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Abstract

In this paper, a tracking method based on sequential Bayesian inference is

proposed. The proposed method focuses on solving both the problem of

tracking under partial occlusions and the problem of non-rigid object track-

ing in real-time on a desktop personal computer (PC). The proposed method

is mainly composed of two parts: (1) modeling the target object using elastic

structure of local patches for robust performance; and (2) efficient hierarchi-

cal diffusion method to perform the tracking procedure in real-time. The

elastic structure of local patches allows the proposed method to handle par-

tial occlusions and non-rigid deformations through the relationship among

neighboring patches. The proposed hierarchical diffusion method generates
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samples from the region where the posterior is concentrated to reduce com-

putation time. The method is extensively tested on a number of challenging

image sequences with occlusion and non-rigid deformation. The experimen-

tal results show the real-time capability and the robustness of the proposed

method under various situations.

Keywords: Visual Tracking, Local Patches, Markov Random Field,

Particle Filtering, Hierarchical Diffusion

1. Introduction

Object tracking is an important computer vision problem which can be

used for various applications such as robot vision, video analysis, behavior

recognition, home automation, and visual surveillance [1]. In order for the

whole system to work properly for these applications, accurate tracking re-

sults are required. Various tracking methods have been tried [2, 3, 4, 5]

during the last decade and they have proven to be successful for these appli-

cations. However, the applicability of these algorithms is somewhat limited

when applied to objects undergoing various disturbances in real-world sce-

narios.

The limitations of conventional methods arise from the fact that they

have strong assumptions about the input video sequence, such as constant

movements of the target object and consistent views. In real-world scenar-

ios, occlusions may occur frequently with the target object showing non-rigid

deformations, degrading the performance of conventional methods. For in-

stance, it is easy for people walking nearby to occlude each other. Further-
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more, people show non-rigid movements as well, making it extremely difficult

for conventional methods to track the target person successfully throughout

the image sequence.

Kernel-based tracking [6] is widely used for its simplicity and computa-

tional efficiency. The method is generally known to provide tracking results

very efficiently, suitable for real-time purposes. However, the method uses

local optimization techniques; therefore, it is easy for the tracker to fall into

local maxima (or minima). Also, the method gets easily distracted by the

background (known as the background clutter problem) and has no clear way

of adapting to scale and illumination changes. Particle filtering based meth-

ods are another class of methods which became popular after its first intro-

duction in [7]. These methods try to solve the tracking problem with Monte

Carlo (MC) simulation. Unlike kernel-based trackers, particle filtering based

methods can be easily extended to track objects showing movements other

than translational movements, such as affine motions. Many variations have

been proposed [8, 9, 10], each with different measurement models. Among

these, subspace-based measurements [8], inspired by the work of Black et

al . [11], have proven to be successful. These methods are able to adapt to

various changes such as changes in views and illumination and changes within

the model by modeling the target object with a subspace-based representa-

tion. However, the methods assume slow changes of the target object and

do not consider occlusions during learning, causing the trackers to drift.

Adam et al . [12] proposed a fragments-based tracking method to solve

occlusion problems. Their method represents objects with multiple image

fragments and combines the votes from each fragment to obtain a tracking
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result. The method extends traditional kernel-based methods to be robust

to partial occlusions, but it is still limited to tracking translational move-

ments. Mei and Ling [13] treated visual tracking as a sparse approximation

problem under the particle filtering framework. They address occlusions

and corruptions through a set of trivial templates. Each target candidate is

then sparsely represented through l1 minimization and the candidate with the

smallest projection error is taken as the tracking target. The sparse represen-

tation considers occlusions through trivial templates and it is, therefore, more

robust to partial occlusions than other traditional particle filtering methods.

However, the results of their method are not reliable when the target object

shows non-rigid movements.

To solve the problem of non-rigid object tracking, Kwon and Lee [5]

proposed a method which models the target object as a collection of local

patches. In [5], the target object is described with a star model of local

patches, and Adaptive Basin Hopping Monte Carlo (A-BHMC) sampling is

used to minimize the energy of the model. The patches in the model used

to describe the target object are consistently updated through a heuristic

scheme. This enables the tracker to adapt to drastic changes in the appear-

ance and the shape of the target. A-BHMC reduces the number of particles

required for tracking, making the computation time tractable. However, their

method tends to have trouble when tracking objects showing large displace-

ments, and still requires large amount of computation even with A-BHMC.

Godec et al . [14] proposed a tracking method based on the generalized Hough

transform. They extended the idea of Hough Forests to the online domain

and coupled the voting based detection and back-projection with a rough seg-
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mentation based on GrabCut [15]. Their method gets rid of the bounding-box

limitation and returns tracking results which contain only the target object.

However, their method is limited to handling non-rigid deformations only,

and has problems when tracking objects under occlusions.

Recently, methods trying to solve tracking problems with the “tracking

by detection” scheme have drawn attention. Grabner et al . [4] proposed a

method to train a discriminative classifier in an online manner using online

boosting to separate the object from the background. Their method treats

the tracking result as a positive sample and nearby region as negative sam-

ples. Using these samples, the method continuously updates the classifier.

However, due to occlusions or slight inaccuracies, the performance of the

classifier tends to degrade over time as the classifier is updated. To solve this

drift issue, Babenko et al . [16] employed multiple instance learning, which

updates the classifier with multiple positive examples rather than just one.

Also, instead of using multiple instance learning, Stalder et al . [17] proposed

a multiple classifier system which consists of an off-line classifier, a super-

vised on-line classifier, and a semi-supervised on-line classifier to prevent the

tracker from drifting. However, both methods, [16] and [17], do not consider

occlusions, making the methods vulnerable to them. Kalal et al . [3] proposed

a method using both a tracker and a classifier to create training sets with

structural constraints. Their method collects training samples and uses them

only when the structural constraint meets, i.e., only when the classifier and

the tracker agrees. Through this procedure, their method becomes robust

to drifting problems. Unfortunately, their method has weaknesses against

occlusions as well.
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Our method is targeted to solve both the problem of partial occlusions

and the problem of non-rigid deformation in real-time on a modern desktop

personal computer (PC). The proposed algorithm models the target object

through a structure of local patches with spring-like connections, formulated

in a Markov Random Field (MRF) style framework. Each local patch is

considered to be connected with its neighbors as the local structures of the

target object are embedded into the MRF structure.

The advantage of our method is that when partial occlusions occur, un-

occluded patches will enforce the maintenance of the local structures, owing

to the spring-like connections among local patches. As a result, occluded

patches will be directed to their correct positions through the relationship

among neighboring patches, thus making our method robust against partial

occlusions. Non-rigid deformations are also well described since they can

be explained as a collection of local movements of patches. Unlike other

methods which concentrate on occlusions [12, 13], or methods which focus

on non-rigid movements only [5, 14], our method addresses both problems

simultaneously. In addition, to achieve real-time performance on a modern

desktop PC, which is critical in many tracking applications, a hierarchical

diffusion approach is proposed to overcome the curse of dimensionality.

The proposed model is similar to the deformable models used for 3D

shape recovery tasks [18, 19], but differs in the fact that the structure is not

restricted to regular or repetitive grids. Also, for visual tracking tasks, the

shape of the tracked object is not known in advance, thus the applicability

of methods for 3D shape recovery tasks [18] are limited. Our method is also

closely related to pictorial structure frameworks [20, 21] in the fact that we
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model the entire object as a collection of parts. Pictorial models have been

successfully applied to object recognition and detection tasks [22]. In our

work, we focus on the visual tracking task, where we are not provided with

a prior dataset to learn about the target object, in contrast to the object

recognition and detection task.

To demonstrate the effectiveness of our method, we have experimented

with a number of challenging image sequences. The experimental results

show that our method is the most robust against both partial occlusions

and non-rigid deformations, compared with other methods. Especially, our

method runs in real-time (20 to 50 frames per second), whereas other state-

of-the-art methods capable of tracking non-rigid objects proposed in [5] and

[14] runs only a few frames per second.

A preliminary version of this paper has been presented in [23]. In this

version, we extend the preliminary work with a new likelihood function based

on linear Support Vector Machine (SVM) [24, 25] and logistic fitting [26]. We

also provide thorough analysis of the method’s performance through compar-

ison with other methods both qualitatively and quantitatively on a number

of challenging image sequences.

2. Tracking with Elastic Structure of Local Patches

2.1. Sequential Bayesian Inference Framework

The proposed tracking method is based on a sequential Bayesian in-

ference framework. We denote the object state at time t as Xt, where

Xt =
(
X1

t ,X
2
t , · · · ,XN

t

)
and Xk

t denotes the state of the kth local patch

of the object (e.g ., the position of the patch) among the N local patches
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used to describe the object. Then, if we denote the observations up to time

t as Y1:t, the problem of object tracking can be defined as finding X̂t such

that,

X̂t = arg max
Xt

P (Xt|Y1:t) . (1)

For sequential Bayesian inference, the posterior probability P (Xt|Y1:t) is

sequentially updated as the following:

P (Xt|Y1:t) ∝ P (Yt|Xt)

∫
P (Xt|Xt−1)P (Xt−1|Y1:t−1)dXt−1 . (2)

Here, P (Yt|Xt) is the conditional probability of the current observation Yt

given the current state Xt, which is referred to as the likelihood term, and

P (Xt|Xt−1) is the transition probability from Xt−1 to Xt.

Typically, for object tracking, since we consider many types of move-

ments (e.g ., translation, rotation, scale, and affine motions), obtaining an

exact analytic solution is not an easy task. Also, when the model is applied,

the probabilistic distribution in the solution space is non-convex leading to

difficulties when using local optimization based techniques. Therefore as in

[7], we use particle filtering (also known as sequential Monte Carlo sampling)

to solve the problem. If we denote the lth sample in particle filtering as Xt,[l],

then Eq. (1) can be re-written as

X̂t = Xt,[l̂] , (3)

where

l̂ = arg max
l

P (Yt|Xt,[l]) . (4)

Note that since we are performing particle filtering, the likelihood of each

particle P (Yt|Xt,[l]), after diffusion according to the transition probability
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and re-sampling, corresponds to the posterior probability. Thus, the problem

of object tracking is now the problem of simulating the posterior distribution

P (Xt|Y1:t) with particle filtering, and then taking the particle with the best

probability as a solution.

Our method differs from the traditional particle filtering methods due

to the fact that the likelihood P (Yt|Xt) is obtained through an MRF-style

manner. Through this MRF-style method, both the individual likelihood of

each patch and the relationship among them are maximized while tracking.

The MRF-style elastic structure of local patches, which will be explained

in Section 2.2, has the advantage that the resultant posterior distribution

considers both the underlying local structures and the non-rigid deforma-

tions simultaneously. To allow the proposed method to perform the tracking

procedure within the real-time constraint and to avoid from using excessive

number of particles when covering the high dimension solution space, we

adopt a hierarchical diffusion scheme which benefits from the assumption

that local deformation is not large between consecutive frames. Details of

the proposed hierarchical diffusion are explained in Section 2.6.

2.2. Elastic Structure of Local Patches

In our work, we treat the target object as a collection of local parts, rather

than treating the target object as a whole. Local parts are described with

n×n size local patches, and local patches are assumed to be connected with

nearby neighbors forming an elastic structure as in Fig. 1. This model of the

target object is realized through an MRF-style framework. The likelihood of

each local patch is considered to be the unary likelihood of the MRF, and the

structure among them is considered to be the neighborhood relationship of
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TRACKING VIA LOCAL PATCHES AND HIERARCHICAL SAMPLING 

Perception and Intelligence Lab. 

2 

LOCAL PATCH STRUCTURE 

Fig. 1. Example of elastic structure of local patches used to describe the target object.

Black boxes denote each local patch and red lines denote each connection.

the MRF. Since each local patch is connected with its neighbors forming an

MRF, our model prefers solutions with the local structure of the target object

preserved. Therefore, even if some of the patches are occluded, other un-

occluded patches will drive occluded patches to the correct positions, causing

the proposed model to be robust against partial occlusions. Also, since we

describe the target object using local patches, we are able to represent non-

rigid deformations as a collection of movements of local patches.

We consider the initial patch positions and connections are given in the

first frame. This initial setting can be given manually or automatically by

some other detection system or by some certain strategy (e.g ., dividing the

target bounding box into equal grids and considering each grids to be con-

nected to its direct neighbors). The given patches should cover most of the

target object with connections describing the structure of the target object.

The likelihood P (Yt|Xt) in Eq. (2) is modeled with the probability of
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the MRF configuration describing the structure of local patches. Therefore,

P (Yt|Xt) is designed as

P (Yt|Xt) ∝
N∏
k=1

[
P (Yt|Xk

t )
∏
j∈Nk

P (Xk
t |X

j
t)

]
, (5)

where P (Yt|Xk
t ) is the likelihood of a single patch, P (Xk

t |X
j
t) is the prior

probability describing the relationship among neighboring patches, and Nk

denotes the neighbors of the kth patch. Note that P (Yt|Xt) is referred to as

the posterior probability in MRF literature, but in our case, it is the like-

lihood of a single configuration. Since we are based on sequential Bayesian

inference, the posterior probability for our model is shown in Eq. (2). We

are also following the standard MRF configuration and are assuming condi-

tional independence among patches which are not neighbors, as well as the

independence among unary likelihoods of each patch P (Yt|Xk
t ). (See [27] for

more details on MRFs.)

In the energy form, if we denote the total energy of the configuration

as E(Yt;Xt), the energy of a single patch as E(Yt;X
k
t ), and the energy

from the relationship between patches as E(Xk
t ,X

j
t), we can write the total

energy of the MRF model (which is simply the sum of the observation and

neighborhood energy of all patches) as

E(Yt;Xt) = Z +
N∑
k=1

[
E(Yt;X

k
t ) +

∑
j∈Nk

E(Xk
t ,X

j
t)

]
, (6)

where Z is a normalizing constant which is not needed to be computed

during optimization as only the relative difference of energy between the

states is used. Here, the relationship between Eq. (5) and Eq. (6) is that

Probability ∝ exp(−λEnergy), assuming the Gibbs distribution. Here, λ is
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a design parameter controlling the smoothness of the posterior distribution.

Now, with Eq. (6), Eq. (4) can be re-written as

l̂ = arg max
l

P (Yt|Xt,[l]) = arg min
l

E(Yt;Xt,[l]) . (7)

Also, the sample weights for particle filtering is now

w(l) ∝ P (Yt|Xt,[l]) ∝ exp(−λ E(Yt;Xt,[l])) . (8)

Generally speaking, if λ is large, the posterior distribution becomes spiky and

particles become concentrated near the MAP solution, whereas if λ is small,

the posterior distribution becomes smooth and more particles far away from

the MAP survive the re-sampling process. We empirically found that λ = 10

work well in most cases.

2.3. Modeling a Single Patch

In order to obtain the energy of a single patch E(Yt;X
k
t ), we model each

individual patch using a linear classifier in 21 dimensional space. The first

nine dimensions are HOG (Histogram of Oriented Gradients) features. We

build our HOG by dividing the orientation into eight equal bins, and one bin

to denote gradients with response 0. To obtain image gradients, filter kernels[
−1 0 1

]
and

[
−1 0 1

]T
are used. When applying these filters, if the

responses were below 10 on a 0 to 255 scale, we considered the response to

be 0 to increase robustness to noise. We then assigned the image gradients

to one of the eight bins according to their orientations, or the ninth bin if

both filter responses were 0. For simplicity, we assigned each gradient to one

of the nine bins without weighing them.
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6 

9-D HOG RGB + RGB RGB RGB 

Fig. 2. Example of a 21 dimensional feature descriptor for a single local patch.

For the remaining 12 dimensions, we divide a single local patch into four

equal parts (upper left, upper right, bottom left, and bottom right) and

obtain the mean RGB values for each sub region as in Figure 2 (3 dimensions

for each sub region). More sub regions may be used depending on the level

of accuracy required for a single local patch tracking. This feature is similar

to the one used in [28], but one feature is assigned to a single patch not a

single pixel as in [28]. The advantage of using this 21 dimensional feature is

that this feature can be obtained efficiently using integral images.

For each patch, we use the classifier score of the observed 21 dimensional

vector to obtain the energy of a single patch, E(Yt;X
k
t ) in (6). The classifier

is trained so that it gives high scores when the observation is likely to be the

modeled patch, and gives low scores (possibly negative) when it is not likely.

For the classifier, we use linear SVM [24, 25] with logistic fitting performed

on the classification score [26] to perform scaling. Training strategies for

both linear SVM and logistic fitting are described in detail in Section 2.5.

If we let fkc denote the 21 dimension feature vector of the current observa-
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v𝑚 j,k  

k j 

(a) Model

14 

v𝑐 j,k  

k 

j 

v𝑐 j,k − v𝑚 j,k  

(b) Observation

Fig. 3. Example of neighboring local patches connected together.

tion for the kth patch, let sk
(
fkc
)

denote the linear SVM classification score

for fkc , and let Ak and Bk denote the learned logistic parameters, then

E(Yt;X
k
t ) = 1− 1

1 + eAksk(fkc )+Bk

. (9)

Note that the logistic fitting [26] scales the classifier scores to be in range

[0, 1], considering the distribution of scores from the training data. This

prevents the problem of certain patches having higher priority than others

due to different score range when using raw classifier scores. We also use

the classification result of each patch when updating the model to prevent

drifting (detailed in Section 2.5).

2.4. Modeling the Relationship between Patches

The relationship between neighboring patches is modeled so that the local

structures among neighboring patches are preserved while tracking. To deal

with non-rigid deformations, patches behave as if they are connected by

springs. Also, to be robust to partial occlusions, the springs of each patch
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behave as if they are connected to the patch’s expected positions from its

neighbors. As in Fig. 3, if we consider an observed patch (patch j in Fig. 3)

and its neighbor (patch k in Fig. 3), then in our model, the observed patch

j tends to return to its expected position from its neighbor k (expected

position is denoted by the dotted box) by the restoring force of a virtual

spring connection between the expected position and patch j, which is length

zero at rest. In other words, the energy of the connection between the two

neighboring patches k and j is defined as the elastic energy of this spring.

If we denote the vector difference between jth and kth patches of the current

observation and the model as vc(j, k) and vm(j, k), respectively, then the

displacement change x of this virtual spring is

x = ‖vc(j, k)− vm(j, k)‖2 . (10)

Also, to make close patches have more effect on one another, the strength of

this spring is designed to be inversely proportional to the squared distance

between the neighbors. Therefore, the spring constant κ is designed as

κ =
2

‖vm(j, k)‖22
β , (11)

where the neighbor strength β is a design parameter controlling the trade-off

between the flexibility to adapt to non-rigid motion and the ability to keep

the structure against occlusion. Details on the effect of β will be addressed

in Section 3.1. Then, the elastic energy between connected local patches

E(Xk
t ,X

j
t) in Eq. (6) is defined as

E(Xk
t ,X

j
t) =

1

2
κx2 = β

‖vc(j, k)− vm(j, k)‖22
‖vm(j, k)‖22

. (12)
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2.5. Model Update

The model of the target object needs to be updated consistently in order

for the tracker to be able to adapt to various changes in the target object.

Illumination changes and deformations of the target object must be learned

by the model to correctly evaluate Eq. (5). In our case, the model update

is performed in two steps: (1) updating the linear classifiers and the logistic

parameters for each patch, and (2) updating the neighborhood connection

parameters. To prevent the model from drifting, the update is performed

only when the observed patch is classified as the model, i.e. for patch k, only

when sk
(
fkc
)
> 0. Also in case of the neighborhood relationship, we only

update when the observation for both patches forming the relationship are

classified as the model.

The way we update the linear classifiers is through updating training

samples. For each patch, we keep a pool containing positive and negative

training samples of size 2M (M positive samples and M negative samples).

The positive samples represent the target object and the negative samples are

simply the 21 dimension feature vectors drawn randomly from nearby. At the

initial frame, we initialize the positive pools with M identical copies of the

initial patches of the target object. For each frame, after obtaining the local

patch tracking results, we add the tracking results to the positive pools and

take out the oldest samples from the positive pools. When taking samples

out from the positive pools, to prevent drifting, we make sure that at least

one sample is from the first frame (i.e. one sample representing the patch

from the initial frame is never taken out for each pool). Then we completely

discard the previous negative pools and refresh negative samples from random
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nearby patches. Again, for each patch, the classifier from the previous frame

is discarded and a new classifier is trained using the new training pools. Note

that for each pool, since we update one positive sample at a time, the pool

size M acts as a design parameter controlling the update speed of the target

object model. When M is large the model is updated slowly and when M

is small the model is updated quickly. In general, we empirically found that

M = 100 gives good performance as well as low computational cost for the

update process.

For the relationship update, we simply update vm(j, k) by weighted av-

eraging, but only when both patches are classified as the model. In other

words, for all j and k, if[
sj
(
f jc
)
> 0
]
∧
[
sk
(
fkc
)
> 0
]
, (13)

then

vm (j, k)← 1

M
vc (j, k) +

(
1− 1

M

)
vm (j, k) . (14)

Note that the learning rate is 1
M

so that the update rate would be the same

as for the training pools for the classifiers.

2.6. Hierarchical Diffusion

In our model, the dimension of the solution space is too large to apply

simple motion models such as the random-walk model. The required number

of particles grow exponential according to the number of patches used. For

example, if we were to need 100 particles to track an object with only one

patch using the random-walk motion model, then with N patches we would

require 100N particles to track the target object with our model. This is

already an astronomical number even with only a few number of patches,
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𝛿j,[l] 𝛿k,[l] 

k j 

Δ[l] 

Fig. 4. Illustrative example of hierarchical diffusion performed for a single sample l.

Global movement of the total configuration of patches ∆[l] is sampled first, then local

movements of individual patches δk,[l] and δj,[l] are sampled.

making our method impossible to run in real-time. Therefore, we propose an

efficient hierarchical diffusion method.

To use a small number of samples, we focus on sampling from the re-

gion where the actual solution would exist with high probability. In case of

tracking situations the deformation of the target object is not large between

subsequent frames. Considering this as an assumption, we diffuse particles

hierarchically in two steps: globally for the motion of the whole object and

locally for the deformations of the target object. We first diffuse the position

of all local patches equally according to the Gaussian distribution with a rel-

atively large variance, and then diffuse the position of each patch separately

according to the Gaussian distribution with a relatively small variance (il-

lustrated in Fig. 4). In the global step, the samples are diffused so that the

relative positions between local patches in the sample are preserved. Then,
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in the local step, each local patch is diffused independently. Mathematically

the proposed hierarchical diffusion method can be described as

Xk
t,[l] = Xk

t−1,[l] + ∆[l] + δk,[l] , (15)

where, Xk
t,[l] denotes the state of the kth local patch of the lth sample at time

t, ∆[l] denotes the 2-dimensional global diffusion (translation in x, y direction

for the whole object) for the lth sample, and δk,[l] denotes the 2-dimensional

local diffusion (translation in x, y direction for a local patch) for the kth local

patch of the lth sample. Here,

∆[l] ∼ N (0, σ2
G) , (16)

and

δk,[l] ∼ N (0, σ2
L), (17)

where N (0, σ2) denotes a Gaussian distribution with zero mean and standard

deviation σ. σG and σL are parameters for the diffusion. The optimal choice

of σG and σL may vary depending on the image sequence but we empirically

found that σG = 8 and σL = 4 works well for most cases. The proposed

diffusion produces an accurate solution with a relatively small number of

particles compared to the simple random walk approach, which allows the

proposed method to achieve real-time performance. Details and discussion

on experimental results regarding the effectiveness of hierarchical diffusion

are given in Section 3.8.

2.7. Summary of the Proposed Method

The proposed method uses particle filtering to get an MAP solution for

the object tracking problem. Given the initial patches and connections
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{
fkm,vm(j, k);∀j, k,

}
, the proposed method can be summarized as Algo-

rithm 1.

Algorithm 1 Tracking with Local Patches (for each frame)

1: For each sample, compute

E(Yt;Xt) = Z +
∑m

k=1

[
E(Yt;X

k
t ) +

∑
j∈Nk

E(Xk
t ,X

j
t)
]

(Eq. (6))1

where,

E(Yt;X
k
t ) = 1−

(
1 + eAksk(fkc )+Bk

)−1
(Eq. (9))

E(Xk
t ,X

j
t) = β

‖vc(j,k)−vm(j,k)‖22
‖vm(j,k)‖22

(Eq. (12))

2: Find MAP solution

X̂t = Xt,[l̂] (Eq. (3))

where,

l̂ = arg max
l

P (Yt|Xt,[l]) = arg min
l

E(Yt;Xt,[l]) (Eq. (7))

3: Update object model (Section 2.5)

4: Assign sample weights w[l] according to the likelihood

w[l] ∝ P (Yt|Xt) ∝ exp(−λ E(Yt;Xt,[l])) (Eq. (8))

5: Re-sample according to weights

6: Diffuse samples

Xk
t+1,[l] = Xk

t,[l] + ∆[l] + δk,[l] (Eq. (15))

1Note that Z is a constant and can be safely omitted from the actual computation when

optimizing.
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(a) Input image (b) β = 0.2 (c) β = 2.0

Fig. 5. Example showing the effect of β parameter on non-rigid object tracking. Tracking

results for the Robot sequence, frame #40, with β = 0.2 (b) and β = 2.0 (c). Blue

rectangle is the final tracking result, green rectangles are local patches with high confidence

(SVM score above 0), red rectangles are local patches with low confidence, and the orange

lines denote the neighborhood relationships.

3. Experiments

3.1. Parameter Effects

The parameter β in subsection 2.2 controls the strength of the neighbor-

hood connections. In other words, large β means that tracking is performed

so that the local structure does not change much. Thus, β is a parame-

ter controlling the tradeoff between the tracker’s ability to track non-rigid

objects and ability to cope with partial occlusions. Fig. 5 is an example

showing the effect of the β parameter when tracking object with deforma-

tion. As in Fig. 5 (b), if parameter β is small, object deformation is well

tracked. On the other hand, if β is large, deformation is less taken into

accounted when tracking. For our method, β is the only parameter which

requires tuning. In case of other parameters, we found empirically that the

parameters noted in the beginning of Section 3.2 works well in most situa-
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(a) Input image (b) β = 0.2 (c) β = 2.0

Fig. 6. Example showing the effect of β parameter on tracking objects with partial

occlusions. Tracking results for the Face sequence, frame #215, with β = 0.2 (b) and

β = 2.0 (c).

tions and without tuning. Unlike the case for traditional particle filtering

methods [8, 9, 10, 13] which require the tuning of the diffusion parameters

in each dimension when changing the trackers’ behaviors, our method only

requires tuning of β. Also, tuning β is intuitive and simple. Fig. 6 shows

the effect of parameter β when tracking objects with partial occlusions. The

tracker better handles occlusions when β is large, as in Fig. 6 (c). Generally,

for scenes with high deformation β = 0.2 shows good results, for scenes with

heavy occlusion β = 2.0, and normally β = 1.0 is good enough.

3.2. Performance Evaluation

Evaluation of the proposed method was performed through twelve im-

age sequences. Each image sequence consists of different types of situations

(occlusion, outer-plane motion, non-rigid deformation, etc.) Throughout the

experiments, all parameters except β were fixed. The pool size M was set

to 100, and the number of particles was set to 1000. For the linear SVM,
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we used default parameters provided in [25]. For the sampling parameters,

σG = 8 and σL = 4. Parameter λ controlling the concentration of samples,

was set to 10. The implementation was done in C++ without any parallel

processing. All experiments were held on a desktop PC (Intel core i5-2500

3.3GHz, Windows 7) and ran comfortably about 20-50 frames per second

depending on the number of patches, except for the Dudek sequence which

was of size 720× 480, and ran 12 frames per second.

The test sequences are composed of some well-known sequences and some

of our own. The Dudek sequence and the Sylvester sequence are from the

work of Lim et al . [8], and the Face sequence and the Woman sequence are

from the [12]. The Caviar sequence is from the CAVIAR2 dataset. These

five sequences are some of the well-known sequences for evaluating tracking

performances. The High Jump sequence is from Kwon et al .’s work [5], and

the Motocross 1 and the Mtn. Bike sequences are from recent work by

Godec et al . [14]. The Robot sequence and the Pedestrian sequence are

from [23], and the Dove sequence is from [29]. Finally, the Nemo sequence

is of our own. The resolution for the Dudek is 720 × 480, the Face and

the Woman are 352 × 288, the Caviar is 384 × 288, the High Jump is

416 × 234, the Motocross 1 and the Mtn. Bike is 640 × 360, and others

are 320× 240.

For quantitative analysis, we compared the mean error of the four corner

points of the tracking bounding box. The ground truth data was annotated

by human hand, so that the target object fitted in the bounding box. In [14],

2EC Funded CAVIAR project/IST 2001 37540, found at URL:

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Godec et al . used the Agarwal-criterion [30], which was defined as score =

RT∩RGT

RT
, where RT is the tracking rectangle and RGT the ground truth, but

this measure is not suitable for describing how accurate tracking is. A single

dot in the ground truth region would return maximum measure. However, by

using the mean of the errors of the four corner points of the tracking bounding

box we can measure the accuracy of a tracker without such problem. Also,

this measure is easily applicable to many trackers since most trackers are

based on giving a bounding box of the target object as a result.

The proposed method has been compared against seven other track-

ers. Beyond Semi-supervised Tracking (SEMI) in [17] and Multiple Instance

Learning (MIL) in [16] are methods based on the concept “tracking by de-

tection”, Frag-Track (FRAG) in [12] and l1 minimization (L1) in [13] are

some representative methods for solving occlusion problems, Basin Hopping

Monte Carlo Tracking (BHMC) in [5] and Hough-based Tracking (HOUGH)

in [14] are state-of-the-art methods for solving non-rigid object tracking, and

TLD Tracking (TLD) [3] is a method which uses both detectors and trackers.

For the experiments, we used the implementation provided by the authors of

each paper. Also, we implemented our method in three different ways. The

first is with manual initialization (LPT), the second is with initialization by

dividing the target bounding box into equal grids (LPT GRID), and the last

one is with simple temporal low-pass filtering to LPT (LPT SMOOTH) to

remove noise from estimation. For LPT GRID, we assumed the patches were

connected to its direct neighbors (patches which share boundaries) and the

number of grids was set to 3× 3. For LPT SMOOTH, the temporal smooth-

ing was performed by weighted averaging the new estimated result and the
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old estimate (the tracking result from previous frame). When averaging, we

applied different weights for the smoothing of the center position and the

smoothing of the width and height. For the position, a weight of 0.3 was

applied to the new estimate and 0.7 for the previous estimate. For the width

and height, we applied stronger smoothing than we did for the position since

width and height do not change much between consecutive frames; weight

of 0.1 to the new estimate and 0.9 to the previous estimate. Effects of this

temporal smoothing will be discussed in Section 3.9. All other parameters

were identical for all three implementations.

Fig. 7 shows the mean error value of each tracker for each image sequence.

β was set as in the sub-captions. The mean error value was calculated only

for the frames the tracker returned results. This is because SEMI and TLD

returned results only when they are confident, and if they are not, returned

results indicating tracking failures. The number on top of each marker de-

notes the percentage of frames that gave meaningful results, which mean

that, if we denote the mean error of the four corner points as emean, width

of the ground truth as wGT , and height of the ground truth as hGT , then

emean < min (wGT , hGT ). The tracker with lowest mean error and with over

90% of the tracking results meaningful is marked with red bold text. The red

dotted horizontal line denotes the mean value of min (wGT , hGT ) throughout

each sequence. Tracker with mean error above the dotted red line means

that most of the tracking results from that tracker were meaningless for that

sequence. In general, all three implementations of our method consistently

outperform or show comparable results against other compared methods.

Note that although other methods sometimes give better results than ours
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(a) Dudek, β = 1.0
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(b) Sylvester, β = 1.0
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(c) Face, β = 2.0
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(d) Woman, β = 1.0
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(e) Caviar, β = 2.0
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(f) High Jump, β = 0.2
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(g) Motocross 1, β = 0.2
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(h) Mtn. Bike, β = 0.2
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(i) Robot, β = 1.0
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(j) Dove, β = 1.0
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(k) Nemo, β = 1.0
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(l) Pedestrian, β = 0.2
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SEMI MIL FRAG L1 BHMC HOUGH TLD LPT LPT_GRID LPT_SMOOTH

Fig. 7. Mean errors for each sequence. Numbers on top of each marker denote the

percentage of meaningful tracking results. Best tracker denoted by red bold text.
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depending on the image sequence, our method consistently gives good re-

sults, regardless of the image sequence used. Also, even though our method

is based on sampling, we did not find significant difference in the results

between multiple runs with the same parameters.

3.3. Discussion on Translation, Rotation, and Illumination Changes

The Dudek sequence and the Sylvester sequence are well known datasets

for testing robustness on translation, rotation, and illumination changes. In

both image sequences, SEMI gave the most accurate result (Fig. 7 (a) and (b)).

However, in both sequences, SEMI was able to track less than half of the

whole sequence, whereas our method (LPT) was able to track most of the

sequence (100% for Dudek and 99% for Sylvester) with promising results.

For the Sylvester sequence, LPT GRID and LPT SMOOTH show similar

results.

Critical frames for the two sequences are shown in Fig. 8. In Fig. 8 (a),

as the target person stands up, L1, BHMC, and HOUGH loses track. Also,

as the person turns around in Fig. 8 (b), FRAG fails whereas our method

successfully tracks the whole sequence. In Fig. 8 (b), LPT SMOOTH also

drifts a bit due to the abrupt change in motion, but still keeps track of the

target object and recovers after a few frames. In Fig. 8 (d), we can see that

HOUGH starts to drift off. The authors of [14] reported that they were able

to track 99% of the image sequence, but even with same initial conditions the

authors provided, we were not able to reproduce their result (we obtained

slightly degraded results). We suspect that this is because HOUGH uses

fully randomized trees, meaning that the accuracy of their algorithm may
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GroundTruth SEMI MIL FRAG L1 BHMC HOUGH TLD LPT LPT_GRID LPT_SMOOTH

Fig. 8. Tracking results for the Dudek sequence and the Sylvester sequence. Best

viewed in color.
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vary according to the random seed. For all image sequences, even with the

same initial settings, HOUGH returned various results, making the tracking

accuracy unstable. In Fig. 8 (e), we can see that our method also fails due

to large outer-plane motion, but our method quickly recovers as shown in

Fig. 8 (f), giving good overall performance considering all frames.

3.4. Discussion on Partial Occlusions

The sequences Face, Woman, and Caviar are sequences which contain

partial occlusions. For the Face sequence, all three implementations of our

method gave comparable results against other methods (Fig. 7 (c), (d), and (e)).

Moreover, our method was also capable of tracking objects showing non-rigid

deformations, whereas methods showing good performances on this sequence

(SEMI, FRAG, and L1) did not show good performances in other situations

(High Jump, Motocross 1, and Mtn. Bike). Also, note that the methods

designed for non-rigid object tracking (BHMC and HOUGH) do not show

good results for Face and Woman. For the Face and Woman sequences,

the target object is occluded gradually and severely, where some parts of the

sequence have over half of the target occluded.

Critical frames for these sequences are shown in Fig. 9. In Fig. 9 (b),

as occlusion occurs, we can see other methods failing, whereas our methods,

LPT, LPT GRID, and LPT SMOOTH all three, successfully track. As in

Fig. 9 (c), TLD re-detects the target object when the occlusion is gone, but

as the target object gets occluded again, the tracker fails. This sequence was

used in [12], and FRAG was able to track the target object throughout the

whole sequence in their paper. However, in [12], only a portion of the whole
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GroundTruth SEMI MIL FRAG L1 BHMC HOUGH TLD LPT LPT_GRID LPT_SMOOTH

Fig. 9. Tracking results for the Face sequence, the Woman sequence, and the Caviar

sequence. Best viewed in color.
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sequence was used. When started from the first frame, FRAG loses track as

well.

3.5. Discussion on Non-Rigid Deformations

The sequences High Jump, Motocross 1, and Mtn. Bike are se-

quences with non-rigid deformations. For all sequences, all three implemen-

tation of our method gave promising results (Fig. 7 (f), (g), and (h)). BHMC

and HOUGH show good results for objects with non-rigid deformations, but

do not show good results in general (especially for sequences with occlu-

sions) and run only a few frames per second, whereas our method runs 20

to 50 frames per second. Note that the trackers showing good performance

against partial occlusions (FRAG and L1) tend to show unsatisfactory results

in these cases, whereas our method consistently gives good results. Critical

frames for these sequences are shown in Fig. 10.

3.6. Discussion on Additional Cases

The Robot sequence contains both non-rigid deformations and partial

occlusions. The Dove sequence show fast object motion, and the Nemo

sequence has scale changes and in-plane rotations. Finally, the Pedestrian

sequence is with fast and abrupt camera movements.Some critical frames for

these sequences are shown in Fig. 11. For the Robot sequence, as in Fig. 7 (i),

the proposed method outperformed all other trackers (SEMI showed lower

mean error, but was able to track only 7.7% of the sequence). Also, for

the sequences Dove, Nemo, and Pedestrian, both LPT and LPT GRID

outperformed or showed comparable results against other trackers. In case

of LPT SMOOTH, the accuracy degraded for the Dove sequence due to the
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GroundTruth SEMI MIL FRAG L1 BHMC HOUGH TLD LPT LPT_GRID LPT_SMOOTH

Fig. 10. Tracking results for the High Jump sequence, the Motocross 1 sequence, and

the Mtn. Bike sequence. Best viewed in color.
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fast movement of the target object (example shown in Fig. 11 (g)), but is still

comparable to other trackers. Note that in Fig. 11 (a), (c), and (f), the toy

shows complex movements (spreading legs apart, bending, and sitting down),

which other trackers fail to describe. Since the neighborhood connections in

the grid initialization are not accurate, LPT GRID also fails to describe the

movement of the target object in this case. In Fig. 11 (d) and (e), LPT shows

robust performance against severe partial occlusions.

3.7. Summary of Tracking Results

The evaluation results are summarized in Table 1. The results in this

table are obtained by concatenating frame-by-frame results of all sequences

together, so that the number of frames of each sequence is taken into account.

Note that since the percentage of meaningful tracking results considers the

target object size, the scale differences of each sequence is also considered

in this measure. The mean error values can be understood as expected

error in pixels, regardless of the target object size. Also, we have roughly

evaluated the real-time capability (over 15 FPS on 320×240 image sequence)

of each method. We did not compare exact run-time of each method since

each implementations had different level of optimization (from MATLAB to

parallel processing using multi-processing techniques). Roughly speaking, L1

and BHMC require a few seconds per frame, SEMI and HOUGH is between

few to ten frames per second, and others are over 15 frames per second. Note

that our method provides 20 ∼ 50 FPS in C++, with no parallel processing.

As illustrated in Table 1, our method (LPT) outperforms all other trackers

we compared against, with respect to the percentage of meaningful tracking
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GroundTruth SEMI MIL FRAG L1 BHMC HOUGH TLD LPT LPT_GRID LPT_SMOOTH

Fig. 11. Tracking results for the Robot sequence, the Dove sequence, the Pedestrian

sequence, and the Nemo sequence. Best viewed in color.
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Table 1

The mean error values and the percentage of meaningful tracking results with all frames in

all image sequences for each algorithm. Last column denotes whether the average frames

per second (FPS) for a 320×240 image sequence is over 15 (roughly real-time on webcams).

Red underlined text indicates best result and the plain blue text indicates second best.

Mean Error % Meaningful Over 15 FPS

SEMI 10.10 48.43 NO

MIL 48.57 82.11 YES

FRAG 43.51 73.04 YES

L1 88.00 54.11 NO

BHMC 97.80 42.93 NO

HOUGH 53.53 74.57 NO

TLD 26.52 83.86 YES

LPT 17.03 99.48 YES

LPT GRID 16.03 99.14 YES

LPT SMOOTH 17.85 99.33 YES
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results. Except for SEMI, our method (LPT GRID) also outperforms all

other compared methods in terms of mean error as well. SEMI showed the

lowest mean error, but showed the worst result when considering the per-

centage of meaningful tracking results. Note that as shown in Fig. 7, in few

cases, our method perform slightly worse than some methods depending on

the image sequence. However when all frames in all sequences are considered,

our method outperforms all methods we compared against. This means that

our method gives consistently good results among all sequences. The grid

initialization version of our method, LPT GRID, shows similar results as

LPT, as in many tracking situations, the local structure of the target object

is preserved, and the grid configuration is accurate enough for the tracker to

work. Also, LPT SMOOTH shows slightly degraded performance, but gives

more stable results than LPT (see Section. 3.9 for details on the stability of

the estimated tracking result).

3.8. Effectiveness of Hierarchical Diffusion

To demonstrate the effectiveness of hierarchical diffusion, we have com-

pared the mean error of the tracking results obtained with hierarchical dif-

fusion and with simple Gaussian diffusion (the random-walk motion model).

During the experiment, to compare only the effect of different diffusion strate-

gies, all parameters including the number of particles were fixed except for the

diffusion parameters. For hierarchical diffusion, σG = 8 and σL = 4, whereas

for simple Gaussian diffusion, we varied σ from σ = 0.5 to σ = 10 having 0.5

as step size. Comparison results are shown in Fig. 12. In Fig. 12, results of

hierarchical diffusion are denoted by the solid black lines, the mean results of
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(b) Sylvester
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(k) Nemo
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Fig. 12. Mean error obtained using hierarchical diffusion and simple Gaussian diffusion.

See text for details.
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simple Gaussian diffusion are denoted by blue dashed lines, best results us-

ing simple Gaussian diffusion are denoted by red dashed lines (with the best

parameter in brackets), and the range in which results of simple Gaussian

diffusion lie in are denoted with the grey area. As shown in Fig. 12, the pro-

posed hierarchical diffusion generally gives better tracking results with the

same number of particles. Note that with fine-tuned parameter for simple

Gaussian diffusion, there are cases which simple Gaussian diffusion provides

results as good as or even better than the proposed method. However, note

that their parameters are all different, and these are cases when global mo-

tion of the target object is not large. When global motion is significant, as in

Fig. 12 (a), (g), and (j), hierarchical diffusion achieves lower mean error re-

gardless of the choice of parameter for simple Gaussian diffusion. Also, note

that for the proposed hierarchical diffusion, the same diffusion parameters

were used for all sequences.

3.9. Limitations

Though our method outperforms other methods in terms of mean er-

ror and the percent of meaningful frames, there are some limitations to the

proposed method. The first limitation is the accuracy of individual local

patches. The accuracy of individual patches may not be as good when large

deformations exist or when the local patch is not very distinctive from its

surroundings. However, when all local patches are considered together, the

overall tracking result for the whole object is quite accurate owing to the

proposed elastic structure. Example tracking results and their local patch

structures are shown in Fig. 13. As shown in Fig. 13 (a) - (c), the position
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(a) Robot #150 (b) Robot #490 (c) Robot #630

(d) Motocross 1 #5 (e) Motocross 1 #50 (f) Motocross 1 #90

(g) Hand #5 (h) Hand #200 (i) Hand #700

(j) Hand #950 (k) Hand #1030 (l) Hand #1350

Fig. 13. Example tracking results and their local patch structures. Best viewed in color.

39



(a) Dudek #5 (b) Dudek #561 (c) Mtn.Bike #147 (d) Mtn.Bike #215

(e) Woman #535 (f) Woman #590 (g) Nemo #11 (h) Nemo #515

Fig. 14. Example tracking results with scale and orientation changes. Best viewed in

color.

of each individual patch is quite accurate when the patches are discrimi-

nant from its surroundings. In Fig. 13 (d) - (f), the patch near the head

of the person drifts and the position of the patches is not as accurate as in

Fig. 13 (a) - (c) due to large deformation and fast motion. An extreme case

for the individual patch accuracy limitation is shown in Fig. 13 (g) - (l). In

this hand tracking sequence, the target object is highly deformative and the

local patches look similar to their surroundings. As a result, patches in the

lower part of the hand drift. However, note that the majority of the hand is

still tracked when considering the entire configuration (the blue rectangle),

which is one of the advantages of the elastic structure.

The second limitation is related to the robustness of the proposed method

against scale and orientation changes. The proposed method models the
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movement of individual patches considering translational movements only.

In general, this does not cause major problems since minor scale and ori-

entation changes can be described as the change in elastic structure. Ex-

ample of the proposed method adapting to minor scale change is shown in

Fig. 14 (a) and (b), and example of the proposed method tracking a target

object with minor orientation change is shown in Fig. 14 (c) and (d). Also,

even if the structure fails to describe the change, a few local patches with

good matching scores are enough to track the target object. Fig. 14 (e) - (h)

are examples of such failures. In Fig. 14 (e) and (f), the target object un-

dergoes a drastic scale change as the camera zooms in. Our method fails in

adapting to the fast scale change, but still does not lose track of the target

object. In Fig. 14 (g) and (h), the target object undergoes large in-plane

orientation change. Our method also fails to accurately describe the target

object motion in this case. However, note that in both cases, though the

accuracy of the estimate may decrease, our method does not lose track of

the target object, owing to a few patches with strong matches directing the

entire structure to the correct position.

The last limitation is the noisy nature of the estimated tracking result.

Since our problem space is high-dimensional, even with an efficient diffusion

scheme, the number of particles is relatively scarce when trying to obtain a

real-time solution. As a result, we end up with noisy estimates, since particles

are relatively positioned sparsely. As shown in Fig. 15 with the dashed gray

lines, this leads to abrupt changes in the estimated position. However, as

shown in Table 1, when all frames are considered, the results are good with

small mean error on average. Thus, we can simply apply a temporal low-
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Fig. 15. Change in the coordinates of the top-left corner point of the estimated bounding

box for each frame. LPT 2000 is when we use 2000 samples, which is double the number

compared to LPT. Numbers in brackets are the average value for all frames. Note that the

smoothed version (LPT SMOOTH, solid black line) shows much less change than both

the original (LPT, blue dashed line) and using more particles (LPT 2000, red solid line).

pass filtering to reduce the noise in the estimate, which is LPT SMOOTH.

As shown in Fig. 15 with the black solid lines and overall performance in

Table 1, this simple low-pass filtering reduces the abruptness in the tracking

result greatly without much harm in the performance. Note that we can also

increase the number of samples to reduce this abruptness, but due to the

high dimensionality of our problem formulation, this is not very effective as

shown in Fig. 15 with LPT 2000 (doubling the number of samples).

4. Conclusions and Future Work

A new tracking method based on sequential Bayesian inference has been

proposed. The proposed method tackled both the problem of partial oc-

clusions and non-rigid deformation when tracking objects, by modeling the

target object with an elastic structure of local patches, and by performing
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hierarchical diffusion in the solution space. By modeling the target object

with an elastic structure of local patches, the proposed method was able

to track objects with partial occlusions and non-rigid deformations. Also,

through hierarchical diffusion, the tracking procedure was performed in real-

time on a desktop PC. The method was evaluated against state-of-the-art

trackers through twelve image sequences with large occlusions and non-rigid

deformations. The experimental results showed that the proposed method

outperformed all other methods that were compared against. The robust-

ness of the proposed method was also demonstrated against various situations

including partial occlusion, non-rigid motion, abrupt motion, translation, ro-

tation, and illumination change.

As discussed in the experiments, even with a simple grid initialization

strategy, we were able to obtain good results with the proposed method.

However, with better initialization, the performance of our method would be

enhanced. Therefore, providing sophisticated initializations would be one of

the most beneficial directions for future research. Recently, detecting and rec-

ognizing objects with part-based models and pictorial structures have drawn

much interest [21, 31, 22]. As a result, importance of part-based tracking

methods is increasing. Incorporating part-based detection and recognizing

methods for the initialization of our method would be a promising way to

enhance initialization. Also, our method uses the same measurements for

tracking the target object and determining the update. We believe having

an independent strategy for determining the update as in [3] would further

enhance the performance of the proposed method. Finally, the neighborhood

connection strength parameter β needs to be predetermined by the user in
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our method. Learning strategies for automatic selection of the parameter β

would be an interesting direction for future research.
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