the me-

dian distance, dm ≥ dt /2. On the other hand, by using any of M1, M2, and M3 as a pos-

sible median, we get dm ≤ d(M1, M2)+d(M1, M3), dm ≤ d(M2, M1)+d(M2, M3), and dm ≤
d(M3, M1)+d(M3, M2), which yields an upper bound for the median distance, dm ≤ 2 ·dt /3.

Fig. 6.3 shows a subgraph where the upper bound is reached. Notice that this subgraph is also

adequate. Thus, the combination of any number of copies of this subgraph yields a graph that

also reaches the upper bound.

6.4 Deciding Equality to the Bounds

We now study a pure decision problem: whether the median distance of a complete MBG

reaches its lower or upper bound.
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Let u, v ∈V be two distinct vertices. A DCJ operation induced by (u, v) on M1 removes (u,u1)

and (v, v1) from M1 and adds (u, v) and (u1, v1) back to M1, where u1 and v1 are the neighbors

of u and v in M1 respectively. If u is matched to v in M1, then the DCJ operation induced by

(u, v) on M1 does not change anything; otherwise, we have the following property.

Property 6.4.1. Let M and M1 be two perfect matchings on V and u, v ∈V two distinct vertices

with (u, v) ∈ M and (u, v) 6∈ M1. Then we can write d(M , M ′
1) = d(M , M1)−1, where M ′

1 is the

perfect matching obtained from M1 after performing the DCJ operation induced by (u, v).

We say (u, v) is strong w.r.t. M1 and M2 if u and v are in the same cycle of (V , M1, M2) and the

distance between them (the number of edges on the shorter path from u to v) is odd—see

Fig. 6.4. Otherwise, we say (u, v) is weak w.r.t. M1 and M2.

Property 6.4.2. Let M ′
1 and M ′

2 be the two perfect matchings after performing the two DCJ

operations induced by (u, v) on M1 and M2 respectively. Then (u, v) is strong w.r.t. M1 and M2

if and only if we have

d(M ′
1, M ′

2) =


d(M1, M2) if (u, v) ∈ M1 ∩M2;

d(M1, M2)−1 if (u, v) ∈ (M1 −M2)∪ (M2 −M1);

d(M1, M2)−2 if (u, v) 6∈ M1 ∪M2.

We say two strong edges (u, v) and (u′, v ′) w.r.t. M1 and M2 are independent w.r.t. M1 and

M2 if (i) they are in different cycles of (V , M1, M2) or (ii) they do not “intersect” in the same

cycle—where an intersection would mean that u′ and v ′ are on the different paths from u to v .

Property 6.4.3. Let (u, v) be a strong edge w.r.t. M1 and M2, and M ′
1 and M ′

2 be the matchings

after performing two DCJ operations induced by (u, v) on M1 and M2 respectively.

(a) If edge (u′, v ′) is weak w.r.t. M1 and M2, then (u′, v ′) is weak w.r.t. M ′
1 and M ′

2.

(b) If edge (u′, v ′) is strong w.r.t. M1 and M2 and (u, v) and (u′, v ′) are independent w.r.t. M1

and M2, then (u′, v ′) is strong w.r.t. M ′
1 and M ′

2.

Figure 6.3 – Tightness of the upper bound. M1, M2, M3 are represented by solid, dashed and
double edges. We have d(M1, M2) = d(M1, M3) = d(M2, M3) = 4 and thus dt = 12. Any Mk is a
median with dm =∑3

k=1 d(M1, Mk ) = 8. Thus we have 3 ·dm = 2 ·dt .
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(c) If edge (u′, v ′) is strong w.r.t. M1 and M2 and (u, v) and (u′, v ′) are not independent w.r.t.

M1 and M2, then (u′, v ′) is weak w.r.t. M ′
1 and M ′

2.

(d) If edges (u′, v ′) and (u′′, v ′′) are strong w.r.t. M1 and M2, (u, v) and (u′, v ′) are independent

w.r.t. M1 and M2, (u, v) and (u′′, v ′′) are independent w.r.t. M1 and M2, but (u′, v ′) and

(u′′, v ′′) are not independent w.r.t. M1 and M2, then (u′, v ′) and (u′′, v ′′) are (strong but)

not independent w.r.t. M ′
1 and M ′

2.

Lemma 6.4.1. Let M, M1 and M2 be three perfect matchings on V . We have d(M , M1) +
d(M , M2) = d(M1, M2) if and only if M consists of n mutually independent strong edges w.r.t.

M1 and M2.

Proof. Choose one edge from M that is not in M1 ∪M2 and perform the DCJ operations in-

duced by this edge on M1 and M2, and repeat until no more such operations can be performed.

Let 2 ·o be the number of DCJ operations performed in this process and let M∗
1 and M∗

2 be

the final matchings thus obtained. We must have M = M∗
1 or M = M∗

2 since at the final state

we cannot find any edge in M that is not in M1 ∪ M2. Without loss of generality, assume

M = M∗
1 . Using property 6.4.1, we have d(M , M1) = d(M , M∗

1 )+o = d(M∗
1 , M∗

1 )+o = o and

d(M , M2) = d(M , M∗
2 )+o = d(M∗

1 , M∗
2 )+o.

Suppose that M consists of n mutually independent strong edges w.r.t. M1 and M2. According

to property 6.4.3(b), all edges used to perform DCJ operations must be strong w.r.t. their

current states. Using property 6.4.2, we get d(M∗
1 , M∗

2 ) = d(M1, M2) − 2 · o and thus also

u1

u(v2)

v(u2)
v1

u1

u(v2)

v(u2)

v1

(a)

u2u
u1

v1
v v2

u

v

u2

u1

v1

v2

(b)

u2u
u1

v2 v
v1

u

v

u2

u1

v2

v1

(c)

u
u1

u2

v1
v

v2

u
u1

u2

x2

x2

v1
v

v2

(d)

Figure 6.4 – The four cases for two DCJ operations induced by edge (u, v) on M1 and M2

(represented by solid and dashed edges respectively). u1 and v1 (u2 and v2) are the neighbors
of u and v in M1 (M2). (a) u and v are neighbors in M2; (b) u and v are in the same cycle
at odd distance; (c) u and v are in the same cycle at even distance; and (d) u and v are in
different cycles. In (a) ad (b), (u, v) is strong w.r.t. M1 and M2.
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d(M , M1)+d(M , M2) = d(M1, M2). Now suppose that there exists an edge in M that is weak

w.r.t. M1 and M2 or that there exist two edges in M that are not independent. By the end of

the iterative process, all edges in M are mutually strong w.r.t. M∗
1 and M∗

2 . Hence according

to property 6.4.3, there exists a weak edge that is used to perform DCJ operations in the

process. Thus, using property 6.4.2, we have d(M∗
1 , M∗

2 ) > d(M1, M2)−2 ·o, which implies

d(M , M1)+d(M , M2) > d(M1, M2).

We say (u, v) is strong w.r.t. to B = (V , M1, M2, M3) if (u, v) is strong w.r.t. M1 and M2, M1 and

M3, and M2 and M3. We say two strong edges (u1, v1) and (u2, v2) w.r.t. B are independent

w.r.t. B if they are independent w.r.t. M1 and M2, M1 and M3, and M2 and M3. Now we are in

a position to state a necessary and sufficient condition for the median distance to reach its

lower bound.

Lemma 6.4.2. We have dm = dt /2 if and only if there are n mutually independent strong edges

w.r.t. B.

Proof. We have dm = dt /2 if and only if there exists a perfect matching M0 of V satisfying

d(M , Mi )+d(M , M j ) = d(Mi , M j ) for all 1 ≤ i < j ≤ 3. Following Lemma 6.4.1, such matching

consists exactly of n mutually independent strong edges w.r.t. B .

We can also give a necessary condition regarding the upper bound.

Lemma 6.4.3. Assume M1 ∩M2 ∩M3 =;; then we have dm = 2 ·dt /3 only if there is no strong

edge w.r.t. B.

Proof. Suppose there exists a strong edge (u, v) w.r.t. B . Let M0 be one median of B . We

analyze the situation case by case.

First, assume we have (u, v) 6∈ M1 ∪M2 ∪M3. We perform the DCJ operations induced by (u, v)

on M1, M2 and M3. Let M ′
k , k = 1,2,3, be the corresponding new matchings and denote by

B ′ = (V , M ′
1, M ′

2, M ′
3) be the new complete MBG. Now we have (u, v) ∈∩3

k=1M ′
k , and clearly the

subgraph induced by {u, v} is adequate. Thus, there exists one median of B ′, call it M ′
0, with

(u, v) ∈ M ′
0. Set d ′

m =∑3
k=1 d(M ′

0, M ′
k ) and d ′

t = d(M ′
1, M ′

2)+d(M ′
1, M ′

3)+d(M ′
2, M ′

3). We know

that each DCJ operation can increase the DCJ distance by at most one. Thus, we have

dm ≤
3∑

k=1
d(M ′

0, Mk ) ≤
3∑

k=1
(d(M ′

0, M ′
k )+1) = d ′

m +3.

On the other hand, since (u, v) is strong w.r.t. B , by property 6.4.2, we have d(M ′
1, M ′

2) =
d(M1, M2)− 2, d(M ′

1, M ′
3) = d(M1, M3)− 2, and d(M ′

2, M ′
3) = d(M2, M3)− 2, which gives us

d ′
t = dt − 6. Applying the upper bound on B ′, we get d ′

m ≤ 2 · d ′
t /3. By combining these

formulas, we finally get dm ≤ d ′
m +3 ≤ 2 · (dt −6)/3+3 = 2 ·dt /3−1. Thus, the upper bound

cannot be achieved.
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Second, assume we have (u, v) ∈ M1−(M2∪M3). Now we perform the DCJ operations induced

by (u, v) on just M2 and M3. We can thus write dm ≤ d ′
m + 2. By applying property 6.4.2

and using the fact that M ′
1 is just M1, we can write d(M ′

1, M ′
2) = d(M1, M2)−1, d(M ′

1, M ′
3) =

d(M1, M3)−1, and d(M ′
2, M ′

3) = d(M2, M3)−2, which gives us d ′
t = dt −4. Putting everything

together, we get dm ≤ d ′
m +2 ≤ 2 · (dt −4)/3+2 = 2 ·dt /3−2/3, which implies that the upper

bound cannot be achieved.

Third, assume we have (u, v) ∈ (M1 ∩M2)−M3. Now we perform the DCJ operation induced

by (u, v) on M3 only. By similar reasoning, we get dm ≤ d ′
m + 1, d(M ′

1, M ′
2) = d(M1, M2),

d(M ′
1, M ′

3) = d(M1, M3)− 1, and d(M ′
2, M ′

3) = d(M2, M3)− 1. Thus, we have dm ≤ d ′
m + 1 ≤

2·(dt−2)/3+1 = 2·dt /3−1/3, which again implies that the upper bound cannot be achieved.

While necessary, the condition of Lemma 6.4.3 is not sufficient, as illustrated in Fig. 6.5: the

subgraph in the figure has no strong edge, but the median distance is not equal to its upper

bound. Notice that the subgraph in Fig. 6.5 is adequate, so that we can build a general example

by combining an arbitrary number of copies of this subgraph.

By Lemma 6.4.2, in order to decide whether the median distance reaches its lower bound,

we need only check whether there exist n mutually independent strong edges w.r.t. B . This

problem can be reduced to a maximum independent set problem, in which each strong edge

is a vertex and linking two strong edges if they are not independent. Clearly, there exist n

mutually independent strong edges if and only if the size of the maximum independent set is

n. While the independent set problem is NP-hard, we can test in polynomial-time whether

there exist n mutually independent strong edges w.r.t. M1 and M2, a necessary condition.

The algorithm enumerates all possible strong edges w.r.t. M1 and M2; this can be done in

O(n3) time. Let C1, C2, . . . , Cm be the cycles in the breakpoint graph (V , M1, M2). Because each

strong edge must have both endpoints on the same cycle, we can handle each cycle separately.

For cycle Ci with V (Ci ) vertices, we use dynamic programming to compute the maximum

Figure 6.5 – A subgraph with no strong edge where the median distance does not reach its
upper bound. Matchings M1, M2, M3, and M0 are represented by solid, dashed, double and
dotted edges respectively. We have d(M1, M2) = d(M1, M3) = d(M2, M3) = 5, yet d(M0, M1) = 2,
d(M0, M2) = d(M0, M3) = 3.
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number of non-crossing edges, taking time in O(|V (Ci )|3). If this maximum number is less

than V (Ci )/2, then we cannot find enough independent strong edges and thus the algorithm

returns false. If the algorithm terminates after examining all cycles, it returns true. The total

running time is O(n3).

The necessary condition for the upper bound stated in Lemma 6.4.3 can be tested effectively

by just checking each pair of vertices to see whether it is strong w.r.t. B . The running time is

also O(n3).

6.5 Discussion

In this chapter, we have given a new approach to the discovery of adequate subgraphs using a

seed genome, thereby significantly extending the applicability of this powerful decomposition

strategy. We have also given sharper characterizations of the upper and lower bounds for

the median distance, along with polynomial-time algorithms to test necessary conditions for

this distance to reach its lower or upper bound. Our work focused on genomes with equal

gene content and without duplication and assumed circular chromosomes, the simplest case.

Extension to linear chromosomes is the next step, while extension to unequal gene contents

with duplications and losses of gene segments appears far more challenging.
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7 Trajectory Graphs

As we have seen in the previous chapters, most of the algorithms for various edit distance

problems use the same underlying data structure, the adjacency graph. Adjacency graphs

have also been extended to study rearrangements with insertions and deletions [25, 69, 13],

whole-genome duplications [70, 71] as well as incorporating sequence information [72]. In

this chapter, we propose a new graphical data structure, the trajectory graph, which models

not only the final states of two genomes but also an existing evolutionary trajectory between

them. We begin by defining and illustrating the trajectory graph, then show correspondences

between redundant rearrangements in the initial trajectory and certain cycles in the corre-

sponding trajectory graph, and provide an effective algorithm to remove these redundant

rearrangements by iteratively resolving the active cycles in the trajectory graph. We also prove

that this algorithm converges to the optimal trajectory from any initial trajectory when the

model is restricted to rearrangements.

7.1 The Trajectory Graph

In this chapter, we study an evolutionary model including DCJ operations and segmental

duplications. We now view each of them as a function of adjacencies. For DCJ operation,

the input is two adjacencies (a,b) and (c,d) and the output is two new adjacencies (a,d) and

(c,b), or (a,−c) and (−b,d). A segmental duplication operation duplicates a segment and

either creates a new circular chromosome out of the copy or inserts the copy in the genome

at some location outside the original segment. A segment consisting of n genes g1, g2, · · · , gn

can be represented by its (n −1) adjacencies, (g1, g2), (g2, g3), · · · , (gn−1, gn). To keep notation

shorter, we will simply write (g1, g2, · · · , gn) to represent these (n −1) adjacencies and, when

appropriate, we simply use g ′ to represent the copy of the original gene g after a duplication.

We now define the two types of segmental duplications in term of adjacencies. The first

type of the segmental duplication [28, 29] inserts a copy of a segment (g1, g2, · · · , gn) to a

position specified by the adjacency (a,b); thus it takes (g1, g2, · · · , gn) and (a,b) as input, and

outputs (a, g ′
1), (g ′

1, g ′
2, · · · , g ′

n), (g ′
n ,b) and (g1, g2, · · · , gn), or (a,−g ′

n), (−g ′
n ,−gn−1, · · · , g ′

n−1),

(−g ′
1,b) and (g1, g2, · · · , gn). Note that (g ′

1, g ′
2, · · · , g ′

n) and (−g ′
n , −g ′

n−1, · · · ,−g ′
1) represent the
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same adjacency set. The second type of the segmental duplication [73] creates a new circular

chromosome with the copy of the segment (g1, g2, · · · , gn), thus it takes only (g1, g2, · · · , gn) as

input and outputs (g ′
n , g ′

1), (g ′
1, g ′

2, · · · , g ′
n) and (g1, g2, · · · , gn).

Each operation can be represented as a directed subgraph, composed of one operation node

representing the operation itself, a number of input adjacency nodes (one for each of its input

adjacencies), a number of output adjacency nodes (one for each of its output adjacencies), one

directed edge from each input adjacency node to the operation node, and one directed edge

from the operation node to each output adjacency node. Figure 7.1 illustrates these graph

components for DCJ and the two types of duplication.

We say that an edge is active if the adjacency associated with the node to which it is attached

has been changed by the operation, inactive otherwise. In the graph for a DCJ operation, all

four edges are active. In the graph for the first type of duplication, only the edge from (a,b)

to the operation node and the two edges from the operation node to the output adjacencies

(a, g ′
1) and (g ′

n ,b), or (a,−g ′
n) and (−g ′

1,b) are active, while the other edges are inactive. In the

graph for the second type of duplication, only the edge from the operation node to (g ′
n , g ′

1) is

active; all other edges are inactive. We say that a cycle in the trajectory graph is an active cycle

if all of its edges are active and define the size of a cycle as the number of the operation nodes

it contains.

Given two adjacency sets X and Y , a sorting path P = {p1, p2, · · · , pn} from X to Y is a series

of operations that transform X into Y . The trajectory graph G(P ) with respect to P naturally

delineates the input and output of each operation and the dependency relationships between

(a, b) (c, d)

(a, d) (c, b)

DCJ

(a)

(a, b) (c, d)

(a,−c) (−b, d)

DCJ

(b)

(a, b) (g1, · · · , gn)

(a, g′1) (g′1, · · · , g′n) (g′n, b) (g1, · · · , gn)

DUP

(c)

(a, b) (g1, · · · , gn)

(a,−g′n) (−g′n, · · · ,−g′1) (−g′1, b) (g1, · · · , gn)

DUP

(d)

(g1, · · · , gn)

(g′1, · · · , g′n)(g′n, g
′
1) (g1, · · · , gn)

DUP

(e)

Figure 7.1 – Illustration of the DCJ and the segmental duplication as functions of adjacencies,
among which part (a) and (b) are the DCJ, part (c) and (d) are the first type of the duplication,
and part (e) is the second type of the duplication. Active edges are drawn with solid lines while
inactive edges are drawn with dotted lines.
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them. Let Sk be the adjacency set after sequentially performing operations p1, p2, · · · , pk

starting from X . The trace from X to Y with respect to P is (X = S0,S1,S2, · · · ,Sn = Y ). To

construct G(P ), the initial step is to draw one adjacency node for each adjacency in X . Then

we sequentially handle each operation in P , ensuring that, before tackling operation pk , all

adjacency nodes of outdegree 0 in the current graph are exactly Sk−1. To add operation pk , we

connect the component graph for operation pk to the current graph by replacing all the input

adjacency nodes with their counterparts in the current graph. After all operations are added,

the set of all adjacency nodes of outdegree 0 is then exactly Y (see Figure 7.2).

By construction, the trajectory graph has the following two properties. First, the adjacency

nodes of indegree 0 form the adjacency set of X and the adjacency nodes of outdegree 0

form the adjacency set of Y , while all other adjacency nodes have indegree 1 and outdegree 1.

Second, the trajectory graph is a directed acyclic graph and any topological sorting of all the

operation nodes is a valid sorting path from X to Y .

7.2 An Iterative Algorithm to Improve any Trajectory

Given any two genomes and initial evolutionary trajectory P between them, we build the

trajectory graph G(P ) and give the following sufficient condition in G(P ) to identify and resolve

redundant rearrangements in P .

Theorem 7.2.1. Let P be a sorting path from X to Y . If G(P ) contains active cycles, then we can

find another sorting path P ′ from X to Y with fewer DCJ operations and an equal number of

duplications.

1, 2, 3, 4, 5

1, 2, 3, 4, 5, 2′, 3′, 4′

1, 2, 3,−2′,−5,−4, 3′, 4′

−2,−1, 3,−2′,−5,−4, 3′, 4′

(a)

(0, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 0)

(2, 3) (3, 4) (5, 2′) (2′, 3′) (3′, 4′) (4′, 0)

(0,−2) (−1, 3) (3,−2′) (−4, 3′)

DUP

DCJ DCJ

(b)

Figure 7.2 – A trajectory graph. The initial genome consists of one linear chromosome of 5
genes, (1,2,3,4,5). The duplication operation inserts a copy of (2,3,4) to the right end, which
transforms the genome into (1,2,3,4,5,2′,3′,4′). Then two DCJ operations, one inverting the
segment of (4,5,2′) and the other inverting the segment of (1,2), generate the final genome
as (−2,−1,3,−2′,−5,−4,3′,4′). Adjacency nodes (1,2) and (4,5) form two trivial connected
components, while the rest of the graph forms a nontrivial connected component.
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Proof. Let C be an active cycle in G(P ). Since G(P ) is directed, we can represent C as two

node-disjoint directed paths starting from the same top node and ending at the same bottom

node. Clearly, neither of these two nodes can be an adjacency node: the top node must have

outdegree 2 and the bottom node must have indegree 2. Moreover, the bottom node must be

a DCJ node, since there is at most one active edge pointing to each duplication node. We now

show how to exchange the bottom operation node with one of the two parent operation nodes,

thereby moving one operation node out of C , until there are only two operation nodes left in

C , which we can always replace with at most one operation.

We choose one of the two parent operation nodes to guarantee that the exchange will not

create any directed cycles. If both parent nodes are independent (there is no directed path

from one to the other), then we arbitrarily choose one; otherwise, we always choose the one

that is on the directed path from the other to the bottom node.

Figure 7.3 shows how to exchange the bottom DCJ node with a parent DCJ node. We view

the two DCJ nodes as a single supernode, with three input adjacencies and three output

adjacencies. We replace the current two DCJ nodes with two new ones, keeping the inputs and

outputs of the supernode unchanged. The new top DCJ node takes the two input adjacencies

of the supernode that are linked in C as its inputs and outputs two adjacencies, one of which

is among the outputs of the supernode. The new bottom DCJ node takes the other output

adjacency of the new top DCJ node and the remaining input adjacency of the supernode as

inputs and outputs the other two output adjacencies of the supernode. After the exchange,

the new bottom DCJ node is out of the new active cycle, while the new top DCJ node becomes

the bottom node of the new active cycle.

Figure 7.4 shows how to exchange the bottom DCJ node with its parent duplication node.

Again, we consider these two operation nodes as a single supernode. The new DCJ node takes

the two adjacency nodes linked in C as inputs and outputs two adjacencies, one of which is

(a, b) (e, f)

(c, d) (a, f) (e, b)

(c,−a) (−d, f)

DCJ

DCJ

(a)

(c, d) (a, b)

(c,−a) (−d, b) (e, f)

(−d, f) (e, b)

DCJ

DCJ

(b)

Figure 7.3 – Exchanging two DCJ nodes to reduce the size of the active cycle. Edges in the
active cycle are in bold.
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among the outputs of the supernode while the other is the insert position of the new bottom

duplication node. After the exchange, the new bottom duplication node will be out of the new

active cycle and the new parent DCJ node will be the bottom node of the new active cycle.

Through these exchanges, C will be reduced to just two operation nodes, the top one and the

bottom one. Now we show that we can always replace these two operations with at most one

operation.

Consider first the case in which the two operation nodes are both DCJ operations. If the input

and output of the supernode are different, then we can use one new DCJ node to connect

them, as shown in Figure 7.5(a,b); otherwise, we do not need any operation node, as shown in

Figure 7.5(c,d).

Next consider the case in which the top node is a duplication and the bottom node is a DCJ.

Assume the top duplication inserts a copy of the segment to position (a,b). If (a,b) is not one

(a, b) (s1, s2, · · · , sn)

(c, d) (a, s′1)

(s′1, · · · , s′n)

(s′n, b) (s1, · · · , sn)

(c,−a) (−d, s′1)

DUP

DCJ

(a)

(c, d) (a, b)

(c,−a) (−d, b) (s1, s2, · · · , sn)

(−d, s′1) (s′1, · · · , s′n)(s′n, b) (s1, · · · , sn)

DCJ

DUP

(b)

Figure 7.4 – Exchanging the bottom DCJ node with its parent duplication node.

(a, b) (c, d)

(a,−c) (−b, d)

(a, d) (−b,−c)

DCJ

DCJ

(a)

(a, b) (c, d)

(a, d) (−b,−c)

DCJ

(b)

(a, b) (c, d)

(a,−c) (−b, d)

(a, b) (c, d)

DCJ

DCJ

(c)

(a, b) (c, d)

(d)

Figure 7.5 – Resolving the active cycle consisting of two DCJ operations.
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of the output adjacencies of the bottom DCJ node, then these two operations can be replaced

by one duplication which inserts the inverted segment to the same position, as shown in

Figure 7.6(a,b); otherwise, these two operations can be replaced by one duplication which

creates a circular chromosome from the copy of the segment, as shown in Figure 7.6(c,d).

Note that the trajectory graph remains a directed acyclic graph. Thus we can retrieve one

sorting path from any topological sorting of the operation nodes in the final trajectory graph;

since we also showed that the number of DCJ operation nodes has reduced by at least one and

the number of duplication nodes is unchanged, the theorem is proved.

Given the trajectory graph G(P ) constructed from two input genomes and an initial trajectory

P , our algorithm iteratively applies Theorem 7.2.1 to reduce the number of operations until

there is no active cycle in G(P ). This algorithm will always terminate since resolving each cycle

will reduce the number of operation nodes in G(P ) and such number is always non-negative.

7.3 The Trajectory Graph Restricted to Rearrangements

We study the trajectory graphs with only DCJ operations. We show that the above iterative

algorithm always converges to the optimal trajectory for any initial trajectory. We first investi-

gate the structure of the trajectory graphs under a rearrangement-only model and illustrate

the close relationship with adjacency graphs. Recall that given two adjacency sets X and Y ,

(a, b) (s1, · · · , sn)

(a, s′1)

(s′1, · · · , s′n)

(s′n, b) (s1, · · · , sn)

(a,−s′n) (−s′1, b)

DUP

DCJ

(a)

(a, b) (s1, · · · , sn)

(a,−s′n) (−s′n, · · · ,−s′1)(−s′1, b)

(s1, · · · , sn)
DUP

(b)

(a, b) (s1, · · · , sn)

(a, s′1)

(s′1, · · · , s′n)

(s′n, b) (s1, · · · , sn)

(a, b) (s′n, s
′
1)

DUP

DCJ

(c)

(a, b) (s1, · · · , sn)

(s′1, · · · , s′n)(s′n, s
′
1) (s1, · · · , sn)

DUP

(d)

Figure 7.6 – Resolving the active cycle consisting of one DCJ operation and one duplication.

80



7.3. The Trajectory Graph Restricted to Rearrangements

the adjacency graph is defined as a bipartite multigraph A = {X ,Y ,E }, in which u ∈ X and

v ∈ Y are linked by one edge if u and v share one extremity and by two edges if they share two

extremities. If X and Y have the same extremity set and each extremity appears only once, the

adjacency graph consists of node-disjoint cycles and the minimum number of DCJ operations

needed to transform X into Y is |X |− c, where c is the number of cycles in A [11].

Let a trajectory P consist of only DCJ operations. For a connected component C of the

trajectory graph G(P ), we use I (C ) to denote the set of adjacency nodes of indegree 0 in C ,

O(C ) to denote the set of adjacency nodes of outdegree 0 in C , A(C ) to denote the set of

adjacency nodes with indegree 1 and outdegree 1, and D(C ) to denote the set of DCJ nodes in

C . We say that a connected component is trivial if it is a single adjacency node and nontrivial

otherwise (for examples see Figure 7.2).

Lemma 7.3.1. Let C be a connected component in the trajectory graph G(P ) where P consists

of only DCJ operations. Then we have C is a tree if and only if |D(C )| = |I (C )|−1.

Proof. If C is trivial, it is a tree, and we have |D(C )| = 0 and |I (C )| = 1, hence the lemma holds.

Assume then that C is nontrivial. The number of edges equals the sum of indegrees, which

is |O(C )| + |A(C )| +2 · |D(C )|; the number of nodes is |I (C )| + |O(C )| + |A(C )| + |D(C )|, since

I (C ) and O(C ) are disjoint when C is nontrivial. C is connected, so it is a tree exactly when

it has one more vertices than it has edges, hence we can write |O(C )| + |A(C )| +2 · |D(C )| =
|I (C )|+ |O(C )|+ |A(C )|+ |D(C )|−1, which yields |D(C )| = |I (C )|−1, as desired.

The following lemma shows that there is one-to-one correspondence between trees in the

trajectory graph and cycles in the adjacency graph.

Lemma 7.3.2. Let C be a tree in the trajectory graph G(P ) where P consists of only DCJ opera-

tions. The corresponding adjacency graph A = {I (C ),O(C ),E } consists of exactly one cycle.

Proof. If C is trivial, then A is a cycle of length 2, hence the lemma holds. For a nontrivial C ,

we proceed by contradiction. Suppose that A consists of two or more cycles. We partition A

into two parts by taking one arbitrarily chosen cycle as the first part and the remaining cycle(s)

as the second part. We then label all extremities in the first part as e1 and all extremities in

the second part as e2. We divide the adjacency nodes in C into three categories: if its two

extremities are both labeled e1, then label the node a1; if its two extremities are both labeled e2,

then label the node a2; otherwise, label the node a3. Now we can classify any DCJ operation

into one of the following 7 types:

1. {a1, a1} → {a1, a1}, or

2. {a2, a2} → {a2, a2}, or

3. {a1, a2} → {a3, a3}, or

4. {a1, a3} → {a1, a3}, or

5. {a2, a3} → {a2, a3}, or
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6. {a3, a3} → {a3, a3}, or

7. {a3, a3} → {a1, a2}.

Note that the labels on the adjacency nodes in I (C )∪O(C ) must be either a1 or a2, since these

adjacencies are the nodes of the adjacency graph, whose two extremities have the same type.

Note also that there must exist at least one adjacency node in C that is labeled as a3: otherwise

the DCJ operation can be only of type (1) or (2) and C can be divided into two disconnected

subgraphs, one defined by adjacency nodes labeled a1 and DCJ nodes of type (1), which

contradicts the fact that C is connected. Now, remove all adjacency nodes labeled a1 or a2

and their adjacent edges: the remaining nodes must have even total degree—see Figure 7.7.

The reason is that all adjacency nodes in I (C )∪O(C ) are removed, while adjacency nodes in

A(C ) either are removed or are labeled as a3 and have degree 2. Moreover, all operation nodes

must have even total degree, as easily verified by checking the 7 types. Hence there must be

one cycle in C , a contradiction since C is a tree.

Theorem 7.3.1. A trajectory P consisting of only DCJ operations is optimal if and only if the

corresponding trajectory graph G(P ) consists of trees.

Proof. If G(P ) contains at least one cycle C , then this cycle C must be an active cycle since all

edges in G(P ) are active for the DCJ-only model. Thus, according to Theorem 7.2.1, we have

that P is not optimal.

{1h,2t}1 {2h, 3t}2 {3h,4t}1 {4h, 1t}2

{2h,3h}3 {3t,4t}3

{1h,3h}1 {2t, 2h}3 {4t, 1t}3 {3t, 4h}2

{2t,4t}1 {2h, 1t}2

DCJ

DCJ DCJ

DCJ

(a)

{1h,2t}1 {2h, 3t}2 {3h,4t}1 {4h, 1t}2

{1h,3h}1 {2t,4t}1 {2h, 1t}2 {3t, 4h}2

(b)

{2h,3h}3 {3t,4t}3

{2t, 2h}3 {4t, 1t}3

DCJ

DCJ DCJ

DCJ

(c)

Figure 7.7 – Part (a) shows a non-trivial connected component C of a trajectory graph. Part (b)
is the corresponding adjacency graph A = {I (C ),O(C ),E }, which has two cycles. All extremities
in the first cycle are shown bold. The superscripts 1, 2 and 3 on each adjacency represent
labels of a1, a2 and a3 respectively. After removing all adjacency nodes in (a) labeled as a1 or
a2, the remaining part is shown in part (c), in which all nodes have even total degree.
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7.4. Discussion

We now prove that, if G(P ) consists of only trees, then P is optimal. Now assume that G(P )

consists of m trees, T1,T2, · · · ,Tm . Applying Lemma 7.3.1 to each tree, we find that the total

number of DCJ nodes in G(P ) is

m∑
k=1

|D(Tk )| =
m∑

k=1
(|I (Tk )|−1) =

m∑
k=1

|I (Tk )|−m.

On the other hand, according to Lemma 7.3.2, there are exactly m cycles in the adjacency graph

A = {∪m
k=1I (Tk ),∪m

k=1O(Tk ),E }, which implies that the minimum number of DCJ operations

needed is
∑m

k=1 |I (Tk )|−m. Thus P is optimal, as desired.

Corollary 7.3.1. The iterative algorithm converges to the optimal trajectory from any initial

trajectory.

Proof. The iterative algorithm terminates when there is no active cycles in the trajectory graph.

According to Theorem 7.3.1, any trajectory retrieved from the trajectory graph is optimal.

7.4 Discussion

Theorem 7.2.1 gives us a means to reduce the cost of a given sorting path. Unfortunately, the

converse of the theorem does not hold: it is not hard to see how to take advantage of duplica-

tion nodes to produce a counterexample. Thus repeated applications of the constructive proof

of Theorem 7.2.1 do not ensure optimality. However, the iterative improvement procedure can

form the basis for strong heuristics or good approximation algorithms.

The trajectory graph naturally combines rearrangements and segmental duplications (or,

in general, content-modifying operations) in a single model. Such a basis is crucial to the

development of strong characterizations and good algorithms. We also took a step in that

direction by showing that the trajectory graph is a proper extension of the adjacency graph,

to which it reduces in the absence of duplication, and by describing an efficient iterative

algorithm. Our current work focuses on using this improvement method within a large

optimization framework (e.g. incorporating methods to find good initial trajectories) to derive

fast and accurate approximations.

Different trajectories may correspond to the same trajectory graph, if they can be retrieved

by different ways of topological sorting in the same graph. Thus the trajectory graph is

useful in representing equivalent trajectories as well as characterizing the space of all optimal

trajectories under both rearrangements and content-modifying operations (like the cases

under inversions [74, 75] and DCJ operations [76] on adjacency graphs), and thus forming a

basis for future statistical analysis.

Under the DCJ model, if the two cuts are in the same linear chromosome, one of the two

nontrivial outcomes is to circularize a segment of DNA as a circular chromosome (also called

circular intermediate), which has recently been inferred in the evolution of cow genomes [77].
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Recent evidence also showed that segmental duplications may also be mediated by circular

intermediates in fish genomes [73]. The proof of Theorem 7.2.1 makes natural use of the

connection between rearrangements and segmental duplications through circular intermedi-

ates, and thus may be useful to identify possible circular intermediates in the evolutionary

trajectory.
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8 Conclusion

In this dissertation, we study the edit distance problems and median problems in whole-

genome comparison. We proposed several novel exact algorithms and approximation algo-

rithms for these problems and also applied them to analyze and annotate biological datasets.

We showed that these methods can scale up-to whole-genomes and also guarantee very high

accuracy.

We remark that in the process of designing these algorithms, we also proved many properties

and identified many special structures inside these problems. For example, we proved that

under certain condition, a shared adjacency can be fixed optimally for both the breakpoint

distance and DCJ distance. We also showed that there is an one-to-one correspondence

between each optimal sorting path of DCJ operations and each trajectory graph consisting of

only trees. These structures and properties can help understanding these problems and thus

help designing more efficient algorithms.

We emphasize that the framework of “ILP + identifying optimal substructures + adding extra

constraints” proposed in this dissertation can also be used to design practical exact algorithms

for other optimization problem, especially NP-hard problems. This framework first requires

formulating the problem as an ILP. If this formulation is not efficient on some instances,

then we need to study the properties of these instances, which can be incorporated into the

algorithm in two ways. First, we can use these properties to directly simplify these instances

and pipe the reduced instances to the ILP. Second, these properties can be transformed into

additional constraints of the ILP, which usually can reduce the search space and thus speedup

the ILP.
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