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Abstract

We consider a complex recyclable waste collection problem that extends the class of

vehicle routing problems with intermediate facilities by integrating a heterogeneous �xed

�eet and a �exible assignment of origin and destination depot. Several additional side

constraints, such as a mandated break period contingent on tour start time, multiple vehicle

capacities and site dependencies are also included. This speci�c problem was inspired by

a real-world application and does not appear in the literature. It is modeled as an MILP

which is enhanced with several valid inequalities. Due to the rich nature of the problem,

state-of-the-art commercial solvers are only able to tackle instances of small to medium size.

To solve realistic instances, we propose a local search heuristic capable of systematically

treating all problem features and general enough to respond to the varying characteristics of

the case study regions for which it is intended. The results show that the heuristic achieves

optimality on small random instances, exhibits competitive performance in comparison to

state-of-the-art solution methods for special cases of our problem, and leads to important

savings in the state of practice. Moreover, it highlights and quanti�es the savings from

allowing a �exible assignment of origin and destination depot. The data from the state of

practice comes from a recyclable waste collection company in Geneva, Switzerland.

Keywords: vehicle routing; intermediate facilities; heterogeneous �xed �eet; �exible as-

signment of origin and destination depot; local search; waste collection
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1 Introduction

This article proposes a solution to a complex waste collection problem, in which recyclable
waste is collected and transported using a heterogeneous �xed �eet of vehicles with di�erent
volume and weight capacities, �xed costs, unit-distance running costs and unit-time wage
rates. As both waste containers and collection vehicles are �ow-speci�c, the problem can be
decomposed and solved separately for each waste �ow.

As shown in �g. 1, each vehicle tour starts and ends at one of several depots, not necessarily the
same, and is a sequence of collections followed by disposals at the available dumps. All collec-
tions are of the same waste �ow and all visited dumps accept the latter. There is a mandatory
visit to a dump just before the end of a tour, i.e. a tour terminates with an empty vehicle.
Dumps are recycling plants. There could be multiple dumps for the collected waste �ow and
they can be used when and as needed during a tour. We consider time windows on dumps and
collection points, but not on depots. A tour is limited only by the legal duration of the working
day, which is interrupted by a break after a certain interval of continuous work. Moreover,
due to the speci�cities of the collection regions, we consider site dependencies. Mountainous
terrain and narrow streets, for example, are inaccessible with big collector trucks.

Waste collection problems are often represented as VRP with intermediate facilities (VRP-IF),
with the latter representing the dumps where vehicles can stop to empty whenever needed dur-
ing a tour. However, despite the wide practical application of these problems, many important
realistic features are often omitted. For example, the literature on waste collection VRP as-
sumes homogeneous �eets, while, on the other hand, heterogeneous �eet VRP problems omit
other important features present in waste collection, such as intermediate facilities and com-
plex temporal constraints. In addition, di�erent collection regions often have peculiarities that
make the direct application of existing solutions impractical.

The contribution of this work is the integration of a heterogeneous �xed �eet and a �exible
assignment the origin and destination depot in the vehicle routing problem with intermediate
facilities. The former re�ects the fact that �eets in industry are usually heterogeneous, which
introduces another level of complexity for the solution algorithms. The latter mimics situations
that occur frequently in our case study collection regions, some of which are dense city centers,

Figure 1: Tour Example Illustration
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while others cover large rural areas with long tours that should not necessarily terminate at
the origin depot. To this end, we introduce a relocation term in the objective function, which
incentivizes, rather than enforcing, the vehicle to return to the origin depot.

We model the problem as a mixed binary linear program which is enhanced with several valid
inequalities. Due to the rich nature of the problem, state-of-the-art commercial solvers are
only able to tackle instances of small to medium size. For solving instances of realistic size, we
propose a local search heuristic which is capable of systematically treating all problem features
and is general enough to be deployed to case studies with very di�erent instance topologies.
The heuristic achieves optimality on small random instances and exhibits competitive per-
formance in comparison to state-of-the-art solution methods for special cases of our problem.
It highlights and quanti�es the bene�ts of the �exible assignment of origin and destination
depot, and leads to important �nancial savings in the current state of industry practice in the
canton of Geneva, Switzerland, for which a sample of detailed historical records of executed
tours is available.

The remainder of this article is organized as follows. Section 2 is a brief analysis of the related
literature. Section 3 and section 4 present our exact and heuristic approaches to solving the
problem, respectively. Section 5 discusses the results from the numerical experiments, and
section 6 concludes and outlines future work directions.

2 Related Literature

Although research on waste collection VRP spans several decades, the problem has been less
studied than other VRP variants. One of the �rst applications is that of Beltrami and Bodin
(1974) who solve a periodic VRP-IF (PVRP-IF) applied to a waste collection problem in New
York. Bard et al. (1998a) and Bard et al. (1998b) consider a distribution context with re-
plenishment facilities, in the latter case integrated in an inventory management framework.
Angelelli and Speranza (2002b) apply a modi�cation of Cordeau et al.'s (1997) uni�ed tabu
search (TS) algorithm to a PVRP-IF with features such as service durations and a maximum
tour duration. In Angelelli and Speranza (2002a), this framework is used to analyze the oper-
ational cost bene�ts of di�erent waste collection policies in Val Trompia, Italy and Antwerp,
Belgium.

Kim et al. (2006) include time windows and a driver break in the waste collection VRP-IF,
explicitly considering also features such as tour compactness and workload balancing. Their
solution approach, an extension of Solomon's (1987) insertion algorithm followed by simulated
annealing, leads to a signi�cant reduction in the number of tours and substantial �nancial
savings at a major US waste collection company (see Sahoo et al., 2005). Kim et al. (2006)
are also the �rst to propose a set of 10 benchmark instances for the VRP-IF, involving up
to 2092 stops and 19 intermediate disposal facilities. The multi-objective genetic algorithm
of Ombuki-Berman et al. (2007), the variable neighborhood tabu search of Benjamin (2011)
and the adaptive large neighborhood search (ALNS) of Buhrkal et al. (2012) are also applied
on these instances, leading to a distance improvement of 10-15% and using fewer vehicles.
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Buhrkal et al.'s (2012) approach also leads to a distance improvement of 30-45% at a Danish
waste collection company.

Crevier et al. (2007) propose the multi-depot VRP with inter-depot routes (MDVRPI). Al-
though the setup is closely related, it was originally applied in a distribution context. The
MDVRPI is non-periodic, no time windows or driver breaks are considered and, in the general
case, depots and intermediate facilities coincide. Crevier et al. (2007) use the adaptive memory
(AM) principle of Rochat and Taillard (1995) and decompose the problem into multi-depot,
single-depot and inter-depot subproblems which are solved using Cordeau et al.'s (1997) TS.
A solution to the MDVRPI is obtained through a set covering formulation and improved by a
modi�ed version of the TS.

Crevier et al. (2007) create two sets of MDVRPI instances with 48 to 288 customers and a �xed
homogeneous �eet stationed at one depot, with the rest of the depots acting only as intermedi-
ate facilities. These instances are used by Tarantilis et al. (2008) and Hemmelmayr et al. (2013)
who propose, respectively, a hybrid guided local search and a variable neighborhood search
(VNS) with a dynamic programming procedure for the insertion of the intermediate facilities
in the tours. Both articles report improvements over the results of Crevier et al. (2007) with
computation times close to one hour for the largest instances. Muter et al. (2014) develop a
branch-and-price algorithm for the MDVRPI and solve several sets of instances derived from
Crevier et al.'s (2007) benchmarks to optimality. Only Hemmelmayr et al. (2013) apply their
methodology to a PVRP-IF faced by a waste collection company and achieve a 25% reduction
in the routing cost. Hemmelmayr et al. (2014) combine this problem with the bin allocation
problem and study the cost trade-o� between less frequent visits and larger bin sizes. They
use a matheuristic with a VNS for the routing problem and a mathematical model for the bin
allocation problem, and compare a hierarchical and an integrated approach.

Another related problem class is the routing of electric or alternative fuel vehicles, where we
have recharging or refueling decisions in lieu of emptying decisions. Conrad and Figliozzi
(2011) consider the recharging VRP (RVRP), where electric vehicles can recharge at customer
locations with time windows. Erdo§an and Miller-Hooks (2012) consider the green VRP (G-
VRP), where vehicles use a sparse alternative fuel infrastructure. Results on medium-size
random instances show that spatial characteristics have signi�cant impact on the optimality
gap, which appears to be related to the number of facilities. Larger instances are used to
analyze the e�ects of increasing the number of customers, facility availability and driving
range limits.

Schneider et al. (2014a) solve the electric VRP with time windows and recharging stations (E-
VRPTW). The problem features variable recharging times based on remaining battery charge
and a hierarchical objective function minimizing number of vehicles �rst and travel distance
second. The proposed hybrid VNS/TS improves the results of Erdo§an and Miller-Hooks
(2012) by 8-15% and obtains competitive results on the MDVRPI sets of Crevier et al. (2007)
and Tarantilis et al. (2008). Schneider et al. (2014b) combine recharging and reloading facilities
in the VRP with intermediate stops (VRPIS). Contrary to the E-VRPTW, here the objective
function is weighted rather than hierarchical. The authors propose an ALNS, which is able to
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match or improve the results of Schneider et al. (2014a) on the G-VRP instances at a fraction
of the computation time. Convincing results are also obtained for the MDVRPI instances of
Crevier et al. (2007) and Tarantilis et al. (2008).

Regarding the vehicle �eets, Kim et al. (2006) and the related papers on the VRP-IF assume
an unlimited homogeneous �eet. The PVRP-IF of Angelelli and Speranza (2002b), the MD-
VRPI, RVRP, G-VRP, E-VRPTW and VRPIS also assume a homogeneous �eet, albeit limited.
However, in industry vehicle �eets are rarely homogeneous. Few studies consider intermediate
facilities in a more sophisticated context, notably Coene et al. (2010) and Prescott-Gagnon
et al. (2014), both of which are case studies. The former treats a heterogeneous �xed �eet in
a single-depot periodic VRP applied to a Belgian bio-waste collection company. The latter
consider multiple depots but with no comparison against benchmark instances or the state of
practice.

Taillard (1999) was the �rst to formally de�ne the heterogeneous �xed �eet VRP (HFFVRP).
Being a generalization of the vehicle �eet mix problem (VFMP), the HFFVRP is NP-hard
and more di�cult than the classical VRP or the VFMP. Taillard's (1999) solution approach
relies on heuristic column generation with AM, and vehicle assignment costs are calculated
at each iteration. He adapts the eight largest VFMP instances of Golden et al. (1984) to the
HFFVRP by specifying the number of vehicles of each type and their variable costs. The best
heuristic approaches on these benchmarks are due to Penna et al. (2013) and Subramanian
et al. (2012), the latter also being the fastest. The only fully exact method is that of Baldacci
and Mingozzi (2009). They prove the optimality of seven of the best known solutions to the
instances with variable costs only, and six in the case where both �xed and variable costs are
considered.

To our knowledge, Kek et al. (2008) is the only study to consider the �exible assignment
of origin and destination depot�a situation that appears in our problem. This would allow
for vehicles to start and end at di�erent depots, while being able to freely visit any dump for
emptying. Kek et al.'s (2008) solution approach is based on a network model and a branch-and-
bound algorithm, branching on the node with the best bound. On small randomly generated
instances, the authors demonstrate that the �exible strategy outperforms a �xed one by almost
50%.

The originality of our problem is thus reinforced by the general lack of literature treating the
heterogeneous �xed �eet VRP-IF despite its wide practical application. The �exible assign-
ment of origin and destination depot is a characteristic that appears less frequently in practice
and has therefore been largely ignored in the literature. Yet, studies like Kek et al. (2008)
demonstrate that intelligent choice of origin and destination depot can lead to important �nan-
cial savings. Some of the waste collection companies in our case studies need such �exibility
but are unable to assess its bene�ts. This article will therefore highlight and quantify the
value of such strategies through a systematic solution approach.
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3 Exact Approach

The formulation we propose introduces several extensions to the model of Sahoo et al. (2005),
including multiple origins and destinations, multiple capacities, site dependencies, a maximum
tour duration, a richer objective function capturing the costs faced by a realistic �rm, and
the elimination of the constraints calculating the necessary number of disposal trips for each
vehicle. The break is modeled in a way similar to Buhrkal et al. (2012) but without imposing
a hard time window. In what follows we present the model formulation as well as several valid
inequalities with a signi�cant impact on computation time.

3.1 Mathematical Formulation

Formally, we de�ne the problem on a directed multigraph G(N,A), with N = O′ ∪O′′ ∪D∪P,
where O′ is the set of origin depots, O′′ is the set of destination depots, D is the set of dumps,
P is the set of containers, and A = {(i, j) | ∀i, j ∈ N} is the set of arcs. The sets O′ and O′′ may
or may not represent the same set of physical depots. Each dump in the set D is replicated
as many times as the maximum number of dump visits by any vehicle k, which in a realistic
case would not be more than a few times.

The arcs are associated with an asymmetric distance matrix Π, where πij is the length of arc
(i, j). Each vehicle may have a di�erent average speed, which results in a vehicle speci�c travel
time matrix Tk, where τijk is the travel time of vehicle k on arc (i, j). Each point has a single
time window [λi, µi], where λi and µi stand for the earliest and latest possible start-of-service
time. Start of service after µi is not allowed and if the vehicle arrives before λi it has to wait.
Time windows for depots are not explicitly considered and can be replaced by [0,∞). Service
duration for each point is denoted by εi, and the pickup volume and weight by ρvi and ρ

w
i ,

respectively. Service duration at depots is zero.

There is a heterogeneous �xed �eet K, with each vehicle de�ned by its capacity in terms of
maximum volume Ωvk and weight Ωwk , a �xed deployment cost φk, a unit-distance running
cost βk, and a unit-time wage rate θk. There is a maximum tour duration of H, and a break of
duration δ must be taken after η hours of continuous work. Site dependencies are described by
a binary �ag αijk whose value is 1 if arc (i, j) is accessible for vehicle k, and 0 otherwise.

We introduce the following binary decision variables: xijk = 1 if vehicle k traverses arc (i, j),
0 otherwise; bijk = 1 if vehicle k takes a break on arc (i, j), 0 otherwise; yk = 1 if vehicle k
is used, 0 otherwise. Three groups of continuous variables, Qvik, Q

w
ik and Sik, are de�ned to

track the cumulative volume and weight and the start-of-service time at point i for vehicle k.
Finally, M is a big number. Table 1 is a summary of the used notations.

For all vehicles, the objective function (1) minimizes three terms�the vehicle �xed cost if
the vehicle is used, the unit-distance running cost multiplied by the total travel distance, and
the unit-time wage rate multiplied by the total time, including travel time, service time and
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Table 1: Mathematical Model Notations

Sets
O′ set of origins O′′ set of destinations
D set of dumps P set of containers
N = O′ ∪O′′ ∪D ∪ P K set of vehicles
Parameters
πij length of arc (i, j)

αijk = 1 if arc (i, j) is accessible for vehicle k, 0 otherwise
τijk travel time of vehicle k on arc (i, j)

εi service duration at point i
[λi, µi] lower and upper time window bound at point i
H maximum tour duration
η maximum continuous work limit after which a break is due
δ break duration
ρvi , ρ

w
i pickup volume and weight at point i

Ωvk,Ω
w
k volume and weight capacity of vehicle k

φk �xed cost of vehicle k
βk unit-distance running cost of vehicle k
θk unit-time wage rate of vehicle k
Decision Variables

xijk =

{
1 if vehicle k traverses arc (i, j)

0 otherwise
yk =

{
1 if vehicle k is used
0 otherwise

bijk =

{
1 if vehicle k takes a break on arc (i, j)

0 otherwise
Qvik cumulative volume on vehicle k at point i (continuous)
Qwik cumulative weight on vehicle k at point i (continuous)
Sik start-of-service time of vehicle k at point i (continuous)

waiting time.

Min f =
∑
k∈K

φkyk + βk∑
i∈N

∑
j∈N

πijxijk + θk

∑
j∈O′′

Sjk −
∑
i∈O′

Sik

 (1)

The constraints can be split into several categories with the �rst category consisting of basic
vehicle routing constraints. Equalities (2) impose that each point should be served by exactly
one vehicle. Equalities (3) and (4) ensure that if a vehicle is used, its tour starts at an origin
and ends at a destination with a visit to a dump immediately before that. Constraints (5) and
(6) forbid returning to an origin or leaving a destination. Flow conservation is represented by
constraints (7). ∑

k∈K

∑
j∈D∪P

xijk = 1, ∀i ∈ P (2)

∑
i∈O′

∑
j∈N

xijk = yk, ∀k ∈ K (3)

6



∑
i∈D

∑
j∈O′′

xijk = yk, ∀k ∈ K (4)

∑
i∈N

xijk = 0, ∀k ∈ K, j ∈ O′ (5)∑
j∈N

xijk = 0, ∀k ∈ K, i ∈ O′′ (6)

∑
i∈N\O′′

xijk =
∑

i∈N\O′

xjik, ∀k ∈ K, j ∈ D ∪ P (7)

Site dependencies are enforced by constraints (8).

xijk 6 αijk, ∀k ∈ K, i ∈ N \O′′, j ∈ N \O′ (8)

In the context of vehicle capacities, inequalities (9) and (10) limit, respectively, the cumulative
volume and weight on the vehicle at each point, while equalities (11) and (12) reset them to
zero at the dumps, origins and destinations. Keeping track of the cumulative volume and
weight on the vehicle is achieved by constraints (13) and (14).

Qvik 6 Ω
v
k, ∀k ∈ K, i ∈ P (9)

Qwik 6 Ω
w
k , ∀k ∈ K, i ∈ P (10)

Qvik = 0, ∀k ∈ K, i ∈ N \ P (11)

Qwik = 0, ∀k ∈ K, i ∈ N \ P (12)

Qvik + ρ
v
j 6 Q

v
jk + (1− xijk)M, ∀k ∈ K, i ∈ N \O′′, j ∈ P (13)

Qwik + ρ
w
j 6 Qwjk + (1− xijk)M, ∀k ∈ K, i ∈ N \O′′, j ∈ P (14)

The next three constraints express the temporal characteristics of the problem. Inequalities
(15) calculate the start-of-service time at each point, including service duration and a possible
break duration. In addition, these constraints eliminate the possibility of subtours and ensure
that a point will not be visited more than once by the same vehicle. Constraints (16) and (17)
enforce the time windows and maximum tour duration.

Sik + εi + δbijk + τijk 6 Sjk + (1− xijk)M, ∀k ∈ K, i ∈ N \O′′, j ∈ N \O′ (15)

λi
∑

j∈N\O′

xijk 6 Sik 6 µi
∑

j∈N\O′

xijk, ∀k ∈ K, i ∈ N \O′′ (16)

∑
j∈O′′

Sjk −
∑
i∈O′

Sik 6 H, ∀k ∈ K (17)

The next block of constraints determines the arc on which a break is due. Breaks are modeled
on the arcs as in much of the vehicle routing literature and can in practice be taken on the
arcs' tails. Constraints (18) and (19) limit the arcs on which the break can be taken so as it
is taken as late as possible. Inequalities (20) impose that the vehicle can only take a break on
the arcs it traverses. Finally, inequalities (21) ensure that the break is actually taken if the
vehicle tour is longer than the maximum continuous work limit η.(

Sik −
∑
m∈O′

Smk

)
+ εi − η 6 (1− bijk)M, ∀k ∈ K, i ∈ N \O′′, j ∈ N \O′ (18)
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η−

(
Sjk −

∑
m∈O′

Smk

)
6 (1− bijk)M, ∀k ∈ K, i ∈ N \O′′, j ∈ N \O′ (19)

bijk 6 xijk, ∀k ∈ K, i, j ∈ N (20)∑
j∈O′′

Sjk −
∑
i∈O′

Sik

− η 6

 ∑
i∈N\O′′

j∈N\O′

bijk

M, ∀k ∈ K (21)

Finally, (22) and (23) establish the variable domains.

xijk, yk, bijk ∈ {0, 1}, ∀k ∈ K, i, j ∈ N (22)

Qvik, Q
w
ik, Sik > 0, ∀k ∈ K, i ∈ N (23)

The resulting formulation is reminiscent of a location-routing problem since we are looking
both for the vehicles' origins and destinations, and their optimal routing. However, by a simple
modi�cation of constraints (3) we can �x the vehicles' origins. Regarding the destinations, we
prefer to keep the current notation due to the fact that our case study includes a wide service
area with several waste collection companies and a mix of urban and rural regions and it is not
always optimal, especially in rural areas, for a vehicle to return to its origin depot. However,
we can provide an incentive to the latter by modifying the model as follows:

Min f = Objective (1) + Ψ
∑
k∈K

∑
i∈O′

∑
j∈O′′

(βkπji + θkτjik) zijk (24)

s.t. Constraints (2) to (23)∑
m∈P

ximk +
∑
m∈D

xmjk − 1 6 zijk, ∀k ∈ K, i ∈ O′, j ∈ O′′ (25)

zijk = {0, 1}, ∀k ∈ K, i ∈ O′, j ∈ O′′ (26)

where constraints (25) require that the variable zijk should be equal to 1 if i and j are, respec-
tively, the origin and destination of vehicle k. Obviously, if i and j do not represent the same
point, there will be a positive distance and travel time between them. This is captured by
the objective (24) which, in addition to (1), minimizes the cost of returning from j to i. The
coe�cient Ψ determines the importance of the new objective function term.

3.2 Variable Fixing and Valid Inequalities

We can exploit the special structure of our problem by �xing some of the binary variables
and de�ning several valid inequalities that restrict the search space of some of the binary
and continuous variables without eliminating any feasible solutions. We �rst set to zero bi-
nary variables linked to impossible traversals. Constraints (27) eliminate the possibility of
loops. In a similar fashion, constraints (28), (29) and (30) forbid traveling from an origin to a
dump or destination, from a container to a destination, and from a dump to another dump,

8



respectively.

xiik = 0, ∀k ∈ K, i ∈ N (27)

xijk = 0, ∀k ∈ K, i ∈ O′, j ∈ D ∪O′′ (28)

xijk = 0, ∀k ∈ K, i ∈ P, j ∈ O′′ (29)

xijk = 0, ∀k ∈ K, i ∈ D, j ∈ D : i 6= j (30)

The presence of time windows allows us to �x time-window infeasible traversals. Constraints
(31) express the fact that if by serving point i as early as possible vehicle k cannot serve point
j within its time window, then points i and j cannot be served by the same vehicle k, i.e. arc
(i, j) is not traversed by vehicle k. These �rst two sets of rules can also be used to eliminate all
the big M constraints (13, 14, 15, 18, 19, 21) for such variables as they become trivial.

xijk = 0, ∀k ∈ K, i ∈ P ∪D, j ∈ P ∪D : λi + εi + τijk > µj (31)

The �rst set of valid inequalities is used to restrict the start-of-service time search space.
Inequalities (32) impose a minimum di�erence between the start-of-service time at the origin
and destination for each used vehicle. The right-hand side of the inequality represents the
minimum-duration tour composed of one origin, one container, one dump and one destination.
Then inequalities (33) and (34) calculate the latest possible start and earliest possible �nish
of each tour.∑

j∈O′′
Sjk −

∑
i∈O′

Sik > min
m1∈O′
m2∈P
m3∈D
m4∈O′′

(τm1m2k + εm2
+ τm2m3k + εm3

+ τm3m4k)yk, ∀k ∈ K (32)

Sik 6 max
m∈P

(µm − τimk)yk, ∀k ∈ K, i ∈ O′

(33)

Sjk > min
m∈D

(λm + εm + τmjk)
∑
m∈D

xmjk, ∀k ∈ K, j ∈ O′′

(34)

If the problem involves subsets of identical vehicles, the presence of symmetry can substantially
reduce the e�ectiveness of the model. Let K′ ⊂ K represent a subset of identical vehicles and
let k′g ∈ K′, where g ∈ 1, . . . , |K′| introduces a simple ordering of the elements of K′. Then
for each subset K′ we apply constraints (35) or (36). These symmetry-breaking constraints
specify that the �rst vehicle in K′ executes the tour with the highest waste volume (weight),
the second vehicle executes the tour with the second highest waste volume (weight), etc.∑

i∈P

∑
j∈P∪D

ρvixijk′g >
∑
i∈P

∑
j∈P∪D

ρvixijk′g+1
, ∀g ∈ 1, . . . ,

(
|K′|− 1

)
(35)

∑
i∈P

∑
j∈P∪D

ρwi xijk′g >
∑
i∈P

∑
j∈P∪D

ρwi xijk′g+1
, ∀g ∈ 1, . . . ,

(
|K′|− 1

)
(36)

The last set of valid inequalities concerns the dump visits. With (37) we impose that a dump
may be visited at most once by a vehicle. With (38), on the other hand, we set for every
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vehicle the maximum number of trips from dumps to containers, which is one less the total
number of dumps. A dump visit is thus reserved for the �nal trip in each tour. We stress
again here that each physical dump is replicated in the model as many times as the maximum
number of dump visits by any vehicle k.∑

i∈P
xijk 6 1, ∀k ∈ K, j ∈ D (37)∑

i∈D

∑
j∈P
xijk 6 |D|− 1, ∀k ∈ K (38)

With the addition of the valid inequalities, a state-of-the-art commercial solver like Gurobi
can handle instances with 10-20 containers, a depot, one to two dumps, and two to three vehi-
cles with the only critical resource being computation time. Computation times are strongly
in�uenced by the presence of time windows and their tightness. We return to this question in
section 5.

4 Local Search Heuristic

The vehicle routing problem is well known to be NP-hard (see e.g. Garey and Johnson, 1979).
Being a generalization thereof, our waste collection problem is even harder to solve. Moreover,
realistic instances involving 50 or more containers and several depots, dumps and vehicles will
translate into thousands of binary variables and tens of thousands of constraints. Therefore,
for such cases, we develop a local search heuristic capable of systematically treating all problem
features. It starts o� by constructing a feasible initial solution and then applies an iterative
improvement procedure accepting infeasible intermediate solutions. The heuristic contains
components that speci�cally tackle each feature of our problem and has been designed to be
as independent as possible from the underlying instance topologies in order to be applicable
to the wide array of geographies present in the waste collection regions of interest. It relies on
conventional search operators and techniques. Therefore, the originality of the approach resides
in their combined use to achieve e�ciency on a new problem, rather than in the development
of a new solution methodology.

4.1 Feasibility

A solution to our problem is a set of tours. It is considered feasible if all tours that comprise
it satisfy four criteria. First, start-of-service times should respect time windows. Secondly,
tour duration should be shorter than or equal to the maximum tour duration. These two
criteria may be thought of as expressing temporal feasibility. Thirdly, the volume and weight
capacities of the vehicles may not be violated at any point. This can be ensured by inserting
appropriate visits to the available dumps. We attach to this last criterion the condition that
a tour should start and �nish with a depot and should visit a dump before the end. Finally,
site dependencies should be respected.
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Every insertion or removal of a point from a tour, and every application of a neighborhood
operator requires the recalculation of start-of-service and waiting times for all or part of the
points in the tour. As shown in algorithm 1, we consider a tour served by vehicle k ∈ K,
for brevity tour k, represented as an ordered sequence of points 1, . . . , n indexed by i. The
calculation begins by setting the start-of-service time at the origin, S1k, as early as possible.
For each subsequent point i, Sik is tentatively calculated as the sum of the start-of-service
time at point i − 1, the service duration at point i − 1, and the travel time from i − 1 to i,
i.e. Sik = S(i−1)k + εi−1 + τ(i−1)ik. If the maximum continuous working time limit η expires
between the start-of-service time at i − 1 and the end-of-service time at i, in other words if
S(i−1)k < S1k + η and Sik + εi > S1k + η , we need to insert the required break before serving
point i, which is achieved by incrementing Sik by the break duration δ. Finally, if Sik violates
the lower time window bound λi, i.e. if Sik < λi, we introduce waiting time wik at point i, equal
to the di�erence λi − Sik, and update Sik to λi. Once all Sik have been determined, we check
if upper time window bounds µi are respected for all i. If this is the case, we apply forward
time slack reduction on the tour, otherwise we declare the tour time-window infeasible.

Forward time slack, as described by Savelsbergh (1992), keeps track of the maximum amount
each start-of-service time can be delayed without violating time windows on the tour. We will
examine points sequentially in reverse order. If there is waiting at point i, there could be a
non-zero slack at point i−1, because pushing S(i−1)k forward may eliminate or reduce waiting at
i. We can push S(i−1)k forward by the amount of waiting at i, or until we reach the upper time
window bound at i − 1. The last operation is expressed as S(i−1)k = min (S(i−1)k +wik, µi−1),
and it entails an update of w(i−1)k and wik to factor in the potential increase of waiting at
i− 1 and decrease of waiting at i. Let S′(i−1)k denote the original start-of-service time at point
i− 1 before slack reduction. Then, waiting at i− 1 will be increased by the di�erence between
S(i−1)k and S

′
(i−1)k, and waiting at i will be reduced by the same di�erence. Finally, we need

to arti�cially put w1k = 0. Forward time slack reduction preserves time-window feasibility.
Therefore, after the procedure it only remains to check if the tour's duration is feasible. If
it is the case, we accept the tour as temporally feasible, otherwise we declare it duration
infeasible.

Verifying capacity feasibility is much more straightforward. At each point of the tour, we
calculate the cumulative volume and weight loads, Qvik and Q

w
ik, on the vehicle, resetting both

to zero if the point is a dump. If, for any point i, Qvik > Ωvk or Qwik > Ωwk or a dump is
not visited immediately before the destination, we declare the tour capacity infeasible. The
logic behind site dependency feasibility is trivial. Implementation-wise, we construct vehicle
tours only using accessible points. Inaccessibilities may occur with the application of inter-
tour operators and a simple count of the number of inaccessible points is updated with the
application of an operator. The latter is much more e�cient than inspecting all tour points
when accessibility feasibility needs to be veri�ed.
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Algorithm 1 Temporal feasibility algorithm

Input tour k as a sequence of points 1, . . . , n

Output start-of-service times, waiting times and temporal feasibility of tour k

1: set S1k to earliest possible

2: for i = 2 . . . n in tour k do

3: Sik := S(i−1)k + εi−1 + τ(i−1)ik

4: if S(i−1)k < S1k + η and Sik + εi > S1k + η then

5: Sik := Sik + δ

6: end if

7: if Sik < λi then

8: wik := λi − Sik
9: Sik := λi
10: else

11: wik := 0;

12: end if

13: end for

14: if Sik 6 µi, ∀i then
15: for i = n . . . 2 in tour k do

16: S′(i−1)k := S(i−1)k

17: S(i−1)k := min (S(i−1)k +wik, µi−1)

18: w(i−1)k := w(i−1)k + (S(i−1)k − S′(i−1)k)

19: wik := wik − (S(i−1)k − S′(i−1)k)

20: end for

21: w1k := 0

22: if Snk − S1k 6 H then

23: tour k is temporally feasible

24: else

25: tour k is duration infeasible

26: end if

27: else

28: tour k is time-window infeasible

29: end if

4.2 Initial Solution Construction

Tour construction is performed sequentially. Initially, all containers belong to the pool of
unassigned containers P, and all vehicles to the pool of unassigned vehicles K. A seed tour is
created by assigning the cheapest feasible sequence of origin, container, dump and destination
to the cheapest available vehicle. All assigned vehicles and containers are removed from their
respective unassigned pools. Once a seed tour k has been created, it is expanded using a
simple feasibility preserving greedy insertion heuristic. At each iteration, we insert container
i ∈ P at the position j in the tour that would yield the smallest cost increase. The point at
position j, as well as all subsequent points, are shifted to the right.

If no more feasible container insertions are possible and if infeasibility would result from
capacity violation, we insert a dump using the same logic, otherwise we terminate the tour.
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In addition, we require that the dump cannot be inserted as an immediate predecessor or
successor of another dump on the tour or just after the origin depot. Finally, to avoid a
meaningless increase in the objective function, we require that after a dump insertion there
should be at least one feasible container insertion. If this condition does not hold, the last
inserted dump is removed and the tour is terminated. Tour construction stops when the pool
of unassigned containers is empty, or the pool of unassigned vehicles is empty, or infeasibilities
prohibit further insertions. When each tour is constructed, it is individually improved using
the single-tour operators described below.

4.3 Iterative Solution Improvement

In order to keep the improvement phase as general as possible, we consider three neighborhoods�
swap, 2-opt and reinsert, with each neighborhood using classical single- and inter-tour opera-
tors of the respective type. Figure 2 depicts the six operators with possible improvements from
the application of each of them. The interrupted gray arcs form parts of the tours before the
application of the operators. The resulting improved tours are given in solid black arcs. The
application of an operator, whether single- or inter-tour, may lead to a feasible or an infeasible
neighbor. If the neighbor solution is infeasible, its objective function cost (24) is multiplied by
a factor infFactor larger than one. If the next neighbor is feasible, this factor is reduced by
infStepDown, and if infeasible, it is increased by infStepUp. The factor infFactor will never
drop below one.

To de�ne the operators more precisely, the single-tour swap disconnects i − 1 from i, i from
i + 1, j − 1 from j, and j from j + 1, and reconnects i − 1 to j, j to i + 1, j − 1 to i, and i to
j+ 1. Its inter-tour version works in exactly the same way with the only di�erence being that
i and j belong to di�erent tours. The single-tour 2-opt disconnects i − 1 from i, and j from
j + 1, and reconnects i − 1 to j, and i to j + 1, thus reversing the orientation of the section
i, . . . , j, inclusive of i and j. The inter-tour 2-opt performs the same actions, where i and j
belong to di�erent tours, which results in the exchange of the end portions of the two a�ected
tours, inclusive of i and j. Finally, the single-tour reinsert disconnects i− 1 from i and i from
i + 1, reconnecting i − 1 directly to i + 1. Then it disconnects j − 1 from j and reconnects
j− 1 to i and i to j. The logic of the inter-tour reinsert is the same, with i and j belonging to
di�erent tours. In essence, the last two operators remove a point i from its original position
and insert it in the position of another point j, from the same or a di�erent tour, pushing j to
the right.

As described in algorithm 2, the succession of neighborhoods (swap, 2-opt, reinsert in that
order) is applied until either maxIter iterations or maxNonImpIter non-improving itera-
tions has been reached. Each individual neighborhood is applied for maxNbIter iterations
or maxNbNonImpIter non-improving iterations from the last visited local minimum, and at
each neighborhood change we start again from the best feasible solution found so far and reset
infFactor. For each neighbor, a random sample of single- and inter-tour moves of the current
neighborhood is evaluated and the cheapest one, be it feasible or infeasible, in the last case
evaluated after multiplication by infFactor, is accepted as the new incumbent. To prevent
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Figure 2: Neighborhood Operators
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This �gure depicts improvements that can result from the application of each operator, with
the interrupted gray arcs replaced by the solid black arcs.

cycling and encourage diversi�cation towards less explored areas of the search space, a solution
with the same objective value is not admitted more than once for a given number of iterations,
denoted by cycleFreq. These non-admissible solutions are held in a ban list. When a new
incumbent is generated, the ban list is updated to include its cost and exclude the cost older
than cycleFreq.

At every recoverFreq iterations, and if the available �eet is heterogeneous (i.e. at least one
vehicle is di�erent from the rest), we evaluate and perform vehicle reassignments to tours. The
vehicle reassignment evaluation procedure unassigns all assigned vehicles and starts inspecting
the tours in a descending order of total load. For each consecutively examined tour, the best
vehicle is assigned so that the assignment is feasible. The assignment feasibility is veri�ed after
applying the capacity recovery procedure described next. If no feasible assignment is possible,
the available vehicle with the largest capacity is assigned to the tour. After the assignment,
the capacity recovery procedure is rerun and the tour is individually improved. Alternatively,
if the available �eet is homogeneous, we proceed directly to the capacity recovery procedure,
followed by individual improvement of all tours.

The logic of the vehicle reassignment evaluation procedure is somewhat di�erent compared
to what would be�t Taillard's (1999) HFFVRP formulation. Here the procedure tries to bal-
ance between two con�icting goals. Assuming a �eet with correlated characteristics, assigning
cheaper vehicles to tours is counterbalanced by the necessity for more frequent visits to the
dumps, because cheaper vehicles have smaller capacities. This is compounded by the fact that
in a realistic scenario dumps (intermediate facilities) are located outside the collection area
(for example in suburbs or industrial zones) instead of centrally as in the benchmark instances
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Algorithm 2 Iterative improvement procedure

De�ne: K is the set of all available vehicles

Input set of constructed tours K′ ∈ K
Output set of improved tours K′′ ∈ K
1: initialize infFactor

2: initialize ban list

3: initialize start neighborhood

4: currentIncumbent := solution from tour construction

5: for maxIter do

6: for each neighborhood do

7: for maxNbIter do

8: N := random neighbor sample of currentIncumbent

9: currentIncumbent := min(n){cost(n) | ∀n ∈ N : cost(n) /∈ ban list}

10: update infFactor

11: update ban list

12: if reached recoverFreq then

13: vehicle reassignment evaluation procedure with cap. recovery and depot reasg.

14: improve tours individually

15: update ban list

16: end if

17: if reached maxNbNonImpIter then

18: change neighborhood

19: reset currentIncumbent to best feasible solution found so far

20: reset infFactor

21: break

22: end if

23: end for

24: change neighborhood

25: reset currentIncumbent to best feasible solution found so far

26: reset infFactor

27: end for

28: if reached maxNonImpIter then

29: break

30: end if

31: end for

we see. Therefore, the logic of this procedure is di�erent, as is its direct applicability to a
pure HFFVRP formulation where reassignments have to be examined with every move. In
our case, capacity infeasibility resulting after a move can easily be recovered by adding more
dump visits or simply reordering them. Moreover, if a tour is attracting points from other
tours, reassigning vehicles too often may have an adverse e�ect.

The capacity recovery procedure �rst removes all dump visits from the tour, after which it
inspects the best dump insertion positions close to where capacity feasibility would become
violated. This action serves two purposes. First, it removes unnecessary dump visits from
short tours. Secondly, it may need to insert additional dump visits or reorder the dump visits
in tours that may have been rendered capacity infeasible by the neighborhood operators.
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This is followed by origin and destination depot reassignments, where all possibilities are eval-
uated given the fact that the number of depots tends to be small. The subsequent individual
improvement may be able to recover infeasibilities related to maximum tour duration or time
window violations. Moreover, if unassigned containers remain and can be feasibly inserted,
new insertions are attempted during individual tour improvement before switching back from
reinsert to swap. There is a penalty associated with unassigned containers, which encourages
assignment with a near-guarantee of cost improvement. In the end, the logic of the local search
heuristic is such that it remains fairly general rather than being tailored to a narrowly speci�ed
problem.

5 Numerical Experiments

To assess the quality of the heuristic, we compare its results to the optimal ones produced by
the mathematical model on small instances, to the best known solutions (BKS) of Kim et al.'s
(2006) waste collection VRP-IF and Crevier et al.'s (2007) MDVRPI instances, and to a set
of actual tours executed by a Swiss waste collector in the canton of Geneva, Switzerland. All
tests were carried out on a 3.20 GHz Intel Core i5 machine with 8 GB of memory running a
64-bit Windows 7. The local search heuristic was coded in Java and the mathematical model
was solved using the Gurobi 5.6.2 MIP solver via its Java API. The solver was warm-started,
for each instance, with the solution obtained by the heuristic. Our tests are conducted using
the same values of the heuristic parameters presented in table 2. The analysis and comparisons
below, with the exception of the case study, are presented in terms of best and average over
10 runs.

The BKS in the literature were obtained on di�erent hardware. Benjamin (2011) uses a 3.16
GHz Intel Core2 Duo machine with 3.23 GB of memory, Buhrkal et al. (2012) use a 2.67
GHz Intel Core i7 machine with 8.00 GB of memory, and Hemmelmayr et al. (2013) use a
2.4 GHz machine with 4 GB of memory, but the processor type is not speci�ed. Moreover,
the algorithms are implemented in di�erent languages and some run on di�erent platforms.
Thus, scaling of computation times will almost certainly be biased. Therefore, we report the

Table 2: Heuristic Parameter Values

Parameter Value Parameter Value
maxNbIter 30 infStepUp 0.05
maxNbNonImpIter 7 infStepDown 0.02
maxIter 100 (10a) cycleFreq ∞
maxNonImpIter 15 (3a) recoverFreq 5
infFactor 1.10 sample size 10b

a value for individual tour improvement
b at a given iteration, the chosen operator is evaluated on each node i for a random sample of
10 j nodes, see �g. 2
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original computation times with the remark that all results were produced on recent processor
architectures.

5.1 Evaluation on Randomly Generated Instances

For this test we developed 15 randomly generated instances, having 10 containers each, based
on real underlying geographic data from a French waste collector. The instances are grouped
in �ve groups (i1 to i5), and in each group they di�er only by the presence or absence of time
windows and their tightness. We restrict the tour to a maximum duration of eight hours with
a one-hour break after four hours of continuous work. It takes �ve min to service a container
and 10 min to empty the vehicle at a dump. For each instance we created two vehicles with
volume and weight capacity su�cient to ensure that the containers in all instances can be
collected with only one dump visit before the end of the tour in the absence of time windows.
We assume that a vehicle k's �xed cost φk is �ve times its unit-distance running cost βk, and
its unit-time wage rate is 10 times βk.

As shown in table 3, averaged over 10 runs, our local search heuristic was able to solve all
instances to optimality with computation times in the order of 1 sec. In the instance names,
�wtw" stands for wide time windows, �ntw" for narrow time windows, and no quali�er for
trivial time windows [0,∞). We can observe that solver runtimes are negatively correlated
to the presence of time windows and their tightness. This is explained by the fact that time
windows allow for many binary variables to be �xed to zero, thus greatly reducing the search

Table 3: Comparison Between Heuristic and Solver on Randomly Generated Instances

Heuristic Solver
Inst- # of Objective Runtime MIP Relax- Runtime Opt
ance tours avg avg(s.) Objective gap(%) ation avg(s.) gap(%)
i1 1 214.85 0.25 214.85 0.00 11.25 688.69 0.00
i1_wtw 1 252.83 0.19 252.83 0.00 95.63 1.97 0.00
i1_ntw 2 394.82 0.44 394.82 0.00 169.30 0.59 0.00
i2 1 249.32 0.21 249.32 0.00 58.79 778.58 0.00
i2_wtw 1 257.58 0.17 257.58 0.00 119.75 2.01 0.00
i2_ntw 2 439.77 0.65 439.77 0.00 217.32 2.01 0.00
i3 1 240.13 0.21 240.13 0.00 14.93 1724.26 0.00
i3_wtw 1 245.46 0.17 245.46 0.00 45.63 2.28 0.00
i3_ntw 2 444.59 0.59 444.59 0.00 76.17 1.22 0.00
i4 1 138.64 0.16 138.64 0.00 4.08 2720.74 0.00
i4_wtw 1 140.20 0.20 140.20 0.00 4.08 5.73 0.00
i4_ntw 1 179.54 0.21 179.54 0.00 19.99 1.79 0.00
i5 1 220.77 0.21 220.77 0.00 37.89 1404.74 0.00
i5_wtw 1 233.21 0.17 233.21 0.00 83.94 1.48 0.00
i5_ntw 2 405.62 0.57 405.62 0.00 105.23 1.83 0.00
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space for branch and bound. The instances with trivial time windows are prone to excessively
long computation times, undoubtedly the result of the big-M constraints in the mathematical
formulation. Nevertheless, such limitations of exact models for similarly rich VRP problems
are also observed in the related research discussed in section 2. In Schneider et al. (2014a) and
Hemmelmayr et al. (2014), they motivate the development of heuristic approaches.

5.2 Tests on Benchmark Instances from the Literature

The �rst set of instances from the literature was developed by Kim et al. (2006). These include
10 instances with a single depot, up to 19 dumps and up to 2092 containers. They have time
windows and a mandated break with a time window. We solved the �rst �ve instances. In all
tables below, instance sizes are speci�ed as (number of containers, number of dumps). The
BKS for these instances were obtained by either Benjamin (2011) or Buhrkal et al. (2012).
Benjamin's (2011) algorithm is deterministic and she reports only one result per instance,
while Buhrkal et al. (2012) report the best and average over 10 runs. Therefore, in table 4
we report the best result from Benjamin (2011) or Buhrkal et al. (2012), and the average
of Buhrkal et al. (2012). Computation times are those of Buhrkal et al. (2012). Benjamin's
(2011) computation times are up to two degrees of magnitude longer than those of Buhrkal
et al. (2012).

As shown in table 4, we obtain signi�cant improvements over the BKS from the literature, but
our computation times are slower for several reasons. First, the heuristic is not designed for
such problem sizes as they do not appear in our case studies. Secondly, we did not optimize
the heuristic parameters for speci�c instance classes, and all results were produced with the
parameter values from table 2. And thirdly, there is an overhead from the additional features
considered in our problem. Since these instances assume an unlimited homogeneous �eet, we
also report the number of vehicles used in each instance, respectively 3, 3, 6, 11, and 5, like in
the BKS.

Table 5 presents our results for the MDVRPI (Crevier et al., 2007) instances, which include a
single vehicle depot, various numbers of intermediate facilities and a maximum tour duration,

Table 4: Comparison Against the Best Known Solutions to the VRP-IF (Kim et al., 2006)
Instances

BKS from literature This work
Inst- (points, Runtime Runtime Gap Gap
ance dumps) Best Average avg(s.) Best Average avg(s.) best(%) avg(%)
102 (99,2) 156.90 176.03 2.00 150.66 153.67 217.88 -3.98 -12.70
277 (275,1) 447.60 455.70 8.00 444.24 448.85 2304.57 -0.75 -1.50
335 (330,4) 182.10 196.49 10.00 177.84 180.63 2606.67 -2.34 -8.07
444 (442,1) 78.30 79.00 18.00 77.88 78.42 1893.39 -0.54 -0.73
804 (784,19) 604.10 650.65 72.00 594.13 618.18 3884.68 -1.65 -4.99
Avg 22.80 2181.44 -1.85 -5.60
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but no time windows or driver breaks. The BKS are obtained by Hemmelmayr et al. (2013),
who use a VNS with a dynamic programming procedure for the insertion of the intermediate
facilities. Overall, in several cases we reach the BKS and our best solutions have an average
gap of 0.53% with respect to the BKS. The gap with respect to the average solutions over 10
runs stands at 1.81%. These instances are also attempted by Benjamin (2011) who reach an
average gap of 7.87% from the BKS. We can thus stress on the importance of the more general
nature of our approach, which is stable across various instance classes.

In order to assess the added value of allowing for a �exible assignment of origin and destination
depot, we relax the MDVRPI instances by considering all intermediate facilities as possible
origin and destination depots of any vehicle. It should be noted that in the original MDVRPI
formulation, intermediate facilities are actually depots with no vehicles stationed there. We
consider the extreme case of a relocation cost term weight Ψ of zero in the objective function.
Table 6 demonstrates that important improvements can be obtained. Naturally, using a re-
location cost term with a weight between zero and one will lead to results that fall between

Table 5: Comparison Against the Best Known Solutions to the MDVRPI (Crevier et al., 2007)
Instances

Hemmelmayr et al. (2013) This work
Inst- (points, Runtime Runtime Gap Gap
ance dumps) Best Average avg(s.) Best Average avg(s.) best(%) avg(%)
a1 (48,2) 1179.79 1180.57 85.20 1189.18 1202.89 21.12 0.80 1.89
b1 (96,2) 1217.07 1217.07 383.40 1217.07 1231.33 190.62 0.00 1.17
c1 (192,2) 1866.76 1867.96 1224.00 1885.57 1910.21 712.35 1.01 2.26
d1 (48,3) 1059.43 1059.43 94.20 1059.43 1071.19 19.33 0.00 1.11
e1 (96,3) 1309.12 1309.12 373.20 1309.12 1333.99 157.02 0.00 1.90
f1 (192,3) 1570.41 1573.05 1536.00 1576.81 1597.78 1148.62 0.41 1.57
g1 (72,4) 1181.13 1183.32 202.80 1186.59 1202.28 72.50 0.46 1.60
h1 (144,4) 1545.50 1548.61 876.60 1559.21 1571.26 531.82 0.89 1.46
i1 (216,4) 1922.18 1923.52 2014.80 1933.30 1956.97 1224.14 0.58 1.74
j1 (72,5) 1115.78 1115.78 166.80 1119.39 1139.20 66.34 0.32 2.10
k1 (144,5) 1576.36 1577.96 873.60 1581.23 1598.25 555.05 0.31 1.29
l1 (216,5) 1863.28 1869.70 2128.80 1880.93 1903.15 1435.59 0.95 1.79
a2 (48,4) 997.94 997.94 73.80 997.94 998.90 37.81 0.00 0.10
b2 (96,4) 1291.19 1291.19 384.60 1294.77 1343.87 217.86 0.28 4.08
c2 (144,4) 1715.60 1715.84 900.60 1731.60 1756.83 432.03 0.93 2.39
d2 (192,4) 1856.84 1860.92 1808.40 1863.97 1884.91 1031.17 0.38 1.29
e2 (240,4) 1919.38 1922.81 2958.60 1939.02 1979.30 1621.11 1.02 2.94
f2 (288,4) 2230.32 2233.43 4274.40 2273.17 2291.38 2451.33 1.92 2.59
g2 (72,6) 1152.92 1153.17 222.60 1153.21 1167.65 77.96 0.02 1.26
h2 (144,6) 1575.28 1575.28 939.60 1583.12 1601.21 506.46 0.50 1.65
i2 (216,6) 1919.74 1922.24 2515.20 1927.44 1958.01 1402.32 0.40 1.86
j2 (288,6) 2247.70 2250.21 4402.80 2259.99 2291.22 3056.50 0.55 1.82
Avg 1292.73 771.32 0.53 1.81
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the restricted case and the extreme case presented in table 6. In the results we obtained, the
improvements over the restricted case are due both to the fact that vehicles can now use any
depot for origin and destination and also to the fact that many tours start and end at di�erent
depots, thus better exploiting the geographical characteristics of the instances. In a realistic
situation where depots are not located in the center of the service area, the bene�ts may be
even more pronounced. The case study area to which this type of tours are applicable is in a
French sparsely populated rural area. However, no historical tour data is available from the
collector for comparison. The purpose of this test was therefore to justify the approach and
quantify the potential bene�ts using synthetic instances.

5.3 Tests on Real-World Instances

Figure 3 shows a comparison between the distances corresponding to tours executed by a Swiss
waste collector and those obtained by the local search heuristic. The distances between all

Table 6: Comparison of Relaxed Solutions Against the Best Known Solutions to the MDVRPI
(Crevier et al., 2007) Instances

Hemmelmayr et al. (2013) This work
Inst- (points, Runtime Runtime Gap Gap
ance dumps) Best Average avg(s.) Best Average avg(s.) best(%) avg(%)
a1 (48,2) 1179.79 1180.57 85.20 1094.85 1106.46 20.52 -7.20 -6.28
b1 (96,2) 1217.07 1217.07 383.40 1208.23 1218.30 132.22 -0.73 0.10
c1 (192,2) 1866.76 1867.96 1224.00 1851.59 1885.82 764.14 -0.81 0.96
d1 (48,3) 1059.43 1059.43 94.20 1009.14 1023.26 27.05 -4.75 -3.41
e1 (96,3) 1309.12 1309.12 373.20 1280.14 1294.99 147.48 -2.21 -1.08
f1 (192,3) 1570.41 1573.05 1536.00 1544.27 1568.29 945.87 -1.66 -0.30
g1 (72,4) 1181.13 1183.32 202.80 1131.75 1138.56 65.15 -4.18 -3.78
h1 (144,4) 1545.50 1548.61 876.60 1523.97 1542.88 448.36 -1.39 -0.37
i1 (216,4) 1922.18 1923.52 2014.80 1900.70 1936.75 1443.26 -1.12 0.69
j1 (72,5) 1115.78 1115.78 166.80 1076.55 1080.02 68.83 -3.52 -3.21
k1 (144,5) 1576.36 1577.96 873.60 1525.45 1542.00 519.69 -3.23 -2.28
l1 (216,5) 1863.28 1869.70 2128.80 1846.76 1874.47 1249.17 -0.89 0.26
a2 (48,4) 997.94 997.94 73.80 887.58 911.09 45.10 -11.06 -8.70
b2 (96,4) 1291.19 1291.19 384.60 1256.27 1273.99 184.68 -2.70 -1.33
c2 (144,4) 1715.60 1715.84 900.60 1691.70 1715.05 421.25 -1.39 -0.05
d2 (192,4) 1856.84 1860.92 1808.40 1860.77 1870.70 833.90 0.21 0.53
e2 (240,4) 1919.38 1922.81 2958.60 1913.66 1951.95 2016.85 -0.30 1.52
f2 (288,4) 2230.32 2233.43 4274.40 2249.43 2274.70 2472.20 0.86 1.85
g2 (72,6) 1152.92 1153.17 222.60 1070.38 1085.91 119.28 -7.16 -5.83
h2 (144,6) 1575.28 1575.28 939.60 1550.94 1566.95 369.27 -1.54 -0.53
i2 (216,6) 1919.74 1922.24 2515.20 1903.29 1925.68 946.27 -0.86 0.18
j2 (288,6) 2247.70 2250.21 4402.80 2239.79 2271.01 2913.17 -0.35 0.92
Avg 1292.73 734.26 -2.54 -1.37
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Figure 3: Comparison Between Executed and Optimized Tours for a Geneva Collector
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depots, containers and dumps in this case study are shortest paths on a road network obtained
from a GIS. The case study consists of 35 tours executed in the canton of Geneva, Switzerland,
for collecting white glass or PET, their size ranging from seven to 38 containers, and with up
to four dump visits per tour. Results are averaged over 10 runs. Computation times range
from 0.05 to 7.58 s., with an average of 1.21 s. As the �gure shows, all tours are improved and
average improvement per instance ranges from 1.73% to 34.91%, with a mean of 14.64%.

After consultations with the concerned company, we can estimate direct �nancial savings from
fuel and labor in the order of 300,000 USD annually. These estimations assume that the number
of tours is kept unchanged. However, given that the proposed solution approach optimizes all
tours at the same time, rather than one at a time as in the current state of practice, further
savings from a reduced number of tours, better planning of dump visits and more e�cient
labor utilization can also be expected. To give a better idea of the scale of the savings, we
remark that the company in question is responsible for the collection of approximately 750
recyclable waste containers, and is just one of several in a canton of 480,000 inhabitants.

It should be mentioned here that the system currently used by the collector uses specialized
software to build the tours one at a time, considering only vehicle capacity and necessary dump
visits. Once the tour has been executed by the collector, a validation is performed. During
validation, the collector deletes those containers from the originally proposed sequence that
for some reason were not collected during the tour. However, the ordering of the sequence
cannot be changed. We use the local search heuristic to build a tour for the containers in
the validated sequence and compare to its travel distance. The sequences originally proposed
by the collector's specialized software are not preserved, but fortunately, not all validated
tours have had containers removed, and those that have usually have one or two containers
removed.

Thus the results from �g. 3 provide strong evidence in favor of our local search heuristic as
compared to the current state of practice. Moreover, our heuristic is capable of solving a much
richer problem and for a fraction of the computation time.
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6 Conclusion

This article proposes a mathematical model and a local search heuristic for a complex solid
waste collection problem, an extension of the VRP-IF with a heterogeneous �xed �eet and
a �exible assignment of origin and destination depot. We include several additional side
constraints, such as a mandated break period contingent on tour start time, multiple vehicle
capacities and site dependencies, and consider a general cost function corresponding to the
cost structure of a typical �rm.

The extensive computational testing we performed shows that the heuristic achieves optimality
on small random instances, exhibits competitive performance in comparison to state-of-the-art
solution methods for special cases of our problem, and leads to important savings in the state
of practice. We demonstrated that the �exible assignment of origin and destination depot can
lead to noticeable savings if it is properly understood and optimized, which is not the case
for most waste collectors, especially in rural and sparsely populated areas where such bene�ts
will be most pronounced. Another bene�t of our solution approach is its short computation
times for the size of the currently observed real-world instances. Moreover, it outperforms
signi�cantly the solution currently in place in terms of quality and functionality.

The evaluation of the heuristic on multi-tour real-world instances using a heterogeneous �xed
�eet remains a task for the future, when more detailed historical performance records will be
available as the system is currently being deployed to more collectors. The heuristic imple-
mentation remains to be integrated into the business processes of a Swiss software-as-a-service
and infrastructure management provider of waste collection logistics solutions. The �exibility
and robustness of the methodology will thus be subject to real-world testing and assessment.
Future extension of the solution approach will also see the development of a non-linear fore-
casting model for the container �lling rates based on sensor data and its integration into an
inventory routing solution with more sophisticated search algorithms.
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