
1

Establishing a base of trust

with performance counters for enterprise workloads
Andrzej Nowak, CERN openlab and EPFL Ahmad Yasin, Intel Avi Mendelson, Technion Willy Zwaenepoel, EPFL

Abstract
Understanding the performance of large, complex

enterprise-class applications is an important, yet non-
trivial task. Methods using hardware performance
counters, such as profiling through event-based
sampling, are often favored over instrumentation for
analyzing such large codes, but rarely provide good
accuracy at the instruction level.

This work evaluates the accuracy of multiple event-
based sampling techniques and quantifies the impact of
a range of improvements suggested in recent years. The
evaluation is performed on instances of three modern
CPU architectures, using designated kernels and full
applications. We conclude that precisely distributed
events considerably improve accuracy, with further
improvements possible when using Last Branch
Records. We also present practical recommendations
for hardware architects, tool developers and
performance engineers, aimed at improving the quality
of results.

1. Introduction
Optimizing large codes is difficult. It requires dealing
with millions of lines of code developed by many
engineers, processing diverse data sets that run on
complicated warehouse-scale systems [1]. Furthermore,
it requires a deep understanding of the specific
hardware architecture [3] or mandates use of recently
published cycle-accounting methods suitable for out-of-
order cores [27][36]. Modern processors feature
counters that aim to assist users in understanding how
well their application is performing. The hardware
component in charge of gathering this information is
usually called the Performance Monitoring Unit
(PMU). The methodologies based on using these
counters are well-established, especially in the HPC
domain [2].

Many profilers [4][5][6] provide the means to narrow
down the information gathered to select locations in the
code that may cause an inefficiency. Methodologies
that perform their analysis at basic-block granularity
provide high source-level resolution, and are therefore
the focus of this paper. Accurately obtaining basic
block execution counts is a key problem facing the
abovementioned profilers when analyzing enterprise-
class, large-scale object-oriented workloads. These
have challenging long-tail profiles with few hotspots
where instrumentation is usually unsuitable [39].

This paper surveys Event Based Sampling (EBS)
techniques and the parameters that influence
measurement accuracy. We conduct our study on
instances of modern enterprise processors. We develop
a set of microbenchmarks, use a subset of the CPU2006
workloads, and use a large production workload from
the CERN datacenter [7], running in deployments
exceeding 300’000 cores. The contributions of this
paper are:

 A first, to our knowledge, experimental evaluation
of the accuracy of EBS techniques – serving as a
necessary base for further work in this field.

 The conclusion that precise events considerably
improve accuracy with little or no added cost, with
further improvements resulting from the collection
and analysis of Last Branch Records.

 Recommendations for hardware architects, tool
developers and performance engineers working with
EBS, aimed at improving the quality of results.

2. Motivation and background

2.1. The need for accurate basic-block profiles

Accurate and efficient basic block execution counts are
important for a wide spectrum of use cases. Basic block
graphs can rely on accurate basic block profiles. These
can greatly improve the compiler’s capability to make
better decisions on inlining, while increasing code
locality. Code level energy-efficiency monitors demand
accuracy by using metrics such as Watts-per-instruction
(WPI) [8][9]. Loop tripcounts are widely used for a
variety of purposes [10][11][12], but are hard to obtain
with pure EBS methods. In automatic or semi-
automatic optimization of whole complex applications
consisting of millions of lines of code, performance
tuning must be driven by rather precise methods – e.g.,
basic block execution counts or precise
function/method-granularity profiles.

2.2. Increasing processor complexity

Common tasks described in section 2.1 are made even
more difficult by the ever-increasing complexity of
modern processors. Out-of-order execution, superscalar
pipelines, speculation and hardware prefetching
increase performance, but complicate analysis [27]. At
the same time, the core infrastructure of the PMUs has
not progressed much, with only incremental updates
between generations. Consequently, attributing samples
to the exact program location that triggers a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148013614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

performance event is becoming more and more
difficult.

2.3. Growing code size and sophistication

The sheer number of lines of code (LOC), many of
which are active, is steadily increasing across the
application spectrum. An example study [14] focused
on the SPEC CPU suite indicates the CPU2000 suite’s
codebase was below 1000 KLOC (thousand LOC) with
no C++ code included, while CPU2006 reached over
3000 KLOC with only 25% of the benchmarks written
in C++. Heavily object-oriented scientific toolkits, such
as Geant4 [15, p. 4] and ROOT [16], are self-contained
software packages that reach millions of LOC. Yasin et
al. [13] demonstrate how abstractions incur significant
performance overhead in data analytics and lead to code
fragmentation with very small code-block sizes (typical
ratios of instructions to branches taken around 6-12
with three lead JVMs).

2.4. Applicability of standard PMU methods

Traditional PMU-based methods as deployed in
common profilers - such as perf [4], oprofile, VTune
[5] or Code Analyst [6] - are rather designed for HPC
and steady-state traditional workloads. They do not
cope well with large object-oriented codes with highly
fragmented profiles having thousands of entries and
very few hotspots. A good tool has to consciously
adjust the setup of the underlying generic hardware
mechanisms for the best possible handling of the
characteristics of a workload.

Our research indicates that more advanced methods,
that can be particularly competitive and accurate, are
infrequently used (e.g., PBA profiler [17]).

2.5. Related work

In recent years, the topic of PMU trust has been
touched on by several publications. Works by
Mytkowicz [18] and Weaver [3][19][20] analyze and
identify CPU and OS effects that influence accuracy in
counting-mode – some of which we also observe in our
study of sampling (i.e. EBS). Chen et al. have discussed
some key sampling effects such as skid and shadow
[21]. We go beyond these works and beyond
Zaparanuks et al. [37] by focusing on the root causes of
sampling inaccuracy, showing where to look for control
over multiple events and how to identify optimal
configurations for enterprise-like workloads.

3. Comments on sampling

3.1. Event Based Sampling

EBS exploits the capability of the PMU to count pre-
defined hardware events and to generate an interrupt
when the counted event is observed N specified times.
N is called the sampling period, and the interrupts are
called Performance Monitoring Interrupts (PMI).

Instruction pointer locations are sampled on PMIs, and
their distribution is used to generate profiles.

According to Chen et al. [21] and Levinthal [23], errors
in the distribution of samples are the result of three
major factors: (1) synchronization of monitored code
with the sampling period, (2) the sampling skid effect,
when the address reported by the hardware sample does
not necessarily match the address of the instruction
causing counter overflow, and (3) the sampling shadow
effect, when instructions in the shadow of a long latency
instruction get low sample counts.

When seeking more accurate profile information about
basic block execution counts, tools average samples
across all instructions in the same block. While helpful,
such mitigation is still insufficient for short blocks,
such as e.g., jump tables, as samples have higher
chances of getting attributed to adjacent blocks.

3.2. Last Branch Records

Some processors feature a branch recording facility,
such as Last Branch Record (LBR) in the x86
architecture, which records the addresses of the most
recently executed branches. These facilities can be used
for basic block execution counts, as suggested by
Levinthal [23] and implemented in the emerging Gooda
[26][36] and PBA [17] tools. These tools and their
relevant heuristics are scarcely documented and not yet
widely adopted in the community. Consequently, we
implement our own version of LBR analysis, as
documented below.

An LBR facility has a number of stacked entries, which
represent source-target pairs <Si, Ti> of branches
executed by the processor. When sampling on the
Taken Branches event, branches between a target Ti and
the next source Si+1 in the stack are not taken. Thus, all
basic blocks between Ti and Si+1 are executed exactly
once.

3.3. Profiling accuracy

In order to estimate the accuracy of PMU-based
sampling, we cross-reference results with
instrumentation-based basic block counts obtained
through Pin [25] (“REF”).

Accuracy	Error	(x) =
∑ |(BB�[i] − BB���[i])|�∈��

net_instruction_count

For a given sampling method x, our accuracy error is
defined as the sum of all deviations between the x
method and the REF method, of the number of
instructions executed in each basic block. This error is
normalized to the total number of instructions executed.
Ideally, we would like the accuracy error as close as
possible to zero.

3

3.4. Evaluation of existing methods

Out of the combinations of profiling approaches
assessed and discussed in Section 4 (also see
Appendix), we choose three particular groups of
methods that exemplify how sampling can be used:

 Classic Sampling is a representative, widely
employed method of the first group. It uses an
imprecise counter, where the sampling period is
fixed, even and not randomized. No filtering is
applied. This is the default in mainline tools such as
perf [4], where an architectural event is typically set
to capture a sample every ~1 millisecond.

 Precise Sampling represents the advanced group of
methods. It uses a general-purpose counter with a
precise-sampling mechanism featured by the PMU,
where the period is a prime number, preferably
randomized.

 LBR Sampling is performed when using a retired
Taken Branches event1. The full contents of each
collected LBR stack serve as the basis for basic
block execution counts, while the address that
comes with the PMI is ignored.

4. Experimental environment

4.1. Hardware and software setup

We evaluate out-of-order processors from the x86
family, as implemented by Intel and AMD. From the
AMD side, we choose a representative of the “Magny-
Cours” family, the 12-core 6164 HE. Software support
for this family was the most robust at the time of
writing. On the Intel side, we choose the Xeon X5650,
as the representative of the 1st Core i7 family, a.k.a.
Westmere, and a Xeon E3-1265L, representing the 3rd
generation Core family, a.k.a. Ivy Bridge. Again, stable
software support and existing experience played a role
in our choice. Frequency scaling and “turbo mode” are
disabled.

To obtain PMU samples we use a modified version of
the perf utility in Linux 3.6.6, on RHEL6 compatible
systems. Perf has a very fluid codebase, which impacts
measurement overheads much more than hardware does
[38], and this particular version is used throughout the
whole study. Non-essential services/daemons are
disabled.

Each of our kernels, emphasizing specific difficulties
leading to reduced accuracy, is measured five times.

4.2. PMU configurations and events

The methods described in this section are presented in
more detail in Table 3 in the Appendix.

Magny-Cours does not feature LBRs, nor a fixed
architectural counter. The latter could be an issue with

1
 BR_INST_RETIRED.NEAR_TAKEN on Ivy Bridge

the version of perf available at time of writing. The
standard event of choice was
RETIRED_INSTRUCTIONS. Instruction Based
Sampling (IBS) is the precise mechanism offered by
AMD. We program the PMU to sample with prime and
non-prime periods. Due to perf limitations, software-
based period randomization was unavailable, but the
hardware randomizes the 4 least significant bits.

On Westmere, we choose to work with the fixed
instructions retired counter and with the programmable
instructions retired event supplemented with Precise
Event Based Sampling (PEBS). LBRs are sampled with
the BR_INST_EXEC:TAKEN event, with PEBS
disabled.

On Ivy Bridge, we use the instructions retired event on
the fixed counter (INST_RETIRED:ANY) as well as
the recently added Precisely Distributed event
(INST_RETIRED:PREC_DIST, a.k.a. PDIR, [24]).
LBRs are sampled using
BR_INST_RETIRED:NEAR_TAKEN, with PEBS
disabled.

4.3. Workloads

 Latency-biased kernel 4.3.1.

The latency-biased kernel is the simplest form of
emulation of workloads with basic blocks with non-
uniform execution times. Here, a loop executes a
relatively costly calculation when a certain condition is
true:

while (n--) ((n%2) ? x /= y : x += y);

Such code occurs in practice, for example, when a pre-
computed value is returned in the standard case, and re-
computed otherwise. Typically, the PMU would bias
samples towards the long latency instruction, thus
distorting overall results [21].

 Call chain kernel 4.3.2.

This kernel is a simple 10-deep call chain enveloped by
a loop. Since the functions do equal work, they are
expected to produce equal numbers of samples.

This example serves as a vivid illustration of potential
sampling bias on call chains - such as those commonly
seen in object-oriented programming with frequently
called short methods.

 G4Box test 4.3.3.

The G4Box micro-benchmark, written in C++, executes
only two functions, with an even work split. It could be
thought of as a heavier version of our Latency Biased
kernel. The length of the main function depends on the
input data.

This kernel is particularly difficult for hardware
sampling, since it contains a chain of tests and branches
that generates short basic blocks – a good case for LBR
analysis.

4

 Geant4 test40 4.3.4.

Test40 is a kernelized doppelganger of large Geant4
applications. In this test, an electron travels through a
detector with a very simple geometry, triggering
physics processes on its way. The signature workload is
therefore a collection of small, fragmented methods,
conditionally executed depending on where the particle
is and what matter it interacts with.

 Applications 4.3.5.

First, we select a non-HPC subset of both INT and FP
benchmarks from the SPEC2006 CPU suite: 429.mcf,
453.povray, 471.omnetpp and 483.xalancbmk. This
subset, written in C/C++, has (to some extent) the
characteristics of enterprise workloads [39], as
described by Wong in [28] and [29]. Some enterprise
vendors commonly use these benchmarks as proxies for
real applications.

Second, the FullCMS application is based on parts of
Geant4 and is designed to simulate complex physics
events taking place in one of CERN’s Large Hadron
Collider particle detectors. It is similar to the enterprise
class of workloads in the sense that it executes similar
fragmented operations, albeit using floating point rather
than integers. This production-grade workload has
successfully served as an enterprise “proxy” in the past
and runs on ~300’000 cores.

5. Results

5.1. Kernel results

The results in Table 1 present accuracy errors as
defined in Section 3.3 of the various sampling methods
defined in Section 4.2. Overall results show that:

 LBR-based methods are highly beneficial,
significantly reducing errors by up to 18x (3-6x on
average).

 Progressive improvements from randomization

and period adjustment are observed as better
techniques are applied.

 The precisely distributed event (PDIR)
significantly improves results across all kernels
and especially for Latency Biased.

 AMD systems are consistently burdened with high
error rates, worsening when built-in hardware
randomization was used.

On Latency Biased, we observe improvements
introduced by the Ivy Bridge precisely distributed PDIR
event. These accuracy boosts, on the other hand, are not
observed on the Westmere microarchitecture, where
that event is not featured.

Results for the Callchain kernel show how applying
prime as well as randomized periods gradually
improves accuracy as we move to the right with
improvements. In the Ivy Bridge case, combining the
LBR-based IP+1 fix with PDIR (see Appendix) gives
the best results. While there is no definitive indication
of the reason, it would appear that out-of-order
clustering of uops, which causes uops to be retired in
bursts, is responsible for this characteristic.

On testG4Box, medium error rates are reduced when
LBR is employed. This is because this test case is
dominated by very short basic blocks, which challenge
sampling in general. The LBR-based technique
addresses this issue by averaging samples across the
last 15 uninterrupted basic block segments, which
extends the effective number of instructions that the
sample corresponds to.

On test40, we see that Westmere suffers from
distribution problems linked to the sampling event,
which disappear on Ivy Bridge. Employing LBRs
alleviates these issues on both platforms.

5.2. Application results

Table 2 shows error averages for applications. The
general observations are as follows:

Table 1: Sampling methods used on kernels and their errors according to our accuracy metric (lower is better).

5

 Randomization has little to no impact on full
applications. Full applications often do not have
specific loop trip-counts to synchronize with
sampling periods, as tight kernels can have.

 Using a counter with precise distribution and
applying an LBR address fix provides good results.

 Pure LBR basic block counts further improve
accuracy (except for FullCMS). Overall
improvement is 4-5x over the classic case and 1-10x
over the precise case.

The classic method registers high overall error rates,
much improved with the precise event on IVB. Also,
the LBR method is noticeably better than precise
sampling, especially so in the case of mcf.

As a side note, our FullCMS experiments showed that
already choosing an EBS method on a counter with
precise distribution and applying an LBR-based IP
offset correction (but not full LBR sampling) improves
average per basic block accuracy by 5x over the
leftmost classic case. Pure LBR-based results, however,
do not bring improvement over the precise method in
this case, since the workload has similar characteristics
to the callchain kernel.

LBR, while of great benefit to performance monitoring
activities, is not entirely free of issues. None of the
methods produces the top 10 functions from the
FullCMS profile in the right order.

6. Recommendations

6.1. Recommendations for tool developers

First, we recommend that tool developers make
distinctions between similar performance events. Users
of perf, PAPI or OProfile are presented with opaque
tools that obscure events and make adjustments (such as
those of the sampling period) hard. For example, in the
case of standard perf, a recompilation and installation
of an extra library (libpfm4) is required to obtain
reasonable access to hardware performance events.

Second, sampling periods need to be chosen with a dose
of care. Prime number periods reduce the risk of
synchronizing with the workload, and randomization
further improves results on artificial kernels, but neither
produced noticeable improvements on our large
benchmarks (unlike what is reported in [21]). As of
today, neither perf nor major commercial tools support
fixed period randomization.

Third, the LBR-based methods we evaluated allow for
enhanced degrees of accuracy, which – with some post-
processing – could serve as input to PGO, code
coverage or other sensitive optimization techniques.
Only a couple tools (PBA [17] and GOODA [26][36])
use LBRs to obtain basic block execution counts, and

their documentation only sparsely describes the
methods employed.

6.2. Recommendations for PMU hardware designers

The IP+1 inaccuracy fix in sample addresses based on
an LBR sourced address (not the full LBR) can lead to
good improvements, especially for branchy code with a
high rate of calls or taken branches. Implementing such
functionality in hardware would not only remove the
workaround burden in drivers, but also avoid collisions
on LBRs – a valuable single resource – with other
filtered collections such as call-stack mode.

A precise instruction event in AMD’s IBS is missing,
which led us to use precise uops instead.

6.3. Recommendations for application optimizers

We have shown that the methods used to obtain
performance data matter and influence potential
conclusions. Overall, we recommend to sample on a
modern platform with support for precise distributed
events, while using a prime period. Kernel-like code
additionally benefits from more frequent sampling
periods and period randomization. For ultimate
sampling performance, we recommend liaising with
tool developers to employ LBR-based methods that
maximize accuracy.

7. Conclusions and Summary
In this short survey of a somewhat underexplored area,
we quantify the level to which choices related to
performance monitoring methods influence results. The
precise events introduced in the Ivy Bridge
microarchitecture considerably improve accuracy with
little or no added cost. Period randomization shows
improvements on kernels, but not on complete
applications. LBR-based methods improve results even
more over precise counters, and work especially well
on Westmere machines.

Table 2: Errors per machine/app (lower is better).

6

REFERENCES
[1] L. A. Barroso and U. Holzle, “The Case for

Energy-Proportional Computing,” Computer, vol.
40, no. 12, pp. 33–37, 2007.

[2] P. J. Mucci, S. Browne, C. Deane, and G. Ho,
“PAPI: A portable interface to hardware
performance counters,” in Proc. Dept. of Defense
HPCMP Users Group Conference, 1999, pp. 7–
10.

[3] V. M. Weaver and S. A. McKee, “Can hardware
performance counters be trusted?,” in Workload
Characterization, 2008. IISWC 2008. IEEE
International Symposium on, 2008, pp. 141–150.

[4] A. Carvalho de Melo, “The New Linux ’perf’
tools.” Linux Kongress, 2010.

[5] Intel Corporation, “Intel VTune Amplifier XE
2013,” 2012. [Online]. Available:
http://software.intel.com/en-us/intel-vtune-
amplifier-xe. [Accessed: 22-Nov-2012].

[6] P. J. Drongowski, A. M. D. C. A. Team, and B.
D. Center, “An introduction to analysis and
optimization with AMD CodeAnalyst
Performance Analyzer,” Advanced Micro
Devices, Inc, 2008.

[7] S. Banerjee, “Readiness of CMS simulation
towards LHC startup,” Journal of Physics:
Conference Series, vol. 119, no. 3, p. 032006,
Jul. 2008.

[8] S. Schubert, D. Kostic, W. Zwaenepoel, and K.
Shin, “Profiling Software for Energy
Consumption,” in Proceedings of the IEEE
International Conference on Green Computing
and Communications (GreenCom), 2012.

[9] M. D. DeVuyst, “Efficient Use of Execution
Resources in Multicore Processor Architectures,”
University of California, San Diego, 2011.

[10] P. Saxena, P. Poosankam, S. McCamant, and D.
Song, “Loop-extended symbolic execution on
binary programs,” in Proceedings of the
eighteenth international symposium on Software
testing and analysis, New York, NY, USA, 2009,
pp. 225–236.

[11] T. Sherwood and B. Calder, “Loop Termination
Prediction,” in High Performance Computing, M.
Valero, K. Joe, M. Kitsuregawa, and H. Tanaka,
Eds. Springer Berlin Heidelberg, 2000, pp. 73–
87.

[12] K. Muthukumar and G. Doshi, “Software
Pipelining of Nested Loops,” in Compiler
Construction, R. Wilhelm, Ed. Springer Berlin
Heidelberg, 2001, pp. 165–181.

[13] A. Yasin, Y. Ben-Asher, and A. Mendelson,
“Deep-dive Analysis of the Data Analytics
Workload in CloudSuite,” presented at the
IISWC’14, 2014.

[14] J. L. Henning, “SPEC CPU suite growth: an
historical perspective,” SIGARCH Comput.
Archit. News, vol. 35, no. 1, pp. 65–68, Mar.
2007.

[15] J. Apostolakis, “Geant4—a simulation toolkit,”
Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 506,
no. 3, pp. 250–303, Jul. 2003.

[16] R. Brun and F. Rademakers, “ROOT — An
object oriented data analysis framework,”
Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 389,
no. 1–2, pp. 81–86, Apr. 1997.

[17] “Intel Performance Bottleneck Analyzer.” Intel
Corporation, 2011.

[18] T. Mytkowicz, A. Diwan, M. Hauswirth, and P.
F. Sweeney, “Producing wrong data without
doing anything obviously wrong!,” in ACM
Sigplan Notices, 2009, vol. 44, pp. 265–276.

[19] V. Weaver, “Can Hardware Performance
Counters Produce Expected, Deterministic
Results?,” presented at the 3rd Workshop on
Functionality of Hardware Performance
Monitoring, 2010.

[20] V. Weaver, D. Terpstra, and S. Moore, “Non-
determinism and overcount on modern hardware
performance counter implementations,” in Proc.
IEEE International Symposium on Performance
Analysis of Systems and Software, 2013.

[21] D. Chen, N. Vachharajani, R. Hundt, S. Liao, V.
Ramasamy, P. Yuan, W. Chen, and W. Zheng,
“Taming hardware event samples for FDO
compilation,” in Proceedings of the 8th annual
IEEE/ACM international symposium on Code
generation and optimization, New York, NY,
USA, 2010, pp. 42–52.

[22] A. Shye, M. Iyer, T. Moseley, D. Hodgdon, D.
Fay, V. J. Reddi, and D. A. Connor, “Analysis of
path profiling information generated with
performance monitoring hardware,” in 9th
Annual Workshop on Interaction between
Compilers and Computer Architectures, 2005.
INTERACT-9, 2005, pp. 34 – 43.

[23] D. Levinthal, “Performance Analysis Guide for
Intel Core i7 Processor and Intel Xeon 5500
processors.” Intel Corporation, 2009.

[24] “Intel® 64 and IA-32 Architectures Software
Developer Manuals,” Intel. [Online]. Available:
http://www.intel.com/content/www/us/en/process
ors/architectures-software-developer-
manuals.html. [Accessed: 26-Sep-2014].

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A.
Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood, “Pin: building customized

7

program analysis tools with dynamic
instrumentation,” in Proceedings of the 2005
ACM SIGPLAN conference on Programming
language design and implementation, New York,
NY, USA, 2005, pp. 190–200.

[26] Google, Gooda - a pmu event analysis package
(http://code.google.com/p/gooda/). 2012.

[27] A. Yasin, “A Top-Down Method for
Performance Analysis and Counters
Architecture,” presented at the 2014 IEEE
International Symposium Performance Analysis
of Systems and Software (ISPASS), 2014.

[28] M. Wong, “C++ benchmarks in SPEC
CPU2006,” ACM SIGARCH Computer
Architecture News, vol. 35, no. 1, p. 77, Mar.
2007.

[29] J. L. Henning, “SPEC CPU2006 benchmark
descriptions,” ACM SIGARCH Computer
Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[30] D. Chen, N. Vachharajani, R. Hundt, X. Li, S.
Eranian, W. Chen, and W. Zheng, “Taming
Hardware Event Samples for Precise and
Versatile Feedback Directed Optimizations,”
IEEE Transactions on Computers, vol. PP, no.
99, p. 1, 2011.

[31] T. Ball and J. R. Larus, “Optimally profiling and
tracing programs,” ACM Trans. Program. Lang.
Syst., vol. 16, no. 4, pp. 1319–1360, Jul. 1994.

[32] T. Mytkowicz, A. Diwan, M. Hauswirth, and P.
Sweeney, “We have it easy, but do we have it
right?,” in IEEE International Symposium on
Parallel and Distributed Processing, 2008.
IPDPS 2008, 2008, pp. 1 –7.

[33] K. Walcott-Justice, J. Mars, and M. L. Soffa,
“THeME: a system for testing by hardware

monitoring events,” in Proceedings of the 2012
International Symposium on Software Testing
and Analysis, New York, NY, USA, 2012, pp.
12–22.

[34] M. L. Soffa, K. R. Walcott, and J. Mars,
“Exploiting hardware advances for software
testing and debugging: NIER track,” in 2011
33rd International Conference on Software
Engineering (ICSE), 2011, pp. 888 –891.

[35] S. Narayanasamy, T. Sherwood, S. Sair, B.
Calder, and G. Varghese, “Catching accurate
profiles in hardware,” in The Ninth International
Symposium on High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings,
2003, pp. 269 – 280.

[36] A. Nowak, D. Levinthal and W. Zwaenepoel,
“Hierarchical Cycle Accounting – a new method
for application performance tuning” in 2015
IEEE International Symposium on Performance
Analysis of Systems and Software, 2015.

[37] D. Zaparanuks, M. Jovic and M. Hauswirth,
"Accuracy of performance counter
measurements" in 2009 IEEE International
Symposium on Performance Analysis of Systems
and Software, 2009.

[38] G. Bitzes, A. Nowak, “The overhead of profiling
using PMU hardware counters”, CERN openlab
report, 2014.

[39] S. Kanev, J. P. Darago, K. Hazelwood, P.
Ranganathan, T. Moseley, G. Wei and D. Brooks,
"Profiling a Warehouse-Scale Computer" in
International Symposium on Computer
Architecture (ISCA), Jun 2015.

8

APPENDIX:

Table 3: An overview of reviewed sampling methods

 Method Parameters Comments Drawbacks

 Period size

(Example value)

Period
Rando-
mization

Event

(Intel nomenclature)

C
la

ss
ic

m

et
h

o
d

 Default Round

(2’000’000)

No
INST_RETIRED.ANY

 (non-precise)

Used by default in many tools.

Uses a fixed-function counter to
free up general counters.

The period is fixed and round
which increases the risk of
synchronization, the hardware
event is imprecise

P
re

ci
se

 m
et

h
o

d
s

Precise event Round

(2’000’000)

No

INST_RETIRED.ALL

(precise)

Uses a precise mechanism to
capture the event location (IP+1)

The distribution of samples is not
guaranteed

Precise event with
randomization

Round

(2’000’000)

Yes A randomized sampling period to
avoid synchronization risk

As above

Precise event with
prime period

Prime number

(2’000’003)

No The introduction of prime
numbers reduces resonance which
leads to improved accuracy

Lack of randomization and overall
low accuracy in some cases alike
the Latency-Biased kernel

Precise event with
randomized prime
period

Prime number

(2’000’003)

Yes Randomization applied on the
prime period further improves
accuracy

Still overall low accuracy in some
cases

precise event with
distribution fix plus
IP+1 offset fix

Prime number

(2’000’003)

Yes/No
INST_RETIRED.

PREC_DIST

(precisely distributed)

To remedy skid, the top address
from the LBR backtrace is used to
determine which basic block the
trigger occurred in; thus fixing
IP+1 and enhancing accuracy.

Good for large basic blocks. Some
inaccuracies for small ones

L
B

R

m
et

h
o

d

Last Branch Record N/A N/A

BR_INST_RETIRED.

NEAR_TAKEN

Full LBR-based basic block
execution count accounting with
manageable errors per basic block

Errors can still reach 30-50% of
basic block execution count (for
some basic blocks).

Overhead (in collection and post-
processing)

