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Abstract

In this paper we address the automatic synthesis of coettsoll
for the coordinated movement of multiple mobile robots. We
use a noise-resistant version of Particle Swarm Optintnati

to learn in simulation a set of 50 weights of a plastic artfici
neural network. Two learning strategies are applied: homo-
geneous centralized learning, in which every robot runs the
same controller and the performance is evaluated extgrnall
with a global metric, and heterogeneous distributed leayni

in which robots run different controllers and the perforicean

is evaluated independently on each robot with a local met-
ric. The two sets of metrics enforce Reynolds’ flocking rules
resulting in a good correspondence between the metrics and
the flocking behaviors obtained. Results demonstrate that i
is possible to learn the collective task using both learaipg
proaches. The solutions from the centralized learning have
higher fitness and lower standard deviation than thosedearn
in a distributed manner. We test the learned controllers in
real robot experiments and also show in simulation the per-
formance of the controllers with increasing number of rebot

I ntroduction

This article tackles the synthesis of high-dimensional
controllers for cooperative tasks performed by resource-
constrained robots. Evaluative machine-learning teakesq
are an alternative to model-based control design that may
allow for full exploitation of the platforms’ limited sens-
ing capabilities, coping with discontinuities and nonéine
ities, as well as dealing with noise in the performance eval-

uations (Floreano and Mondada, 1996; Baldassarre et al.,

2007; Gauci et al., 2014; Jin and Branke, 2005; Pugh and
Martinoli, 2009).

As in our previous work (Di Mario et al., 2014b), the
cooperative task chosen is a loosely-coordinated coltecti
movement or flocking (Balch and Arkin, 1998; Olfati-Saber,
2006; Antonelli et al., 2008; Navarro and Matia, 2011), in

robot, as opposed to the large search space considered in thi
paper. It should be noted that the task as implemented in this
article is harder than those presented in other contribstio
as the robots are not physically connected to each other (Bal
dassarre et al., 2007), they are required not only to aggre-
gate but also move together (Gauci et al., 2014), and there
is no environmental template or goal to guide their move-
ment (Floreano and Mondada, 1996). Finally, in the case
of Baldassarre et al. (2007) and Gauci et al. (2014) learning
has been done only in a centralized manner, using homoge-
neous controllers and a global performance metric.

Morihiro et al. (2006) used Q-learning to generate flock-
ing behaviors of virtual agents (not robots) in the presence
of a predator, where the agents individually learn discrete
actions similar to Reynolds’ rules.

Some researchers have used different optimization tech-
niques to improve the performance of manually designed
flocking controllers, using PSO (Lee and Myung, 2013;
Etemadi et al., 2012), gradient descent (Chang et al., 2013)
Reinforcement Learning (Hayes and Dormiani-Tabatabaei,
2002), or Evolutionary Strategies (Celikkanat, 2008). Our
approach in this article differs in that our behaviors ane-ge
erated by a highly plastic artificial neural network and not
by a specific control design targeted to flocking behavior. In
other words, the main goal of this article is to compare cen-
tralized and distributed learning methods for design and op
timization of collaborative behaviors, among which floakin
has been chosen as a benchmark.

The distributed learning evaluates several candidate so-
lutions in parallel on the available robotic resources. t5uc
an approach allows the distributed robotic system to irsrea
its robustness to failure of individual robots and speechep t
overall learning process (Di Mario and Martinoli, 2014b). |
order to compare the distributed and centralized appr@ache

which a group of robots move together. Some researchers We aim to design a pair of global and local fitness functions

have previously shown that it is feasible to use learning
to generate cooperative behaviors (Matari¢, 2001; Parker
1997; Baldassarre et al., 2007; Gauci et al., 2014). Matari’
(2001) and Parker (1997) addressed the topic of learning in
multi-robot teams using a small number of parameters per

that result in the desired flocking behavior. The local or in-
dividual metric must be evaluated locally by each robot and
be close to the global metric.

The second aim of this paper is to get additional corre-
spondence between the fitness metric used and the flocking
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1: Initialize particles

2: for N; iterationsdo

for Np particlesdo

4 Update particle position

5: Evaluate particle

6: Re-evaluate personal best
7.

8

9

Aggregate with previous best
Share personal best
end for
10: end for

Figure 1: Four Khepera Ill robots performing one of the
learned flocking algorithms presented in this article.

behavior observed, in particular in respect to our previous
work (Di Mario et al., 2014b). In order to achieve it, we
augmented the fithess metrics to enforce the three Reynolds’

flocking rules (Reynolds, 1987), by adding alignment with  sybmicroscopic we mean that it provides a higher level of
neighboring flockmates to the originally implemented eolli  detail than usual microscopic models, faithfully reproidgc
sion avoidance and attraction. As a consequence of a betterjntra-robot modules (e.g., individual sensors and actsjto
alignment and therefore tighter motion coordination, e | The simulator has a built-in relative positioning systemtth
cal and global performances match better. gives information about the distance and direction to neigh

The remainder of this article is organized as follows. In horing robots within line-of-sight, mimicking the one used
the next section we describe the robotic platform, learning in the real robots.

algorithms, fitness metrics and control architecture. lo-Se
tion Experimental Results and Discussion, we present the Learning Algorithm
different experiments performed and discuss the results ob The psO algorithm used is a noise-resistant version intro-
tained both in simulation and with real robots. Finally, the 4,ced by Pugh et al. (2005). It works by re-evaluating per-
last _se(_:tio_n draws the conclusions of this work and dis@usse gona] pest positions and aggregating them with the previous
the limitations of the approach. evaluations, in our case by performing a regular average at
each iteration of the algorithm. The pseudocode for the al-
Methodology gorithm is presented in Fig. 2.
A variation of Particle Swarm  Optimization Each particle position represents a set of parameters of the
(PSO) (Kennedy and Eberhart, 1995) is used in this controller. As defined in Eq. 1, the movement of particle
article in order to learn flocking behaviors. The learning in dimensionj depends on three components: the velocity
problem for PSO is choosing a set of parameters of an at the previous step weighted by an inertia coefficiena
underlying robotic controller such that a given fitness randomized attraction to its personal bg’%t weighted by
metric is maximized. The learning process is performed wp, and a randomized attraction to the neighborhood’s best

completely in simulation, while the learned solutions are X, : weighted byw,. rand() is a random number drawn from
tested both using high-fidelity simulation and real robots. a uniform distribution between 0 and 1.

Figure 2: Noise-resistant PSO algorithm.

EXperImental Platform Vi j =W-Vij +Wprand()(x|*J _Xi,j)+Wn'rand()'(Xi*/J _Xi,j)

The experimental platform used is the Khepera Ill mobile
robot, a differential wheeled vehicle with a diameter of 12

(1)

Using the PSO algorithm we explore two different learn-

cm (see Fig. 1). Its sensing capabilities are augmented with ing schemes, characterized by the way the particles are dis-

a relative positioning system (Pugh et al., 2009), which cal

tributed among the robots and the fithess function used. The

culates range and bearing to nearby robots based on thefirst, global homogeneous, copies the same candidate solu-
strength of an infrared signal. The system also communi- tion (or set of weights) to every robot, and uses a global
cates the ID of the robot, allowing to estimate also the head- fithess function that evaluates the group behavior. The sec-
ing of neighboring robots by exchanging the bearings be- ond, local heterogeneous, distributes a different candidate
tween a pair of robots. In our experiments this communi- solution to each robot, and uses a local fithess function that
cation is done using the IEEE 802.11 wireless standard and is evaluated independently and individually on each robot.
UDP messages. The Khepera Ill has two wheel encoders, The distributed version allows to speed up the evaluations

which are used to estimate the trajectory followed by the
robots for the local fithness calculations.

Simulations are performed in Webots (Michel, 2004), a
high-fidelity submicroscopic simulator that models dynam-
ical effects such as friction and inertia. In this context, b

by a factor equal to the number of robots.

The PSO neighborhood is implemented as a ring topol-
ogy with one neighbor on each side. Particles’ positions and
velocities are initialized randomly with a uniform distib
tion in the [—20,20] interval, and their maximum velocity



Table 1: PSO parameter values

Parameter Value é osf

Number of robots\;qp 4 g

Swarm sizeNp 52 " o o - - )

IterationsN; 200 : distance [m]

Evaluation spare 4x45 s

E:égﬁgat'ggﬂﬁ %0 Figure 3: Inter-robot fitness as a function of the distance
wel .

Neighborhood ngghtvp 2.0 between wo robots.

DimensionD 50

Inertiaw 0.8 The global alignment factorff,) quantifies the heading

Vinex 20 difference between two robotsl§;; ) averaged between ev-

ery pair of robots and during the evaluation time. It has a
maximum value of 1 when all the robots are aligned and

is also limited to that interval. The PSO algorithmic pa- tends to 0 when robots are not aligned. It is defined as:

rameters (see Table 1) are set following the guidelines for

limited-time adaptation presented in our previous work (Di 1 Nea 1 Npairs
Mario and Martinoli, 2014a). These guidelines recommend fog=1—5— > (— > abs(Hairr,)/m  (3)
Neval K=1 NpaJrs =1

a swarm size equal to the dimension of the search space.
Since the dimension is 50 and four robots are used, we round whereNg,4 is the number of time steps in the evaluation
up the swarm size to 52 particles in order to have exactly 13 period, Npairs is number of inter-robot pairs arhfldiffj~k is
particles per robot in the distributed implementation. the difference of heading between paat time stefgk. Note

It is worth noticing that in the distributed heterogeneous that if there are more than two robots its value can never be
learning, groups of four particles are always evaluated to- O.
gether as a flock of four robots. In these groups of four ~ The global compactness factolzq) is the average over
particles, two of them have a PSO neighborhood of parti- the evaluation time and over each pair of robots of the inter-
cles from the same group, while each of the other two share robot fithess. We define the inter-robot fitness between two
their neighborhood with one particle of another group and robots as a function of the distance between them, as shown
one from its group. When testing the best controller from a in Fig. 3. The fitness is maximum at the desired inter-robot
distributed heterogeneous learning, we find the particle wi  distance of ®m, and it is zero when the robots are closer
the best local performance and test it together with therothe than 02m (slightly larger than the robots’ diameter) or fur-

three particles of its group. ther apart than.®m. It rewards robots that stay close to each
) ) other without colliding, implementing two of the Reynolds’
Fitness Functions rules. At each time step, we calculate the inter-robot figines

In this section, we define the fitness functions used for cen- for each pair of robots, and then average across all pairs:
tralized and distributed learning, using a global metric fo 1 MNew g MNpars
the first and_a local metric for the second. Both_perfor- fag = o z (N _ Z fitinterj,k) (4)
mance functions have three factors: movement, alignment, eval =1 'Npairs =1
and compactness. These factors reward robots that move a
far as possible from their initial positions, align theiralge
ings, and stay close to each other without colliding. The
factors are all normalized to the intenjal 1].

In the real experiments, all positions and distances used

%/vherefitimerj‘k is the inter-robot fithess for inter-robot pair
at time stefk.

The local performance metric is calculated individually
by each robot, using exclusively on-board resources and

. X , : mimicking the global metric. The local movement factor
in the global performance metric are obtained with a global (fy) is defined in two different variations. The first is the

tracking system that can detect all robots at any given time, normalized distance traveled by the robéf(), based on
using an overhead camera connected to a computer FUNNINGthe final position, which is calculated with odometry using

SwisTrack (Lochmatter et al., 2008). . the wheel encoders. The second is the normalized distance
Thg movement _factor_of the global performgqce metric  veled by the center of mass of the group of robéig ),
(fg) is the normalized distance between the initial and the 5 0jated using the odometry of the robot and the relative
final positions O_f the center of mass (_)f the group of robots. position to neighboring robots. If a neighboring robot posi
The normahzatlon_ factor is the maximum d|stanc,e that & tion can not be estimated (due to occlusions or limited range
robots can trave! in one evaluatlon,_l.e.,_the robot's maxi- ¢ iha relative positioning system), the last absolutetjmsi
mum speed multiplied by the evaluation time. where the robot was seen is used as final position.
frg = Peltt) = Xelto)] @ o M(tfl)jix(toﬂ
max

Dmax

(®)



Xe(ts) — Xe(to)|
5 (6)
max

fim matches the global movement factor better tifan
but tends to evaluate all the particles in the group of robots
with a very similar performance, although the controllers
could be very different. Two different local metrics are em-
ployed on this article depending on the local movement fac-
tor used.

The local alignment factorffy) is equivalent to the global
alignment factor measuring the absolute heading differenc
between pairs of robots as in Eq. 3. The difference here is
that each robot calculates its own metric only measuring the
heading difference between itself and the other three spbot
using the relative positioning system and communication.
These measurements might be affected by occlusions and
range limitations. If for a time step no neighbor is seen then
Hgiff is set to 1 for that time instant.

The local compactness factof() is implemented as in
Eq. 4, based on the inter-robot fitness. However, in the lo-
cal metric the number of paif$pairs in Eq. 4 is modified so
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Figure 4: Diagram of the neural network controller. In red
are the inputs, yellow the hidden layer with sigmoidal out-

puts, in blue the sigmoidal outputs which control the motor
speed, and in gray the bias input.

evaluations of the fithess and average them in order to make
the learning more robust. Concretely, each candidate solu-

that each robot only measures the distance to the other threetion is evaluated four times during 4and its performance

using the relative positioning system and then averages the
inter-robot fitness only for those other three robots, as op-
posed to averaging across all pairs of robots. Another dif-
ference between the local and global compactness factors is
that the local inter-robot distance measurements aretaffec
by occlusion, while the global ones are not.

Both global and local fitness are obtained by aggregating
the three corresponding factors using a generalized aggreg
tion function described by Zhang et al. (2008):

()

where f; are the individual fitness factors (with = f; for
the local fitness, andl = fig for the global),cy their corre-
sponding aggregation weights, asds the degree of com-
pensation. We set= 0, i.e., the highest degree of compen-
sation in design-appropriate aggregation functions, Bimp

fying EqQ. 7 to:
: 1
) =g

(
(8)

Since the three factord;j are in the interval0,1], the
fitness functiorF will also be in the same range. The aggre-
gation weights used aren = 0.4, ap = 0.5, andw; = 0.1.

In our previous work (Di Mario et al., 2014a), we showed
that the fithess evaluations for learning a simpler robotic
task had a large standard deviation, and that performing re-
evaluations was an effective way of dealing with this chal-
lenge in the learning. Given the more complex behavior
to be learned in this article and the difficulties encourdere
while doing so, we decided to perform multiple internal

w7+ wp 5+ anfs
W+ W+ s

()

w2+ w5 + wsfs
W+ W2+ G

F=Iim
s—0

averagedR’' = Z F) before consideration by the noise-

resistant algonthm shown in Fig. 2.

Controller Architecture

The controller is an artificial neural network with nine in-
puts, a hidden layer of four units with sigmoidal activation
functions, and two output units also with sigmoidal activa-
tion (see Fig. 4). The output neurons have also as input a
connection from a constant bias speed, a recurrent connec-
tion from its own output, and a lateral connection from the
other neuron’s output. The controller uses only local, on-
board measurements regardless of the performance metric.
Its inputs are the range and bearing measurements and the
heading average among the robots, while the outputs deter-
mine the two wheel speeds. The total number of weights to
be optimized by the PSO algorithm is 50. The hidden layer,
not present in our previous work (Di Mario et al., 2014b),
introduces additional plasticity to the controller.

The eight range and bearing inputd_sect k) are ob-
tained by dividing the bearing into eight sectors, and calcu
lating the activation of each sector by taking the minimum
range value measured in that sector and dividing it by the
maximum possible range, which is 3.3 meters. The ninth
input corresponds to the average of the headings among all
the neighboring robots, in the robot’s own coordinate sys-
tem and normalized to the interval [-1,1]. The use of a sin-
gle averaged input instead of one input per robot allows the
controller to generalize to any number of robots.

Experimental Results and Discussion

The learning process is performed completely in simula-
tion. We run three different optimization sets depending on



the learning schema and fitness function usgldbal ho-
mogeneous (centralized) learnindpcal heterogeneous (dis-
tributed) learning withindividual movement factor, antb-

cal heterogeneous (distributed) learning wittgroup move-
ment factor. Since PSO is a stochastic optimization method,
we perform 20 optimization runs for each of these learning
schemes.

Each evaluation during the learning process has a duration
of 45s and takes place in an unbounded arena. Four robots
are placed forming a square of side length equal to two robot
diameters with random orientations. The local fithess func-
tion is calculated by the robots using only their internabme

7 \ 7 7
6 6 6
5 5 5
— 4 — 4 _ 4
E E E
> 3 > 3 >3
2 2 2
1 1 1
0 0 0
-1 -1 -1,
2 0 2 10 1 2 3 =2 0 2
x [m] x [m] x[m]
() (b) (©)

surements (simulated range and bearing and WheelencodersFigure 7: Example of trajectories of four robots flock-

both with added noise), while the global fitness function is
calculated using the robots’ global positions with no esror
provided by the simulator.

ing in simulation during 68 for selected controllers from:
(a) global homogeneous learning, (b) local heterogeneous
with individual movement factor, and (c) local heteroge-

The learning progress is shown in Fig. 5 for the three neous with group movement factor. The initial positions are
learning sets, representing the best solution found at each marked with a circle, while the final positions are marked

iteration for the three different learning approaches. The

curves show the average of the 20 runs, and the error bars

represent the standard deviation. In the case of localdweter
geneous sets it shows not only the local metric but also the
global one, since it is designed to reflect the quality of the
flocking behavior and allows for comparison with central-
ized learning.

Comparing Fig. 5a with Fig. 5b and Fig. 5c, we can see
that global homogeneous learning achieves the best global
metric performance and lowest standard deviation of the
three methods. Also, it requires less iterations to leathas
learning curve becomes flatter faster, although the homoge-
neous approach employs four times the evaluation time of
the heterogeneous approaches for each iteration.

In Fig. 5¢ (heterogeneous with group movement factor),
there is a perfect matching of local and global metrics. On
the other hand, in Fig. 5b (heterogeneous with individual
movement factor) the local and global metrics do not match
initially, but they converge to the same value as the legrnin
progresses.

The individual movement factor is easy to learn (robots
just move straight), so it achieves a high value in the ihitia
iterations. However, because of the lack of alignment and

with a cross.

desired behavior in most runs, but sometimes fail, resmltin
in a high standard deviation. We noticed that this was due
to two opposite reasons: in the heterogeneous learning with
individual movement factor (Fig. 6b), individual speedes r
warded so the robots sometimes split. On the other hand, in
heterogeneous with group movement factor (Fig. 6¢) robots
sometimes aggregate close to their initial positions inrg ve
compact group and fail to travel far, resulting in low peffor
mance. This might be caused by obtaining very similar eval-
uations of the four particles tested together, which doés no
reflect the differences among the four controllers, disoard
potential good solutions and promoting bad ones.

The difference in compactness of the group can be ap-
preciated in the selected trajectories shown in Fig. 7,ntake
from the controller with highest median for each learning
approach. In the case of the homogeneous controller, robots
follow an almost perfect line. The trajectories followed by
the heterogeneous controller learned with individual move
ment factor show that robots tend to spread, while those
learned with group movement factor are more compact.

compactness, robots spread and do not achieve the desiredrhese trajectories reflect the overall behaviors obtained b
behavior. As the run progresses, alignment and compactnessmost of the 20 solutions of each learning approach.

factors improve, and therefore the difference between loca
and global metrics is reduced. Both alignment and compact-
ness factors still have margin for learning and might preduc
an improvement with further iterations.

After the learning process is finished, the fitness of the
best solution from each of the 20 independent learning runs
is evaluated systematically in simulation, running 100 ex-
periments of 6@ for each solution.

From Fig. 6a we can see that homogeneous learning
achieves a high performance with low standard deviation

In order to validate the results obtained in simulation, we
select the controller with highest median for each learning
approach and test it on real robots. We run 20 experiments
for each solution. The initial positions and number of r@bot
are the same as used for learning in simulation, but the eval-
uation time is reduced to Hin order to be able to keep track
of the robots’ positions during the whole evaluation due to
the limited field of view of the overhead camera. Follow-
ing the same scheme adopted in simulation, the local fithess
function is computed on each robot using only its on-board

for all the runs. Both heterogeneous approaches learn theresources, while the global fithess is computed externally
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Figure 5: (a) Learning progress measured using the glob@iafier global homogeneous (centralized) learning . (badnéng
progress measured using the global (blue) and local (retfjanéor local heterogeneous (distributed) learning vinittividual
movement factor. (c) Learning progress measured using lttealg(blue) and local (red) metrics for local heterogerssou
(distributed) learning with group movement factor. Thevasrshow the average of the 20 runs, and the error bars repthse

standard deviation.
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Figure 8: Evaluation with real robots for experiments os10r the selected controllers. (a) Performance measure@d@or
evaluations per controller with the global metric with realbots and in simulation for comparison of the selectedrodiets
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2 every other robot in the group of 16, which results in lower
0.9 ] 1 £ 90 performance values overall.
o8 __ 1 o s/ The resulting flocking behaviors can be better understood
0.7t E ! by looking at the video provided as supplementary mate-
Jost L é El 12 riall. It shows experiments in simulation and with real
Sos ; T | E=s robots for the three selected controllers and differentimem
£ I A of robots.
0.3¢ -5
02} -6 Conclusion
o1} 17 We have seen that the fitness metrics used, based on
O e Tes T 2, 0 2 Reynolds’ rules, reflect_an appropriate flocking beha\{ior.
(@) - h ®) They allowed us to obtain better and more robust solutions

than in our previous work (Di Mario et al., 2014b) for both
Figure 9: Evaluation in simulation using 16 robots for ex- the centralized and the distributed learning. The use of the
periments of 68. (a) Performance measured for 100 eval- alignment factor helps to maintain the cohesiveness of the
uations per controller using the global metric for: homoge- 9roup, and also to match the local metric with individual
neous learninghom), heterogeneous learning using individ- movement factor with the global one. Additionally, we have
ual movement factorhgt_i), and local heterogeneous learn-  shown that the learned controllers can generalize to groups
ing using group movement factdet_g). (b) Trajectories of of increasing number of robots, resulting in specially rstbu
a single experiment of homogeneous learning. controllers in the homogeneous solution.
Our results show that the controllers learned in the homo-
geneous centralized approach have higher fitness and lower
given the information provided by the overhead camera. standard deviation than those learned in a distributed man-
Fig. 8a shows the performance for the best controller from ner, although the centralized learning takes four times the
each learning approach both in simulation and reality. The evaluation time of the distributed strategies. Nevertele
shorter duration of experiments (48s opposed to &) im- the best solutions found for centralized and distributace

plies that the initial stage of aggregation and alignment of ing performed similarly, in simulation and in the different
the robots represents a larger fraction of the total timé, an  experiments with real robots.

therefore the performances for thesl@ins are lower than In the case of the distributed learning with individual

for the 60s runs. Both in simulation and reality the homo-  movementfactor, group compactness and cohesiveness were
geneous controller achieves the highest median, but tere i reduced due to the prevalence of the individual movement
a higher variance in the results with real robots that sugges while learning a collective task. Our solution to this issue
that some modeling details are missing in the simulation. was to define a new local metric with global movement fac-

The trajectories observed on real robots in Fig. 8 show the tor, which mimics perfectly the global metric, yet it makes
same differences in compactness and spreading for the threethe distributed learning harder since four different méet
approaches that were previously seen in simulation. evaluated together return very similar local fitness relgasd

The last set of experiments that we conducted, in this case of the difference in behaviors of the individual controdiéa
in simulation only, consisted in increasing the number of typical credit assignment problem in distributed learding
robots from four to 16 to see how the different controllers Learning with homogeneous controllers using the local met-
learned with four robots generalize to larger group numbers  ric with group movement factor could be a way to bypass the
Robots were initially positioned with a uniform random dis-  credit assignment problem while still allowing for on-bdar
tribution on a squared area ofieside, and random orienta-  |earning with simple noisy sensors without the need of exter
tions. Fig. 9a shows performance measured with the global na| hardware, but it would not decrease the evaluation time
metric in simulation. per iteration through parallel evaluations.

As expected, the homogeneous controller generalizes  ag continuation of this work, we will explore new strate-
quite well. Robots form one line or various close lines and gies for heterogeneous distributed learning that might re-
move straight in a very compact group (see Fig. 9b). We did gyt in better and more consistent performances of collec-
not have the same expectations for the heterogeneous con+jye tasks. We will explore other neighboring topologies of
trollers, given that robots might assume specialized rdfes  the PSO algorithm, as well as different ways of distributing
fact, the behaviors observed were similar to the four robot the particles among the robots. In addition, we would like
case, but the robots tend to spread, especially in the case oftg explore learning in the presence of obstacles in order to
the controller learned with individual movement factor€eTh generate obstacle avoidance at the group level.
compactness factor is also lower due to the fact that it is im-
possible for each robot to keep the same desired distance to  Ihttp://disalw3.epfl.ch/research/distributedaptation/ecal.mp4
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