
Distributed vs. Centralized Particle Swarm Optimization for Learning Flocking
Behaviors

Iñaki Navarro, Ezequiel Di Mario and Alcherio Martinoli

Distributed Intelligent Systems and Algorithms Laboratory,
School of Architecture, Civil and Environmental Engineering,

École Polytechnique Fédérale de Lausanne
{ezequiel.dimario, inaki.navarro, alcherio.martinoli}@epfl.ch

Abstract

In this paper we address the automatic synthesis of controllers
for the coordinated movement of multiple mobile robots. We
use a noise-resistant version of Particle Swarm Optimization
to learn in simulation a set of 50 weights of a plastic artificial
neural network. Two learning strategies are applied: homo-
geneous centralized learning, in which every robot runs the
same controller and the performance is evaluated externally
with a global metric, and heterogeneous distributed learning,
in which robots run different controllers and the performance
is evaluated independently on each robot with a local met-
ric. The two sets of metrics enforce Reynolds’ flocking rules,
resulting in a good correspondence between the metrics and
the flocking behaviors obtained. Results demonstrate that it
is possible to learn the collective task using both learningap-
proaches. The solutions from the centralized learning have
higher fitness and lower standard deviation than those learned
in a distributed manner. We test the learned controllers in
real robot experiments and also show in simulation the per-
formance of the controllers with increasing number of robots.

Introduction
This article tackles the synthesis of high-dimensional
controllers for cooperative tasks performed by resource-
constrained robots. Evaluative machine-learning techniques
are an alternative to model-based control design that may
allow for full exploitation of the platforms’ limited sens-
ing capabilities, coping with discontinuities and nonlinear-
ities, as well as dealing with noise in the performance eval-
uations (Floreano and Mondada, 1996; Baldassarre et al.,
2007; Gauci et al., 2014; Jin and Branke, 2005; Pugh and
Martinoli, 2009).

As in our previous work (Di Mario et al., 2014b), the
cooperative task chosen is a loosely-coordinated collective
movement or flocking (Balch and Arkin, 1998; Olfati-Saber,
2006; Antonelli et al., 2008; Navarro and Matı́a, 2011), in
which a group of robots move together. Some researchers
have previously shown that it is feasible to use learning
to generate cooperative behaviors (Matarić, 2001; Parker,
1997; Baldassarre et al., 2007; Gauci et al., 2014). Matari´c
(2001) and Parker (1997) addressed the topic of learning in
multi-robot teams using a small number of parameters per

robot, as opposed to the large search space considered in this
paper. It should be noted that the task as implemented in this
article is harder than those presented in other contributions
as the robots are not physically connected to each other (Bal-
dassarre et al., 2007), they are required not only to aggre-
gate but also move together (Gauci et al., 2014), and there
is no environmental template or goal to guide their move-
ment (Floreano and Mondada, 1996). Finally, in the case
of Baldassarre et al. (2007) and Gauci et al. (2014) learning
has been done only in a centralized manner, using homoge-
neous controllers and a global performance metric.

Morihiro et al. (2006) used Q-learning to generate flock-
ing behaviors of virtual agents (not robots) in the presence
of a predator, where the agents individually learn discrete
actions similar to Reynolds’ rules.

Some researchers have used different optimization tech-
niques to improve the performance of manually designed
flocking controllers, using PSO (Lee and Myung, 2013;
Etemadi et al., 2012), gradient descent (Chang et al., 2013),
Reinforcement Learning (Hayes and Dormiani-Tabatabaei,
2002), or Evolutionary Strategies (Celikkanat, 2008). Our
approach in this article differs in that our behaviors are gen-
erated by a highly plastic artificial neural network and not
by a specific control design targeted to flocking behavior. In
other words, the main goal of this article is to compare cen-
tralized and distributed learning methods for design and op-
timization of collaborative behaviors, among which flocking
has been chosen as a benchmark.

The distributed learning evaluates several candidate so-
lutions in parallel on the available robotic resources. Such
an approach allows the distributed robotic system to increase
its robustness to failure of individual robots and speed up the
overall learning process (Di Mario and Martinoli, 2014b). In
order to compare the distributed and centralized approaches,
we aim to design a pair of global and local fitness functions
that result in the desired flocking behavior. The local or in-
dividual metric must be evaluated locally by each robot and
be close to the global metric.

The second aim of this paper is to get additional corre-
spondence between the fitness metric used and the flocking

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148013654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Four Khepera III robots performing one of the
learned flocking algorithms presented in this article.

behavior observed, in particular in respect to our previous
work (Di Mario et al., 2014b). In order to achieve it, we
augmented the fitness metrics to enforce the three Reynolds’
flocking rules (Reynolds, 1987), by adding alignment with
neighboring flockmates to the originally implemented colli-
sion avoidance and attraction. As a consequence of a better
alignment and therefore tighter motion coordination, the lo-
cal and global performances match better.

The remainder of this article is organized as follows. In
the next section we describe the robotic platform, learning
algorithms, fitness metrics and control architecture. In Sec-
tion Experimental Results and Discussion, we present the
different experiments performed and discuss the results ob-
tained both in simulation and with real robots. Finally, the
last section draws the conclusions of this work and discusses
the limitations of the approach.

Methodology
A variation of Particle Swarm Optimization
(PSO) (Kennedy and Eberhart, 1995) is used in this
article in order to learn flocking behaviors. The learning
problem for PSO is choosing a set of parameters of an
underlying robotic controller such that a given fitness
metric is maximized. The learning process is performed
completely in simulation, while the learned solutions are
tested both using high-fidelity simulation and real robots.

Experimental Platform
The experimental platform used is the Khepera III mobile
robot, a differential wheeled vehicle with a diameter of 12
cm (see Fig. 1). Its sensing capabilities are augmented with
a relative positioning system (Pugh et al., 2009), which cal-
culates range and bearing to nearby robots based on the
strength of an infrared signal. The system also communi-
cates the ID of the robot, allowing to estimate also the head-
ing of neighboring robots by exchanging the bearings be-
tween a pair of robots. In our experiments this communi-
cation is done using the IEEE 802.11 wireless standard and
UDP messages. The Khepera III has two wheel encoders,
which are used to estimate the trajectory followed by the
robots for the local fitness calculations.

Simulations are performed in Webots (Michel, 2004), a
high-fidelity submicroscopic simulator that models dynam-
ical effects such as friction and inertia. In this context, by

1: Initialize particles
2: for Ni iterationsdo
3: for Np particlesdo
4: Update particle position
5: Evaluate particle
6: Re-evaluate personal best
7: Aggregate with previous best
8: Share personal best
9: end for

10: end for

Figure 2: Noise-resistant PSO algorithm.

submicroscopic we mean that it provides a higher level of
detail than usual microscopic models, faithfully reproducing
intra-robot modules (e.g., individual sensors and actuators).
The simulator has a built-in relative positioning system that
gives information about the distance and direction to neigh-
boring robots within line-of-sight, mimicking the one used
in the real robots.

Learning Algorithm
The PSO algorithm used is a noise-resistant version intro-
duced by Pugh et al. (2005). It works by re-evaluating per-
sonal best positions and aggregating them with the previous
evaluations, in our case by performing a regular average at
each iteration of the algorithm. The pseudocode for the al-
gorithm is presented in Fig. 2.

Each particle position represents a set of parameters of the
controller. As defined in Eq. 1, the movement of particlei
in dimensionj depends on three components: the velocity
at the previous step weighted by an inertia coefficientw, a
randomized attraction to its personal bestx∗i, j weighted by
wp, and a randomized attraction to the neighborhood’s best
x∗i′, j weighted bywn. rand() is a random number drawn from
a uniform distribution between 0 and 1.

vi, j =w·vi, j+wp ·rand()·(x∗i, j−xi, j)+wn ·rand()·(x∗i′, j−xi, j)
(1)

Using the PSO algorithm we explore two different learn-
ing schemes, characterized by the way the particles are dis-
tributed among the robots and the fitness function used. The
first, global homogeneous, copies the same candidate solu-
tion (or set of weights) to every robot, and uses a global
fitness function that evaluates the group behavior. The sec-
ond, local heterogeneous, distributes a different candidate
solution to each robot, and uses a local fitness function that
is evaluated independently and individually on each robot.
The distributed version allows to speed up the evaluations
by a factor equal to the number of robots.

The PSO neighborhood is implemented as a ring topol-
ogy with one neighbor on each side. Particles’ positions and
velocities are initialized randomly with a uniform distribu-
tion in the [−20,20] interval, and their maximum velocity

Table 1: PSO parameter values
Parameter Value
Number of robotsNrob 4
Swarm sizeNp 52
IterationsNi 200
Evaluation spante 4x45 s
Re-evaluationsNre 1
Personal weightwp 2.0
Neighborhood weightwp 2.0
DimensionD 50
Inertiaw 0.8
Vmax 20

is also limited to that interval. The PSO algorithmic pa-
rameters (see Table 1) are set following the guidelines for
limited-time adaptation presented in our previous work (Di
Mario and Martinoli, 2014a). These guidelines recommend
a swarm size equal to the dimension of the search space.
Since the dimension is 50 and four robots are used, we round
up the swarm size to 52 particles in order to have exactly 13
particles per robot in the distributed implementation.

It is worth noticing that in the distributed heterogeneous
learning, groups of four particles are always evaluated to-
gether as a flock of four robots. In these groups of four
particles, two of them have a PSO neighborhood of parti-
cles from the same group, while each of the other two share
their neighborhood with one particle of another group and
one from its group. When testing the best controller from a
distributed heterogeneous learning, we find the particle with
the best local performance and test it together with the other
three particles of its group.

Fitness Functions
In this section, we define the fitness functions used for cen-
tralized and distributed learning, using a global metric for
the first and a local metric for the second. Both perfor-
mance functions have three factors: movement, alignment,
and compactness. These factors reward robots that move as
far as possible from their initial positions, align their head-
ings, and stay close to each other without colliding. The
factors are all normalized to the interval[0,1].

In the real experiments, all positions and distances used
in the global performance metric are obtained with a global
tracking system that can detect all robots at any given time,
using an overhead camera connected to a computer running
SwisTrack (Lochmatter et al., 2008).

The movement factor of the global performance metric
(f1g) is the normalized distance between the initial and the
final positions of the center of mass of the group of robots.
The normalization factor is the maximum distance that a
robots can travel in one evaluation, i.e., the robot’s maxi-
mum speed multiplied by the evaluation time.

f1g =
|~xc(t f)−~xc(t0)|

Dmax
(2)

0 0.5 1 1.5 2
0

0.5

1

distance [m]

fit
ne

ss
 in

te
r−

ro
bo

t

Figure 3: Inter-robot fitness as a function of the distance
between two robots.

The global alignment factor (f2g) quantifies the heading
difference between two robots (Hdi f f) averaged between ev-
ery pair of robots and during the evaluation time. It has a
maximum value of 1 when all the robots are aligned and
tends to 0 when robots are not aligned. It is defined as:

f2g = 1−
1

Neval

Neval

∑
k=1

(
1

Npairs

Npairs

∑
j=1

abs(Hdi f f j,k)/π) (3)

whereNeval is the number of time steps in the evaluation
period,Npairs is number of inter-robot pairs andHdi f f j,k is
the difference of heading between pairj at time stepk. Note
that if there are more than two robots its value can never be
0.

The global compactness factor (f3g) is the average over
the evaluation time and over each pair of robots of the inter-
robot fitness. We define the inter-robot fitness between two
robots as a function of the distance between them, as shown
in Fig. 3. The fitness is maximum at the desired inter-robot
distance of 0.4m, and it is zero when the robots are closer
than 0.2m (slightly larger than the robots’ diameter) or fur-
ther apart than 0.6m. It rewards robots that stay close to each
other without colliding, implementing two of the Reynolds’
rules. At each time step, we calculate the inter-robot fitness
for each pair of robots, and then average across all pairs:

f3g =
1

Neval

Neval

∑
k=1

(
1

Npairs

Npairs

∑
j=1

f itinter j,k) (4)

wheref itinter j,k is the inter-robot fitness for inter-robot pairj
at time stepk.

The local performance metric is calculated individually
by each robot, using exclusively on-board resources and
mimicking the global metric. The local movement factor
(f1l) is defined in two different variations. The first is the
normalized distance traveled by the robot (f1al), based on
the final position, which is calculated with odometry using
the wheel encoders. The second is the normalized distance
traveled by the center of mass of the group of robots (f1bl),
calculated using the odometry of the robot and the relative
position to neighboring robots. If a neighboring robot posi-
tion can not be estimated (due to occlusions or limited range
of the relative positioning system), the last absolute position
where the robot was seen is used as final position.

f1al =
|~xi(t f)−~xi(t0)|

Dmax
(5)

f1bl =
|~xc(t f)−~xc(t0)|

Dmax
(6)

f1bl matches the global movement factor better thanf1al ,
but tends to evaluate all the particles in the group of robots
with a very similar performance, although the controllers
could be very different. Two different local metrics are em-
ployed on this article depending on the local movement fac-
tor used.

The local alignment factor (f2l) is equivalent to the global
alignment factor measuring the absolute heading difference
between pairs of robots as in Eq. 3. The difference here is
that each robot calculates its own metric only measuring the
heading difference between itself and the other three robots,
using the relative positioning system and communication.
These measurements might be affected by occlusions and
range limitations. If for a time step no neighbor is seen then
Hdi f f is set to 1 for that time instant.

The local compactness factor (f3l) is implemented as in
Eq. 4, based on the inter-robot fitness. However, in the lo-
cal metric the number of pairsNpairs in Eq. 4 is modified so
that each robot only measures the distance to the other three
using the relative positioning system and then averages the
inter-robot fitness only for those other three robots, as op-
posed to averaging across all pairs of robots. Another dif-
ference between the local and global compactness factors is
that the local inter-robot distance measurements are affected
by occlusion, while the global ones are not.

Both global and local fitness are obtained by aggregating
the three corresponding factors using a generalized aggrega-
tion function described by Zhang et al. (2008):

F =

(

ω1 f s
1 +ω2 f s

2 +ω3 f s
3

ω1+ω2+ω3

) 1
s

(7)

where fi are the individual fitness factors (withfi = fil for
the local fitness, andfi = fig for the global),ωi their corre-
sponding aggregation weights, ands is the degree of com-
pensation. We sets = 0, i.e., the highest degree of compen-
sation in design-appropriate aggregation functions, simpli-
fying Eq. 7 to:

F = lim
s→0

(

ω1 f s
1 +ω2 f s

2 +ω3 f s
3

ω1+ω2+ω3

)
1
s

= (f ω1
1 f ω2

2 f ω3
3)

1
ω1+ω2+ω3

(8)
Since the three factors (fi) are in the interval[0,1], the

fitness functionF will also be in the same range. The aggre-
gation weights used are:ω1 = 0.4, ω2 = 0.5, andω3 = 0.1.

In our previous work (Di Mario et al., 2014a), we showed
that the fitness evaluations for learning a simpler robotic
task had a large standard deviation, and that performing re-
evaluations was an effective way of dealing with this chal-
lenge in the learning. Given the more complex behavior
to be learned in this article and the difficulties encountered
while doing so, we decided to perform multiple internal

rb sect 1

rb sect 2

rb sect 3

rb sect 4

rb sect 5

rb sect 6

rb sect 7

rb sect 8

heading avg.

σ(x)

σ(x)

σ(x)

σ(x)

σ(x) motor left

σ(x) motor right

Hidden
layer

Input
layer

Output
layer

Figure 4: Diagram of the neural network controller. In red
are the inputs, yellow the hidden layer with sigmoidal out-
puts, in blue the sigmoidal outputs which control the motor
speed, and in gray the bias input.

evaluations of the fitness and average them in order to make
the learning more robust. Concretely, each candidate solu-
tion is evaluated four times during 45s and its performance

averaged (F ′ = 1
4

4
∑

i=1
Fi) before consideration by the noise-

resistant algorithm shown in Fig. 2.

Controller Architecture
The controller is an artificial neural network with nine in-
puts, a hidden layer of four units with sigmoidal activation
functions, and two output units also with sigmoidal activa-
tion (see Fig. 4). The output neurons have also as input a
connection from a constant bias speed, a recurrent connec-
tion from its own output, and a lateral connection from the
other neuron’s output. The controller uses only local, on-
board measurements regardless of the performance metric.
Its inputs are the range and bearing measurements and the
heading average among the robots, while the outputs deter-
mine the two wheel speeds. The total number of weights to
be optimized by the PSO algorithm is 50. The hidden layer,
not present in our previous work (Di Mario et al., 2014b),
introduces additional plasticity to the controller.

The eight range and bearing inputs (rb sect k) are ob-
tained by dividing the bearing into eight sectors, and calcu-
lating the activation of each sector by taking the minimum
range value measured in that sector and dividing it by the
maximum possible range, which is 3.3 meters. The ninth
input corresponds to the average of the headings among all
the neighboring robots, in the robot’s own coordinate sys-
tem and normalized to the interval [-1,1]. The use of a sin-
gle averaged input instead of one input per robot allows the
controller to generalize to any number of robots.

Experimental Results and Discussion
The learning process is performed completely in simula-
tion. We run three different optimization sets depending on

the learning schema and fitness function used:global ho-
mogeneous (centralized) learning,local heterogeneous (dis-
tributed) learning withindividual movement factor, andlo-
cal heterogeneous (distributed) learning withgroup move-
ment factor. Since PSO is a stochastic optimization method,
we perform 20 optimization runs for each of these learning
schemes.

Each evaluation during the learning process has a duration
of 45s and takes place in an unbounded arena. Four robots
are placed forming a square of side length equal to two robot
diameters with random orientations. The local fitness func-
tion is calculated by the robots using only their internal mea-
surements (simulated range and bearing and wheel encoders,
both with added noise), while the global fitness function is
calculated using the robots’ global positions with no errors
provided by the simulator.

The learning progress is shown in Fig. 5 for the three
learning sets, representing the best solution found at each
iteration for the three different learning approaches. The
curves show the average of the 20 runs, and the error bars
represent the standard deviation. In the case of local hetero-
geneous sets it shows not only the local metric but also the
global one, since it is designed to reflect the quality of the
flocking behavior and allows for comparison with central-
ized learning.

Comparing Fig. 5a with Fig. 5b and Fig. 5c, we can see
that global homogeneous learning achieves the best global
metric performance and lowest standard deviation of the
three methods. Also, it requires less iterations to learn asthe
learning curve becomes flatter faster, although the homoge-
neous approach employs four times the evaluation time of
the heterogeneous approaches for each iteration.

In Fig. 5c (heterogeneous with group movement factor),
there is a perfect matching of local and global metrics. On
the other hand, in Fig. 5b (heterogeneous with individual
movement factor) the local and global metrics do not match
initially, but they converge to the same value as the learning
progresses.

The individual movement factor is easy to learn (robots
just move straight), so it achieves a high value in the initial
iterations. However, because of the lack of alignment and
compactness, robots spread and do not achieve the desired
behavior. As the run progresses, alignment and compactness
factors improve, and therefore the difference between local
and global metrics is reduced. Both alignment and compact-
ness factors still have margin for learning and might produce
an improvement with further iterations.

After the learning process is finished, the fitness of the
best solution from each of the 20 independent learning runs
is evaluated systematically in simulation, running 100 ex-
periments of 60s for each solution.

From Fig. 6a we can see that homogeneous learning
achieves a high performance with low standard deviation
for all the runs. Both heterogeneous approaches learn the

−2 0 2
−1

0

1

2

3

4

5

6

7

8

x [m]

y
[m

]

(a)

−1 0 1 2 3
−1

0

1

2

3

4

5

6

7

8

x [m]

y
[m

]

(b)

−2 0 2
−1

0

1

2

3

4

5

6

7

8

x [m]

y
[m

]

(c)

Figure 7: Example of trajectories of four robots flock-
ing in simulation during 60s for selected controllers from:
(a) global homogeneous learning, (b) local heterogeneous
with individual movement factor, and (c) local heteroge-
neous with group movement factor. The initial positions are
marked with a circle, while the final positions are marked
with a cross.

desired behavior in most runs, but sometimes fail, resulting
in a high standard deviation. We noticed that this was due
to two opposite reasons: in the heterogeneous learning with
individual movement factor (Fig. 6b), individual speed is re-
warded so the robots sometimes split. On the other hand, in
heterogeneous with group movement factor (Fig. 6c) robots
sometimes aggregate close to their initial positions in a very
compact group and fail to travel far, resulting in low perfor-
mance. This might be caused by obtaining very similar eval-
uations of the four particles tested together, which does not
reflect the differences among the four controllers, discarding
potential good solutions and promoting bad ones.

The difference in compactness of the group can be ap-
preciated in the selected trajectories shown in Fig. 7, taken
from the controller with highest median for each learning
approach. In the case of the homogeneous controller, robots
follow an almost perfect line. The trajectories followed by
the heterogeneous controller learned with individual move-
ment factor show that robots tend to spread, while those
learned with group movement factor are more compact.
These trajectories reflect the overall behaviors obtained by
most of the 20 solutions of each learning approach.

In order to validate the results obtained in simulation, we
select the controller with highest median for each learning
approach and test it on real robots. We run 20 experiments
for each solution. The initial positions and number of robots
are the same as used for learning in simulation, but the eval-
uation time is reduced to 10s in order to be able to keep track
of the robots’ positions during the whole evaluation due to
the limited field of view of the overhead camera. Follow-
ing the same scheme adopted in simulation, the local fitness
function is computed on each robot using only its on-board
resources, while the global fitness is computed externally

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration

F
itn

es
s

global

(a)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration

F
itn

es
s

global
local

(b)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration

F
itn

es
s

global
local

(c)

Figure 5: (a) Learning progress measured using the global metric for global homogeneous (centralized) learning . (b) Learning
progress measured using the global (blue) and local (red) metrics for local heterogeneous (distributed) learning withindividual
movement factor. (c) Learning progress measured using the global (blue) and local (red) metrics for local heterogeneous
(distributed) learning with group movement factor. The curves show the average of the 20 runs, and the error bars represent the
standard deviation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Controller

F
itn

es
s

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Controller

F
itn

es
s

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Controller

F
itn

es
s

(c)

Figure 6: Performance measured with the global metric in simulation for the best solution found in each of the 20 independent
learning runs with (a) global homogeneous (centralized) learning, (b) local heterogeneous (distributed) learning using individual
movement factor and (c) local heterogeneous (distributed)learning using group movement factor. The box represents the upper
and lower quartiles, the line across the middle marks the median, and the crosses show outliers for 100 evaluations of each
controller.

hom sim hom real het_i sim het_i real het_g sim het_g real
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

(a)

0.5 1 1.5 2
−1

−0.5

0

0.5

x [m]

y
[m

]

(b)

1 1.5 2 2.5
−1

−0.5

0

0.5

x [m]

y
[m

]

(c)

0.5 1 1.5 2
0.5

1

1.5

2

x [m]

y
[m

]

(d)

Figure 8: Evaluation with real robots for experiments of 10s for the selected controllers. (a) Performance measured for20
evaluations per controller with the global metric with realrobots and in simulation for comparison of the selected controllers
for: global homogeneous learning (hom real andhom sim), local heterogeneous learning using individual movementfactor
(het i real andhet i sim), and local heterogeneous learning using group movement factor (het g real andhet g sim). Trajec-
tories of a single experiment with real robots for: homogeneous (b), heterogeneous with individual movement factor (c), and
heterogeneous with group movement factor (d). The initial positions are marked with a circle, the final positions are marked
with a cross.

hom het_i het_g
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

itn
es

s

(a)

−6 −4 −2 0 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

x [m]

y
[m

]

(b)

Figure 9: Evaluation in simulation using 16 robots for ex-
periments of 60s. (a) Performance measured for 100 eval-
uations per controller using the global metric for: homoge-
neous learning (hom), heterogeneous learning using individ-
ual movement factor (het i), and local heterogeneous learn-
ing using group movement factor (het g). (b) Trajectories of
a single experiment of homogeneous learning.

given the information provided by the overhead camera.
Fig. 8a shows the performance for the best controller from

each learning approach both in simulation and reality. The
shorter duration of experiments (10s as opposed to 60s) im-
plies that the initial stage of aggregation and alignment of
the robots represents a larger fraction of the total time, and
therefore the performances for the 10s runs are lower than
for the 60s runs. Both in simulation and reality the homo-
geneous controller achieves the highest median, but there is
a higher variance in the results with real robots that suggests
that some modeling details are missing in the simulation.

The trajectories observed on real robots in Fig. 8 show the
same differences in compactness and spreading for the three
approaches that were previously seen in simulation.

The last set of experiments that we conducted, in this case
in simulation only, consisted in increasing the number of
robots from four to 16 to see how the different controllers
learned with four robots generalize to larger group numbers.
Robots were initially positioned with a uniform random dis-
tribution on a squared area of 2m side, and random orienta-
tions. Fig. 9a shows performance measured with the global
metric in simulation.

As expected, the homogeneous controller generalizes
quite well. Robots form one line or various close lines and
move straight in a very compact group (see Fig. 9b). We did
not have the same expectations for the heterogeneous con-
trollers, given that robots might assume specialized roles. In
fact, the behaviors observed were similar to the four robot
case, but the robots tend to spread, especially in the case of
the controller learned with individual movement factor. The
compactness factor is also lower due to the fact that it is im-
possible for each robot to keep the same desired distance to

every other robot in the group of 16, which results in lower
performance values overall.

The resulting flocking behaviors can be better understood
by looking at the video provided as supplementary mate-
rial1. It shows experiments in simulation and with real
robots for the three selected controllers and different number
of robots.

Conclusion
We have seen that the fitness metrics used, based on
Reynolds’ rules, reflect an appropriate flocking behavior.
They allowed us to obtain better and more robust solutions
than in our previous work (Di Mario et al., 2014b) for both
the centralized and the distributed learning. The use of the
alignment factor helps to maintain the cohesiveness of the
group, and also to match the local metric with individual
movement factor with the global one. Additionally, we have
shown that the learned controllers can generalize to groups
of increasing number of robots, resulting in specially robust
controllers in the homogeneous solution.

Our results show that the controllers learned in the homo-
geneous centralized approach have higher fitness and lower
standard deviation than those learned in a distributed man-
ner, although the centralized learning takes four times the
evaluation time of the distributed strategies. Nevertheless,
the best solutions found for centralized and distributed learn-
ing performed similarly, in simulation and in the different
experiments with real robots.

In the case of the distributed learning with individual
movement factor, group compactness and cohesiveness were
reduced due to the prevalence of the individual movement
while learning a collective task. Our solution to this issue
was to define a new local metric with global movement fac-
tor, which mimics perfectly the global metric, yet it makes
the distributed learning harder since four different particles
evaluated together return very similar local fitness regardless
of the difference in behaviors of the individual controllers (a
typical credit assignment problem in distributed learning).
Learning with homogeneous controllers using the local met-
ric with group movement factor could be a way to bypass the
credit assignment problem while still allowing for on-board
learning with simple noisy sensors without the need of exter-
nal hardware, but it would not decrease the evaluation time
per iteration through parallel evaluations.

As continuation of this work, we will explore new strate-
gies for heterogeneous distributed learning that might re-
sult in better and more consistent performances of collec-
tive tasks. We will explore other neighboring topologies of
the PSO algorithm, as well as different ways of distributing
the particles among the robots. In addition, we would like
to explore learning in the presence of obstacles in order to
generate obstacle avoidance at the group level.

1http://disalw3.epfl.ch/research/distributedadaptation/ecal.mp4

Acknowledgements
This research was supported by the Swiss National Science
Foundation through the National Centre of Competence in
Research Robotics.

References
Antonelli, G., Arrichiello, F., and Chiaverini, S. (2008).Flocking

for multi-robot systems via the null-space-based behavioral
control. InIEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1409–1414.

Balch, T. and Arkin, R. (1998). Behavior-based formation control
for multi-robot teams. IEEE Transactions on Robotics and
Automation, 14(6):926–939.

Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo,
M., and Nolfi, S. (2007). Self-organized coordinated mo-
tion in groups of physically connected robots.IEEE transac-
tions on systems, man, and cybernetics. Part B, Cybernetics,
37(1):224–39.

Celikkanat, H. (2008). Optimization of self-organized flocking of
a robot swarm via evolutionary strategies. InInternational
Symposium on Computer and Information Sciences.

Chang, Y.-H., Chen, C.-L., Chan, W.-S., Lin, H.-W., and Chang,
C.-W. (2013). Fuzzy formation control and collision avoid-
ance for multiagent systems.Mathematical Problems in En-
gineering, volume 2013.

Di Mario, E. and Martinoli, A. (2014a). Distributed parti-
cle swarm optimization for limited time adaptation in au-
tonomous robots. InEleventh Int. Symp. on Distributed
Autonomous Robotic Systems, Springer Tracts in Advanced
Robotics, volume 104, pages 383–396.

Di Mario, E. and Martinoli, A. (2014b). Distributed particle swarm
optimization for limited time adaptation with real robots.
Robotica, 32(02):193–208.

Di Mario, E., Navarro, I., and Martinoli, A. (2014a). Analysis of
fitness noise in particle swarm optimization: From robotic
learning to benchmark functions. InIEEE Congress on Evo-
lutionary Computation, pages 2785–2792.

Di Mario, E., Navarro, I., and Martinoli, A. (2014b). Dis-
tributed learning of cooperative robotic behaviors using parti-
cle swarm optimization. In14th International Symposium on
Experimental Robotics, to appear inSpringer Tracts in Ad-
vanced Robotics.

Etemadi, S., Vatankhah, R., Alasty, A., Vossoughi, G., and
Boroushaki, M. (2012). Leader connectivity management and
flocking velocity optimization using the particle swarm opti-
mization method.Scientia Iranica, 19(5):1251 – 1257.

Floreano, D. and Mondada, F. (1996). Evolution of homing navi-
gation in a real mobile robot.IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 26(3):396–407.

Gauci, M., Chen, J., Dodd, T., and Groß, R. (2014). Evolv-
ing aggregation behaviors in multi-robot systems with binary
sensors. InEleventh Int. Symp. on Distributed Autonomous
Robotic Systems, Springer Tracts in Advanced Robotics, vol-
ume 104, pages 355–367.

Hayes, A. T. and Dormiani-Tabatabaei, P. (2002). Self-organized
flocking with agent failure: Off-line optimization and demon-
stration with real robots. InIEEE Int. Conf. on Robotics and
Automation, pages 3900–3905.

Jin, Y. and Branke, J. (2005). Evolutionary optimization inuncer-
tain environments: A survey.IEEE Transactions on Evolu-
tionary Computation, 9(3):303–317.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization.
In IEEE International Conference on Neural Networks, pages
1942 – 1948.

Lee, S.-M. and Myung, H. (2013). Particle swarm optimization-
based distributed control scheme for flocking robots. InRobot
Intelligence Technology and Applications, volume 208, pages
517–524.

Lochmatter, T., Roduit, P., Cianci, C., Correll, N., Jacot,J., and
Martinoli, A. (2008). SwisTrack - a flexible open source
tracking software for multi-agent systems. InIEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages
4004–4010.

Matarić, M. (2001). Learning in behavior-based multi-robot sys-
tems: Policies, models, and other agents.Cognitive Systems
Research, 2:81–93.

Michel, O. (2004). Webots: Professional mobile robot simulation.
Advanced Robotic Systems, 1(1):39–42.

Morihiro, K., Isokawa, T., Nishimura, H., and Matsui, N. (2006).
Emergence of flocking behavior based on reinforcement
learning. InKnowledge-Based Intelligent Information and
Engineering Systems, volume 4253, pages 699–706.

Navarro, I. and Matı́a, F. (2011). A framework for collective
movement of mobile robots based on distributed decisions.
Robotics and Autonomous Systems, 59(10):685–697.

Olfati-Saber, R. (2006). Flocking for multi-agent dynamicsys-
tems: Algorithms and theory.IEEE Transactions on Auto-
matic Control, 51:401–420.

Parker, L. E. (1997). L-ALLIANCE : Task-oriented multi-robot
learning in behavior-based systems. InAdvanced Robotics,
Special Issue on Selected Papers from IROS’96, pages 305–
322.

Pugh, J. and Martinoli, A. (2009). Distributed scalable multi-robot
learning using particle swarm optimization.Swarm Intelli-
gence, 3(3):203–222.

Pugh, J., Raemy, X., Favre, C., Falconi, R., and Martinoli, A.
(2009). A fast on-board relative positioning module for multi-
robot systems.Special issue on Mechatronics in Multi-Robot
Systems, IEEE Trans. on Mechatronics, 14(2):151–162.

Pugh, J., Zhang, Y., and Martinoli, A. (2005). Particle swarm op-
timization for unsupervised robotic learning. InIEEE Swarm
Intelligence Symposium, pages 92–99.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed
behavioral model.Computer Graphics, 21(4):25–34.

Zhang, Y., Antonsson, E., and Martinoli, A. (2008). Evolutionary
engineering design synthesis of on-board traffic monitoring
sensors.Research in Engineering Design, 19(2):113–125.

