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Abstract 
Understanding the performance of large, complex 

enterprise-class applications is an important, yet non-
trivial task. Methods using hardware performance 
counters, such as profiling through event-based 
sampling, are often favored over instrumentation for 
analyzing such large codes, but rarely provide good 
accuracy at the instruction level. 

This work evaluates the accuracy of multiple event-
based sampling techniques and quantifies the impact of 
a range of improvements suggested in recent years. The 
evaluation is performed on instances of three modern 
CPU architectures, using designated kernels and full 
applications. We conclude that precisely distributed 
events considerably improve accuracy, with further 
improvements possible when using Last Branch 
Records. We also present practical recommendations 
for hardware architects, tool developers and 
performance engineers, aimed at improving the quality 
of results. 

1. Introduction 
Optimizing large codes is difficult. It requires dealing 
with millions of lines of code developed by many 
engineers, processing diverse data sets that run on 
complicated warehouse-scale systems [1]. Furthermore, 
it requires a deep understanding of the specific 
hardware architecture [3] or mandates use of recently 
published cycle-accounting methods suitable for out-of-
order cores [27][36]. Modern processors feature 
counters that aim to assist users in understanding how 
well their application is performing. The hardware 
component in charge of gathering this information is 
usually called the Performance Monitoring Unit 
(PMU). The methodologies based on using these 
counters are well-established, especially in the HPC 
domain [2]. 

Many profilers [4][5][6] provide the means to narrow 
down the information gathered to select locations in the 
code that may cause an inefficiency. Methodologies 
that perform their analysis at basic-block granularity 
provide high source-level resolution, and are therefore 
the focus of this paper. Accurately obtaining basic 
block execution counts is a key problem facing the 
abovementioned profilers when analyzing enterprise-
class, large-scale object-oriented workloads. These 
have challenging long-tail profiles with few hotspots 
where instrumentation is usually unsuitable [39]. 

This paper surveys Event Based Sampling (EBS) 
techniques and the parameters that influence 
measurement accuracy. We conduct our study on 
instances of modern enterprise processors. We develop 
a set of microbenchmarks, use a subset of the CPU2006 
workloads, and use a large production workload from 
the CERN datacenter [7], running in deployments 
exceeding 300’000 cores. The contributions of this 
paper are: 

 A first, to our knowledge, experimental evaluation 
of the accuracy of EBS techniques – serving as a 
necessary base for further work in this field. 

 The conclusion that precise events considerably 
improve accuracy with little or no added cost, with 
further improvements resulting from the collection 
and analysis of Last Branch Records. 

 Recommendations for hardware architects, tool 
developers and performance engineers working with 
EBS, aimed at improving the quality of results. 

2. Motivation and background 

2.1. The need for accurate basic-block profiles 

Accurate and efficient basic block execution counts are 
important for a wide spectrum of use cases. Basic block 
graphs can rely on accurate basic block profiles. These 
can greatly improve the compiler’s capability to make 
better decisions on inlining, while increasing code 
locality. Code level energy-efficiency monitors demand 
accuracy by using metrics such as Watts-per-instruction 
(WPI) [8][9]. Loop tripcounts are widely used for a 
variety of purposes [10][11][12], but are hard to obtain 
with pure EBS methods. In automatic or semi-
automatic optimization of whole complex applications 
consisting of millions of lines of code, performance 
tuning must be driven by rather precise methods – e.g., 
basic block execution counts or precise 
function/method-granularity profiles. 

2.2. Increasing processor complexity 

Common tasks described in section 2.1 are made even 
more difficult by the ever-increasing complexity of 
modern processors. Out-of-order execution, superscalar 
pipelines, speculation and hardware prefetching 
increase performance, but complicate analysis [27]. At 
the same time, the core infrastructure of the PMUs has 
not progressed much, with only incremental updates 
between generations. Consequently, attributing samples 
to the exact program location that triggers a 
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performance event is becoming more and more 
difficult. 

2.3. Growing code size and sophistication 

The sheer number of lines of code (LOC), many of 
which are active, is steadily increasing across the 
application spectrum. An example study [14] focused 
on the SPEC CPU suite indicates the CPU2000 suite’s 
codebase was below 1000 KLOC (thousand LOC) with 
no C++ code included, while CPU2006 reached over 
3000 KLOC with only 25% of the benchmarks written 
in C++. Heavily object-oriented scientific toolkits, such 
as Geant4 [15, p. 4] and ROOT [16], are self-contained 
software packages that reach millions of LOC. Yasin et 
al. [13] demonstrate how abstractions incur significant 
performance overhead in data analytics and lead to code 
fragmentation with very small code-block sizes (typical 
ratios of instructions to branches taken around 6-12 
with three lead JVMs). 

2.4. Applicability of standard PMU methods 

Traditional PMU-based methods as deployed in 
common profilers - such as perf [4], oprofile, VTune 
[5] or Code Analyst [6] - are rather designed for HPC 
and steady-state traditional workloads. They do not 
cope well with large object-oriented codes with highly 
fragmented profiles having thousands of entries and 
very few hotspots. A good tool has to consciously 
adjust the setup of the underlying generic hardware 
mechanisms for the best possible handling of the 
characteristics of a workload. 

Our research indicates that more advanced methods, 
that can be particularly competitive and accurate, are 
infrequently used (e.g.,  PBA profiler [17]). 

2.5. Related work 

In recent years, the topic of PMU trust has been 
touched on by several publications. Works by 
Mytkowicz [18] and Weaver [3][19][20] analyze and 
identify CPU and OS effects that influence accuracy in 
counting-mode – some of which we also observe in our 
study of sampling (i.e. EBS). Chen et al. have discussed 
some key sampling effects such as skid and shadow 
[21]. We go beyond these works and beyond 
Zaparanuks et al. [37] by focusing on the root causes of 
sampling inaccuracy, showing where to look for control 
over multiple events and how to identify optimal 
configurations for enterprise-like workloads. 

3. Comments on sampling 

3.1. Event Based Sampling 

EBS exploits the capability of the PMU to count pre-
defined hardware events and to generate an interrupt 
when the counted event is observed N specified times. 
N is called the sampling period, and the interrupts are 
called Performance Monitoring Interrupts (PMI). 

Instruction pointer locations are sampled on PMIs, and 
their distribution is used to generate profiles. 

According to Chen et al. [21] and Levinthal [23], errors 
in the distribution of samples are the result of three 
major factors: (1) synchronization of monitored code 
with the sampling period, (2) the sampling skid effect, 
when the address reported by the hardware sample does 
not necessarily match the address of the instruction 
causing counter overflow, and (3) the sampling shadow 
effect, when instructions in the shadow of a long latency 
instruction get low sample counts.  

When seeking more accurate profile information about 
basic block execution counts, tools average samples 
across all instructions in the same block. While helpful, 
such mitigation is still insufficient for short blocks, 
such as e.g., jump tables, as samples have higher 
chances of getting attributed to adjacent blocks. 

3.2. Last Branch Records  

Some processors feature a branch recording facility, 
such as Last Branch Record (LBR) in the x86 
architecture, which records the addresses of the most 
recently executed branches. These facilities can be used 
for basic block execution counts, as suggested by 
Levinthal [23] and implemented in the emerging Gooda 
[26][36] and PBA [17] tools. These tools and their 
relevant heuristics are scarcely documented and not yet 
widely adopted in the community. Consequently, we 
implement our own version of LBR analysis, as 
documented below. 

An LBR facility has a number of stacked entries, which 
represent source-target pairs <Si, Ti> of branches 
executed by the processor. When sampling on the 
Taken Branches event, branches between a target Ti and 
the next source Si+1 in the stack are not taken. Thus, all 
basic blocks between Ti and Si+1 are executed exactly 
once.  

3.3. Profiling accuracy 

In order to estimate the accuracy of PMU-based 
sampling, we cross-reference results with 
instrumentation-based basic block counts obtained 
through Pin [25] (“REF”). 

Accuracy	Error	(x) =
∑ |(BB�[i] − BB���[i])|�∈��

net_instruction_count
 

For a given sampling method x, our accuracy error is 
defined as the sum of all deviations between the x 
method and the REF method, of the number of 
instructions executed in each basic block. This error is 
normalized to the total number of instructions executed. 
Ideally, we would like the accuracy error as close as 
possible to zero. 
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3.4. Evaluation of existing methods 

Out of the combinations of profiling approaches 
assessed and discussed in Section 4 (also see 
Appendix), we choose three particular groups of 
methods that exemplify how sampling can be used: 

 Classic Sampling is a representative, widely 
employed method of the first group. It uses an 
imprecise counter, where the sampling period is 
fixed, even and not randomized. No filtering is 
applied. This is the default in mainline tools such as 
perf [4], where an architectural event is typically set 
to capture a sample every ~1 millisecond. 

 Precise Sampling represents the advanced group of 
methods. It uses a general-purpose counter with a 
precise-sampling mechanism featured by the PMU, 
where the period is a prime number, preferably 
randomized. 

 LBR Sampling is performed when using a retired 
Taken Branches event1. The full contents of each 
collected LBR stack serve as the basis for basic 
block execution counts, while the address that 
comes with the PMI is ignored. 

4. Experimental environment 

4.1. Hardware and software setup 

We evaluate out-of-order processors from the x86 
family, as implemented by Intel and AMD. From the 
AMD side, we choose a representative of the “Magny-
Cours” family, the 12-core 6164 HE. Software support 
for this family was the most robust at the time of 
writing. On the Intel side, we choose the Xeon X5650, 
as the representative of the 1st Core i7 family, a.k.a. 
Westmere, and a Xeon E3-1265L, representing the 3rd 
generation Core family, a.k.a. Ivy Bridge. Again, stable 
software support and existing experience played a role 
in our choice. Frequency scaling and “turbo mode” are 
disabled. 

To obtain PMU samples we use a modified version of 
the perf utility in Linux 3.6.6, on RHEL6 compatible 
systems. Perf has a very fluid codebase, which impacts 
measurement overheads much more than hardware does 
[38], and this particular version is used throughout the 
whole study. Non-essential services/daemons are 
disabled. 

Each of our kernels, emphasizing specific difficulties 
leading to reduced accuracy, is measured five times. 

4.2. PMU configurations and events 

The methods described in this section are presented in 
more detail in Table 3 in the Appendix. 

Magny-Cours does not feature LBRs, nor a fixed 
architectural counter. The latter could be an issue with 

                                                           
1
 BR_INST_RETIRED.NEAR_TAKEN on Ivy Bridge 

the version of perf available at time of writing. The 
standard event of choice was 
RETIRED_INSTRUCTIONS. Instruction Based 
Sampling (IBS) is the precise mechanism offered by 
AMD. We program the PMU to sample with prime and 
non-prime periods. Due to perf limitations, software-
based period randomization was unavailable, but the 
hardware randomizes the 4 least significant bits. 

On Westmere, we choose to work with the fixed 
instructions retired counter and with the programmable 
instructions retired event supplemented with Precise 
Event Based Sampling (PEBS). LBRs are sampled with 
the BR_INST_EXEC:TAKEN event, with PEBS 
disabled. 

On Ivy Bridge, we use the instructions retired event on 
the fixed counter (INST_RETIRED:ANY) as well as 
the recently added Precisely Distributed event 
(INST_RETIRED:PREC_DIST,  a.k.a. PDIR, [24]). 
LBRs are sampled using 
BR_INST_RETIRED:NEAR_TAKEN, with PEBS 
disabled. 

4.3. Workloads 

 Latency-biased kernel 4.3.1.

The latency-biased kernel is the simplest form of 
emulation of workloads with basic blocks with non-
uniform execution times. Here, a loop executes a 
relatively costly calculation when a certain condition is 
true: 

while (n--) ((n%2) ? x /= y : x += y); 

Such code occurs in practice, for example, when a pre-
computed value is returned in the standard case, and re-
computed otherwise. Typically, the PMU would bias 
samples towards the long latency instruction, thus 
distorting overall results [21]. 

 Call chain kernel 4.3.2.

This kernel is a simple 10-deep call chain enveloped by 
a loop. Since the functions do equal work, they are 
expected to produce equal numbers of samples. 

This example serves as a vivid illustration of potential 
sampling bias on call chains - such as those commonly 
seen in object-oriented programming with frequently 
called short methods. 

 G4Box test 4.3.3.

The G4Box micro-benchmark, written in C++, executes 
only two functions, with an even work split. It could be 
thought of as a heavier version of our Latency Biased 
kernel. The length of the main function depends on the 
input data. 

This kernel is particularly difficult for hardware 
sampling, since it contains a chain of tests and branches 
that generates short basic blocks – a good case for LBR 
analysis. 
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 Geant4 test40 4.3.4.

Test40 is a kernelized doppelganger of large Geant4 
applications. In this test, an electron travels through a 
detector with a very simple geometry, triggering 
physics processes on its way. The signature workload is 
therefore a collection of small, fragmented methods, 
conditionally executed depending on where the particle 
is and what matter it interacts with. 

 Applications 4.3.5.

First, we select a non-HPC subset of both INT and FP 
benchmarks from the SPEC2006 CPU suite: 429.mcf, 
453.povray, 471.omnetpp and 483.xalancbmk. This 
subset, written in C/C++, has (to some extent) the 
characteristics of enterprise workloads [39], as 
described by Wong in [28] and [29]. Some enterprise 
vendors commonly use these benchmarks as proxies for 
real applications.  

Second, the FullCMS application is based on parts of 
Geant4 and is designed to simulate complex physics 
events taking place in one of CERN’s Large Hadron 
Collider particle detectors. It is similar to the enterprise 
class of workloads in the sense that it executes similar 
fragmented operations, albeit using floating point rather 
than integers. This production-grade workload has 
successfully served as an enterprise “proxy” in the past 
and runs on ~300’000 cores. 

5. Results 

5.1. Kernel results 

The results in Table 1 present accuracy errors as 
defined in Section 3.3 of the various sampling methods 
defined in Section 4.2. Overall results show that: 

 LBR-based methods are highly beneficial, 
significantly reducing errors by up to 18x (3-6x on 
average).  

 Progressive improvements from randomization 

and period adjustment are observed as better 
techniques are applied. 

 The precisely distributed event (PDIR) 
significantly improves results across all kernels 
and especially for Latency Biased. 

 AMD systems are consistently burdened with high 
error rates, worsening when built-in hardware 
randomization was used. 

On Latency Biased, we observe improvements 
introduced by the Ivy Bridge precisely distributed PDIR 
event. These accuracy boosts, on the other hand, are not 
observed on the Westmere microarchitecture, where 
that event is not featured. 

Results for the Callchain kernel show how applying 
prime as well as randomized periods gradually 
improves accuracy as we move to the right with 
improvements. In the Ivy Bridge case, combining the 
LBR-based IP+1 fix with PDIR (see Appendix) gives 
the best results. While there is no definitive indication 
of the reason, it would appear that out-of-order 
clustering of uops, which causes uops to be retired in 
bursts, is responsible for this characteristic. 

On testG4Box, medium error rates are reduced when 
LBR is employed. This is because this test case is 
dominated by very short basic blocks, which challenge 
sampling in general. The LBR-based technique 
addresses this issue by averaging samples across the 
last 15 uninterrupted basic block segments, which 
extends the effective number of instructions that the 
sample corresponds to. 

On test40, we see that Westmere suffers from 
distribution problems linked to the sampling event, 
which disappear on Ivy Bridge. Employing LBRs 
alleviates these issues on both platforms. 

5.2. Application results 

Table 2 shows error averages for applications. The 
general observations are as follows: 

Table 1: Sampling methods used on kernels and their errors according to our accuracy metric (lower is better). 
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 Randomization has little to no impact on full 
applications. Full applications often do not have  
specific loop trip-counts to synchronize with 
sampling periods, as tight kernels can have. 

 Using a counter with precise distribution and 
applying an LBR address fix provides good results. 

 Pure LBR basic block counts further improve 
accuracy (except for FullCMS). Overall 
improvement is 4-5x over the classic case and 1-10x 
over the precise case. 

The classic method registers high overall error rates, 
much improved with the precise event on IVB. Also, 
the LBR method is noticeably better than precise 
sampling, especially so in the case of mcf. 

As a side note, our FullCMS experiments showed that 
already choosing an EBS method on a counter with 
precise distribution and applying an LBR-based IP 
offset correction (but not full LBR sampling) improves 
average per basic block accuracy by 5x over the 
leftmost classic case. Pure LBR-based results, however, 
do not bring improvement over the precise method in 
this case, since the workload has similar characteristics 
to the callchain kernel. 

LBR, while of great benefit to performance monitoring 
activities, is not entirely free of issues. None of the 
methods produces the top 10 functions from the 
FullCMS profile in the right order. 

6. Recommendations 

6.1. Recommendations for tool developers 

First, we recommend that tool developers make 
distinctions between similar performance events. Users 
of perf, PAPI or OProfile are presented with opaque 
tools that obscure events and make adjustments (such as 
those of the sampling period) hard. For example, in the 
case of standard perf, a recompilation and installation 
of an extra library (libpfm4) is required to obtain 
reasonable access to hardware performance events. 

Second, sampling periods need to be chosen with a dose 
of care. Prime number periods reduce the risk of 
synchronizing with the workload, and randomization 
further improves results on artificial kernels, but neither 
produced noticeable improvements on our large 
benchmarks (unlike what is reported in [21]). As of 
today, neither perf nor major commercial tools support 
fixed period randomization. 

Third, the LBR-based methods we evaluated allow for 
enhanced degrees of accuracy, which – with some post-
processing – could serve as input to PGO, code 
coverage or other sensitive optimization techniques. 
Only a couple tools (PBA [17] and GOODA [26][36]) 
use LBRs to obtain basic block execution counts, and 

their documentation only sparsely describes the 
methods employed. 

6.2. Recommendations for PMU hardware designers 

The IP+1 inaccuracy fix in sample addresses based on 
an LBR sourced address (not the full LBR) can lead to 
good improvements, especially for branchy code with a 
high rate of calls or taken branches. Implementing such 
functionality in hardware would not only remove the 
workaround burden in drivers, but also avoid collisions 
on LBRs – a valuable single resource – with other 
filtered collections such as call-stack mode. 

A precise instruction event in AMD’s IBS is missing, 
which led us to use precise uops instead. 

6.3. Recommendations for application optimizers 

We have shown that the methods used to obtain 
performance data matter and influence potential 
conclusions. Overall, we recommend to sample on a 
modern platform with support for precise distributed 
events, while using a prime period. Kernel-like code 
additionally benefits from more frequent sampling 
periods and period randomization. For ultimate 
sampling performance, we recommend liaising with 
tool developers to employ LBR-based methods that 
maximize accuracy. 

7. Conclusions and Summary 
In this short survey of a somewhat underexplored area, 
we quantify the level to which choices related to 
performance monitoring methods influence results. The 
precise events introduced in the Ivy Bridge 
microarchitecture considerably improve accuracy with 
little or no added cost. Period randomization shows 
improvements on kernels, but not on complete 
applications. LBR-based methods improve results even 
more over precise counters, and work especially well 
on Westmere machines. 

Table 2: Errors per machine/app (lower is better). 
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APPENDIX:  

Table 3: An overview of reviewed sampling methods 

 

 Method Parameters Comments Drawbacks 

  Period size 

(Example value) 

Period 
Rando-
mization 

Event 

(Intel nomenclature) 

  

C
la

ss
ic

 
m

et
h

o
d

 Default Round 

(2’000’000) 

No 
INST_RETIRED.ANY 

 (non-precise) 

Used by default in many tools. 

Uses a fixed-function counter to 
free up general counters. 

The period is fixed and round 
which increases the risk of 
synchronization, the hardware 
event is imprecise 

P
re

ci
se

 m
et

h
o

d
s 

Precise event Round 

(2’000’000) 

No 

INST_RETIRED.ALL 

(precise) 

Uses a precise mechanism to 
capture the event location (IP+1) 

The distribution of samples is not 
guaranteed 

Precise event with 
randomization 

Round 

(2’000’000) 

Yes A randomized sampling period to 
avoid synchronization risk 

As above 

Precise event with 
prime period 

Prime number 

(2’000’003) 

No The introduction of prime 
numbers reduces resonance which 
leads to improved accuracy 

Lack of randomization and overall 
low accuracy in some cases alike 
the Latency-Biased kernel 

Precise event with 
randomized prime 
period 

Prime number 

(2’000’003) 

Yes Randomization applied on the 
prime period further improves 
accuracy 

Still overall low accuracy in some 
cases 

precise event with 
distribution fix plus 
IP+1 offset fix 

Prime number 

(2’000’003) 

Yes/No 
INST_RETIRED. 

PREC_DIST 

(precisely distributed) 

To remedy skid, the top address 
from the LBR backtrace is used to 
determine which basic block the 
trigger occurred in; thus fixing 
IP+1 and enhancing accuracy. 

Good for large basic blocks. Some 
inaccuracies for small ones 

L
B

R
 

m
et

h
o

d
 

Last Branch Record N/A N/A 

BR_INST_RETIRED. 

NEAR_TAKEN 

Full LBR-based basic block 
execution count accounting with 
manageable errors per basic block 

Errors can still reach 30-50% of 
basic block execution count (for 
some basic blocks). 

Overhead (in collection and post-
processing) 


