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ABSTRACT: The excited state properties of transition metal complexes have become a
central focus of research owing to a wide range of possible applications that seek to exploit
their luminescence properties. Herein, we use density functional theory (DFT), time-
dependent DFT (TDDFT), classical and quantum mechanics/molecular mechanics (QM/
MM) molecular dynamics (MD) simulations to provide a full understanding on the role of
the geometric and electronic structure, spin−orbit coupling, singlet−triplet gap and the
solvent environment on the emission properties of nine prototypical copper(I)−
phenanthroline complexes. Our calculations reveal clear trends in the electronic properties
that are strongly correlated to the luminescence properties, allowing us to rationalize the role
of specific structural modifications. The MD simulations show, in agreement with recent
experimental observations, that the lifetime shortening of the excited triplet state in donor solvents (acetonitrile) is not due to the
formation of an exciplex. Instead, the solute−solvent interaction is transient and arises from solvent structures that are similar to
the ones already present in the ground state. These results based on a subset of the prototypical mononuclear Cu(I) complexes
shed general insight into these complexes that may be exploited for development of mononuclear Cu(I) complexes for
applications as, for example, emitters in third generation OLEDs.

■ INTRODUCTION

Owing to their luminescence properties and versatility,
transition metal complexes have been subjected to an extensive
research effort aimed at a wide range of possible applications.
The archetypal luminescent transition metal complex is
tris(bipyridyl)ruthenium(II), [Ru(bpy)3]

2+.1−3 Here, the amal-
gamation of a relatively easily oxidized d6 metal ion and the
electron accepting bipyridine ligands gives rise to low-lying
excited states exhibiting metal-to-ligand charge transfer
(MLCT) character. Once populated, by either photoexcitation
or electrical excitation, the participation of the metal ion in
these excited states not only enables large spin−orbit coupling
(SOC) and permits ultrafast intersystem crossing (ISC)4,5 but
also promotes a strong T1 → S0 radiative transition that has a
lifetime of ∼10 μs.6

The understanding of the photophysics of [Ru(bpy)3]
2+ has

logically been extended to a large class of complexes containing
second and third row transition metal, such as Re(I),7−11

Os(II),12−15 Pt(II),16,17 and Ir(III),18−20 which have found
potential applications in organic light-emitting diodes
(OLEDs)21−23 and light-emitting electrochemical cells
(LEECs),24,25 as chemo- and biosensors,26,27 or as fluorophors
in cell imaging.28

It is widely acknowledged that complexes containing second
and third row transition metal ions presently form the most
stable and versatile emitters. However, these metals are

unappealing for commercial applications due to their high
cost and low abundance. Similar complexes based upon first
row transition metal ions, such as [Fe(bpy)3]

2+,29,30 have a
smaller d−d crystal field splitting and consequently suffer from
the presence of low-lying nonemissive metal centered
transitions that quench the excited state emission. Although
these problems can be overcome, to a certain extent, using
structural modifications of the ligands to destabilize the metal-
centered states,31,32 this places a large restriction on the
structural modifications that can be performed to fine-tune
their photophysical properties. Consequently, one of the most
attractive methods is to simply remove the metal centered
states by adopting a complex based upon d10 metal ions, such as
Cu(I), Ag(I), Au(I), Zn(II), and Cd(II).33 Among the most
popular are those containing Cu(I) ions,34 especially those
complexed with phenanthrolines ligands (see ref 35 and
references therein) that are the focus of the present work.
To understand the photophysical properties of the Cu(I)−

phenanthroline complexes, a number of groups have inves-
tigated the dynamics on the ultrafast (femtosecond) time
scale.36−43 The general picture that emerges from these studies
indicates that following photoexcitation, the complex relaxes
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into the lowest singlet excited state in ∼100 fs. This is followed
by the structural distortion, associated with the pseudo Jahn−
Teller (PJT) instability of the Cu(II) ion, and intersystem
crossing (ISC) to the lowest triplet state T1.

40 This latter
process occurs upon two distinct time scales, subpicosecond
near the Franck−Condon (FC) geometry and tens of
picoseconds, at the flattened (i.e., PJT) geometry.42,43

Importantly, in the context of their emission properties, these
initial steps are completed within a few tens of picoseconds and
are broadly equivalent for all of the complexes. Consequently,
one would expect that these dynamics should not have a
significant impact on the potential application of these
complexes.
The same cannot be said for the longer time (picoseconds to

microseconds) dynamics associated with the emission from the
low-lying excited states. Indeed, following their pioneering
work McMillin and co-workers demonstrated that the emission
lifetime of these complexes (Table S1, Supporting Information)
is strongly dependent upon both structural modifications to the
phenanthroline ligands and the environment within which the
complex is embedded, especially in the case of solutions.34,44−47

For the latter they found that emission lifetimes can be
significantly shortened in donating solvents (i.e., those behaving
as Lewis bases), such as acetonitrile (MeCN),48 compared to
the case for nondonating solvents, such as dichloromethane
(DCM). They attributed this quenching to complexation of a
solvent molecule (exciplex) that most likely occurs at the metal
center, during which the interaction between the Cu(II) atom
and the electron-rich donor molecule is thought to stabilize the
excited state relative to the ground state, reducing the energy
gap and therefore increasing the rate of nonradiative decay.49

However, a recent time-resolved X-ray absorption spectroscopy
study50 has demonstrated that the transient XAS spectrum is
the same for [Cu(dmp)2]

+ (dmp = 2,9-dimethyl-1,10-
phenanthroline) in MeCN and DCM. Given the sensitivity of
XAS to the coordination number and the structure around the
absorbing atom,51,52 this makes complexation of a solvent

molecule very unlikely and therefore the exact nature of the
solute−solvent interaction remains undetermined.
Besides the role of the environment, McMillin and co-

workers also demonstrated the effect of temperature on the
radiative properties of these complexes.53 Indeed, owing to a
relatively small energy gap between the emitting singlet and
triplet states, thermal motion is able to promote reverse
intersystem crossing (rISC) from the T1 to S1 increasing the
contribution of the S1 state to the total radiative decay. Here,
the contribution of each state to the emission spectrum is
governed by a Boltzmann distribution according to

→
→

=
→
→

· −
Δ −

⎛
⎝⎜

⎞
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k

E
k T
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1 0

r
1 0

r
1 0

S1 T1
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where kB is the Boltzmann constant and T is absolute
temperature. Int(S1→S0), Int(T1→S0), kr(S1→S0), and
kr(T1→S0) represent the fluorescence and phosphorescence
intensities and corresponding radiative rates, respectively. This
mechanism, known as thermally activated delayed fluorescence
(TADF) has recently gained significant interest for emitters
within third generation OLEDs54−56 as it relaxes the require-
ment for a significant T1 → S0 radiative transition and therefore
the reliance of these devices on heavy metals such as iridium
and platinum.57

These previous works have demonstrated both the
importance and interest for understanding the luminescence
properties of Cu(I)−phenanthrolines, especially the role of the
geometric and electronic structure and the solvent. Con-
sequently, in this contribution we use DFT and TDDFT and
classical and QM/MM MD simulations to provide a thorough
description of the factors influencing the emission from nine
prototypical Cu(I)−phenanthroline complexes, namely, [Cu-
(phen)2]

+, [Cu(tfp)2]
+, [Cu(dmdp)2]

+, [Cu(dpp)2]
+, [Cu-

(dpdmp)2]
+, [Cu(dptmp)2]

+, [Cu(tpp)2]
+, [Cu(dbp)2]

+, and
[Cu(dbtmp)2]

+ (Figure 1). Our quantum chemistry calcu-
lations reproduce the trends observed experimentally, providing

Figure 1. Schematic representation of the nine ligands studied herein and their abbreviated names.
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important insight into the contributing electronic and structural
variables. Using the molecular dynamics simulations, we find
that in solution the excited state of none of these complexes
exhibits the formation of an exciplex. Instead, the solvent−
solute interaction is transient and arises from solvent
configurations similar to the ones already sampled in the
ground state dynamics.

■ COMPUTATIONAL DETAILS

Electronic Structure Calculations. The structure of the
ground and lowest triplet states of the nine Cu(I)−
phenanthroline complexes were optimized at DFT(BLYP)58,59

and DFT(B3LYP)60 level using Gaussian09.61 The effect of the
weak π−π interactions were accounted for during the
optimizations using the Grimme’s D2 dispersion correction.62

Triple-ζ (Cu) and double-ζ (F, N, C, and H) basis sets with
polarization functions were used for all of the electronic
structure calculations. The main structural parameters are listed
in the Supporting Information in Table S2, and the cartesian
coordinates are provided in Tables S13−S30 of the Supporting
Information.
The excited state energies were computed using linear

response time-dependent density functional theory (LR-
TDDFT) using the Tamm−Damcoff approximation and the
B3LYP exchange and correlation functional as implemented
within the Amsterdam Density Functional (ADF)63−65 code.
The SOC matrix elements were computed with the
perturbative approach developed by Wang and Ziegler.66 A
TZP basis set was used for all atoms and scalar relativistic
effects were accounted for using the zeroth-order relativistic
approximation (ZORA).67,68 The excited state energies
computed at the ground state geometry corresponding to the
absorption spectrum are given in Table S3 (Supporting
Information).
Finally, it is noted that throughout this work we have

computed all emission properties from the optimized T1
geometry. Though direct comparison with the experimental
data also requires the emission to the calculated at the relaxed
S1 geometry, previous studies39,40,42,43 have demonstrated its
similarity to the T1 state. In addition, due to the weak exchange
interaction between the S1 and T1 states, which leads to the
small ΔES1−T1

, the energy gap between these states, ΔES1−T1
, is

expected to be independent of geometry and therefore close to
constant for all nuclear configurations.56

Molecular Dynamics Simulations. Classical MD simu-
lations were performed using Amber 12.69 The standard Amber

force field was augmented with additional parameters
describing the bonds, angles, and dihedrals involving the
copper ion (Tables S4−S12, Supporting Information). The
bonding parameters and force constants of these additional
parameters were obtained using DFT(B3LYP). The charges
were calculated with the restricted electrostatic potential
(RESP)70 method fixing the charge of Cu with the one
obtained using the Mulliken method. The classical simulations
were performed with a time step of 1 fs. After 1 ns of
equilibration, the system was propagated for a further 15 ns,
from which all properties were calculated.
The classical MD simulations have been supplemented with

Car−Parrinello75 QM/MM76,77 MD simulations performed
using the CPMD software.78 These were performed for three of
the complexes, namely, [Cu(phen)2]

+, [Cu(dbp)2]
+, and

[Cu(dpp)2]
+. Starting from an equilibrated configuration

from the classical MD trajectory, the systems were thermalizd
for 2 ps. Subsequently, the systems were equilibrated for a
further picosecond using two Nose−Hoover thermostats79,80

(one on the quantum region and one for the classical region)
with a coupling frequency of 2000 cm−1. Finally, the MD was
run for ∼20 ps from which all of the properties were calculated.
In all cases a fictitious electron mass of 600 au and a time step
of 0.01 fs were used. The quantum part, which incorporated
only the Cu(I)−phenanthroline complex was computed with
DFT(BLYP) using Troullier−Martins pseudopotentials81 to
describe the core electrons. The plane-wave cutoff for the
expansion of the one-particle orbitals was set to 85 Ry. The
effect of weak π−π interactions was included using the
dispersion-corrected atom-centered potential (DCACP) meth-
od.82−84 The validity of the classical MD force fields was
assessed by comparing average values and standard deviations
of bond length, angles, and dihedrals from classical and Car−
Parrinello QM/MM MD trajectories in both the ground and
the lowest triplet excited states. These are shown in Figures
S2−S4 (Supporting Information).

■ RESULTS

Emission Properties. Table 1 shows the experimental and
computed (TDDFT/B3LYP) emission energies for each of the
complexes using the structures optimized using DFT(B3LYP)
and given in the Supporting Information. For [Cu(phen)2]

+ we
find a small energy gap between the ground and excited states
that originates from the large structural distortion in the excited
state. This explains its very short lifetime (∼2 ps in MeCN)41

that is dominated by a large contribution of nonradiative

Table 1. Room Temperature Emission Data for the Nine Cu(I)−Phenanthroline Complexes in MeCN or DCM Compared to
Values Calculated Using LR-TDDFT(B3LYP) As Implemented within ADF

in MeCN in DCM calculated

exp (nm/eV) τ (ns) exp (nm/eV) τ (ns) T1 (eV) S1 (eV) f S1 ΔES1−T1
(eV) DHA (deg)

[Cu(phen)2]
+ d <20 0.62 1.22 0.057 0.6 39

[Cu(tfp)2]
+ c 665/1.86 165 1.34 1.73 0.038 0.39 74

[Cu(dmdp)2]
+ a 770/1.61 80 1.04 1.60 0.123 0.56 58

[Cu(dpp)2]
+ a 735/1.69 180 710/1.75 280 1.43 1.66 0.036 0.23 53

[Cu(dpdmp)2]
+ b 720/1.72 310 1.31 1.65 0.023 0.34 53

[Cu(dptmp)2]
+ b 735/1.69 260 715/1.73 480 1.25 1.66 0.044 0.41 61

[Cu(tpp)2]
+ a 765/1.62 120 745/1.66 230 1.30 1.61 0.080 0.31 50

[Cu(dbp)2]
+ b 730/1.70 35 715/1.73 150 1.36 1.69 0.036 0.33 75

[Cu(dbtmp)2]
+ b 690/1.78 440 670/1.85 920 1.38 1.73 0.045 0.35 70

aReference 71. bReference 72. cReference 73. dReference 74. Dha are the dihedral angles between the ligands.
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decay.49 For [Cu(dmdp)2]
+ and [Cu(tfp)2]

+ we observe a large
emission energy and a longer emission lifetime, as expected due
to the smaller structural distortion. Of these two, [Cu-
(dmdp)2]

+ exhibits the shorter lifetime due to the smaller
energy gap (S1 → S0) and larger oscillator strength. The latter is
due to the presence of the phenyl substituents in the 4,7
positions (Supporting Information, Figure S1) that extends the
π system away from the metal center, increasing the transition
dipole length and therefore the oscillator strength of the
transition.85

The inclusion of larger substituents (phenyl and n-butyl)
onto the 2,9 positions has a significant effect on the lifetime.
Despite the smaller energy gap with the ground state,
[Cu(dpp)2]

+ has a lifetime (in DCM) that is almost a factor
of 2 longer than that for [Cu(tfp)2]

+ and a factor of 4 larger
than that for [Cu(dmdp)2]

+. In this case the phenyl
substituents in the 2,9 positions bring the π system of the
ligands toward the metal center and decreases the transition
dipole length compared to that for [Cu(dmdp)2]

+. This causes
a significant decrease in the oscillator strength (Table 1, 0.123−
0.036) and therefore a longer emission lifetime. Compared to
the case for [Cu(tfp)2]

+, we find a similar oscillator strength;
however, [Cu(dpp)2]

+ has a much larger dihedral angle (Table
1), which leads to a smaller SOC coupling (discussed in the
following section). As the radiative rate of the triplet state is
expressed

π ν→ =
⟨ | ̂ | ⟩

Δ
·⟨ | | ⟩

−
k T S

hc
S H T

E
S e Sr( )

64
3 S T

r
1 0

2 3

3
1 SO 1

0 1

2

1 1 (2)

the reduction in SOC reduces the mixing of the S1 and T1
states, thus extending the lifetime of the triplet state.
The role of the ΔES1−T1

energy gap, highlighted in eqs 1 and
2, on the luminescence lifetime of the complexes is exemplified
by comparison among [Cu(dpp)2]

+, [Cu(dpdmp)2]
+, and

[Cu(dptmp)2]
+. Indeed, all three have emission bands centered

at similar energies (∼1.70 eV); however, their lifetimes in DCM
vary by almost a factor of 2. This is correlated to an increase in
ΔES1−T1

, which is determined by the spatial overlap between the
singlet and triplet excited state wave functions.86 For these
complexes, the inductive effect of the methyl substituents in the
3,4,7,8 positions on the phenanthroline ligands pushes the
electron density toward the copper ions. This increases the
interaction between the unpaired electron on the ligands with
the one on the metal centered d-orbitals, due to the smaller
spatial separation. As a consequence, we observe a decrease of
the contribution of the S1 fluorescence to the overall radiative
emission (eq 1). In addition, a reduction of the mixing of the
singlet and triplet state (eq 2) reduces kr(T1), which therefore
contributes to the extension of the lifetime of the excited state.
[Cu(tpp)2]

+ does not follow this trend, because the phenyl
substituents in the 4,7 position not only reduce interactions
between the unpaired electrons but also, by extending the π
system away from the metal d-orbital, increase the dipole length
and consequently the oscillator strength, giving rise to a shorter
lifetime.
Finally, in terms of the emission lifetime perhaps the most

intriguing complexes are [Cu(dbp)2]
+ and [Cu(dbtmp)2]

+.
These display strongly contrasting lifetimes, in agreement with
similar effects recently observed in related complexes.87 This
has previously been rationalized by the steric hindrance of the
3,8 methyl groups that restrict the conformational freedom of

the groups in the 2,9-positions of the phenanthroline ligand and
thereby increase the effective steric demand of the ligand.
Under such conditions, the complex is expected, as observed, to
emit at shorter wavelength and due to the energy gap law
exhibit a longer excited state lifetime.72

Spin−Orbit Coupling. As previously discussed, large SOC
not only permits ultrafast intersystem crossing (ISC) but also
promotes a strong T1 → S0 radiative transition. Consequently,
understanding the SOC at both the ground and triplet
(emitting) states geometries and its dependence on the
geometric structure plays an important role in determining
the lifetime and luminescence mechanism of these complexes.
The first study into the SOC of Cu(I)−phenanthrolines was
performed by Nozaki and co-workers88 on [Cu(dmp)2]

+. Using
a semiquantitative approach, they reported that the SOC matrix
elements were strongly dependent on the dihedral angle
between the two ligands, which they used to explain the slow
ISC rate observed at the flattened PJT geometry of the lowest
3MLCT state.
Assuming a one-electron one-center approximation, the SOC

operator is expressed as

∑ζ̂ = ̂ ̂H l s
i

N

i iSO

el

(3)

where lî is the angular momentum of electron i and sî is the spin
operator of electron i. ζ is the spin−orbit coupling constant,
proportional to the atomic number and inversely proportional
to the mean cubic radial distribution (r−3) of the electron, and
is therefore responsible for the so-called heavy atom ef fect.
However, for a full understanding of the SOC mechanism, one
must also consider the integral over the two states involved:

̂ = ⟨Ψ | ̂ |Ψ ⟩H H[ ]ij S TSO SOi j (4)

This integral, sometimes referred to as the internal ef fect,
depends principally on the character of the states involved, as
outlined for organic systems by El-Sayed.89 In his work, El-
Sayed highlighted that to achieve effective SOC, any change in
spin must be accompanied by a corresponding change in
angular momentum, so that total angular momentum is
conserved. Consequently, SOC between the MLCT states of
transition metal complexes must work between the dπ*
configurations involving d orbitals of different orientations.90

Indeed, this is why, despite the heavy atom effect, the SOC for
Au(I) complexes is generally smaller than the one for analogous
Cu(I) complexes, as the larger crystal field splitting leads to a
smaller contribution of d-orbitals in the excited state.91

Table 2 shows the significant (>10 cm−1) SOC matrix
elements for the nine Cu(I)−phenanthroline complexes at both
the Franck−Condon and lowest triplet state geometries. At the
Franck−Condon geometry, the complexes that exhibit no
dihedral distortion show significant SOC matrix elements (>10
cm−1) between the S1, S2 states and the triplet manifold.
Indeed, [Cu(dmdp)2]

+ exhibits spin−orbit coupling character-
istics very similar to those described by Nozaki and co-
workers88 for [Cu(dmp)2]

+. This demonstrates that, in contrast
to the oscillator strengths and excited state energies reported in
the previous section, the phenyl substituent in the 4,7 positions
that contain only light elements, do not have a large impact on
the magnitude of the SOC matrix elements. At the equilibrium
geometry the main coupling is between the S1 and T1 and is
263 cm−1. This arises from the spin−orbit integrals between the
main excited state configurations, ⟨dyz→π1*|ĤSO|dxz→π1*⟩ and

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.5b03842
J. Phys. Chem. A 2015, 119, 7026−7037

7029

http://dx.doi.org/10.1021/acs.jpca.5b03842


⟨dxz→π2*|ĤSO|dyz→π2*⟩, that contribute to the excited state
wavefunction. Here dyz is the HOMO, dxz is the HOMO−1,
and π1* and π2* are the LUMO and LUMO+1, respectively. For
the reasons discussed above the ⟨dyz→π1*|ĤSO|dyz→π2*⟩ and
⟨dxz→π1*|ĤSO|dxz→π2*⟩ integrals do not contribute.
We have recently reported43 that for [Cu(dmp)2]

+ efficient
ISC occurs along the flattening coordinate where the S1 state
becomes degenerate with the T2, T3, and T4 states. This occurs
because the rate of ISC, related to the mixing between the
singlet and triplet states is dependent not only on the SOC
matrix elements but also on the gap between the two coupled
states, as shown in eq 2. To assess this for [Cu(dmdp)2]

+,
Figure 2 shows the excited states and SOC matrix elements
along its flattening coordinate. Importantly, the T3 and T4
states cross S1 and S2, and in conjunction with the significant
coupling at the corresponding crossing points one could expect
bifurcation of the wavepacket and ultrafast ISC as recently
reported for [Cu(dmp)2]

+.43

For complexes that exhibit a broken symmetry and a
flattened dihedral angle in both the ground and lowest triplet

states, the SOC matrix elements are significantly reduced, <50
cm−1. This is because the main configurations for both the S1
and T1 states correspond to the dyz → π* transitions.
Consequently, as these transitions do not involve any change
in the d-orbital angular momentum, the SOC integrals work
only between ligand-centered molecular orbitals instead of
metal-centered ones. In this case, the small spin−orbit coupling
constant of these elements means that no significant SOC
matrix elements arise.

Molecular Dynamics: Role of the Solvent. In the
previous sections we have focused on the influence of the
electronic and structural properties on the luminescence
characteristics. However, as outlined in the Introduction, the
solvent is well documented to also play a crucial role in the
luminescence lifetime of these complexes. In this subsection we
present classical and QM/MM MD simulations, as described
above, aimed at elucidating the exact nature of the solvent
interaction.
Table 3 shows the mean values and standard deviations of

the most relevant structural parameters obtained from the QM/
MM and classical MD simulations. For the complexes
computed with both methods ([Cu(phen)2]

+, [Cu(dpp)2]
+,

[Cu(dbp)2]
+), we find close agreement between these

simulations and the gas phase optimizations shown in Table
S2 (Supporting Information). This verifies the validity of the
force fields and demonstrates that the solvent does not have an
influence on the geometric structure of the complexes.
However, there is one notable exception, namely, the dihedral
angle between the ligands of [Cu(dpp)2]

+ in both the ground
and excited states. This difference is because the dihedral angle
of the phenyl-substituted complexes is sensitive to the
description of the weak π−π stacking interactions. For this

Table 2. Main (>10 cm−1) Spin−Orbit Coupling Matrix
Elements (in cm−1) between the Low-Lying States of the
Nine Cu(I)−Phenanthroline Complexes at the Ground State
(GS) and 3MLCT Flattened Geometriesa

GS 3MLCT

[ĤSO]ij ∠DHA [ĤSO]ij ∠DHA

[Cu(phen)2]
+ 86 (1,1) 90 13 (1,1) 39

266 (1,2)
33 (2,3)
306 (2,4)

[Cu(tfp)2]
+ 280 (1,1) 90 50 (1,1) 74

44 (1,2)
317 (2,4)

[Cu(dmdp)2]
+ 263 (1,1) 88 25 (1,1) 58

32 (1,2) 32 (1,2)
15 (1,3)
26 (2,2)
210 (2,3)
205 (2,4)

[Cu(dpp)2]
+ 29 (1,1) 54 21 (1,1) 53

[Cu(dpdmp)2]
+ 38 (1,1) 54 28 (1,1) 53

16 (2,4) 20 (1,2)
13 (1,3)

[Cu(dptmp)2]
+ 39 (1,1) 65 23 (1,1) 58

16 (2,4)
[Cu(tpp)2]

+ 26 (1,1) 51 19 (1,1) 50
[Cu(dbp)2]

+ 143 (1,1) 86 37 (1,1) 75
15 (1,2)
232 (1,3)
182 (2,2)
237 (2,4)

[Cu(dbtmp)2]
+ 125 (1,1) 83 34 (1,1) 70

232 (1,3)
40 (1,4)
19 (2,1)
177 (2,2)
25 (2,3)
227 (2,4)

aThe numbers in brackets (i,j) represent the singlet and triplet excited
states between which the coupling is acting. DHA is the dihedral angle
between the ligands in degrees (deg).

Figure 2. Energy, in eV, of the ground state (red) singlet (orange) and
triplet (blue) MLCT excited state of [Cu(dmdp)2]

+ along the
coordinate that connects the ground and excited state geometries
(principally the flattening of the ligands). Spin−orbit coupling
elements, in cm−1, between S1 and S2 with T3 and T4 are shown as
well.
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complex, the force field is parametrized using DFT(BLYP) and
incorporated the effect of the weak π−π interactions through
Grimme’s D2 dispersion correction.62 In contrast, for the QM/
MM simulations, the π−π interactions between the atoms in
the QM subsystem were described using the dispersion-
corrected atom-centered potential (DCACP)82−84 method.
Note that van der Waals interactions between the solute (DFT)
and the solvent (force field) are treated at a classical level. This
results in a larger, by ∼10°, dihedral angle in the case of the
latter, which is in better agreement with previous experimental
observations.92,93 Importantly, an additional gas phase geom-
etry optimization performed within CPMD using DCACP
demonstrated that the difference arises solely from the
description of the π−π interactions and is not a structural
change induced by the solvent shell. However, as demonstrated
in Figure S6 (Supporting Information), this difference in the
dihedral angle does not have a significant effect on the structure
of the first solvation shell in the ground state. Though, as a
consequence of this large dihedral angle in the classical MD
simulations, a slightly stronger solute−solvent interaction is
observed in the excited state, this does not change the
qualitative interpretation of the results as discussed below.
Figures 3−5 show the Cu−NMeCN and Cu−ClDCM radial

distribution functions (RDF) and distance dependent coordi-
nation number, N(r), for both the ground (GS) and excited
states (ES) extracted from the classical MD simulations. For
[Cu(phen2)]

+, [Cu(dpp)2]
+, and [Cu(dbp)2]

+ these are
compared to the RDFs obtained from the QM/MM MD
configurations in Figures S5−S7 (Supporting Information).
These show good agreement between the solvent structure for
the two simulations up to 10 Å from the copper ion.
The red trace in Figure 3 corresponds to the solvation

structure of [Cu(phen)2]
+. As this complex has no substituents

on the phenanthroline ligands, it is expected to exhibit the
largest interaction with the solvent and, indeed, this is observed
for both the ground and excited states. For the complex
dissolved in MeCN, the first Cu−NMeCN solvation shell peak in
both the ground and excited states is observed at ∼4 Å.
However, in both cases this solvent shell does not form a
distinct structure separated from the bulk solvent, and the RDF

indicates continuous exchange between the first solvation shell
and the rest of the solvent. This is accentuated in the excited
state. Therefore, although due to the large flattening angle there
is likely to be a solvent interaction at the Cu ion, this is weak (r
> 3 Å) and leads to a transient structure that cannot be defined
an as exciplex. The RDF for the complex dissolved in DCM
(Figure 3c,d) shows that the solvent molecules are able to come
slightly closer to the copper ion. In this case, the very large
dihedral angle in the excited state introduces no steric
hindrance for either the chlorine or nitrogen atoms, providing
therefore the optimal conditions for the direct interaction of the
metal ion with the solvent. However, also in this case we do not
observe the formation of an exciplex. This would appear to rule
out the possibility of a direct solvent effect on the lifetime of
[Cu(phen)2]

+ occurring at the copper ion. Recently, Hua et
al.41 reported that the principal luminescence from [Cu-
(phen)2]

+ occurs from the lowest singlet excited state and has a
lifetime of 1.8 ps in DCM and 1.4 ps in MeCN. The authors
attributed this small quenching to stabilization of the charge
transfer character state in a more polar solvent. This is

Table 3. Mean Values for Selected Geometrical Features with Corresponding Standard Deviations (σ) from the QM/MM and
Classical Simulations (CMD)a

ground state 3MLCT

method Cu−N (Å) ∠NCuNintra (deg) ∠DHA (deg) Cu−N (Å) ∠NCuNintra (deg) ∠DHA (deg)

[Cu(phen2)]
+ CMD 2.00 (0.066) 83 (2.6) 90 (9) 1.98 (0.035) 85 (1.4) 48 (7)

QM/MM 2.03 (0.075) 83 (2.5) 82 (20) 2.01 (0.073) 83 (3.4) 41 (9)
[Cu(tfp)2]

+ CMD 2.08 (0.062) 81 (2.5) 90 (7) 2.02 (0.036) 85 (1.5) 75 (7)
[Cu(dmdp)2]

+ CMD 2.00 (0.065) 81 (2.6) 94 (11) 1.98 (0.036) 84 (1.6) 76 (7)
[Cu(dpp)2]

+ CMD 2.02 (0.036) 85 (1.5) 55 (7) 1.95 (0.035) 89 (1.6) 51 (7)
QM/MM 2.08 (0.091) 83 (2.8) 67 (9) 2.04 (0.086) 84 (3.1) 64 (12)

2.03 (0.080) 2.01 (0.080)
[Cu(dpdmp)2]

+ CMD 2.01 (0.036) 85 (1.5) 54 (7) 1.95 (0.036) 88 (1.6) 52 (7)
[Cu(dptmp)2]

+ CMD 2.01 (0.036) 85 (1.5) 65 (7) 1.95 (0.036) 88 (1.5) 65 (7)
[Cu(tpp)2]

+ CMD 2.05 (0.036) 84 (1.5) 53 (7) 1.94 (0.036) 88 (1.6) 51 (7)
[Cu(dbp)2]

+ CMD 2.04 (0.056) 81 (1.4) 87 (6) 2.02 (0.036) 83 (1.6) 74 (7)
1.98 (0.036) 84 (1.6)

QM/MM 2.05 (0.087) 83 (2.7) 95 (10) 2.02 (0.081) 85 (2.7) 78 (11)
2.00 (0.072)

[Cu(dbtmp)2]
+ CMD 2.05 (0.062) 81 (2.5) 90 (7) 2.02 (0.035) 84 (1.5) 77 (7)

aThe Cu−N is the bond distance between the Copper and the four nitrogens of the phenanthrolines ligands. NCuNintra is the angle the copper
makes with the two nitrogens atoms on the same phenanthroline ligand; DHA is the dihedral angle between the ligands.

Figure 3. Radial distribution function g(r) and integrated radial
distribution function N(r) extracted from the classical MD of
[Cu(phen)2]

+, [Cu(tfp)2]
+, and [Cu(dmdp)2]

+ in the ground state
for MeCN (a) and DCM (c) and the lowest triplet excited state for
MeCN (b) and DCM (d).
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consistent with our present simulations, as this assignment is an
outer-sphere effect and therefore is not influenced by the Cu−
solvent interaction distances. It is worth noting that there
appears to be a distinct difference in the total lifetime of
[Cu(phen)2]

+ in DCM reported in ref 41 and by Chen et al.94

This difference occurs as the former does not include the small
fraction of phosphorescence (Φ ∼ 0.1) arising from a fraction
of the wavepacket that undergoes intersystem crossing (ISC).
Interestingly, in ref 41 ISC is not observed when the complex is
dissolved in MeCN. Due to the lifetime of the excited state and
small SOC, this fraction of ISC cannot occur in S1 at the
flattened geometry and therefore must occur along the
flattening coordinate where the low-lying triplets are degenerate
with the S1 state, as recently proposed from high-level quantum
dynamics simulations.43 Consequently, ISC is observed for
DCM and not MeCN as the higher viscosity of the solvent
leads to the wavepacket taking longer (∼0.1 ps) to traverse the
flattening coordinate where the probability of ISC is higher.
The effect of the addition of small substituents, CF3

([Cu(tfp)2]
+) and CH3 ([Cu(dmdp)2]

+), in the 2,9 position
of the phenanthroline ligands are shown in Figure 3. In both
cases the first solvation shell shifts further away from copper, as
expected. However, although the peak of the first solvation
shells appear at similar distances, the additional steric hindrance
of the fluorine atoms, in comparison to the case for the
hydrogens, means that there is a smaller probability for the
solvent molecules to come close (<4 Å) to the Cu ion. The
other significant effect is that of the phenyl groups in the 4,7
positions of [Cu(dmdp)2]

+, which pushes the outer-sphere
solvent molecules further away from the core of the
phenanthroline ligands as demonstrated by the loss of the
peak in the RDF at ∼8 Å.
Figure 4 shows the effect of adding phenyl ligands in the 2,9

positions of the phenanthroline ligands. When compared with

the radial distribution profiles obtained for the complexes with
small substituents (Figure 3), several important differences are
observed. The first solvation peak around ∼5 Å is strongly
reduced, and the overall profile becomes less structured.
Indeed, the main feature in the RDF does not occur until
between 8 and 10 Å away from the copper. We also observe
much smaller changes between the ground and the excited state

solvent structures, consistent with the small changes in the
solute.
Finally, Figure 5 shows the effect of adding alkyl substituents

in the 2,9 position of the phenanthrolines ligands. Like for the

phenyl substituents, these significantly reduce the magnitude of
the first solvation shell. Again, the substituents pointing toward
the bulk have only a very small effect at short distances (<6 Å).
This effect is larger at <6 Å and is associated with the second
solvation shell being shifted outward. Although this will reduce
the interaction between the solvent and the complex, it is
expected to have very little effect on the lifetime arising from
solvent interactions.
Though useful, the RDFs presented in the previous section

do not contain information about the angular distribution of
the solvent shell. Figure 6 shows the solvent density around the
[Cu(phen)2]

+, [Cu(dpp)2]
+, and [Cu(dbp)2]

+. Corresponding
plots for the other complexes are shown in Figures S8−13
(Supporting Information). For [Cu(phen)2]

+, we find an
ordered first solvation shell, which follows and intercalates
along the lines of the phenanthroline ligands in a manner
similar to that reported for [Ru(bpy)3]

2+ 95,96 and [Fe-
(bpy)3]

2+.97,98 Importantly, as indicated by the RDFs, the
solvent structure does not change significantly in the excited
state, indicating that although a weak solvent effect is present in
the excited state, it does not arise from a particular solvent
structure. Importantly, although this order is retained, to a
certain extent, with phenyl and alkyl groups substituted into the
2,9 positions, these plots clearly show a distant disruption of
the first solvation shell, especially in the case of the latter. This
increased disorder in the solvent structure is likely correlated to
a decrease of the solvent induced effects on the ground and
excited state dynamics.

■ DISCUSSIONS AND CONCLUSIONS
The photophysical properties of the Cu(I)−phenanthroline
complexes have drawn significant attention owing to a range of
possible applications and have been widely studied as
prototypical mononuclear Cu(I) complexes. In the previous
sections we have presented detailed simulations aimed at
providing a comprehensive description of the role of the
electronic and geometric structure, the SOC, and solvent
environment in determining the luminescent properties. In this

Figure 4. Radial distribution function g(r) and integrated radial
distribution function N(r) extracted from the classical MD of
[Cu(dpp)2]

+, [Cu(dpdmp)2]
+, [Cu(dptmp)2]

+ and [Cu(tpp)2]
+ in

the ground state for MeCN (a) and DCM (c) and the lowest triplet
excited state for MeCN (b) and DCM (d).

Figure 5. Radial distribution function g(r) and integrated radial
distribution function N(r) extracted from the classical MD of
[Cu(dbp)2]

+ and [Cu(dbtmp)2]
+ in the ground state for MeCN (a)

and DCM (c) and the lowest triplet excited state for MeCN (b) and
DCM (d).
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section we discuss the implications of these results and possible
pathways to further develop their applicability.
In the first section of our present study we performed

quantum chemistry calculations to rationalize the effect of
ligand modifications on the emission properties and lifetime of
these complexes and have observed a number of trends. First,
the energy gap between the ground and excited states, crucial in
terms of the contribution of nonradiative relaxations is strongly
dependent on the dihedral angle between the ligands, and
consequently, to maintain a significant radiative emission by
virtue of the large energy gap, these structural distortions must
be minimized. Indeed, one effective way to control this is
including methyl substituents in the 3,8 positions. Here the
steric hindrance with the substituents in the 2,9 position,

reduces the flattening distortion in the excited states and can
significantly extend the excited state lifetime.87 Second, the S1
→ S0 oscillator strength is strongly dependent on the ligand
substitutions on the phenanthroline ligands. If the π system of
the ligands is pushed toward the Cu center, i.e., with phenyl
substituents in the 2,9 positions, the dipole length is reduced,
decreasing the oscillator strength. As expected, the opposite is
observed if phenyl substituents are used in the 4,7 positions.
The inductive effect of the alkyl substituents leads to the
opposite trends when in the same position. Third, the emission
from the triplet state also has a strong bearing on the emission.
This gains intensity through mixing with the lowest singlet
states and is dependent upon both the energy gap between the
state sand the SOC matrix elements. For the former,

Figure 6. Solvent density of MeCN (blue) and DCM (green) around [Cu(phen)2]
+, [Cu(dpp)2]

+, and [Cu(dbp)2]
+, in both the ground and

3MLCT state.
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delocalization of the unoccupied orbitals, populated upon
excitation by for instance phenyl substituents in the 4,7
positions, decreases the energy gaps between the singlet and
triplet state by virtue of a reduced exchange interaction. This
increases the mixing of the singlet and triplet state making the
radiative rate from the triplet state large reducing the excited
state lifetime.
To assess the role and factors affecting the SOC within these

complexes, we have performed SOC-TDDFT calculations as
described. In agreement with the semiquantitative study
performed by Siddique et al.88 on [Cu(dmp)2]

+, we find that
the magnitude of spin−orbit coupling matrix elements are
dependent almost exclusively upon the dihedral angle between
the ligands. This arises from an internal ef fect associated with
the changing character, of the excited states, especially that of
the Cu d-orbitals, upon flattening of the dihedral angle. Indeed,
when the two ligands are perpendicular (or close to), the D2d
symmetry means that the dxz and dyz orbitals are degenerate
and consequently both contribute to the character of the low-
lying excited states. This provides an effective mechanism for
spin−orbit coupling, as the one-center SOC integral between
these orbitals fulfills at best the total angular momentum
conservation rule. However, flattening of the dihedral angle
disfavors the transition between the dxy and dyz orbitals. As a
consequence, the SOC matrix elements acquires intensity only
through the coupling of ligand-centered molecular orbitals and
are small due to the absence of heavy elements.
Using classical and QM/MM molecular dynamics, we have

provided a detailed study of the exact nature of the solvation
shell around these complexes in both the ground and lowest
triplet excited states. In agreement with out recent time-
resolved X-ray absorption study,50 these simulations demon-
strate that the lifetime shortening of the excited state in donor
solvents (acetonitrile) is not due to the formation of an
exciplex. Instead, although the solute−solvent interaction still
occurs at the metal center it is weak and therefore transient in
nature. Crucially, this arises from a solvent structure already
present in the electronic ground state. Indeed, even for
[Cu(phen)2]

+ that has no substituents on the phenanthroline
ligands and therefore would be expected to exhibit the largest
interaction with the solvent, the solvation structure of the
closest solvent molecules in both the ground and excited states
is observed at ∼3 Å. But, in both cases this solvent structure is
not a distinct structure separated from the bulk solvent and
undergoes continual exchange between the first solvation shell
and the rest of the solvent. The solvent structure extracted from
the molecular dynamics simulations shows that all substituents
larger than CH3 prevent the solvent molecules from coming
closer than ∼4 Å to the Cu ion. Crucially, in terms of
preventing the solvent effect, this therefore does not provide a
large restriction on the choice of ligands required in the 2,9
positions of the phenanthroline ligands.
In conclusion, using DFT, TDDFT, and classical and QM/

MM MD simulations, we have elucidated the role of the
geometric and electronic structure, spin−orbit coupling,
singlet−triplet gap, and the solvent environment on the
emission properties of nine prototypical copper(I)−phenan-
throline complexes. In terms of future studies, it is worth noting
that this study has focused on the homoleptic complexes.
However, the general principles discussed are certainly
applicable to hetreoleptic complexes that have also been
explored for TADF emitter in OLEDS.99 Indeed, these
complexes offer great potential due to the multitude of possible

variations of the involved ligands, and although additional care
has been taken due to their thermodynamic stability,100 recent
work has demonstrated that such complexes can exhibit
promising device performance.101
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