
Neuromorphic Based Oscillatory Device for Incremental Syllable Boundary
Detection

Alexandre Hyafil1,2, Milos Cernak3

1Department of Information and Communication Technologies
Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain

2 Auditory Language Group, Centre Medical Universitaire (CMU), Geneva, Switzerland
3Idiap Research Institute, Martigny, Switzerland

alexandre.hyafil@gmail.com, milos.cernak@idiap.ch

Abstract
Syllables are considered as basic supra-segmental units, used
mainly in prosodic modelling. It has long been thought that
efficient syllabification algorithms may also provide valuable
cues for improved segmental (acoustic) modelling. However,
the best current syllabification methods work offline, consider-
ing the power envelope of whole utterance.

In this paper we introduce a new method for detection of
syllable boundaries based on a model of speech parsing into syl-
lables by neural oscillations in human auditory cortex. Neural
oscillations automatically lock to speech slow fluctuations that
convey the syllabic rhythm. Similarly as humans encode speech
incrementally, i.e., not considering future temporal context, the
proposed method works incrementally as well. In addition, it
is highly robust to noise. Syllabification performance for En-
glish and different noise conditions was compared to the exist-
ing Mermelstein and group delay algorithms. While the perfor-
mance of the existing methods depend on the type of noise and
signal to noise ratio, the performance of the proposed method is
constant under all noise conditions.
Index Terms: speech recognition, syllable identification, neu-
romorphic systems

1. Introduction
Although automatic speech recognition (ASR) systems gen-
erally disregard syllables as valuable representations, there is
a general agreement that syllables provide a stable construct
across languages that does not suffer boundary indetermination
problems as phonemes do [1]. Detecting the timing of syllable
boundaries may thus provide additional information that could
improve the performance of phoneme-based ASR systems, and
could be employed in a variety of automatic speech applica-
tions. Syllables also play a crucial role in prosodic analysis and
synthesis, and robust detection of syllables boundaries is often
required [2].

A syllable is structurally divisible into three parts, the on-
set, nucleus and coda. Greenberg [1] found that syllabic onsets
are generally preserved in spoken utterance, while nuclei and
codas are more often deleted. Increases in speaking rate result
also in more deletions and mutations of most phonetic phonetic
constituents as syllabic onsets [3]. Therefore onset time infor-
mation can be considered as more robust information compared
to syllable nuclei timing, for example such as proposed in [4].
In this work we focus on syllable onset detection, called further
also syllable boundary detection.

By contrast to conventional syllabification models that
work offline, humans “encode” speech in an incremental fash-
ion, i.e., encoded speech does not depend on future temporal
context (similar to causality in digital signal processing the-
ory) [5]. We are therefore interested in an incremental syllabifi-
cation method that can be directly applied to incremental speech
processing systems such as [6]. We hypothesise that a biologi-
cally plausible method would fulfill this requirement.

Recent evidence from psychoacoustics and neuroimaging
studies indicate that in humans, the syllabification process is
performed by slow neural oscillations (3-8 Hz) in auditory cor-
tex that track fluctuations in speech power of similar time scale
[7]. A computational model of self-generated neural oscilla-
tions showed as a proof-of-concept that: (i) such neural oscil-
lations can reliably signal syllable boundaries; (ii) detected syl-
lable boundaries can improve recognition of linguistic units in
a parallel neural pathway [8]. In such model, coupled excita-
tory and inhibitory neurons intrinsically synchronize around 6
Hz, and automatically lock to edges in speech amplitude that
convey the syllabic flow.

In this work we investigate whether the neural model could
be adapted into an efficient ready-to-use syllabification algo-
rithm. The original neural model [8] used auditory channels,
i.e. the output from a model mimicking all precortical treat-
ment of acoustic signals in the human brain. The model in-
cluded normalising speech signal over a long segment (e.g. a
sentence), decomposition into 32 frequency bands (’channels’)
through IIR convolution, lateral inhibition between neighbour-
ing channels, half-wave rectification, leaky integration and fi-
nally downsampling to a time step of 10 ms [9]. To simplify fea-
ture calculation process, we propose an extended neural model
that works with conventional Mel-Frequency Cepstral Coeffi-
cients (MFCC) and Perceptual Linear Prediction (PLP) coeffi-
cients as the input speech feature representation.

Second, a resilient syllable detector should be able to per-
form efficiently even in the presence of moderate noise. To our
knowledge, previous algorithms have only been evaluated under
noiseless conditions. We thus evaluated syllable boundary de-
tection under noisy conditions in our algorithm and in two clas-
sic syllabification algorithms: the Mermelstein [10] and group
delay [11] algorithms.

The paper is structured in the following way. Section 2
introduces oscillation based detection including the parameters
optimization procedure. Section 3 describes performance eval-
uation of the proposed method and of the two alternative al-
gorithms. Section 4 presents the results, and finally Section 5
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concludes the paper with discussion and and an outline of future
work.

2. Oscillation based detection of syllable
boundaries

2.1. Intrinsic oscillatory mechanism

The detector is based on an interconnected network of leaky
integrate-and-fire (LIF) neurons. Its principles are based on
findings on the role of slow neural oscillations in auditory cor-
tex for natural speech parsing [7, 8]. In essence, the network is
composed of nE = 10 excitatory and nI = 10 inhibitory neu-
rons. Synchronization occurs in the network through a burst of
inhibitory spikes occurring after receiving sufficient excitatory
input. The dynamics of each neuron membrane potential Vi and
synaptic activation variable si follows :

Vi(t+ 1) = Vi(t) +
Ii(t)

C
dt, (1)

where C stands for membrane currents and Ii(t) stands for
membrane currents that consists of:

Ii(t) =I
leak
i (t) + IDC

i +

kiI
ext
i (t) + Isyni (t) + ηi(t),

(2)

where the partial currents are the leak current Ileaki , a constant
current IDC

i , an external (speech) current Iext (only for exci-
tatory neurons), a synaptic current Isyni (t) and a noise current
consisting of i.i.d. gaussian noise ηi(t) of variance σi(t). Vol-
untarily adding noise to an automatic system is quite uncom-
mon, but here such noise adds flexibility to the oscillatory net-
work, allowing it to rapidly lock to speech input. Whenever
membrane potential reaches threshold V thr

i , the neuron emits a
spike that is propagated in the network and Vi is reset to V res

i .
Leak currents follow:

Ileaki (t) = gL(V L
i − Vi(t)) (3)

Synaptic currents follow:

Isyni (t) =
∑
j

sij(t)(V
syn
j − Vi(t)) (4)

where j stands for each neuron (either excitatory or inhibitory)
connecting to neuron i and sij(t) is the activation variable for
the j-to-i synapse. The dynamics of this variable follows:

sij(t+ 1) = sij(t) +
rij(t)− sij(t)

τDi
dt (5)

rij(t+ 1) = rij(t) + δ(spkj(t))gij −
rij(t)

τRi
dt (6)

where δ(spkj(t)) is 1 if neuron j emits a spike at time t, 0
otherwise, τRi and τDi are respectively the rising and decay time
of synaptic activation.

For both types of speech representations, MFCCs and PLP
coefficients, we reduced the multidimensional signal (n=13) to
a single temporal signal by some spectral weight wsp and then
convolved the signal with a temporal kernel ktemp spanning 4
frames:

Iexti (t) = kiλtemp ∗ (
∑
ch

wspX) (7)

where X is the matrix of PLP/MFCC coefficients.
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Figure 1: Schematic diagram of oscillation-based syllable
boundary detection algorithm. E represent excitatory neurons,
and I inhibitory neurons.

A putative syllable boundary was declared for each in-
hibitory spike burst, that is whenever there were at least 2 in-
hibitory spikes occurring within a window of 15 ms.

The neural oscillation keeps running even in the absence
of acoustic input and thus provides putative syllable boundaries
even for silence periods. To prevent this we masked the putative
boundaries using a silence detection.

2.2. Parameters optimization

Parameter fitting was performed using a subsample of 1000
noiseless sentences from the TIMIT corpus (all 10 sentences
for speakers indexed 1-100) [12]. We used syllabification pro-
gram tsylb2 [13] to convert phonetician-labelled phonemes and
phoneme boundaries into syllables and syllable boundaries.

We first determined spectral weights and temporal kernel
by finding values such that the weighted and convolved signal
y(t) = λtemp ∗ (wspX) (where X is the pre-whitened matrix
of speech features) maximized its averaged value at time of syl-
lable boundaries < y(tboundaries) >. Then we only retained
the spectral weights and computed a refined value of the tem-
poral kernel by using a simplified single neuron model called
GLM point process model for spike trains1. By providing the
weighted signal wspX as input and syllable boundaries as tar-
get output, the algorithm optimizes temporal kernel so that the
single neuron output resembles the target output as closely as
possible .

Most network parameters were simply the same as those
used in the original modelling work [8], which were specifi-
cally optimized for auditory channels (see original publication
for parameter values). The only exceptions are parameters kE
and IdcE (index E stands for excitatory neurons). These param-
eters were optimized separately for PLP and MFCC inputs, by
performing a parameter search minimizing the syllabic distance
over the 1000 sentences of the training set (values in Tables 1
and 2).

Table 1: MFCC algorithm parameter values

parameter value
IDC
E 2.499
kE 0.0015

1http://pillowlab.cps.utexas.edu/code_GLM.
html



Table 2: PLP algorithm parameter values

parameter value
IDC
E 0.6736
kE −5.582

3. Performance evaluation
Performance was tested on a distinct subset of 3620 sentences
from the TIMIT corpus under clean speech and noisy condi-
tions. The testing set was constructed from the speakers indexed
101 − 462 and the sentences indexed 1 − 10. We applied ad-
ditive noise with SNR ranging from −20 to 20 dB to all test
sentences. We used the RSG-10 [14] collection as the source of
noise. We selected three types of the RSG-10 noises:

1. white noise: acquired by sampling high-quality analog
noise generator (Wandel & Goltermann) that exhibits
equal energy per Hz bandwidth,

2. pink noise: acquired by the same noise generator exhibit-
ing equal energy per 1/3 octave,

3. babble noise: acquired by recording samples from 1/2”
B&K condensor microphone. The source of this bab-
ble is 100 people speaking in a canteen. The room ra-
dius was over two meters; therefore, individual voices
are slightly audible.

To add noise, we used Guenter Hirsch’s FaNT tool2, using the
“-m snr 8khz” option that computes an unweighted, fullband
SNR.

Hits and false alarm rates have previously been used to eval-
uate syllabification performance [15], but a combined signal
detection measure such as d’ could not be used since correct
rejections cannot be defined. Instead we used a distance mea-
sure between point process realizations (here syllabic boundary
times) that was originally introduced to measure distance be-
tween spike trains [16]. We used 50 ms as the shift cost, i.e. the
maximal time discrepancy between an actual boundary and its
corresponding predicted boundary. The overall score was the
summed of syllabic distance over a corpus, normalized by the
sum of the number of overall predicted and actual boundaries in
the corpus.

3.1. Alternative algorithms

Performance was compared with two existing algorithms for
syllabification: the Mermelsteing algorithm [10] and the group
delay algorithm [17, 11]. Both algorithms identify syllable
boundaries as local minima in speech power/envelope. Specifi-
cally, the Mermelstein algorithm looks for local maxima of the
difference between speech envelope and its convex hull. The
group delay algorithm looks for positive peaks of a so-called
group delay function that is computed from the short term en-
ergy of the speech signal. We used the latest group delay imple-
mentation downloaded from IIT Madras3 with default parame-
ters. It also outputs doubtful syllabic segments that we did not
consider in the evaluation. We also used as a control model a
purely rhythmic signal that outputs putative boundaries regu-
larly at a 7 Hz irrespective of the speech input, thus constituting

2http://dnt.kr.hs-niederrhein.de/download/
fant.tar.gz

3http://lantana.tenet.res.in/website_files/
resources/Syllable_segmentation.tar

a chance level reference (the rate was optimized over the train-
ing data set).

To eliminate impact of difficult silence detection with
highly noisy data, we performed a Praat [18] silence detec-
tion on noise-clean recordings with a −36 dB silence detection
threshold and 100 ms minimal silent and sounding intervals.
This silence removal enabled masking of the putative bound-
aries produced by our neural oscillator model, and optimising
of group delay parameters as it internally includes silence de-
tection. Thus we employed the same silence removal procedure
for all three algorithms.

4. Results
The syllabification process with neural oscillator is illustrated
in Figure 2: inhibitory bursts closely matched actual syllable
boundaries for that sentence.

Figure 2: Model output for one examplar sentence (’Alfafa is
healthy for you’). Dark green ticks on top represent excita-
tory neurons spikes, light green ticks represent inhibitory neu-
ron spikes. Vertical lines on top of spectrogram represent actual
syllable boundaries.

Performance for the distinct algorithms over the full test
dataset is similar for distinct types of noise (Figure 3). Mer-
melstein and neural oscillator with PLP input had comparable
levels for low noise conditions (SNR > 10 dB). Performance
for the neural oscillator with PLP input was remarkably main-
tained in moderate and high noise conditions. By contrast, per-
formance for the Mermelstein algorithm was intriguingly found
to increase for moderate noise conditions (SNR between -5 and
5 dB), and to severely deteriorate for high level conditions, per-
forming worse than the rhythmic control model. Such deterio-
ration occurred earlier for babble and pink noise than for white
noise. Syllabic boundary detection using neural oscillation with
MFCC was poor, yet very resilient to high levels of noise as for
the PLP input. Performance for group delay followed a simi-
lar trend to the Mermelstein algorithm: high performance for
low to moderate noise with severe deterioration in high noise
environments.

Figure 4 shows modified ROC with babble noise. As cor-
rect rejections could not be defined, we instead computed False
Alarm Rate (FAR) as FPR = FA/(FA + TP ), where FA
is the number of false alarms and TP the number of true pos-
itives. It can be seen than the group delay is the most conser-
vative of the algorithms with fewer hits and false alarms than
other algorithms. Noise increases the incidence of false alarms
and moderately affects hit rate.

5. Discussion
We have presented a biologically plausible method of sylla-
ble boundaries that (i) works incrementally and (ii) is robust to
highly noisy speech (SNR < −5 dB). While the performance



Figure 3: Syllabification performance with white noise (top
panel), pink noise (middle panel) and babble noise (bottom
panel). Thick green line represent performance of the rhythmic
control model.

of the existing methods depend on the type of noise and sig-
nal to noise ratios, the performance of the proposed method is
constant under all noise conditions.

The neural oscillation algorithm provided robust incremen-
tal prediction for syllable boundaries using PLPs as speech in-
put. Performance was resilient to very high level of background
noise, for all types of noises. We expect the algorithm output
could be used in a variety of speech applications, from unsu-
pervised speech data labelling to ASR and low bit rate speech
coding devices.

The neural oscillator based syllable boundary detector is
implemented in Matlab (the parameter optimisation routines).
The running executable is implemented in C and the code
is available as open-source code at the following address:
https://github.com/ahyafil/sylb_boundary.

Figure 4: Modified ROC with babble noise. The x-axis repre-
sents the False Alarms Rate (FAR) – false alarms, and y-axis
represents the True Positive Rate (TPR) – correct hits of the syl-
lable boundaries. Circles with darker fillings indicate values
for higher level of noise. SNR range from -20 dB (black filling)
to +20 dB (black filling).
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