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2Haute École de Gestion de Genève
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Introduction

Ecological waste management

*ecopoint in Rue de Neuchâtel, Geneva; photo source: self
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Introduction

In more details...

Sensorized containers periodically send waste level data to a
centralized database

Level data is used for container selection and vehicle routing, with
tours often planned several days in advance

Vehicles are dispatched to carry out the daily schedules produced by
the routing algorithm

Efficient waste collection thus depends on the ability to:

- make good forecasts of the container levels at the time of collection
- and optimally route the vehicles to service the selected containers
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Vehicle Routing

Problem description

Multiple depots, containers, and dumps (recycling plants) with TW

Maximum tour duration, interrupted by a break

Site dependencies (accessibility restrictions)

Tours are sequences of collections and disposals at the available
dumps, with a mandatory disposal before the end

Tours need not finish at the depot they started from
- flexible assignment of destination depots
- practiced in sparsely populated rural areas

There is a heterogeneous fixed fleet
- different volume and weight capacities, speeds, costs, etc...
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Vehicle Routing

Problem description

Figure 1: Tour illustration
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Vehicle Routing

State of the art (VRP-IF)

VRP with satellite facilities (Bard et al., 1998)

- no time windows, no driver break, homogeneous fleet
- branch-and-cut

Waste collection VRP (Kim et al., 2006)

- time windows, driver break, homogeneous fleet
- simulated annealing

MDVRPI (Crevier et al., 2007)

- no time windows, no driver break, homogeneous fleet at single depot
- SP on a pool of single-depot, multi-depot and inter-depot routes
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Vehicle Routing

State of the art (Electric VRP)

Recharging VRP (Conrad and Figliozzi, 2011)

- recharging at customer sites with time windows, homogeneous fleet
- mathematical model, derived solution bounds

Green VRP (Erdoğan and Miller-Hooks, 2012)

- maximum tour duration, no time windows, homogeneous fleet
- two construction heuristics and an improvement procedure

E-VRPTW with recharging stations (Schneider et al., 2014a)

- hierarchical objective, variable recharging times, TW, homog. fleet
- hybrid VNS/TS

VRP with intermediate stops (Schneider et al., 2014b)

- combination of recharging and reloading decisions
- weighted objective, max tour duration, no time windows, homog. fleet
- ALNS
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Vehicle Routing

State of the art (Other)

Heterogeneous fixed fleet VRP (HFFVRP)

- proposed by Taillard (1996)
- best exact solutions by Baldacci and Mingozzi (2009)
- best heuristic solutions by Subramanian et al. (2012) and Penna et al.

(2013)

Flexible assignment of depots

- Kek et al. (2008): a case study in Singapore finds significant benefits
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Vehicle Routing

Contributions

Integration of dynamic destination depot assignment into the VRP-IF

- consideration of relocation costs

Integration of heterogeneous fixed fleet into the VRP-IF

- challenges posed by intermediate facility visits

Benchmarking to several classes of simpler problems from the
literature and state of practice

- E-VRPTW (modified from Schneider et al., 2014a)
- MDVRPI (Crevier et al., 2007)
- optimal solutions, state of practice, etc...
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Vehicle Routing

Formulation

Sets

O′ = set of origins O′′ = set of destinations
D = set of dumps P = set of containers
N = O′ ∪ O′′ ∪ D ∪ P K = set of vehicles

Parameters

πij = length of edge (i , j)
αijk = 1 if edge (i , j) is accessible for vehicle k, 0 otherwise
τijk = travel time of vehicle k on edge (i , j)
εi = service duration at point i
[λi , µi ] = time window lower and upper bound at point i
H = maximum tour duration
η = maximum continuous work limit after which a break is due
δ = break duration
ρvi , ρ

w
i = volume and weight pickup quantity at point i

Ωv
k ,Ω

w
k = volume and weight capacity of vehicle k

φk = fixed cost of vehicle k
βk = unit-distance running cost of vehicle k
θk = unit-time wage rate of vehicle k
Ψ = weight of relocation cost term
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Vehicle Routing

Formulation

Decision variables: binary

xijk =

{
1 if vehicle k traverses edge (i , j)
0 otherwise

zijk =

{
1 if i and j are, respectively, the origin and destination of vehicle k
0 otherwise

bijk =

{
1 if vehicle k takes a break on edge (i , j)
0 otherwise

yk =

{
1 if vehicle k is used
0 otherwise

Decision variables: continuous

Sik = start-of-service time of vehicle k at point i

Qv
ik = cumulative volume on vehicle k at point i

Qw
ik = cumulative weight on vehicle k at point i
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Vehicle Routing

Formulation

The sets of origins O ′ and destinations O ′′ may be restricted for each
individual vehicle k

The set O ′k :

- degenerates to one point - the current depot of vehicle k
- or coincides with O ′ if we want to optimize the home depot of vehicle k

The set O ′′k :

- degenerates to one point if vehicle k is required to return to its home
depot

- or coincides with O ′′ for the purpose of dynamic destination depot
assignment
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Vehicle Routing

Formulation

min f =
∑
k∈K

φkyk + βk
∑
i∈N

∑
j∈N

πijxijk + θk

∑
j∈O′′

k

Sjk −
∑
i∈O′

k

Sik




+ Ψ
∑
k∈K

∑
i∈O′

k

∑
j∈O′′

k

(
βkπji + θkτjik

)
zijk

(1)

s.t.
∑
k∈K

∑
j∈D∪P

xijk = 1, ∀i ∈ P (2)

∑
i∈O′

k

∑
j∈N

xijk = yk , ∀k ∈ K (3)

∑
i∈D

∑
j∈O′′

k

xijk = yk , ∀k ∈ K (4)

∑
i∈N

xijk = 0, ∀k ∈ K , j ∈ O′ ∪ (O′′ \ O′′
k ) (5)

∑
j∈N

xijk = 0, ∀k ∈ K , i ∈ O′′ ∪ (O′ \ O′
k ) (6)

∑
i∈N : i 6=j

xijk =
∑

i∈N : i 6=j

xjik , ∀k ∈ K , j ∈ D ∪ P (7)
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Vehicle Routing

Formulation

s.t.
∑
m∈P

ximk +
∑
m∈D

xmjk − 1 6 zijk , ∀k ∈ K , i ∈ O′
k , j ∈ O′′

k (8)

xijk 6 αijk , ∀k ∈ K , i ∈ O′
k ∪ P ∪ D, j ∈ P ∪ D ∪ O′′

k (9)

ρvi 6 Qv
ik 6 Ωv

k , ∀k ∈ K , i ∈ P (10)

ρwi 6 Qw
ik 6 Ωw

k , ∀k ∈ K , i ∈ P (11)

Qv
ik = 0, ∀k ∈ K , i ∈ N \ P (12)

Qw
ik = 0, ∀k ∈ K , i ∈ N \ P (13)

Qv
ik + ρvj 6 Qv

jk + Ωv
k

(
1− xijk

)
, ∀k ∈ K , i ∈ O′

k ∪ P ∪ D, j ∈ P (14)

Qw
ik + ρwj 6 Qw

jk + Ωw
k

(
1− xijk

)
, ∀k ∈ K , i ∈ O′

k ∪ P ∪ D, j ∈ P (15)

Sik + εi + δbijk + τijk 6 Sjk + M
(
1− xijk

)
, ∀k ∈ K , i ∈ O′

k ∪ P ∪ D, j ∈ P ∪ D ∪ O′′
k (16)

λi
∑
j∈N

xijk 6 Sik , ∀k ∈ K , i ∈ O′
k ∪ P ∪ D (17)

Sjk 6 µj
∑
i∈N

xijk , ∀k ∈ K , j ∈ P ∪ D ∪ O′′
k (18)

0 6
∑
j∈O′′

k

Sjk −
∑
i∈O′

k

Sik 6 H, ∀k ∈ K (19)
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Vehicle Routing

Formulation

s.t.

Sik −
∑

m∈O′
k

Smk

+ εi − η 6 M
(
1− bijk

)
, ∀k ∈ K , i ∈ O′

k ∪ P ∪ D, j ∈ P ∪ D ∪ O′′
k (20)

η −

Sjk −
∑

m∈O′
k

Smk

 6 M
(
1− bijk

)
, ∀k ∈ K , i ∈ O′

k ∪ P ∪ D, j ∈ P ∪ D ∪ O′′
k (21)

bijk 6 xijk , ∀k ∈ K , i , j ∈ N (22)∑
j∈O′′

k

Sjk −
∑
i∈O′

k

Sik

− η 6 (H− η)
∑
i∈N

∑
j∈N

bijk , ∀k ∈ K (23)

xijk , bijk , yk ∈ {0, 1}, ∀k ∈ K , i , j ∈ N (24)

zijk ∈ {0, 1}, ∀k ∈ K , i ∈ O′, j ∈ O′′ (25)

Qv
ik ,Q

w
ik , Sik > 0, ∀k ∈ K , i ∈ N (26)
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Vehicle Routing

Solution methodology: Exact approach

We strengthen the formulation with variable fixing and valid
inequalities

Impossible traversals:

xiik = 0, ∀k ∈ K , i ∈ N (27)

xijk = 0, ∀k ∈ K , i ∈ O′, j ∈ D ∪ O′′ (28)

xijk = 0, ∀k ∈ K , i ∈ P, j ∈ O′′ (29)

xijk = 0, ∀k ∈ K , i ∈ D, j ∈ D : i 6= j (30)

Time-window infeasible traversals:

xijk = 0, ∀k ∈ K , i ∈ O′
k ∪ P ∪ D, j ∈ P ∪ D ∪ O′′

k : λi + εi + τijk > µj (31)

Lower bound on total time:∑
j∈O′′

k

Sjk −
∑
i∈O′

k

Sik >
∑
i∈N

∑
j∈N

xijk (εi + τijk ), ∀k ∈ K (32)
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Vehicle Routing

Solution methodology: Exact approach

Symmetry breaking for subsets K ′ of identical vehicles:∑
i∈P

∑
j∈P∪D

ρvi xijk′g >
∑
i∈P

∑
j∈P∪D

ρvi xijk′g+1
, ∀g ∈ 1, . . . ,

(
|K ′| − 1

)
(33)

Symmetry breaking for replications of the same dump D ′:∑
j∈P

jxji′g k 6
∑
j∈P

jxji′g+1k
, ∀k ∈ K , g ∈ 1, . . . ,

(
|D′| − 1

)
(34)

Bounds on dump visits:∑
i∈P

xijk 6 1, ∀k ∈ K , j ∈ D (35)

∑
i∈D

∑
j∈P

xijk 6 min (|D| − 1, |P|) , ∀k ∈ K (36)
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Vehicle Routing

Solution methodology: Heuristic approach

To solve instances of realistic size, we developed a heuristic algorithm

It constructs a feasible initial solution using an insertion procedure

It improves the initial solution through local search admitting
intermediate infeasibility with a dynamically evolving penalty

Periodically, we recover the best feasible solution because feasibility
may be hard to restore

Periodically, we also reassign dump visits and evaluate vehicle
reassignments because the fleet is heterogeneous and fixed
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Vehicle Routing

Solution methodology: Heuristic approach

Figure 2: Neighborhood operators

(a) Single-tour swap (b) Single-tour reinsert (c) Single-tour 2-opt
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Vehicle Routing

Solution methodology: Heuristic approach

Define: K is the set of all available vehicles
Data: set of constructed tours K ′ ∈ K
Result: set of improved tours K ′′ ∈ K

setBanList();
setNeighborhood(); resetCurrentNeighbor();
for maxIter do

for maxOpIter do
N = generateNeighborSample();
currentNeighbor = min(n){cost(n) | ∀n ∈ N : cost(n) /∈ banList};
updateBanList();
if reached recoverFreq then

reassignVehiclesRecoverCapacity();
improveIndividually();
updateBanList();

end
if reached maxOpNonImpIter then

changeNeighborhood(); resetCurrentNeighbor();
break;

end
changeNeighborhood(); resetCurrentNeighbor();

end
if reached maxNonImpIter then

break;
end

end
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Vehicle Routing

Results

We test the heuristic against the mathematical model on synthetic
instances based on real underlying data

- We are currently adapting the Schneider et al. (2014a) instances by
adding site dependencies, a break period and a heterogeneous fixed
fleet for the purpose of running additional tests

Additionally, we test the heuristic on:

- the Crevier et al. (2007) instances for the purpose of evaluating the
benefit of flexible depot assignment,

- and on state-of-practice data

For each instance, the heuristic is run 10 times
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Vehicle Routing

Results: Synthetic instances (preliminary results)

Table 1: Synthetic instances

Heuristic Solver
Inst- # of Objective Runtime MIP Relax- Runtime Opt
ance tours avg avg(s.) Objective gap(%) ation avg(s.) gap(%)

i1 1 214.85 0.25 214.85 0.00 11.25 688.69 0.00
i1 wtw 1 252.83 0.19 252.83 0.00 95.63 1.97 0.00
i1 ntw 2 394.82 0.44 394.82 0.00 169.30 0.59 0.00
i2 1 249.32 0.21 249.32 0.00 58.79 778.58 0.00
i2 wtw 1 257.58 0.17 257.58 0.00 119.75 2.01 0.00
i2 ntw 2 439.77 0.65 439.77 0.00 217.32 2.01 0.00
i3 1 240.13 0.21 240.13 0.00 14.93 1724.26 0.00
i3 wtw 1 245.46 0.17 245.46 0.00 45.63 2.28 0.00
i3 ntw 2 444.59 0.59 444.59 0.00 76.17 1.22 0.00
i4 1 138.64 0.16 138.64 0.00 4.08 2720.74 0.00
i4 wtw 1 140.20 0.20 140.20 0.00 4.08 5.73 0.00
i4 ntw 1 179.54 0.21 179.54 0.00 19.99 1.79 0.00
i5 1 220.77 0.21 220.77 0.00 37.89 1404.74 0.00
i5 wtw 1 233.21 0.17 233.21 0.00 83.94 1.48 0.00
i5 ntw 2 405.62 0.57 405.62 0.00 105.23 1.83 0.00
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Vehicle Routing

Results: Crevier et al. (2007) instances

22 instances, with a limited homogeneous fleet stationed at one depot

All depots can act as intermediate facilities

BKS by Hemmelmayr et al. (2013)

We applied the LS heuristic to evaluate the benefits from flexible
destination depot assignments

Keeping the home depot and optimizing the destination depot, we
obtain:

- 0.37% average savings over 10 runs
- 1.77% savings in the best case

Optimizing the home depot and the destination depot, we obtain:

- 1.37% average savings over 10 runs
- 2.54% savings in the best case
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Vehicle Routing

Results: Comparison to the state of practice

35 tours planned by specialized software for the canton of Geneva

7 to 38 containers per tour, up to 4 dump visits per tour

LS heuristic improves tours by 1.73% to 34.91%, on avg 14.75%

Extrapolating annually, cost reductions of at least USD 300’000

Figure 3: Comparison to the state of practice (average of 10 runs per tour)
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Demand Forecasting
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Demand Forecasting

State of the Art

The literature on waste generation forecasting is abundant and varied
(for a survey see Beigl et al., 2008)

Much of it is focused on city and regional level

And a fairly small amount on the container (micro) level, e.g.:

- Inventory levels in pharmacies (Nolz et al., 2011, 2014)
- Recyclable materials from old cars (Krikke et al., 2008)
- Charity donation banks (McLeod et al., 2013)
- Waste container levels (Johansson, 2006; Faccio et al., 2011; Mes,

2012; Mes et al., 2014)

Contribution:

- Operational level forecasting rather than critical levels
- Estimated and validated on real data, compared to most of the

literature which uses simulated data
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Demand Forecasting

Methodology

Let ni ,t,k denote the number of deposits in container i at date t of
size qk . We define the data generating process as follows:

Q?
i ,t =

∑K

k=1
ni ,t,kqk (37)

Let ni ,t,k
iid−→ P (λi ,t,k) with probability πi ,t,k . Then we obtain:

E
(
Q?

i ,t

)
=
∑K

k=1
qkλi ,t,kπi ,t,k (38)

We minimize the sum of squared differences between observed and
expected over all containers and dates:

min
λ,π

∑N

i=1

∑T

t=1

(
Qi ,t −

∑K

k=1
qkλi ,t,kπi ,t,k

)2

(39)

assuming strict exogeneity
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Demand Forecasting

Methodology

Given vectors of covariates xi ,t and zi ,t and vectors of parameters βk

and γk , we define Poisson rates and logit-type probabilities:

λi ,t,k (θ) = exp
(

xT
i ,tβk

)
(40)

πi ,t,k (θ) =
exp

(
zT
i ,tγk

)
∑K

j=1 exp
(

zT
i ,tγ j

) (41)

Then, in compact form, the minimization problem writes as:

min
θ∈Θ

N∑
i=1

T∑
t=1

Qi ,t −
K∑

k=1

exp
(

xT
i ,tβk + zT

i ,tγk + ln (qk)
)

∑K
j=1 exp

(
zT
i ,tγ j

)
2

(42)

Θ := (βk ,γk : ∀k), and γk? = 0 for one arbitrarily chosen k?

We will refer to this minimization problem as the mixture model
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Demand Forecasting

Methodology

In case of only one deposit quantity, it degenerates to a pseudo-count
data process:

min
θ∈Θ

∑N

i=1

∑T

t=1

(
Qi ,t − exp

(
xT
i ,tβ + ln(q)

))2
(43)

We will refer to this minimization problem as the simple model
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Demand Forecasting

Methodology

Using new sets of covariates ẋi ,t and żi ,t , and the estimates β̂k and
γ̂k , we can generate a forecast as follows:

Q̇i ,t =
∑K

k=1

exp
(

ẋ>i ,tβ̂k + ż>i ,t γ̂k + ln (qk)
)

∑K
j=1 exp

(
ż>i ,t γ̂ j

) (44)

Given the operational nature of the problem, the covariates should be
quick and easy to obtain

Examples include days of the week, months, weather data, holidays,
etc...
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Demand Forecasting

Data

36 containers for PET in the canton of Geneva with capacity of 3040
or 3100 liters

Balanced panel covering March to June, 2014 (122 days), which
brings the total number of observations to 4392

The final sample excludes unreliable level data (removed after visual
inspection)

Missing data is linearly interpolated for the values of Qi ,t
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Demand Forecasting

Seasonality pattern

Waste generation exhibits strong weekly seasonality
Peaks are observed during the weekends
There also appear to be longer-term effects for months

Figure 4: Mean daily volume deposited in the containers
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Demand Forecasting

Covariates

Based on the above observations, we use the following covariates

They are all used both for xi ,t (rates) and zi ,t (probabilities)

Table 2: Table of covariates

Variable Type

Container fixed effect dummy
Day of the week dummy
Month dummy
Minimum temperature in Celsius continuous
Precipitation in mm continuous
Pressure in hPa continuous
Wind speed in kmph continuous
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Demand Forecasting

Evaluating the fits

Coefficient of determination

R2 = 1− SS res

SS tot
(45)

with higher values for a better model

Akaike information criterion (AIC):

AIC =

(
SS res

N

)
exp(2K/N) (46)

with lower values for a better model. The exponential penalizes
model complexity

SS res is the residual sum of squares

SS tot is the total sum of squares

K is the number of estimated parameters

N is the number of observations
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Demand Forecasting

Estimation on full sample

Mixture model: R2 of 0.341 (AIC 52900) with 5L and 15L

Simple model: R2 of 0.300 (AIC 53700) with 10L

Table 3: Estimated coefficients of mixture model

β̂1 (5L)*** β̂2 (15L)*** γ̂2***

Minimum temperature in Celsius 1461.356 0.022 -0.037
Precipitation in mm -0.821 -0.009 0.018
Pressure in hPa -13.724 -0.001 0.010
Wind speed in kmph 7.580 -0.004 0.020
Monday 402.235 2.166 -9.693
Tuesday 1908.233 2.293 -9.977
Wednesday -844.662 1.432 0.202
Thursday 1937.385 1.198 1.453
Friday 1876.162 1.239 4.419
Saturday -6981.339 1.358 4.723
Sunday 1831.715 1.905 2.832
March -27.136 2.955 -1.453
April 1071.406 2.746 -1.532
May 1689.979 2.988 -1.603
June -2604.520 2.901 -1.452
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Demand Forecasting

Validation

50 experiments

The mixture and the simple model are estimated on a random sample
of 90% of the panel

They are validated on the remaining 10%

Table 4: Mean R2 for estimation and validation sets

Mixture model mean R2 Simple model mean R2

Estimation 0.364 (AIC 51400) 0.302 (AIC 53600)
Validation 0.286 0.274
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Demand Forecasting

Validation

Figure 5: Histograms for estimation and validation samples
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Conclusion

Conclusion

At the moment, the forecasting model can produce future levels, for
which the routing problem is solved

Future research will focus on:

- more deposit sizes or a continuous deposit size distribution
- integrating the forecasting model and the routing algorithm into an

inventory routing problem (IRP)

The IRP will solve simultaneously the container selection problem
based on forecast levels and the routing problem in a periodic
framework

The increasing amount of available data will allow for more extensive
testing and results
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Conclusion

Thank you.

Questions?
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