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Abstract— This paper proposes an EMG based learning
approach for estimating the displacement along the 2-axes
(abduction/adduction and flexion/extension) of the human wrist
in real-time. The algorithm extracts features from the EMG
electrodes on the upper and forearm and uses Support Vector
Regression to estimate the intended displacement of the wrist.
Using data recorded with the arm outstretched in various
locations in space, we train the algorithm so as to allow robust
prediction even when the subject moves his/her arm across
several positions in space. The proposed approach was tested
on five healthy subjects and showed that a R2 index of 63.6% is
obtained for generalization across different arm positions and
wrist joint angles.

I. INTRODUCTION
Electromyography (EMG) signals provide information re-

lated to the muscles’ activities and have been used for
the user’s motion intention estimation. In particular, several
EMG based systems were proposed for estimating the hand
and wrist motions and were used consequently as an interface
for controlling wrist exoskeletons [1], [2], or prosthetic
devices used in the hand and wrist [3], [4], for teleoperating
robotic arms [3], [5], or in a virtual environment to control
computer-animated hands [6].
In order to estimate and control the wrist motion, people
have primarily focused on classification-based methods. For
instance, in [7], the authors compare several classification
methods for discriminating between six gestures (hand open,
hand close, wrist flexion, wrist extension, supination and
pronation gestures). In [3], [5], the authors use different ma-
chine learning techniques to discriminate the EMG patterns
related to eight different gestures, adding to the previous
six gestures the wrist abduction and adduction movements.
Similarly, in [4], [6], [8], the authors propose methods
for classifying ten different types of movements including
flexion/extension of the wrist as well as flexion/extension of
a different combination of fingers. All these approaches in-
vestigate a discrete classification of the wrist or hand/fingers
opening and closing.
In [9], the author addresses the question of prosthesis design
and acceptance from the consumers’ perspective and points
out their need to control the wrist. Once the grasp is
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performed, and in order to manipulate the corresponding
object without having to move the whole arm, one needs
to be able to control the wrist joint angles smoothly and
continuously which could not be ensured through classifi-
cation techniques. Some researchers [10], [11] focused on
continuously estimating the arm motion and used standard
supervised machine learning algorithms to create a mapping
between muscles’ activities in the arm/forearm and either
the forearm 6D position/orientation [10] or the 4 rotational
degrees of freedom modelling the joints of the shoulder
and elbow [11]. However, these approaches did not consider
the wrist joint angles. The authors in [1], [2] did take into
account the motion of the wrist in order to estimate the
user’s intended torque to control a wrist exoskeleton. In
their experiment, the users’ forearm rested on one plate
and their hands on a second plate. Two rigs were designed
to record the level of torque for flexion/extension and for
abduction/adduction deviations of the wrist. These recordings
were divided into different sets corresponding each to a
percentage of the maximum voluntary contraction (MVC)
in each direction. No continuous motion was estimated but a
classification technique was employed to distinguish between
these different classes. In [12], the authors proposed an
algorithm for a simultaneous estimation of the three degrees
of freedom of the wrist. They also showed the applicability
of their approach to unilateral amputees by employing a
bilateral mirror-training strategy [13]. In order to estimate
the wrist movements, the authors measured the muscles
activities by placing 7 pairs of electrodes all around the
thickest region of the forearm and the subjects were seated
and resting their elbows on an armrest. This paper proposes a
similar approach to [12] by estimating the wrist movements
from the muscles activities of the upper limb. The main
contribution of this work is related to two points; for a
more intuitive control/estimation of the wrist movements,
the subjects performed the experiment without restraining
the motion of their elbows. Given this freedom of motion,
we also report on generalization of wrist motion estimation
from one position of the arm to another. The rest of this
paper is organized as follows. Section 2 details our setup.
Section 3 is dedicated to the wrist motion estimation and
section 4 concludes.

II. METHODS
A. Participants

Five healthy subjects, age between 23−28, participated in
the experiment. All volunteers have been informed about the
experimental aim of the study and gave their consent. The
experimental procedures involving human subjects described
in this paper were approved by EPFL’s Ethical Committee.
All subjects performed the experiments with their right hand
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Fig. 1: The experimental setup showing the electrodes for EMG recording and the
vision tracking system for computing the arm joint angles.

TABLE I: Muscles which activity is captured.
Muscles

1 Deltoid Medial (DMED)
2 Deltoid Anterior (DANT)
3 Deltoid Posterior (DPOS)
4 Biceps Brachii long heads (BICL)
5 Triceps Brachii long head (TRIC)
6 Infraspinatus (INFRA)
7 Brachialis (BRA)
8 Flexor Digitorum Superfialis (FLDS)
9 Extensor Digitorum Communis (EXDC)
10 Flexor Carpi Ulnaris (FLCU)
11 Extensor Carpi Ulnaris (EXCU)

(dominant hand [14]), and they had no prior history of
neurological disorders and neuromuscular injuries.
B. Apparatus

Figure 1 illustrates the experimental setup showing the
electrodes for EMG recording and the WRIST device [15]
system for capturing the wrist joint angles [16]. The robot
allow full range of motion for the human wrist and measures
wrist rotations on the three axes by means of digital encoders
with a resolution of 4098 bit/turn.
Raw surface EMG signals of the upper limb muscles, (Ta-
bles I), were collected using the Delsys Trigno Wireless
EMG system, with sampling rate at 1000 Hz. The choice
of these muscles and the placement of the corresponding
electrodes is based on previous studies related to the esti-
mation of the upper limb motion [11]. The raw data were
filtered with a seventh-order band-pass Butterworth filter
with cutoff frequencies of 50 Hz and 500 Hz for suppression
of movement artifact. To construct a linear envelope, full-
wave rectification was performed, followed by smoothing
with a low-pass seventh-order Butterworth filter with cutoff
frequency of 20 Hz. In addition, the resulting EMG signal
was normalized with the maximum voluntary contraction
(MVC).
C. Experimental Protocol

Experiments were performed by 5 subjects with their
dominant arm. During the experiment, each subject, was
instructed to extend and move their arm to one of 9 pre-
defined directions (these directions correspond to different
positions on a planar square 40 cm × 40 cm grid) and then to
explore their wrist configuration space by performing circular
motions clockwise. These circular motions were chosen in
order to make sure that the subjects were exploring the whole
reachable space of their wrist by holding the rest of the arm
fixed, and in this sense the experiment was similar to the one
performed in [12] where the subjects also performed circular
motions. The number of circular motions was set to 30 in
order to avoid the subject’s fatigue.

III. WRIST JOINT ANGLES ESTIMATION
We learn a mapping between the joint angles at the wrist

and the EMG signals of the arm. After the data acquisition
is performed, it is organised into a set of (samples, targets).
Each sample consists of values of the EMG electrodes
averaged over a moving window w= 200 ms with an overlap
of 100 ms as well as the relative proportion of one EMG
signal with respect to all other signals, and the targets are the
3 corresponding wrist joint angles. The resulting (samples,
targets) pairs are used to train 3 Support Vector Regression
models (SV R) with Gaussian kernels, each corresponding to
a wrist joint angle. SVR method was chosen due to its high
performance in non-linear estimation and fast convexity for
real time implementation. For training an SV R model, the
corresponding data is divided into a training data set (80%
of the samples) and a testing set (20% of the samples). A grid
search is performed to select the hyperparameters, ε , cost and
kernel width along with a 10-fold cross validation procedure
for computing the corresponding regression errors on the
training and test data sets. Three different mappings between
the EMG signals and the wrist joint angles were performed;
1) mapping taking into consideration all EMG signals in the
upper arm and forearm (electrodes 1 to 11 in table (IV));
2) mapping from the EMG signals in the upper arm only
(electrodes 1 to 7 in table (IV)); 3) mapping obtained using
EMG signals in the forearm arm only (electrodes 8 to 11
in table (IV)). To evaluate the regression, the R2 index was
computed as follows [17]:
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Where n is the number of (samples, targets) data points, xi
is a sample, yi is its corresponding target, and f (xi) is the
value predicted by the regression model.
Three regression tests were performed:

• The first one aims at testing whether good results could
be obtained by training a SV R model on a subset
of the data (80%) obtained from one arm position
and then testing the model on the remaining (20%).
Corresponding results are shown in the first row of
tables (II-IV).

• The second one aims at testing the generalization of the
trained algorithm across arm positions. In this case, the
training was performed either on one, two, three, four
and five arm positions, and the testing was conducted
on data obtained from the remaining eight, seven, six,
five and four arm positions. The training arm positions
were selected randomly among the nine different arm
positions available from the experimental setup. This
procedure is repeated nine times and the results shown
in rows 2 to 6 in tables (II-IV), correspond to the
average and standard deviation of the R2 index across
these different nine trials.

• We also tested the ability of generalization of the
regression model from one day to the other. One subject
performed the same experiment described previously



across three days. Tables (V-VII) summarize the results
obtained by training the model on data collected from
one or two days and testing it on the remaining days.

IV. DISCUSSION
In this section, we presented a method for estimating the

wrist joint angles using EMG signals from the upper limb.
Results were computed per subject and the learned regression
models were not generalizable across subjects.
In a first step, we aimed at testing whether a good regression
model estimating the wrist joint angles for a specific free arm
position with no restrictions on the elbow motion could be
obtained. Nine arm positions were tested for each subject
and tables (II, III, IV) summarize the corresponding results,
showing that on average, the R2 index is of 77.7% for the
testing set across the wrist joints angles and across the 9 arm
positions when muscles of the whole upper limb are taken
into account, of 72.4% when only 4 muscles in the forearm
are taken into account, and of 67.9% when only muscles in
the upper arm were taken into consideration. These results
are comparable to the ones obtained in [12] where the
authors obtained an R2 index of 72.0% for healthy subjects
performing circular motions. In order to maintain a correct
alignment of the wrist device axes across different positions
of the arm, the forearm was fixed during the experiment
which obstructed the motion of the pronation/supination of
the wrist. Consequently, only two angles were predicted
by the regression model, the abduction/adduction and flex-
ion/extension angles. Since we do not take into consideration
the pronation/supination angle which is the most difficult to
predict because of the deep location of the corresponding
muscles, our results are slightly higher than the ones in [12].
We also noticed that good results were obtained on the
testing set from muscles activities in the upper arm. This is
encouraging if the targeted application is to control a myo-
electric wrist exoskeleton for unilateral transradial amuptees,
as a mirrored bi-lateral contraction could be employed for
training as detailed in [12].
In a second step, we trained a regression model on a number
of arm positions and tested the model on the remaining
positions. Good generalization results were obtained and
summarized in tables (II, III, IV). On average, the gener-
alization R2 index is of 63.6% across the wrist joints angles
when the model is trained on 5 arm positions and when
muscles of the whole upper limb are taken into account and
of 58.1% and of 49.2% when respectively only 4 muscles
in the forearm and only muscles in the upper arm are taken
into account. We notice that better generalization results are
obtained when the model is trained on an increasing number
of arm positions.
Finally, we tested the ability of the model to generalize across
several days while performing the experiment on the same
subject. Results are summarized in tables (V-VII). These
results show that the data obtained from days 1 and 3 are
similar and thus a good generalization is obtained by training
the model on the data collected from one day and testing it
on the other. Table (VII) shows that a R2 index of 52.9% is
obtained across wrist angles when all muscles are taken into

account and when training the model on the data collected
from day 1 and testing it on the data collected from day
3. Similarly, table (V) shows that a R2 index of 48.1% is
obtained when the training is performed on the data collected
from day 3 and tested on the data collected from day 1.
The data collected from day 2 was not correctly predicted
from the model trained on the other two days when taking
into account all muscles, see table (VI). Better results were
obtained when taking into account muscles from the upper
arm. Although these results seem encouraging, the ability of
the model to generalize should be tested in more subjects.
Further research could focus to real time implementation for
investigating the efficiency of the regression performance to
both healthy subjects and amputees.
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TABLE II: Average and standard deviation of the R2 index of the Abduction/Adduction angle estimation from the upper arm and forearm muscles for each of the 5 subjects.

First row shows the R2 index obtained for testing the algorithm on one position after training it on the same position. Rows 2 to 4 show the results of the generalization. The

training in these cases was performed respectively on 1, 2 or 3 arm positions and the generalization results were obtained by testing the algorithm on the remaining positions.
Upper arm + Forearm Muscles: Abduction/Adduction Angle

Subjects 1 2 3 4 5
Testing 84.6 ± 2.5 74.9 ± 4.2 82.9 ± 1.5 80.3 ± 3.2 78.1 ± 5.1

Generalization (1 Vs all) 67.9 ± 6.9 52.5 ± 6.4 54.9 ± 8.6 50.7 ± 6.5 63.4 ± 2.6
Generalization (2 Vs all) 76.0 ± 2.1 54.5 ± 5.2 59.7 ± 3.2 57.3 ± 6.9 67.0 ± 2.6
Generalization (3 Vs all) 79.3 ± 2.0 52.1 ± 4.1 62.0 ± 4.0 61.5 ± 13.0 69.4 ± 1.0
Generalization (4 Vs all) 80.9 ± 1.4 57.2± 4.0 59.8 ± 7.5 68.2 ± 6.2 67.3 ± 2.6
Generalization (5 Vs all) 81.5 ± 1.5 57.8 ± 4.7 64.3 ± 4.4 68.7 ± 7.7 70.7 ± 3.4

TABLE III: Average and standard deviation of the R2 index of the Flexion/Extension angle estimation from the upper arm and forearm muscles for each of the 5 subjects.

First row shows the R2 index obtained for testing the algorithm on one position after training it on the same position. Rows 2 to 4 show the results of the generalization. The

training in these cases was performed respectively on 1, 2 or 3 arm positions and the generalization results were obtained by testing the algorithm on the remaining positions.
Upper arm + Forearm Muscles: Flexion/Extension Angle

Subjects 1 2 3 4 5
Testing 86.9 ± 2.2 77.6 ± 4.6 78.8 ± 4.2 58.1 ± 10.2 74.4 ± 5.6

Generalization (1 Vs all) 70.1 ± 3.2 56.7 ± 7.0 40.2 ± 7.7 28.7 ± 10.4 49.5 ± 3.7
Generalization (2 Vs all) 68.4 ± 4.7 55.6 ± 5.2 45.8 ± 9.0 31.2 ± 12.9 53.9 ± 3.7
Generalization (3 Vs all) 69.6 ± 6.0 62.7 ± 3.3 54.3 ± 6.5 37.4 ± 6.2 52.1 ± 4.2
Generalization (4 Vs all) 71.6 ± 3.4 60.8 ± 4.9 53.5 ± 10.6 37.0 ± 7.8 56.2 ± 4.0
Generalization (5 Vs all) 71.0 ± 5.6 64.0 ± 6.0 57.7 ± 5.6 43.4 ± 7.5 57.2 ± 5.6

TABLE IV: Average and standard deviation of the R2 index of the Abduction/Adduction and Flexion/Extension angles’ estimation from the upper arm and forearm muscles

across the 5 subjects.
Abduction/Adduction Flexion/Extension

Upper arm + Forearm Upper arm Forearm Upper arm + Forearm Upper arm Forearm
Testing 80.2 ± 3.8 73.3 ± 3.5 75.0 ± 4.1 75.2 ± 10.6 62.5 ± 8.2 69.9 ± 13.4

Generalization (1 Vs all) 57.9 ± 7.4 46.3 ± 14.8 52.7 ± 2.6 49.1 ± 15.8 31.5 ± 6.6 41.9 ± 21.7
Generalization (2 Vs all) 62.9 ± 8.7 51.2 ± 11.9 57.8 ± 3.2 51.0 ± 13.7 33.8 ± 6.8 47.4 ± 17.7
Generalization (3 Vs all) 64.9 ± 10.2 54.2 ± 8.4 62.3 ± 4.0 55.2 ± 12.2 37.4 ± 7.4 49.0 ± 19.4
Generalization (4 Vs all) 66.7 ± 9.2 56.9 ± 7.2 64.2 ± 3.9 55.8 ± 12.6 40.4 ± 4.8 50.5 ± 16.6
Generalization (5 Vs all) 68.6 ± 8.7 57.0 ± 9.9 64.5 ± 2.5 58.6 ± 10.2 41.4 ± 5.7 51.7 ± 18.7

TABLE V: R2 index of the Abduction/Adduction and Flexion/Extension angles’ estimation from the upper arm and forearm muscles when testing on data collected from

day 1.
Testing on day 1 data

Wrist joint angles Abduction/Adduction Flexion/Extension
Muscles Upper arm + Forearm Upper arm Forearm Upper arm + Forearm Upper arm Forearm

Trained on day 2 data 1.3 35.8 2.6 12.5 33.5 46.0
Trained on day 3 data 44.4 51.2 30.3 51.8 15.7 51.6

Trained on days 2 and 3 data 56.7 59.3 14.8 58.1 20.8 41.8

TABLE VI: R2 index of the Abduction/Adduction and Flexion/Extension angles’ estimation from the upper arm and forearm muscles when testing on data collected from

day 2.

Testing on day 2 data
Wrist joint angles Abduction/Adduction Flexion/Extension

Muscles Upper arm + Forearm Upper arm Forearm Upper arm + Forearm Upper arm Forearm
Trained on day 1 data 55.2 57.0 38.0 4.4 34.9 8.3
Trained on day 3 data 42.3 36.0 22.2 0.2 20.2 0.6

Training on days 1 and 3 data 52.1 48.8 30.7 0.12 32.6 1.2

TABLE VII: R2 index of the Abduction/Adduction and Flexion/Extension angles’ estimation from the upper arm and forearm muscles when testing on data collected from

day 3.

Testing on day 3 data
Wrist joint angles Abduction/Adduction Flexion/Extension

Muscles Upper arm + Forearm Upper arm Forearm Upper arm + Forearm Upper arm Forearm
Trained on day 1 data 62.7 53.5 43.8 43.2 25.8 46.4
Trained on day 2 data 11.1 34.9 6.1 18.7 30.0 2.3

Trained on days 1 and 2 55.3 53.5 37.7 41.7 23.5 31.9
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