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Background and introduction

� Supercapacitors
They offer very promising alternatives compared to
batteries and fuel cell to store and deliver energy.

Advantages Disadvantages Current applications

High power density (= how
fast the energy can be

supplied)

Lower energy density (=
how long the energy can

be supplied)

Hybrid Electric
Vehicles (HEVs)

Longer cycle life (millions of
cycles) = 2 to 3 times higher
than conventional Li-ion

batteries

Higher self-discharge rate
Diesel engine

starting systems

Low toxicity materials Lower cell voltage Cordless power tools
Operation over a wide
temperature range

Poor voltage regulation
Emergency and
safety systems

Low cost per cycle High initial cost

� Vertically-aligned carbon nanotubes
VANT are concentric tubes of graphite with
nanometer-scale diameter

� High surface area
� High electronic conductivity
� Relatively low costs, expected to

decrease in the years to come
� Usefulness of carbon-nanotubes

for supercapacitors proven

Balasubramanian, Small 2005 (2)

Multi-walled carbon nanotubes:
around 20nm in diameter

Supercapacitors and energy storge

Electrochemical double layer phenomena: energy
stored electrostatically.
To achieve higher gravimetric specific capacitance
(storage capability):

� Electrodes: larger surface area,
lower resistance, lower density

� Electrolyte: higher dielectric
constant, larger voltage window

� Interface electrode -
electrolyte: better wetting

Hydrophilic nanotubes

Hydrophobic nanotubes

Material and methods

� Growth by thermal chemical vapor deposition:
length comprised between 700 and 1000 µm

� Anchoring on copper tape (current collector)
� Electrochemical characterization: Cyclic

voltammetry and Electrochemical impedance
spectroscopy

� Lifetime assessment: Charge-discharge tests
� Imaging: Scanning Electron Microscopy
� Element characterization: Energy-dispersive X-ray

spectroscopy

Vertically-aligned carbon nanotubes arrays

Densely-packed

carbon nanotubes

in vertical standing

configuration
� Diameter:

around 20nm

� Length:
700-1000 µm

� Density:
103 kg/m3

Functionalization using
thermo-reduction process
� Oxygen adsorption: UV-ozone

→ allow site specific, quick and
easy to use

� Oxygen desorption: vacuum

pyrolysis

Comparison of VANT and graphite

� VANT: rectangular, featureless and symmetric
over a large range of scan rates

� Graphite: narrow loops, oblique angle at 0.8V,
elbow typical of a resistive electrode → cannot be
used for the chosen voltage window 0-1.5V

� Specific capacitance in function of scan rate

follows a power law : SC � αdV
dt

β

� graphite-based electrode: α = 130 and β = -3/4

� VANT-based electrode: α = 310 and β = -3/5
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VANT
� Electrodes made of

VANT, in a solution of
1M Et4NBF4-PC for
different scan rates

� Log-log plot of
relationship between the
specific capacitance and
the scan rate

� SEM image

Graphite
� Electrodes made of graphite, in a

solution of 1M Et4NBF4-PC.
The shape is nearly independent
of the scan rates when the scan
rate is >25mV/s.

� Log-log plot of the relationship
between the specific capacitance
and the scan rate

� SEM image

Functionalization and electrolytes

Polar protic Polar aprotic
1M H2SO4 6M KOH 1M Et4NBF4

Specific capacitance [F/g]
Hydrophobic 16 1 59
Hydrophilic 51 29 89

UV/ozone and vacuum pyrolysis treatments are used to vary the wetting

properties of MWNT arrays. Oxygen adsorption occurs during UV/ozone treatment and

oxygen desorption take places during vacuum pyrolysis treatment. (1)
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Error bars

Hydrophobic

Hydrophilic

Error bars

KOH              Et4NBF4−PC            H2SO4Aligned nanotubes         graphite

Surface functionalization (a) Specific capacitance of the VANT array electrodes in 1M

Et4NBF4-PC is higher by a factor 2 to 3 than that of the graphite, in both cases of hydrophilic

and hydrophobic, at 25 mV/s. (b) Specific capacitance of the vertically-aligned CNT array

electrodes in both aqueous (6M KOH-1M H2SO4) and non-aqueous (1M Et4NBF4-PC)

solution, measured at 25 mV/s. Surface functionalization allows an increase of 60% to 150%.

Energy density, power density and lifetime
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Electrochemical performance. (a) Ragone plot
Hydrophilic electrode Hydrophobic electrode

Max ED = 21 Wh/kg at PD = 1.1 Wh/kg Max PD = 22 kW/kg at ED = 2 Wh/kg

(b) Specific capacitance vs current density. Maximum specific capacitance:
∼1 kF/g at a discharge current density of 4 A/g. Power law for ID <103 A/g

(c) Specific capacitance in function of cycles, in Et4NBF4-PC.
>130,000 cycles, 100mV/s

(d) No loss in storage capability nor degradation of the electrode.
Voltammogram after 130,000 cycles

Conclusion

� Performance 3 times higher than graphite
electrodes

� Increase in specific capacitance with
hydrophilization and good choice of electrolyte

� Cheap system: every part of the system is
non-expensive (copper, carbon nanotubes,
propylene filter...) → commercially-attractive

� Non Lithium-based:
� Lithium causes great damage to endangered

ecosystems (3)

� Li production could only sustain portable
electronics, not also transportation → need to
find alternatives for hybrid cars

� Li is reactive and dangerous
� Entirely carbon-based electrodes
� Small ecological print compared to Li-based

batteries
� More stable than Li-based batteries
� Long lifetime: >130,000 cycles achieved
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